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Flat-band exciton in two-dimensional Kagoméquantum wire systems
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Exciton states in the two-dimensional Kagome´ lattice, which is fabricated by the semiconductor quantum
wires and has the electronic band structure with dispersionless flat bands, are studied theoretically using the
tight-binding model. It is found that the binding energy of an exciton in the Kagome´ lattice is larger than the
exciton binding energies in other two-dimensional lattices and even larger than that in the one-dimensional
lattice. It is shown that such large binding energy originates from the macroscopic degree of degeneracy and
the localized nature of the flat-band states in the Kagome´ lattice. This large binding energy is controllable by
applying an external magnetic field. Furthermore, contrary to the exciton state, we also show that both the
binding energy of a charged exciton and that of a biexciton in the Kagome´ lattice are much smaller than those
in other lattices.
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I. INTRODUCTION

The recent progress in the field of nanotechnology
made it possible to fabricate semiconductor quantum w
with nanoscale width and to arrange them at arbitrary p
tions on the semiconductor surfaces. Since the elect
and/or holes are mainly confined in the quantum wires,
periodic arrangement of quantum wires provides ideal tw
dimensional lattice-network systems. These artificial latti
have advantages over the conventional bulk crystals; for
ample, the number of electrons are controlled by varying
gate voltage connected to the substrate and the lattices d
undergo the structural deformation, such as the Jahn-T
distortion, upon carrier doping. In this way, the quantu
wire artificial lattice systems provide new stages for physi
phenomena.

Electronic structures of lattice systems have been stu
theoretically for a long time. In 1976, Hofstader showed t
the two-dimensional lattice systems give fractal energy sp
tra with an external magnetic field.1 This theoretical result
has been confirmed by Albrechtet al. experimentally using
the quantum-wire systems.2 One of the recent important sub
jects concerning the lattice systems is flat-band ferrom
netism. Mielke and Tasaki showed by using the Hubb
model that the Kagome´ lattice has a complete flat electron
band and shows a ferromagnetic behavior when the flat b
is half filled with electrons.3,4 The local spin-density func
tional calculation based on the effective-mass approxima
also showed that the surface ferromagnetism appears o
InAs Kagoméquantum-wire system when the flat band
half filled.4,5 Motivated by these theoretical predictions, t
experimental challenge to realize the Kagome´ lattice is now
in progress.6

Currently, a variety of lattice systems are known to ha
electronic flat bands. Among these systems, there are c
mon features.~i! A flat band exists as a pair with dispersiv
bands, reflecting the multisites in the unit cell. Using t
specific geometry of site connection in lattices, one can
0163-1829/2004/69~8!/085325~7!/$22.50 69 0853
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lete the wave-function amplitude on the sites around one
cell and can choose eigenstates of a flat band as compl
localized around one unit cell.~ii ! Since each unit cell has
localized eigenstate, a sum of such eigenstates becom
complete set of flat-band states, with the same eigenene
producing the macroscopic degree of degeneracy.~iii ! The
above-mentioned localized states are nonorthogonal
have finite overlaps with each other. This indicates that wh
one produces the Wannier functions of a flat band, they
not localized. These features, i.e., the localization, mac
scopic degree of degeneracy, and nonorthogonal feature
flat-band eigenstates, are closely related to the appearan
ferromagnetism. We can expect that these unique feat
also promote exotic optical properties in flat-band lattice s
tems, which have never been studied so far. This is the
tivation of the present work.

In the previous paper, we briefly reported the theoreti
results of the exciton properties in the Kagome´ lattice by
using the simple mathematical tight-binding model.7,8 In this
paper, we extend this work by considering realistic situatio
of the InAs Kagome´ quantum-wire system and other lattic
systems, and analyze in detail the origin of unique exci
features in the Kagome´ lattice. The most remarkable findin
of the present study is that the binding energy of an exci
in the Kagome´ lattice is larger than that in the one
dimensional system, contrary to the well-known result th
the binding energies of excitons in high-dimension syste
are smaller than those in low-dimension systems. Since
exciton is associated with the flat bands in the Kagome´ lat-
tice, we call this exotic exciton as a flat-band exciton in th
paper.

The rest of this paper is organized as follows. In Sec.
the model of the InAs Kagome´ quantum-wire lattice and the
calculation method are described. In Sec. III, the bind
energy and the wave function of the flat-band exciton
first discussed, and compared with those of other lattice s
tems. Next, the origin of the large binding energy of a fl
band exciton is analyzed using a perturbation method. I
©2004 The American Physical Society25-1
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shown here that both the localization and degeneracy nat
of flat-band electronic states promote the large binding
ergy. Then, the variation of the binding energy with magne
field and the stability of the flat-band exciton are studied,
calculating the binding energies of charged excitons
biexcitons. Section IV concludes the paper.

II. MODEL AND METHOD

We investigate the Kagome´ quantum-wire system, wher
the quantum wires are made of InAs and surrounded
In0.72Ga0.28As barrier regions. The width of quantum wires
10.4 nm, and the lattice constant is 72 nm. A system of
size can be produced by recent nanotechnology.6 Local spin-
density approximation calculation for this system shows t
the electron density localizes at the cross points of the qu
tum wires.5,9 A similar result is obtained for the hole densi
because InAs quantum wires also work to confine ho
Therefore, we assume that the electronic structures of e
trons and holes in the lower conduction and higher vale
bands are well described by employing the tight-bind
model, where electrons and holes are located at the c
points of quantum wires and transfer along the wires. T
situation is schematically shown in Fig. 1. Moreover,
electron and a hole are assumed to be other kinds of fe
ons, for simplicity.10 Under these assumptions, the mod
Hamiltonian of the system becomes

Ĥ5(
^ i , j &

t i j
e âi

†â j1(
^ i , j &

t i j
h b̂i

†b̂ j1(
i , j

U~r i j !âi
†âi b̂ j

†b̂ j , ~1!

whereâi and b̂i , respectively, represent the annihilation o
erators of an electron and a hole at thei th cross point of
quantum wires.t i j

e andt i j
h are transfer energies of an electro

and a hole from thei th to the j th cross points, respectively
The summation̂ i , j & runs over the entire nearest-neighb

FIG. 1. Tight-binding model for exciton state in the Kagom´
quantum-wire system. An electron in a conduction band~large solid
circle! and a hole in the valence band~large open circle! locate at
the cross points of quantum wires, and transfer between
nearest-neighbor cross points as shown by arrows. The Coul
attractive interactionU(r i j ) works between an electron and a ho
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cross-point pairs.U(r i j ) is the Coulomb attraction energ
between an electron and a hole, for which we employ
form10,11

U~r i j !5H 2U0 for i 5 j

2
0.75U0

~r i j /a!
for iÞ j ,

~2!

wherer i j is the distance between thei and j th cross pointsa
represents the distance between the nearest-neighbor
points of quantum wires evaluated as 36 nm. The empl
ment of this form of Coulomb energy is equivalent to t
introduction of the cutoff parameter in one-dimensional s
tems to avoid the divergence of the eigenvalue of the Ham
tonian ~1! and corresponds to the screening around
on-site.10,11 The band-gap energy between the valence b
and the conduction band has an arbitrary value in our mo

We must estimate the transfer energies,te andth, and the
on-site Coulomb energy,U0, for the InAs Kagome´ lattice on
the semiconductor surface to evaluate the exciton bind
energy. The local-density approximation calculation sho
that the total width of the conduction bands is about
meV,9 while the corresponding bandwidth by the prese
model is 6te. Therefore, we are able to take the electr
transfer energyte as 1.67 meV. Note that since the lowes
energy state at the cross point has the s-like orbital, the
coupling between the nearest sites gives a negative valu
the electron transfer energyte in most cases. However, a
shown in Sec. III D, the sign ofte is easily changed by ap
plying a magnetic field to the lattice system. Thus, in th
paper, we assume thatte has a positive value. In this case, th
flat band appears as the lowest conduction band. We app
mate the hole transfer energyth equal to the electron transfe
energyte for simplicity. This is because the reduced mass
an electron and a hole in InAs is almost equal to the effec
mass of an electron. On the other hand, when an electron
a hole are located at nearest-neighbor sites, the Coul
attraction energy between them is2e2/4p«a, where« rep-
resents the relative dielectric constant of InAs,«512.4, and
e is the elementary electric charge. Thus, the on-site C
lomb energyU0 is estimated as 4.18 meV.

The exciton states are obtained as the lowest-ene
bound eigenstates of the Hamiltonian. The exciton bind
energyEB is calculated as

EB5E~U050!2E~U0Þ0!, ~3!

whereE(U050) andE(U0Þ0) are the lowest eigenvalue
of the Hamiltonian without and with the Coulomb attractio
interaction, respectively. The Hamiltonian is numerically d
agonalized by the Lanchos method for Kagome´ lattices of
finite size as large as 15315 unit cells with periodic bound-
ary conditions. To check the convergence of the calcula
binding energy of exciton, we varied the size of the syst
and confirmed that the binding energy of an exciton is o
tained with 1% accuracy in the present calculation.
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FLAT-BAND EXCITON IN TWO-DIMENSIONAL KAGOMÉ . . . PHYSICAL REVIEW B69, 085325 ~2004!
III. RESULTS AND DISCUSSION

A. Binding energy and exciton Bohr radius

First, we consider the exciton binding energy in t
Kagomélattice. In order to clarify the characteristics of th
Kagomésystem, we compare binding energies among v
ous lattice systems. Schematic diagrams of one-dimensio
two-dimensional Kagome´, triangle and square lattices a
shown in Figs. 2~a!–2~d! as solid lines, respectively. Un
cells of these lattices are also represented by gray sq
frames in Figs. 2~a!–2~d!. The calculated electron and ho
band structures of these lattices are shown in Figs. 3~a!–3~d!.
As shown in Fig. 3~b!, the flat bands appear as the lowe
conduction and the highest valence bands for the Kago´
lattice.

FIG. 2. The lattice models adopted in this work:~a! one-
dimensional,~b! Kagomé, ~c! triangle, and~d! square lattices. Unit
cells of these lattices are shown in~a!–~d! by gray square frames
Kagomé and triangle lattices are obtained from one-dimensio
and Kagome´ lattices, respectively, by allowing the carrier transf
along broken lines in~a! and ~b!.

FIG. 3. The electronic band structure of~a! one-dimensional,~b!
Kagomé, ~c! triangle, and~d! square lattices. Solid and open circle
represent an electron state at the bottom of the conduction band
a hole state at the top of the valence band, respectively, and
wavy lines schematically indicate the Coulomb attraction inter
tions. Insets are the Brillouin zones corresponding to the unit c
in Fig. 2.
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It should be noted here that when we introduce anot
transfer energyt8 shown by broken lines in Figs. 2~a! and
2~b!, the triangle and Kagome´ lattices are obtained from th
Kagomé and one-dimensional lattices, respectively,
changingt8 from t850 to t85te5th. This treatment enable
us to study the effect of the continuous dimensional cha
of a lattice from a one-dimensional lattice to a tw
dimensional triangle lattice by way of a Kagome´ lattice.

Figure 4 shows the calculated binding energies of ex
tons for various lattices. It is seen that the exciton bind
energies in the one-dimensional lattice are larger than th
in the triangle and square lattices, which is consistent w
the familiar knowledge that the exciton binding energy
creases as the spatial dimension of the system decre
However, it should be emphasized that the binding energ
the two-dimensional Kagome´ lattice is larger than that in the
one-dimensional lattice.

We then consider the spatial localization feature of ex
ton states. The calculated exciton densities are shown
Figs. 5~a!–5~d! for various lattices. In these figures, the ele
tron is fixed on one specific site denoted by white arrows a
the hole distribution is displayed. Apparently, all wave fun
tions ares-like nodeless states. To evaluate the localizat
nature of excitons, the exciton Bohr radius is calculated
fitting the following distribution function to the exciton den
sity shown in Fig. 5,

Ph~r !5P0expF2
2ur2reu

j G . ~4!

Here, re is the coordinate of the fixed electron andj is the
exciton radius.

The calculated exciton radiuses are 102, 42, 36, and
nm for the one-dimensional, Kagome´, triangle, and square
lattices, respectively. Therefore, the excitons are localize
the Kagome´ lattice as compared to the one-dimensional a
square lattices, which is one of the reasons for the la

l

nd
he
-
ls

FIG. 4. Calculated binding energies of excitons for various l
tices. Transfer energyt8 which corresponds to the carrier transf
along broken lines shown in Figs. 2~a! and 2~b!, is continuously
changed fromt850 to t85t5te5th, yielding the gradual modifi-
cation from the one-dimensional and Kagome´ lattices to the
Kagomé and triangle lattices, respectively. Calculations are p
formed for the 15315 unit cells.
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exciton binding energy in the Kagome´ lattice because the
binding energy increases as the localization increases. H
ever, excitons in the Kagome´ and triangle lattices have a
most the same radii. This result indicates that the locali
nature of excitons alone cannot explain why the excitons
the Kagome´ lattice have larger binding energy than those
the other lattices discussed here.

The calculated exciton binding energy in the Kagome´ lat-
tice is 3.3 meV, which is larger than those in the squ
lattice ~1.4 meV! and in bulk InAs~1.6 meV!. Thus the dif-
ference of binding energy among these systems is observ
in careful experiments. When one produces the Kago´
quantum-wire lattice of small size, the exciton binding e
ergy in the Kagome´ lattice becomes much larger. This
because the exciton is localized in one plaquette of
Kagomé lattice, thus weakly depending on the values
transfer energies,te and th, but the Coulomb attraction en
ergy is roughly proportional to the inverse of the lattice co
stanta. Whena is around 6 nm, the binding energy is es
mated as 18 meV. On the other hand, the excitons in o
lattices are sufficiently extended that their energies wea
depend on the value ofa. Thus, it is expected that as th
lattice size decreases, the exciton-energy difference betw
the Kagome´ and other lattices increases.

B. Another flat-band system: Tasaki lattice

Next, we consider the exciton states in another flat-b
system, i.e., the Tasaki lattice, which is shown in Fig. 6~a!.12

The band structure of the Tasaki lattice is shown in Fig. 6~b!.
The flat bands appear as the bottom conduction band an
top valence band. The exciton state in the Tasaki lattic
calculated in a similar way to those in the other lattices giv
in the preceding section. The calculated binding energy
also shown in Fig. 4.

FIG. 5. Calculated exciton densities for various lattices. T
electron is fixed on one specific site shown by white arrows and
hole spatial distribution is shown for~a! one-dimensional,~b!
Kagomé, ~c! triangle, and~d! square lattices. White square fram
in ~a!–~d! are unit cells. Calculations are performed for the 636
unit cells.
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It is seen that the binding energy in the Tasaki lattice~4.2
meV! is much larger than that in the Kagome´ lattice ~3.3
meV!. This is because, as shown in Fig. 6~b!, the Tasaki
lattice has the full band gaps between the flat bands and
other bands, and thus, the localizations of an electron an
hole state in the flat band are stronger compared to the
of the Kagome´ lattice. It should be noted here that the exc
ton binding energy is larger than even the on-site Coulo
attraction energy ofU054.18 meV. Note thatU0 is the
maximum value of the Coulomb attraction energy for t
case of one-site localization of both an electron and a h
This result clearly indicates that the localized nature of fl
band states is not the unique origin of larger exciton bind
energy.

C. Perturbation analysis of flat-band exciton

To clarify the origin of the large binding energy of a
exciton in the flat-band lattice system, we perform the p
turbation calculations of exciton states using the finite s
tem. The Coulomb attraction interaction, the third term
Eq. ~1!, is treated as the perturbation,Ŵ. For simplicity, we
assume that the interaction is of short range and works o
at the same site asU(r i j )52U0d i j . Moreover, the 232
finite Kagomélattice with the periodic boundary condition i
used, together with the corresponding-size square lattice
comparison.

In the case of the square lattice, the lowest eigenstat
an electronuf (e)& or a holeuf (h)& is the linear combination
of the i-site localized states,u i &, with the same-magnitude
coefficients,Ci , asuf (e)&5( iCi u i &, where the sign ofCi is
given as shown in Fig. 7~a!. Remember that the electron an
hole transfer energies have positive values in this paper,
thus, that coefficients of nearest-neighbor sites have diffe
signs. The unperturbed exciton eigenstate is the tensor p
uct of these states as

uC (0)&5uf (e)&uf (h)&. ~5!

e
e

FIG. 6. ~a! Schematic diagram of the Tasaki lattice. In this la
tice, the transfer energies of an electron and a hole aret between
two sites, which are connected by straight solid lines, while
transfer energies aret8 between two sites connected by straig
broken lines. The transfer energies represented by broken circ
lines aret8/2. When t850, the lattice corresponds to the squa
lattice. On the other hand, whent85t, the original Tasaki lattice is
obtained.~b! The electronic band structure of the Tasaki lattice w
t85t.
5-4
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Then, the first-order perturbation gives the binding energy
excitonEB

(1) as

EB
(1)52^C (0)uŴuC (0)& ~6!

51
1

16
U0 , ~7!

where the value of denominator, 16, corresponds to the n
ber of the lattice points in Fig. 7~a!, and reflects the extende
nature of electron and hole band states.

In the case of the Kagome´ lattice, it is well known that the
lowest eigenstates of an electronuf i

(e)& and a holeuf i
(h)& are

the linear combinations of the localized states around h
agonal plaquettes, respectively, as shown in Fig. 7~b!.3

Namely, the site coefficients have the same magnitudes
possess the signs as shown in Fig. 7~b!. Since there are fou
plaquettes in the present 232 lattice, both the eigenstate

FIG. 7. Schematic of the lowest eigenstates of a conduct
band electron or a valence-band hole:~a! square and~b! Kagomé
lattices. The frames~gray lines! display the localization regions o
eigenstates and the inserted numbers on the sites,11 and 21,
represent the amplitudes of eigenfunctions. In the case of
Kagomélattice, the lowest eigenstates are degenerate as show
uf1

(e)& to uf4
(e)&.
08532
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uf i
(e)& and uf i

(h)&, are fourfold degenerated withi , j 51 –4,
which is the origin of flat bands. Since these localized sta
produce complete sets of flat bands, the unperturbed ei
states are given by

uC ( i , j )
(0) &5uf i

(e)&uf j
(h)&, ~8!

which are 16-fold degenerated. Since these states are no
thogonal, i.e., overlap each other, we have to apply the
generate nonorthogonal first-order perturbation to estim
the exciton binding energy,EB

(1) , as follows:

(
a51

16

Ca^Cb
(0)uWuCa

(0)&52EB
(1) (

a51

16

Ca^Cb
(0)uCa

(0)&. ~9!

Here,a denotes the basis pair, (i , j ).
One can classify the matrix elements in Eq.~9! into three

groups reflecting the physical characteristics of flat-ba
states:~i! The diagonal matrix elements of the left-hand si
reflect the localized nature of flat-band eigenstates, beca

^Ca
(0)uŴuCa

(0)& is the simple average of the Coulomb inte
action by the single state,uCa

(0)&, similar to Eq.~6!. ~ii ! The
nonzero off-diagonal matrix elements have the values
6U0/18 and appear due to the degeneracy of flat-b
states, similar to the case of the usual degenerate pertu
tion. On the other hand,~iii ! the off-diagonal matrix element
of the right-band side reflect the nonorthogonal~overlap! na-
ture of flat-band states. To clarify the contributions of the
three groups of the matrix elements to the exotic exci
state, we multiply off-diagonal matrix elements of a gro
~ii ! by the factorh and those of a group~iii ! by the factorj.
The solution of thus modified Eq.~9! gives the exciton bind-
ing energy as

EB
(1)5

2~212h1A112h113h2!

4~914j!
U0 . ~10!

In the case ofh5j50, which corresponds to the case
neglecting both the nonorthogonality and the degeneracy
considering only the localized nature of flat-band stat
EB

(1)52U0 /12. This value is larger than that of the squa
lattice, which indicates that the exciton in the Kagome´ lattice
is more localized than that in the square lattice and is c
sistent with the results of numerical calculation presen
previously. We then switch on the factors,h andj, step by
step as displayed in Fig. 8. When we change the value oj
from 0 to 1, which corresponds to the case considering
nonorthogonality and the localized nature of flat-band sta
EB

(1) decreases toU0 /12. This is because the nonorthogona
ity induces the extension of the localized flat-band states
gives the loss of attractive Coulomb energy. When bothh
and j have the values of 1, corresponding to the case c
sidering not only the localization and nonorthogonal natu
but also the degeneracy of flat-band states,EB

(1) again in-
creases to 3U0 /12. From this analysis, we can clearly co
clude that not only the localization nature, but also the
generacy of the flat-band eigenstates, is essential origi
enlarge the binding energy of flat-band exciton.
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D. Magnetic-field effect

Here, we consider the exciton binding-energy variat
when the magnetic field is applied perpendicular to the
tice surface. In the tight-binding model, the magnetic-fie
effect is introduced into the Hamiltonian by multiplying th
transfer energyt i j by the phase factor,13

t i j •expF i
2pe

hc E
r i

r j
A~r !dr G , ~11!

where A(r ) is the vector potential, andr i is the position
vectors of thei th site.

Figure 9 shows the calculated exciton binding energies
various lattices as a function of the magnetic field. Here

FIG. 8. Schematic diagram representing contributions to exc
binding energy by the present step-by-step perturbation analysi~i!
localization contribution,~ii ! nonorthogonality~overlap! contribu-
tion, and ~iii ! degeneracy contribution. In case of square latti
only the localization contribution exists.

FIG. 9. Calculated exciton binding energies of various lattices
a function of the magnetic field perpendicular to the lattice pla
Upper panels show the schematic band structures of the Kag´
lattice, in the cases of23.7 T, 0 T, and 3.7 T from the left to the
right. Calculations are performed for the 15315 unit cells.
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the case of 3.7 T, fourfold unit magnetic fluxes are includ
in the unit cell of the Kagome´ lattice. The schematic ban
structures in the cases of the magnetic fields of23.7, 0, and
3.7 T, without the Coulomb attraction interaction, are a
shown in the upper panels of Fig. 9. In general, the magn
field bends the flat-band dispersions and changes the pos
of flat bands. It is seen in Fig. 9 that the binding energy of
exciton in the Kagome´ lattice suddenly decreases with appl
ing the magnetic field and that its magnitude becomes c
parable to those in other two-dimensional lattices. This re
indicates that the large exciton binding energy is obtain
only when the flat bands appears as the lowest-conduc
and highest-valence bands. Moreover, from this result,
can say that in the Kagome´ lattice, one can largely contro
the binding energy of excitons by applying a magnetic fie

Finally, we comment on the sign of electron and ho
transfer energies. As shown in the upper pictures of Fig. 9
electron and a hole transfer energies in the case of63.7 T
are2te and2th, respectively, while those in the case of 0
are te and th. In this way, we can change the sign of carri
transfer energies by applying an external magnetic field. T
is the reason why we takete andth as positive in the presen
paper.

E. Exciton complexes

Since the radius of an exciton is small in the Kagom´
lattice, it is expected that when highly excited, this syst
realizes the high-density states of excitons instead of rea
ing the exciton complexes, the electron-hole liquid drop
and the electron-hole plasma states. To study this possib
we consider the stability of exciton against the production
exciton complexes, by calculating the binding energies
charged exciton and biexciton, which are bounded sta
made of two electrons and one hole, and two electrons
two holes, respectively.

The following Coulomb repulsive interactions betwe
electrons or holes are added to the Hamiltonian of Eq.~1!,

Uee~r i j !5Uhh~r i j !5H 1U0 for i 5 j

1
0.75U0

~r i j /a!
for iÞ j ,

~12!

wherer i j is the distance between two electrons or two hol
The binding energies of exciton complexes are calcula
similarly, by taking into account the antisymmetry of wav
functions for the exchange between two electrons or t
holes. Here, the binding energy of a charged exciton is
fined as the energy required to decompose into an exc
and a free hole, while the binding energy of biexciton is a
defined as the energy required to decompose into two e
tons.

We calculated the binding energies of an exciton,
charged exciton with the total spinS51/2 and 3/2, and a
biexciton withS50, 1, and 2, and found that the lowest-sp
states,S51/2, andS50, are most stable for the charge
exciton and biexciton, respectively. Figure 10 shows the c
culated results of the exciton and the lowest-spin states f
charged exciton and biexciton for various lattices. It is se
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that the binding energy of an exciton in the Kagome´ lattice is
much larger than those in other two-dimensional lattic
while the binding energies of a charged exciton and biexc
in the Kagome´ lattice are much smaller than those in t
triangle and square lattices. Therefore, one can conclude
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FIG. 10. Calculated binding energies for triangle, Kagome´, and
square lattices:~a! exciton, ~b! charged exciton, and~c! biexciton.
Calculations are performed for the 333 unit cells.
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the charged exciton and biexciton are less stable in
Kagomélattice as compared to the other lattices.

IV. SUMMARY

The flat-band exciton in the InAs Kagome´ quantum-wire
system was studied employing a tight-binding model. It w
found that the binding energies of flat-band excitons in
Kagoméand Tasaki lattices are much larger than those
other two-dimensional lattices and even larger than tha
the one-dimensional lattice. By the perturbation analysis
was shown that both the localized nature and the ma
scopic degree of degeneracy of the flat-band eigenstate
electron and hole are the origins of large exciton bind
energy. It was also found that when the magnetic field
applied, the binding energy of a flat-band exciton show
large variation. In the Kagome´ lattice, a charged exciton an
a biexciton have smaller binding energies as compared
those in other lattices.
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