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Flat-band exciton in two-dimensional Kagomequantum wire systems
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Exciton states in the two-dimensional Kagoiattice, which is fabricated by the semiconductor quantum
wires and has the electronic band structure with dispersionless flat bands, are studied theoretically using the
tight-binding model. It is found that the binding energy of an exciton in the Kagaitiee is larger than the
exciton binding energies in other two-dimensional lattices and even larger than that in the one-dimensional
lattice. It is shown that such large binding energy originates from the macroscopic degree of degeneracy and
the localized nature of the flat-band states in the Kagtatiie. This large binding energy is controllable by
applying an external magnetic field. Furthermore, contrary to the exciton state, we also show that both the
binding energy of a charged exciton and that of a biexciton in the Kadattiee are much smaller than those
in other lattices.
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[. INTRODUCTION lete the wave-function amplitude on the sites around one unit
cell and can choose eigenstates of a flat band as completely
The recent progress in the field of nanotechnology hasocalized around one unit cellii) Since each unit cell has a
made it possible to fabricate semiconductor quantum wiretocalized eigenstate, a sum of such eigenstates becomes a
with nanoscale width and to arrange them at arbitrary posieomplete set of flat-band states, with the same eigenenergy,
tions on the semiconductor surfaces. Since the electroraroducing the macroscopic degree of degeneréiy. The
and/or holes are mainly confined in the quantum wires, thebove-mentioned localized states are nonorthogonal and
periodic arrangement of quantum wires provides ideal twohave finite overlaps with each other. This indicates that when
dimensional lattice-network systems. These artificial latticeone produces the Wannier functions of a flat band, they are
have advantages over the conventional bulk crystals; for exaot localized. These features, i.e., the localization, macro-
ample, the number of electrons are controlled by varying thecopic degree of degeneracy, and nonorthogonal features of
gate voltage connected to the substrate and the lattices do ritdt-band eigenstates, are closely related to the appearance of
undergo the structural deformation, such as the Jahn-Tellderromagnetism. We can expect that these unique features
distortion, upon carrier doping. In this way, the quantum-also promote exotic optical properties in flat-band lattice sys-
wire artificial lattice systems provide new stages for physicatems, which have never been studied so far. This is the mo-
phenomena. tivation of the present work.
Electronic structures of lattice systems have been studied In the previous paper, we briefly reported the theoretical
theoretically for a long time. In 1976, Hofstader showed thatresults of the exciton properties in the Kagomagtice by
the two-dimensional lattice systems give fractal energy speadsing the simple mathematical tight-binding mo6&2In this
tra with an external magnetic fiefdThis theoretical result paper, we extend this work by considering realistic situations
has been confirmed by Albrecht al. experimentally using of the InAs Kagomejuantum-wire system and other lattice
the quantum-wire systenf€One of the recent important sub- systems, and analyze in detail the origin of unique exciton
jects concerning the lattice systems is flat-band ferromagfeatures in the Kagomiattice. The most remarkable finding
netism. Mielke and Tasaki showed by using the Hubbardf the present study is that the binding energy of an exciton
model that the Kagomkattice has a complete flat electronic in the Kagome lattice is larger than that in the one-
band and shows a ferromagnetic behavior when the flat bardimensional system, contrary to the well-known result that
is half filled with electrons:* The local spin-density func- the binding energies of excitons in high-dimension systems
tional calculation based on the effective-mass approximatiomare smaller than those in low-dimension systems. Since the
also showed that the surface ferromagnetism appears on tlesciton is associated with the flat bands in the Kagdate
InAs Kagomequantum-wire system when the flat band istice, we call this exotic exciton as a flat-band exciton in this
half filled.*°> Motivated by these theoretical predictions, the paper.

experimental challenge to realize the Kagolatice is now The rest of this paper is organized as follows. In Sec. I,
in progres$. the model of the InAs Kagomeuantum-wire lattice and the
Currently, a variety of lattice systems are known to havecalculation method are described. In Sec. lll, the binding

electronic flat bands. Among these systems, there are conenergy and the wave function of the flat-band exciton are
mon features(i) A flat band exists as a pair with dispersive first discussed, and compared with those of other lattice sys-
bands, reflecting the multisites in the unit cell. Using thetems. Next, the origin of the large binding energy of a flat-

specific geometry of site connection in lattices, one can deband exciton is analyzed using a perturbation method. It is

0163-1829/2004/68)/085325%7)/$22.50 69 085325-1 ©2004 The American Physical Society



HIROYUKI ISHII, TAKASHI NAKAYAMA, AND JUN-ICHI INOUE PHYSICAL REVIEW B 69, 085325 (2004

cross-point pairsU(rj;) is the Coulomb attraction energy
between an electron and a hole, for which we employ the
formlo,ll

—Up for i=]j
U(rij): _0.7&0 for Iqﬁj, (2)
(rij/a)

wherer;; is the distance between th@ndjth cross points
represents the distance between the nearest-neighbor cross
points of quantum wires evaluated as 36 nm. The employ-
ment of this form of Coulomb energy is equivalent to the
introduction of the cutoff parameter in one-dimensional sys-
tems to avoid the divergence of the eigenvalue of the Hamil-
tonian (1) and corresponds to the screening around the
on-site!®!! The band-gap energy between the valence band
and the conduction band has an arbitrary value in our model.

; h
the cross points of quantum wires, and transfer between two We must estimate the transfer energiésndt”, and the

nearest-neighbor cross points as shown by arrows. The Coulom n-site C,OUI%mb energ¥)o, for the I?AS Ka;}goméa.ttme tc))'nd'
attractive interactioJ(r;;) works between an electron and a hole. the semiconductor sur ace to eva uaFe the eXCItpn Inding
energy. The local-density approximation calculation shows

shown here that both the localization and degeneracy naturddat the total width of the conduction bands is about 10
of flat-band electronic states promote the large binding en™MeV; vyh|lee the corresponding bandwidth by the present
ergy. Then, the variation of the binding energy with magnetidodel is @°. Tt;erefore, we are able to take the electron
field and the stability of the flat-band exciton are studied, byiransfer energy® as 1.67 meV. Note that since the lowest-

calculating the binding energies of charged excitons an§nergy state at the cross point has the s-like orbital, the s-s
biexcitons. Section IV concludes the paper. coupling between the nearest sites gives a negative value to

the electron transfer energy in most cases. However, as
shown in Sec. Il D, the sign af is easily changed by ap-
plying a magnetic field to the lattice system. Thus, in this
We investigate the Kagomguantum-wire system, where paper, we assume thigthas a positive value. In this case, the
the quantum wires are made of InAs and surrounded bflat band appears as the lowest conduction band. We approxi-
Ing 74Ga, »gAs barrier regions. The width of quantum wires is mate the hole transfer energyequal to the electron transfer
10.4 nm, and the lattice constant is 72 nm. A system of thignergyt® for simplicity. This is because the reduced mass of
size can be produced by recent nanotechnofdgycal spin-  an electron and a hole in InAs is almost equal to the effective
density approximation calculation for this system shows thamass of an electron. On the other hand, when an electron and
the electron density localizes at the cross points of the quarg hole are located at nearest-neighbor sites, the Coulomb
tum wires>® A similar result is obtained for the hole density attraction energy between them-ise?/4mea, wheree rep-
because InAs quantum wires also work to confine holestesents the relative dielectric constant of InAs; 12.4, and
Therefore, we assume that the electronic structures of ele@ is the elementary electric charge. Thus, the on-site Cou-
trons and holes in the lower conduction and higher valencéomb energyl, is estimated as 4.18 meV.
bands are well described by employing the tight-binding The exciton states are obtained as the lowest-energy
model, where electrons and holes are located at the cros®und eigenstates of the Hamiltonian. The exciton binding
points of quantum wires and transfer along the wires. ThisnergyEg is calculated as
situation is schematically shown in Fig. 1. Moreover, an
electron and a hole are assumed to be other kinds of fermi-
ons, for simplicity!® Under these assumptions, the model Eg=E(Uo=0)—E(U#0), ©)
Hamiltonian of the system becomes

FIG. 1. Tight-binding model for exciton state in the Kagome
guantum-wire system. An electron in a conduction bdaryje solid
circle) and a hole in the valence bafiidrge open circlglocate at

1. MODEL AND METHOD

whereE(Uy=0) andE(U,#0) are the lowest eigenvalues
F1= 2 tiejéli'réjJr E tth-BiTBpLE U(rij)éiTéiB;rBj Q) pf the Hamiltonian yvithout and With the Cqulomb a_ttraction
i ' i interaction, respectively. The Hamiltonian is numerically di-
. . agonalized by the Lanchos method for Kagotatiices of
wherea; andb;, respectively, represent the annihilation op-finite size as large as 515 unit cells with periodic bound-
erators of an electron and a hole at ik cross point of ary conditions. To check the convergence of the calculated
guantum wirestﬁ andtihj are transfer energies of an electron binding energy of exciton, we varied the size of the system
and a hole from théth to thejth cross points, respectively. and confirmed that the binding energy of an exciton is ob-
The summation(i,j) runs over the entire nearest-neighbor tained with 1% accuracy in the present calculation.
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FIG. 4. Calculated binding energies of excitons for various lat-
tices. Transfer energy/ which corresponds to the carrier transfer
FIG. 2. The lattice models adopted in this worta) one-  along broken lines shown in Figs(& and 2b), is continuously
dimensional(b) Kagomie (c) triangle, and(d) square lattices. Unit changed fromt’=0 tot’' =t=t°=t", yielding the gradual modifi-
cells of these lattices are shown (@—(d) by gray square frames. cation Ifrom the one-dimensional and Kagonwdtices to the
Kagomeand triangle lattices are obtained from one-dimensionalKagome and triangle lattices, respectively. Calculations are per-
and Kagomdattices, respectively, by allowing the carrier transfer formed for the 1% 15 unit cells.
along broken lines irfa) and (b).
It should be noted here that when we introduce another
transfer energyt’ shown by broken lines in Figs.(®@ and
A. Binding energy and exciton Bohr radius 2(b), the triangle and Kagomiattices are obtained from the
; : : P : Kagome and one-dimensional lattices, respectively, by
First, we consider the exciton binding energy in thechangingt’ fromt’=0 tot’ =t®=t". This treatment enables
Kagomelattice. In order to clarify the characteristics of the . - .
Kagomesystem, we compare binding energies among varitS to stuo_ly the effect of the continuous dlm_en5|onal change
ous lattice systems. Schematic diagrams of one-dimensiondlf @ lattice from a one-dimensional lattice to a two-
two-dimensional Kagometriangle and square lattices are dimensional triangle lattice by way of a Kagoriztice. _
shown in Figs. 2a)—2(d) as solid lines, respectively. Unit  Figure 4 shows the calculated binding energies of exci-
cells of these lattices are also represented by gray squaf@ns for various lattices. It is seen that the exciton binding
frames in Figs. @)—2(d). The calculated electron and hole €nergies in the one-dimensional lattice are larger than those
band structures of these lattices are shown in Figg-3(d). N the triangle and square lattices, which is consistent with
As shown in Fig. ), the flat bands appear as the lowestthe familiar knowledge that the exciton binding energy in-
conduction and the highest valence bands for the Kagomg'®ases as the spatial dimension of the system decreases.

IIl. RESULTS AND DISCUSSION

|lattice. However, it should be emphasized that the binding energy in
the two-dimensional Kagomlattice is larger than that in the
(a)1-dim.  (b)Kagome  (c)triangle  (d)square one-dimensional lattice.
We then consider the spatial localization feature of exci-
St ] ] T 1 A ton states. The calculated exciton densities are shown in
Conduction Figs. 5a)—5(d) for various lattices. In these figures, the elec-
band °>< ] tron is fixed on one specific site denoted by white arrows and
the hole distribution is displayed. Apparently, all wave func-
St ] T T tions ares-like nodeless states. To evaluate the localization
nature of excitons, the exciton Bohr radius is calculated by
. ] 1 - fitting the following distribution function to the exciton den-
Vatl)enge 0<>< sity shown in Fig. 5,
an - ]
M
5t ] T X Pn(r)= Poexp{ - y 4

I rr Kk Mmrr KM rx mr

FIG. 3. The electronic band structure(af one-dimensionalp) ~ Here.re is the coordinate of the fixed electron agids the
Kagomie (c) triangle, andd) square lattices. Solid and open circles €XCItON radius. _ _
represent an electron state at the bottom of the conduction band and The calculated exciton radiuses are 102, 42, 36, and 108

a hole state at the top of the valence band, respectively, and tHem for the one-dimensional, Kagémﬁiangle, and square
wavy lines schematically indicate the Coulomb attraction interaclattices, respectively. Therefore, the excitons are localized in

tions. Insets are the Brillouin zones corresponding to the unit cell$he Kagomeattice as compared to the one-dimensional and
in Fig. 2. square lattices, which is one of the reasons for the large
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FIG. 6. (a) Schematic diagram of the Tasaki lattice. In this lat-
tice, the transfer energies of an electron and a hole &etween
two sites, which are connected by straight solid lines, while the
transfer energies ar€ between two sites connected by straight
broken lines. The transfer energies represented by broken circular
lines aret’/2. Whent’'=0, the lattice corresponds to the square

FIG. 5. Calculated exciton densities for various lattices. Thelattice. On the other hand, wheh=t, the original Tasaki lattice is
electron is fixed on one specific site shown by white arrows and thebtained(b) The electronic band structure of the Tasaki lattice with
hole spatial distribution is shown fofa) one-dimensional,(b) t'=t.
Kagome (c) triangle, and(d) square lattices. White square frames
in (a)—(d) are unit cells. Calculations are performed for the & It is seen that the binding energy in the Tasaki lat(i¢2
unit cells. meV) is much larger than that in the Kagontattice (3.3

) meV). This is because, as shown in Figbg the Tasaki

exciton binding energy in the Kagomlattice because the |attice has the full band gaps between the flat bands and the
binding energy increases as the localization increases. Howsther bands, and thus, the localizations of an electron and a
ever, excitons in the Kagomend triangle lattices have al- hole state in the flat band are stronger compared to the case
most the same radii. This result indicates that the localizedf the Kagomdattice. It should be noted here that the exci-
nature of excitons alone cannot explain why the excitons inon binding energy is larger than even the on-site Coulomb
the Kagomeattice have larger binding energy than those inattraction energy ofU,=4.18 meV. Note thatU, is the
the other lattices discussed here. ; maximum value of the Coulomb attraction energy for the

The calculated exciton binding energy in the Kagdate  case of one-site localization of both an electron and a hole.
tice is 3.3 meV, which is larger than those in the squareThis result clearly indicates that the localized nature of flat-
lattice (1.4 meV) and in bulk InAs(1.6 me\). Thus the dif-  band states is not the unique origin of larger exciton binding
ference of binding energy among these systems is obsgrvatéelergy_
in careful experiments. When one produces the Kagome
quantum-wire lattice of small size, the exciton binding en- C. Perturbation analysis of flat-band exciton
ergy in the Kagomdattice becomes much larger. This is _ . .
because the exciton is localized in one plaquette of the 10 clarify the origin of the large binding energy of an
Kagormie lattice, thus weakly depending on the values oféxciton in the flat.—band Iatt|c.e system, we perform_ the per-
transfer energies® andt", but the Coulomb attraction en- turbation calculations of e>_<C|to_n state; using th(_a finite sys-
ergy is roughly proportional to the inverse of the lattice con-tem. The Coulomb attraction |nteraACt|on, the third term in
stanta. Whena is around 6 nm, the binding energy is esti- EQ. (1), is treated as the perturbatio®,. For simplicity, we
mated as 18 meV. On the other hand, the excitons in othexssume that the interaction is of short range and works only
lattices are sufficiently extended that their energies weaklyt the same site adl(rj;)=—Ud;; . Moreover, the X2
depend on the value af. Thus, it is expected that as the finite Kagomelattice with the periodic boundary condition is
lattice size decreases, the exciton-energy difference betweetsed, together with the corresponding-size square lattice for
the Kagomeand other lattices increases. comparison.

In the case of the square lattice, the lowest eigenstate of
an electror] ¢(®) or a hole| ™M) is the linear combination
of the i-site localized stategj), with the same-magnitude

Next, we consider the exciton states in another flat-bangoefficients C;, as|4®)==,C;|i), where the sign of; is
system, i.e., the Tasaki lattice, which is shown in Fi@6>  given as shown in Fig.(&. Remember that the electron and
The band structure of the Tasaki lattice is shown in Fi§).6  hole transfer energies have positive values in this paper, and
The flat bands appear as the bottom conduction band and thgys, that coefficients of nearest-neighbor sites have different

top valence band. The exciton state in the Tasaki lattice igigns. The unperturbed exciton eigenstate is the tensor prod-
calculated in a similar way to those in the other lattices givenct of these states as

in the preceding section. The calculated binding energy is
also shown in Fig. 4. |W @)= @) pM). (5)

&= 36 nm

B. Another flat-band system: Tasaki lattice
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(a) |6®) and|¢M), are fourfold degenerated wiihj=1-4,
& I ! o} & which is the origin of flat bands. Since these localized states
e ~ produce complete sets of flat bands, the unperturbed eigen-
._] ._!,] '_1] +] a states are given by
[P =16) ™), (8
.-H ._dﬂ .-H .-] O which are 16-fold degenerated. Since these states are nonor-
thogonal, i.e., overlap each other, we have to apply the de-
_;I +] _,] 'Hl generate nonorthogonal first-order perturbation to estimate
& & » O the exciton binding energg, as follows:
1 1 b b & &

-&
-

D\
-
\.

2 CAYPIWD)=—EP > C (WP, ©

(e)
|® > Here, a denotes the basis paiti,,|).
One can classify the matrix elements in E@). into three
groups reflecting the physical characteristics of flat-band
(b) states(i) The diagonal matrix elements of the left-hand side
reflect the localized nature of flat-band eigenstates, because
(POIW|w ) is the simple average of the Coulomb inter-
action by the single stat¢W (), similar to Eq.(6). (i) The
nonzero off-diagonal matrix elements have the values of
+Uy/18 and appear due to the degeneracy of flat-band
states, similar to the case of the usual degenerate perturba-
tion. On the other handiii ) the off-diagonal matrix elements
of the right-band side reflect the nonorthogotmierlap na-
ture of flat-band states. To clarify the contributions of these
three groups of the matrix elements to the exotic exciton
state, we multiply off-diagonal matrix elements of a group
(i) by the factory and those of a groufii) by the factoré.
The solution of thus modified E@9) gives the exciton bind-

. , __ing energy as
FIG. 7. Schematic of the lowest eigenstates of a conduction-

band electron or a valence-band hala). square andb) Kagome \/72
lattices. The frameggray lines display the localization regions of Egl): 2(2+ 27+ \1+279+137°) Us. (10
eigenstates and the inserted numbers on the sitds,and —1, 4(9+4¢)

represent the amplitudes of eigenfunctions. In the case of the
Kagomelattice, the lowest eigenstates are degenerate as shown by In the case ofp=§¢=0, which corresponds to the case of
|38 to | ). neglecting both the nonorthogonality and the degeneracy but
considering only the localized nature of flat-band states,
Then, the first-order perturbation gives the binding energy oE(Bl):2U0/12. This value is larger than that of the square
excitonEY) as lattice, which indicates that the exciton in the Kagolautice
is more localized than that in the square lattice and is con-
EL = —(wO)|W|w(©) (6)  sistent with the results of numerical calculation presented
previously. We then switch on the factorg,and ¢, step by
step as displayed in Fig. 8. When we change the valug of
=+ EUO: (7)  from 0 to 1, which corresponds to the case considering the
nonorthogonality and the localized nature of flat-band states,
where the value of denominator, 16, corresponds to the nunE$’ decreases ttJ,/12. This is because the nonorthogonal-
ber of the lattice points in Fig.(@), and reflects the extended ity induces the extension of the localized flat-band states and
nature of electron and hole band states. gives the loss of attractive Coulomb energy. When bgth
In the case of the Kagoniattice, it is well known that the and & have the values of 1, corresponding to the case con-
lowest eigenstates of an electriap{®) and a hold ¢{") are  sidering not only the localization and nonorthogonal natures
the linear combinations of the localized states around hexbut also the degeneracy of flat-band stafe‘é,) again in-
agonal plaquettes, respectively, as shown in Fith).¥ creases to 8,/12. From this analysis, we can clearly con-
Namely, the site coefficients have the same magnitudes aredude that not only the localization nature, but also the de-
possess the signs as shown in Figh)7Since there are four generacy of the flat-band eigenstates, is essential origin to
plaquettes in the present<2 lattice, both the eigenstates, enlarge the binding energy of flat-band exciton.
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the case of 3.7 T, fourfold unit magnetic fluxes are included

Kagpme in the unit cell of the Kagomdattice. The schematic band
iUo G structures in the cases of the magnetic fields-&7, 0, and
as 12 3.7 T, without the Coulomb attraction interaction, are also
o > > shown in the upper panels of Fig. 9. In general, the magnetic
) E © field bends the flat-band dispersions and changes the position
- EUO """"""""""" o 2 of flat bands. It is seen in Fig. 9 that the binding energy of an
£ sT S & exciton in the Kagoméattice suddenly decreases with apply-
= 1_U0 ..g 2 S ing the magnetic field and that its magnitude becomes com-
o 12 b N *g _______ parable to those in other two-dimensional lattices. This result
; |saere — L) indicates that the large exciton binding energy is obtained
1_6U° 81 g only when the flat bands appears as the lowest-conduction
- and highest-valence bands. Moreover, from this result, we

can say that in the Kagomlattice, one can largely control

FIG. 8. Schematic diagram representing contributions to excitorthe binding energy of excitons by applying a magnetic field.
binding energy by the present step-by-step perturbation analysis. ~ Finally, we comment on the sign of electron and hole
localization contribution(ii) nonorthogonality(overlap contribu- transfer energies. As shown in the upper pictures of Fig. 9, an
tion, and (iii) degeneracy contribution. In case of square lattice,electron and a hole transfer energies in the case 8f7 T

only the localization contribution exists. are—t® and—t", respectively, while those in the case of 0 T
o aret® andt". In this way, we can change the sign of carrier
D. Magnetic-field effect transfer energies by applying an external magnetic field. This

Here, we consider the exciton binding-energy variationis the reason why we také andt" as positive in the present
when the magnetic field is applied perpendicular to the latpaper.
tice surface. In the tight-binding model, the magnetic-field
effect is introduced into the Hamiltonian by multiplying the E. Exciton complexes
transfer energy;; by the phase factdr

. 2me fjA q
tj; - ex Iﬁfri (r)dr

where A(r) is the vector potential, and, is the position

Since the radius of an exciton is small in the Kagome

lattice, it is expected that when highly excited, this system

, (11 realizes the high-density states of excitons instead of realiz-
ing the exciton complexes, the electron-hole liquid droplet,
and the electron-hole plasma states. To study this possibility,
vectors of thath site. we consider the stability of exciton against the production of

Figure 9 shows the calculated exciton binding energies fofXciton complexes, by _calc.ulating t_he binding energies of
various lattices as a function of the magnetic field. Here, ircharged exciton and biexciton, which are bounded states
made of two electrons and one hole, and two electrons and

two holes, respectively.

Conduction The following Coulomb repulsive interactions between
band electrons or holes are added to the Hamiltonian of (&g.
- >
Yalence +Ug for i=j
ee —11hh —
U (rij)—U (rij)— +0.75J0 for |g&J, (12)
_ 3.34+ (rijla)
3
S wherer;; is the distance between two electrons or two holes.
& °-°'°30’0007-0“000'0-‘00’0'00'9%§°'° The binding energies of exciton complexes are calculated
g v' Y ,‘{ 3 / similarly, by taking into account the antisymmetry of wave
. ' /¥ functions for the exchange between two electrons or two
5 f holes. Here, the binding energy of a charged exciton is de-
= 1.67 , | fined as the energy required to decompose into an exciton
o e and a free hole, while the binding energy of biexciton is also
=0 e 7 defined as the energy required to decompose into two exci-

37 0 37 tons.
' " ic Field (T We calculated the binding energies of an exciton, a
agnetic field (T) charged exciton with the total spi®=1/2 and 3/2, and a

FIG. 9. Calculated exciton binding energies of various lattices adiexciton withS=0, 1, and 2, and found that the lowest-spin
a function of the magnetic field perpendicular to the lattice planestates,S=1/2, andS=0, are most stable for the charged
Upper panels show the schematic band structures of the Kagon®@Xciton and biexciton, respectively. Figure 10 shows the cal-
lattice, in the cases of 3.7 T, 0 T, and 3.7 T from the left to the culated results of the exciton and the lowest-spin states for a
right. Calculations are performed for the %5 unit cells. charged exciton and biexciton for various lattices. It is seen
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(a)exciton (b)charged exciton (c)biexciton the charged exciton and biexciton are less stable in the
(8=1/2) (8=0) Kagomelattice as compared to the other lattices.
o, ) A
230t 041 | IV. SUMMARY
& 0.34 0.4¢ The flat-band exciton in the InAs Kagongeiantum-wire
@ 2.0 034 system was studied employing a tight-binding model. It was
o 0.24 found that the binding energies of flat-band excitons in the
= 0.24 Kagomeand Tasaki lattices are much larger than those in
=R | 0.14 other two-dimensional lattices and even larger than that in
g 0.1¢ the one-dimensional lattice. By the perturbation analysis, it
was shown that both the localized nature and the macro-

scopic degree of degeneracy of the flat-band eigenstates of
electron and hole are the origins of large exciton binding
energy. It was also found that when the magnetic field is
applied, the binding energy of a flat-band exciton shows a

FIG. 10. Calculated binding energies for triangle, Kagparad Iargg Variation' In the Kagomat,tice’ a chgrged exciton and
square latticesta) exciton, (b) charged exciton, antt) biexciton. & blex_(:lton have _Smaller binding energies as compared to
Calculations are performed for the<® unit cells. those in other lattices.
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