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Quantum measurement of a solid-state qubit: A unified quantum master equation approach
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Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum
physics and an essential issue in quantum computing. In this work, by employing a unified quantum master
equation approach constructed in our recent publications, we study the measurement-induced relaxation and
dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays par-
ticular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy
exchange between the qubit and detector during the measurement process. As a result, our theory is applicable
to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit
relaxation and dephasing are carried out, and important features are highlighted in concern with their possible
relevance to future experiments.
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I. INTRODUCTION

Measuring a two-state quantum system~qubit! typically
represents the long-standing and still controversial issu
quantum measurement. Ideally, based on the stan
Copenhagen postulate, quantum measurement is describ
a wave-function collapse, i.e., projects the qubit state to on
of the possible eigenstates of the observed quantity w
state-dependent probabilities. However, in practice, any r
istic measurement is performed by a realistic device tha
self is a physical system. Response of the measured sy
to the measuring device is in general a nontrivial proble
which has attracted considerable attention in recent years1–18

This renewed interest also stems from the rapidly develop
field of quantum computing, since the quantum-measurem
procedure is needed, for instance, at the end of computa
to read out the final results, or even in the course of com
tation for the purpose of error correction.

A possible implementation of the two-state quantum m
surement is to consider a charge qubit being measured
charge sensible detector, such that the transport current i
detector carries information of the measured qubit. T
charge qubit can be either an extra electron stored in cou
quantum dots~CQD’s!,19 or an extra Cooper pair in supe
conducting box,7,13,17 meanwhile the detector can be
quantum-point contact1–6,12,16 ~QPC!, or a single-electron
transistor7–11,17 ~SET!. In these studies, in addition to theo
retical discussions,1–10,16,17 experimental results have als
been reported.11–13

To study the effects of measurement on a quantum
tem, the standard procedure is to trace out the microsc
degrees of freedom of the detector, which would result i
reduced description in terms of quantum master equa
~QME! for the relaxation and dephasing of the measu
system. In the seminal work by Gurvitz,1 the quantum mea
surement of the charge state in coupled CQD’s by a Q
was studied based on a reducing procedure from the m
0163-1829/2004/69~8!/085315~9!/$22.50 69 0853
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particle wave function of the entire qubit-plus-detector s
tem. This approach was also applied to study the breakd
of the Anderson localization in the presence of quant
measurement,14 and its conditional version was exploited
analyze the readout of the detector.15,18 By an alternative
means, Goanet al. derived a Lindblad QME for the sam
measurement setup, based on which a quantum trajec
description was developed for the single continuo
measurement.5 The Lindblad QME obtained by Goanet al.
has also been demonstrated to be equivalent to the B
equations derived by Gurvitz.5 However, we notice that thei
master equations would inevitably lead to certain pecu
features such as thealwaysequal occupation probabilities o
individual dots ~sites! in the asymmetric qubit~disorder
chain! after the completion of dephasing and relaxation.1,14

In this work, we revisit this well-defined quantum
measurement problem by employing a unified Markov
QME approach.20–22 We pay particular attention on th
detailed-balance relation, which properly accounts for the
ergy exchange between the qubit and detector during
measurement process. Consequently, our approach is va
arbitrary measurement voltage and temperature. It will sh
that the results in Refs. 1 and 5 break down at small volt
and the peculiar features in Refs. 1 and 14 survive only
high-voltage regime. Note that the measurement voltage
in a certain sense be interpreted as an effec
temperature;15 thus the equal occupation probabilities on i
dividual states may be viewed as the result of an effectiv
strong thermalization. To our knowledge, this kind of cla
fication lacks so far in literature. Recently, similar quantu
measurement under arbitrary voltage is analyzed in term
the noise spectrum of the detector output signal.10,16,17In the
large voltage regime, the noise spectrum is symmetric; an
small voltage regime, the noise spectrum becomes asym
ric. This change of spectral shape indicates a transition fr
classical to quantum. In the quantum regime, it is right
energy exchangebetween the qubit and detector that leads
©2004 The American Physical Society15-1
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the asymmetry of noise spectrum. Our present work, wh
deals with the measurement-induced qubit dephasing an
laxation under arbitrary voltage and temperature, thus p
vides an alternative perspective to elucidate the nature
energy exchange and its importance in describing quan
measurement.

The remainder of this paper is organized as follows. In
context of the considered quantum-measurement model
outline in Sec. II the derivation of the QME for the reduc
dynamics of the qubit. The detailed-balance property of
QME and its relation to the energy exchange processes
companying the quantum measurement will be elaborate
the Appendix. In Sec. III, numerical results of the relaxati
and dephasing behaviors of the measured qubit are
sented, and discussions are highlighted to some impor
features resulting from the detailed balance. Section IV c
tributes to the relaxation and dephasing rates where the
rived analytical formulas clearly describe effects of vario
measurement parameters, such as the bias voltage acro
QPC and the temperature in the electronic reservoirs. Fin
in Sec. V we summarize the main results and implications
this work.

II. QME APPROACH FOR QUANTUM MEASUREMENT:
FORMAL RESULT

A. Model description

Following the previous work,1,4,5 we consider here a
coupled quantum dot~i.e., a solid-state qubit! measured by a
quantum-point contact, as schematically shown in Fig. 1.
present a microscopic description for the measurement,
sume the Hamiltonian of the entire qubit-plus-reserviros s
tem as

H5Hqu1H res1H8, ~1a!

with

FIG. 1. Schematic diagram of a solid-state qubit~coupled quan-
tum dots! being measured by a quantum-point contact~QPC!. Oc-
cupation of the extra electron in different dots would have disti
influence on the transport current through the QPC, which mak
possible to draw out the qubit-state information. On the other ha
as a result of back action of the detector, quantum coherence o
qubit state would be destroyed.
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Hqu5eaua&^au1ebub&^bu1V~ ub&^au1ua&^bu!, ~1b!

H res5(
k

ek
Lck

†ck1(
q

eq
Rdq

†dq , ~1c!

H85(
k,q

~Tqk1xqkua&^au!ck
†dq1H.c. ~1d!

The two terms inH res are for electrons in the two reservoir
~electrodes! labeled by ‘‘L ’’ and ‘‘ R, ’’ respectively. The in-
teraction HamiltonianH8 here describes the electron tunne
ing through QPC, e.g., from stateuq& in the R reservoir to
stateuk& in the L reservoir, with the tunneling coupling am
plitude of (Tqk1xqkua&^au) that depends explicitly on the
qubit-state. It is right this qubit-state dependence of the t
neling amplitude that makes it possible to draw out the qu
state information from the transport current through QPC
the above microscopic Hamiltonian, the detector is descri
in terms of second quantization to address the many-par
nature, meanwhile for the measured system~qubit! single-
particle description is adopted since there is only one e
electron in it. Here we denote the qubit states byua& andub&,
corresponding to the electron locating in the left and rig
dots. In this work we shall also introduce the qubit eige
statesu1& and u2&, which are the superpositions of the d
statesua& and ub&.

B. Reduced description for the measured qubit

Quantum measurement can be characterized by depha
and relaxation of the measured system. In this section,
present a unified QME description for the reduced dynam
of the qubit which is subjected to the measurement of a Q
Details of the formal derivation and the adopted approxim
tions are referred to in Ref. 21. Here we only outline the k
procedure and the main results with respect to the meas
ment model in concern.

It is well known that in weak-coupling regime one ca
derive the QME by carrying out a second-order cumul
expansion with respect to the system-environment inte
tion Hamiltonian. In our case, we treat the qubit-sta
dependent tunneling HamiltonianH8 as perturbation, since i
fully contains the coupling information between the qu
and detector. In the interaction picture with respect to
QPC reservoir HamiltonianH res of Eq. ~1c!, the interaction
Hamiltonian H8 of Eq. ~1d! becomes time dependent an
reads~settingDkq[ek

L2eq
R)

H8~ t !5(
q,k

~Tqk1xqkua&^au!ck
†dqeiDkqt1H.c. ~2!

Making connection with the formalism developed in Ref. 2
we denote Wqk5Tqk1xqkua&^au and f qk

† (t)5ck
†dqeiDkqt,

which are operators in the qubit and the stochastic bath
ervoir subspaces, respectively, and recast Eq.~2! as H8(t)
5(q,k@Wqkf qk

† (t)1Wqk
† f qk(t)#. With this form and starting

from the Liouville equation, the QME satisfied by the r
duced density matrix can be derived after tracing out

t
it

d,
he
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QUANTUM MEASUREMENT OF A SOLID-STATE . . . PHYSICAL REVIEW B 69, 085315 ~2004!
microscopic degree of freedom of the QPC reservoirs, p
cisely following the procedures in Ref. 21.

For simplicity, we assumeTqk[T and xqk[x, i.e., the
tunneling amplitudes are reservoir-state independent.
cordingly, the interaction Hamiltonian simplifies toH8(t)
5W f†(t)1W†f (t), where

W5T1xua&^au, f †~ t !5(
k,q

ck
†dqeiDkqt. ~3!

The measurement current fluctuation-induced dephasing
relaxation effects on the qubit are characterized by the in
action bath correlation functions, which in relation to t
QPC detector shown in Fig. 1 can be carried out explicitly

C̃(1)~ t ![^ f †~ t ! f ~0!&5(
k,q

eiDkqtNLk~12NRq!, ~4a!

C̃(2)~ t ![^ f ~ t ! f †~0!&5(
k,q

e2 iDkqt~12NLk!NRq . ~4b!

Here,^•••& stands for the statistical average over both
left and right electron reservoirs, which are assumed to b
the local thermal equilibrium, with the Fermi-Dirac function

being given by NLk5@eb(ek
L

2mL)11#21 and NRq

5@eb(eq
R

2mR)11#21, respectively. Here,b51/(kBT) is the
inverse temperature, andmL andmR are the chemical poten
tials that relate to the applied voltage across the detecto
mL2mR5eV. The interaction bath spectrum is then defin
as the Fourier transform of the reservoir-electron correla
function,21

C(6)~6v!5E
2`

`

dtC̃(6)~ t !e6 ivt. ~5!

It satisfies the detailed-balance relation ofC(1)(v)/
C(2)(2v)5eb(v1eV).

With the above clarifications, the unified QME develop
in Ref. 21 applied here to describe the dephasing and re
ation of the measured qubit can now be completely ide
fied:

ṙ52 iLr2Rr, ~6!

with L(•••)[@Hqu,(•••)# being the qubit Liouvillian and
R being the dissipation superoperator defined via the follo
ing compact form,21

Rr5 1
2 @W†,W̃(2)r2rW̃(1)#1H.c. ~7!

Formally,W̃(6) is related to the coupling operatorW as

W̃(6)5C(6)~6L!W. ~8!

Here, C(6)(6L) is a superoperator, specified by the qu
Liouvillian L and the interaction bath spectrumC(6)(6v).
To obtain the explicit expressions ofC(6)(6L), we further
adopt the continuum and wideband approximations for
QPC reservoir electrons. Accordingly, the discrete summ
tions in Eq.~4! can be replaced by the continuous integ
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tions, (k(q→gLgR**dek
Ldeq

R, where the energy-
independent density of states~DOS! gL and gR are
introduced for the two reservoirs. The analytical expressi
for C(6)(6L) can then be readily integrated out as

C(6)~6L!52pgLgRF x

12e2bxG
x56(L1eV)

. ~9!

Equations~6!–~9! constitute the QME formulation that con
tains the full effects of measurement on the qubit and w
serve as the starting point of the following studies.

C. Comments and discussions

Let us start with the high measurement voltage lim
(eV@L), in which the applied measurement voltage is mu
larger than the internal energy scale of the qubit. In this ca
the superoperatorC(6)(6L) of Eq. ~9! reduces to ac num-
ber,

C(6)~6L!→C(6)~0!562pgLgR

eV

12e7beV
. ~10!

With this approximation, Eq.~7! recovers the QME derived
in Ref. 5, i.e.,

Rr.2C(2)~0!D@W#r2C(1)~0!D@W†#r, ~11!

with D@W#r5WrW†2 1
2 @W†W,r#1 andD@W†#r being de-

fined similarly by swapping betweenW andW†. It is easy to
show5 that the QME of Eq.~11! is in fact also equivalent to
the Bloch equation derived by Gurvitz.1

Our QME formulation in Eqs.~6!–~9! is valid for arbi-
trary measurement voltage. In contrast with thec number of
C(6)(0), theoperator nature ofC(6)(6L) in our QME for-
mulation properly describes not only the dephasing but a
the importantenergy exchangebetween the qubit and detec
tor. Physically, the quantum-measurement-induced depha
and relaxation on the qubit are originated from the curr
fluctuations in the detector.10,16,17As mentioned earlier, the
current fluctuations are characterized by the correlation fu
tions C̃(6)(t) of Eq. ~4!, and their spectra satisfy th
detailed-balance relation ofC(1)(v)/C(2)(2v)5eb(v1eV)

at arbitrary temperature and measurement voltage@cf. Eq.
~9!#. Consequently,C(6)(6L) manifests the back action o
the detector on the qubit by correlating the measurem
current fluctuations with the qubit dissipations, leading to o
QME in Eqs.~6!–~9! satisfying the detailed-balance relatio
More specifically, the energy exchange between the q
and detector can be described as follows.C(1)(L) accounts
for the current fluctuations associated with electron tunne
in the detector from the left to the right reservoirs, accom
nied by energy absorption from the qubit, whileC(2)(2L)
corresponds to tunneling from the right reservoir to the l
one, accompanied by energy emission to the qubit. The
ergy exchange characterized byC(6)(6L), i.e., the current-
fluctuation spectrumC(6)(6v) correlated with qubit Liou-
villian v5L, is an essential feature hold by our QME th
manifests the important detailed-balance relation. This is
5-3
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FIG. 2. Measurement-induced qubit rela
ation in ~a! the individual dot-state representa
tion, and ~b! the eigenstate representation. Th
results in the presence and the absence of the
tailed balance are symbolized by ‘‘C(L)’’ and
‘‘ C(0),’’ respectively.
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is further elaborated in the Appendix by carrying out t
explicit expression of the QME in terms of the qubit atom
operators.

III. MEASUREMENT-INDUCED DEPHASING
AND RELAXATION

We are now in the position to highlight the essential ro
and impact of the detailed balance on the qubit depha
and relaxation under measurement. In order to have a c
comparison with the previous results that neglect
detailed-balance effects,1,5 instead of the QME given explic
itly in the Appendix in terms of the qubit atomic operatorssz
ands6, in this section we would like to elaborate it in th
individual dot-state basis. For clarity, our results will be p
sented for the symmetric and asymmetric qubit cases, s
rately, in the following two sections.

A. Symmetric case:eaÄeb

In the individual dot-state representation$ua&,ub&%, the
coupling operatorW takes a matrix form

W5FT1x 0

0 TG , ~12!

and its spectral conjugate in Eq.~8! is

W̃(6)5F W̃aa
(6) W̃ab

(6)

W̃ba
(6) W̃bb

(6)G . ~13!

The involving W̃(6)-matrix elements can be evaluate
readily via the standard operator algebra. To simplify
notation, let us denote

l6[@C(6)~6D!1C(6)~7D!#/4, ~14a!

l̄6[@C(6)~6D!2C(6)~7D!#/4. ~14b!

HereD5E12E2, with E1 andE2 being the qubit eigenen
ergies.

For the symmetric qubit (ea5eb5e0), we have then

W̃aa
(6)5~T1x/2!C(6)~0!1xl6 , ~15a!
08531
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W̃bb
(6)5~T1x/2!C(6)~0!2xl6 , ~15b!

W̃ba
(6)52W̃ab

(6)5xl̄6 . ~15c!

Substituting Eq.~15! into the formal QME@Eqs.~6! and~7!#,
the Bloch equations for the reduced density matrix in
dot-state representation can be readily obtained. For insta
the off-diagonal density-matrix element satisfies

ṙab52 i ~ea2eb!rab1 iV~raa2rbb!2x2~l11l2!rab

2
x2

2
~ l̄12l̄2!~raa1rbb!. ~16!

For simplicity, we have assumed here the tunneling coe
cientsT andx to be real. It is easy to see that in the absen
of detailed balance, i.e.,C(6)(6D)→C(6)(0), Eq. ~16! re-
duces to

ṙab52 i ~ea2eb!rab1 iV~raa2rbb!2
x2

2
@C(1)~0!

1C(2)~0!#rab , ~17!

which is nothing but the result derived in Refs. 1 and 5.
Under the quantum measurement, a pure state of the q

state evolves into a statistical mixture. Figure 2 shows s
evolution by plotting the time-dependent occupation pro
abilities on the individual dot states. In the following nume
cal studies, the relevant parameters are adopted as foll
the applied voltage over the QPCeV5V, the inverse tem-
peratureb51/V, the DOS in both electron reservoirsgL
5gR52/V, and the tunneling amplitudesT5V and x
50.15V. In the dot representation as shown in Fig. 2~a!,
despite certain quantitative difference in short time sca
common final occupation probability of 1/2 in each dot
approached, irrelevant to the detailed balance being satis
or not. Physically, due to the measurement-induced dep
ing, a transition occurs for the qubit electron tunneling fro
the coherent to incoherent regime. In the coherent regi
the tunneling results in the well-known Rabi oscillations.
the incoherent regime, no phase correlation exists betw
the tunneling events, and the readout appears as telegra
signals. In the symmetric case, owing toea5eb , the final
equal occupation probability of 1/2 in each dot is anticipat
5-4
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FIG. 3. Measurement-induced dephasing
~a! the individual dot-state representation, and~b!
the eigenstate representation. The real part a
imaginary parts of the off-diagonal matrix ele
ment are plotted by the solid and dashed curv
respectively. In~a!, the result in the absence o
detailed balance is shown by the constant ze
solid line and the dashed curve with larger osc
lation amplitude. The other two curves are for th
detailed-balance preserved result. Similarly,
~b!, the curves with smaller and larger amplitud
correspond, respectively, to the detailed-balan
hold and unhold results.
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However, as shown by Gurvitz,1 in the asymmetric case~i.e.,
for nonidentical coupled dots!, final equal occupation prob
ability of 1/2 in each dot would also be approached. Sim
confusing feature also existed in the breakdown of
Anderson localization, where equal occupation probabilit
on each site of the disordered chain were found.14 This pe-
culiar feature is only valid in the limit of large measureme
voltage, which causes an effective thermalization in terms
an effective temperature. The equal stationary occupatio
a general asymmetric case is however unphysical; it viola
the detailed balance since it does not properly account for
energy exchange between the measured system and th
tector.

To reveal the significant implication of the detailed ba
ance, let us transform the result in Fig. 2~a! into the qubit-
eigenstate representation, as shown in Fig. 2~b!. Viewing that
initially the electron locates in the left dot, which is equiv
lent to 1/2 probability in each eigenstate of the symme
qubit, the constant dashed line in Fig. 2~b! indicates that
equal occupation probabilities on the two eigenstates wo
be unaffected if the detailed balance could be neglec
However, the proper relaxation between the eigenstates
result in quite different occupation probabilities as shown
the solid curves in Fig. 2~b!.

Despite the drastic consequence of the detailed balanc
relaxation, our QME also stimulates an interesting issue
dephasing. In Fig. 3~a! the dephasing behavior is describ
by the off-diagonal density-matrix element in the dot-st
representation. We see that in the absence of detailed
ance,complete dephasingbetween the dot states takes pla
at the long measurement time limit. However, in the prese
of detailed balance, the real part ofrab approaches a nonzer
constant. We notice that a similar feature of nonzero o
diagonal matrix element in dot-state basis appears als
Ref. 18 @see Eq.~11! there# by coupling the qubit with an
additional thermal bath. In contrast, our result stems me
from the coupling with the detector, owing to the fact th
our theory properly accounts for the energy exchange
tween the qubit and detector, and thus its consequenc
dephasing and relaxation. Mathematically, noting thatraa
5rbb50.5 as t→`, the off-diagonal matrix element ap
proaches asymptotically to a nonzero value ofrab(t)
→0.5(l̄22l̄1)/(l21l1) via Eq. ~16!, rather thanrab(t)
→0 via Eq.~17!. Physically, our result based on the detaile
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balance-preserved QME indicates that the dot-state bas
not a proper representation to show dephasing. Under
weak measurement considered here, the qubit is weakly
turbed by the detector and its eigenstates remain a good
resentation to describe its dissipative dynamics. In this qu
Hamiltonian dominated regime, complete dephasing
anticipated to take place between the qubit eigenstates ra
than the dot states.7,23 In Fig. 3~b! we transform the off-
diagonal density-matrix elementrab into r12, i.e., from the
dot-state basis to the eigenstate basis. A complete depha
is observed satisfactorily between the qubit eigenstates.

So far, we have restricted our discussion in the symme
qubit, and have already got insight in the impact of detai
balance on the qubit relaxation and dephasing. Below,
briefly show results for the asymmetric qubit, where mo
apparent effects can be observed.

B. Asymmetric case:eaÅeb

In an asymmetric case, simple diagonalization of the qu
Hamiltonian gives rise to the eigenstatesu1&5cos(u/2)ua&
1sin(u/2)ub& and u2&5sin(u/2)ua&2cos(u/2)ub&; see the
Appendix. We still denote the eigenenergy difference byD
5E12E2. With the knowledge of eigenstates, one c
straightforwardly evaluate the operatorW̃(6) in the master
equation. In dot representation, the result reads

W̃aa
(6)5FT1

x

2
~11cos2u!GC(6)~0!1xl6sin2u,

W̃bb
(6)5S T1

x

2
sin2u DC(6)~0!2xl6sin2u,

W̃ab
(6)5

x

4
C(6)~0!sin 2u2x~l̄61l6cosu!sinu,

W̃ba
(6)5

x

4
C(6)~0!sin 2u1x~l̄62l6cosu!sinu. ~18!

In Figs. 4~a! and 4~b!, the measurement-induced qubit-sta
relaxation is shown in~a! dot state, and~b! eigenstate repre
sentations. In the absence of detailed balance, we see in
representations that the qubit state relaxes to a statis
mixture with equal probabilities on the two states of the q
5-5
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FIG. 4. Measurement-induced relaxation a
dephasing of an asymmetric qubit~with dot-level
offset ea2eb50.5V) in, respectively, the indi-
vidual dot-state representation@~a! and ~c!#, and
the eigenstate representation@~b! and~d!#. In ~a!–
~c!, the results in the presence and the absenc
the detailed balance are symbolized by ‘‘C(L)’’
and ‘‘C(0).’’ The qualitative feature of dephasin
in ~c! and ~d! is similar to the symmetric qubit,
and the corresponding figure description is r
ferred to in Fig. 3.
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bit. This peculiar feature in asymmetric qubit is owing to t
equal probabilities with which the transitions fromu1& to
u2&, and from u2& to u1&, take place in the absence of d
tailed balance, as shown by the dominant Lindblad relaxa
terms in the master equation in the Appendix. However
the detailed balance is properly accounted for, remarka
different statistical mixture will be approached after the m
surement, see the solid curves in Figs. 4~a! and 4~b!. We
anticipate that the relaxation behavior in Fig. 4~a! can be
demonstrated by future experiment. For asymmetric qu
the dephasing characteristics shown in Figs. 4~c! and 4~d! are
similar to that in the symmetric qubit. Again, comple
dephasing takes place between the eigenstates rather tha
dot states of the qubit under weak measurement.

It is desirable to compare the measurement-induced re
ation described in this work~cf. Figs. 2 and 4! with that
originated from coupling with an additional thermal bath
discussed in Ref. 18. In both cases, relaxations are owin
the energy exchange between the system of interest an
environment. In this sense, the relaxation induced here b
measurement device should be similar to that by a ther
bath. This analogy is also discussed in Ref. 15, where
measurement voltage across the detector is shown to
equivalent to an effective temperature of thermal bath in c
tain sense. Since the measurement in Ref. 18 is describe
the previous work1 which causes only decoherence, an ad
tional bath is introduced there for relaxation. It is expec
that our QME approach allows the measurement itself
generate the relaxation and its consequences discuss
Ref. 18.

IV. RELAXATION AND DEPHASING RATES

In this section we carry out the analytical expressions
relaxation and dephasing rates and discuss their charac
tics which depend on the measurement conditions. Since
08531
n
if
ly
-

it,

the

x-

to
the
a

al
e
be
r-
as

i-
d
o

in

r
ris-
he

weak measurement under study is in the qubit-Hamilton
dominated regime, we present our analysis in the qu
eigenstate representation~see the Appendix!, in which Eq.
~6! can be expressed as21

ṙ jk52 iv jkr jk2 (
j 8,k851

2

Rjk, j 8k8r j 8k8 , ~19!

where v jk5Ej2Ek , and the dissipation tensor eleme
reads

Rjk, j 8k85~Kjk, j 8k81Kk j ,k8 j 8
* !/2, ~20!

with

Kjk, j 8k85dkk8@W†W̃(2)1WW̃(1)†# j j 82@Wkk8
* W̃j j 8

(2)

1Wk8kW̃j 8 j
(1)* #. ~21!

These tensor elements have clear physical meaning. Fo
ample,2Rj j ,kk ~with j Þk) amounts to transfer of the occu
pation probability fromuk& to u j &, while Rjk, jk describes the
dephasing betweenu j & and uk&. This can be further eluci-
dated by making the so-called secular approximation wh
retains only the diagonal relaxation tensor elements, suc
Rj j ,kk andRjk, jk . In the qubit-eigenstate basis$u1&,u2&%, the
secular approximation leads to the following Bloch equatio

ṙ1152 ṙ2252G1r111G2r22, ~22a!

ṙ1252 iDr122g12r12, ~22b!

where

G1[2R22,115uW12u2@C(2)~D!1C(1)~D!#, ~23!

G2[2R11,225uW21u2@C(2)~2D!1C(1)~2D!#,
5-6
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g12[R12,125
1
2 ~G11G2!1 1

2 ~W112W22!
2@C(2)~0!

1C(1)~0!#.

The relaxation betweenu1& and u2& is characterized by the
evolution ofrz(t)[r11(t)2r22(t). From Eq.~22a! it is easy
to show that

ṙz~ t !52~G11G2!@rz~ t !2rz~`!#, ~24!

which results in the solution

rz~ t !5rz~`!1@rz~0!2rz~`!#e2(G11G2)t. ~25!

Accordingly, theT1-relaxation rate is obtained as

1

T1
5G11G25

gLgR

2/p
@F~eV1D!1F~eV2D!#x2sin2u,

~26!

with

F~x![x coth~bx/2!. ~27!

Similarly, theT2-dephasing rate can be obtained as@cf. Eq.
~22b!#

1

T2
5g125

1

2T1
1pgLgRF~eV!x2cos2u. ~28!

In this result, the first term stems from the relaxation-induc
dephasing and the second term describes the pure depha
This identification can be simply understood as follows.
the eigenstate representation~see the Appendix!, the qubit
and interaction Hamiltonians read, respectively,Hqu
5(D/2)sz and H85WX5@(T1x)I 1(x/2)(cosusz
1sinusx)#X. From a master equation based analysis,22 one
can easily prove that thesx coupling would cause theT1
relaxation with rate 1/T1 given by Eq. ~26!, and simulta-
neously induce dephasing with rate 1/(2T1). Meanwhile, the
sz coupling only results in pure dephasing with rate given
the second term of Eq.~28!.

Equations~26! and ~28! describe the dependence of th
qubit relaxation and dephasing rates on the various meas
ment parameters. Most apparently, the rates depend on
visibility parameterx via }x2, which is the result in weak-
coupling regime, but implies also that design of an appro
ately largex is essential in order to perform efficient me
surement. The dependence of the relaxation and depha
rates on the measurement voltage and temperature is nu
cally plotted in Fig. 5. In general, both the applied volta
and temperature will enhance the qubit relaxation a
dephasing. Dephasing will, in principle, benefit quantu
measurement. However, in practice the detector should
kept at very low temperatures, since there exists a trad
between the signal and noise strengths in the detector, an
sis on which has appeared in recent publications.6,9 In what
follows, based on Eqs.~26! and ~28!, we detail the voltage
and temperature dependence of the relaxation and deph
rates under certain limits. First, in the limit of zero-bias vo
age across the detector, the temperature dependence o
relaxation rate is characterized byT1

21}coth(D/2kBT),
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whereas thesz-coupling induced pure-dephasing rate, i.
the second term in Eq.~28!, is }kBT. This difference in
temperature dependence is due to that energy exchang
tween the qubit and detector takes place during relaxat
but there exists no such exchange during pure dephas
Under zero-bias voltage, the detector no longer plays the
of measurement, the qubit relaxation and dephasing
merely caused by the zero-voltage quantum and ther
fluctuations due to random tunneling of electrons through
QPC. Second, at zero-temperature limit, the pure-depha
rate linearly depends on the measurement voltage by no
that F(eV)}eV. Interestingly, the relaxation rate reduces
T1

21}(eV1D1ueV2Du), which linearly depends on the
voltage if eV.D, but becomes a voltage-independent co
stant wheneV,D.

V. CONCLUSION

In summary, we have studied the relaxation and depha
of a solid-state charge qubit under quantum measuremen
a mesoscopic detector. Our treatment emphasizes in par
lar the energy exchange between the qubit and detector
ing the measurement process. The measurement current
tuation is shown to have significant impact on not only t
decoherence but also the detailed-balance-preserved r
ation of qubit. We have carried out both numerical and a
lytical results for the qubit relaxation and dephasing, a
highlighted the important features which might be relevan
future experiments. Our unified QME approach is expec
to be generalized to a conditional version which enables
study the readout statistics, and to be unraveled by stoch
wave function which can describe an individual continuo
measurement of a single qubit. The work along these
lines is in progress and will be published elsewhere.

APPENDIX: ELABORATION ON THE DETAILED
BALANCE

In this appendix we carry out the explicit operator for
for the relaxation superoperatorRr, from which the detailed

FIG. 5. The measurement-induced qubit relaxation rate (T1
21)

and dephasing rate (T2
21) as functions of the temperature for fixe

voltageeV5V ~solid curves!, and of the measurement voltage fo
fixed temperaturekBT5V ~dashed curves!.
5-7
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balance retained by our QME can be revealed clearly. To
end, we express the qubit operators in the eigenstate re
sentation. In general, for asymmetric qubit, the individual d
level eaÞeb , we introducee5(ea2eb)/2 for the dot-level
offset, andD5E12E2 for the qubit eigenenergy difference
By a simple diagonalization of the qubit Hamiltonian, th
eigenenergies are obtained asE15Ae21V2 and E2

52Ae21V2. Correspondingly, the eigenstates areu1&
5cos(u/2)ua&1sin(u/2)ub& and u2&5sin(u/2)ua&
2cos(u/2)ub&, whereu is introduced by cosu5e/Ae21V2,
and sinu5V/Ae21V2. In the eigenstate basis$u1&,u2&%, the
qubit Hamiltonian readsHqu5(D/2)sz , and the coupling
between the qubit and detector is described byH85WX
5@(T1x)I 1(x/2)(cosusz1sinusx)#X. Here I is the 232
unit matrix, X stands for the tunneling operator of th
QPC, and the Pauli operatorssz5u1&^1u2u2&^2u and sx
5u1&^2u1u2&^1u, which map the two-state qubit to a spin
1/2 particle.

In terms of the Pauli matrices, the formal QME, Eq.~5!,
can be recast to an explicit form with

Rr5h1
2C~0!†sz ,@sz ,r#‡1h2

2@sx ,Q̃xr2rQ̃x
†#

1h1h2C~0!†sx ,@sz ,r#‡1h1h2@sz ,Q̃xr2rQ̃x
†#,

~A1!

where h15(x/2)cosu, h25(x/2)sinu, C(0)5C(1)(0)
1C(2)(0), and Q̃x[C(2L)sx with C(2L)[C(1)(2L)
1C(2)(2L). In the right-hand side of Eq.~A1!, the first
term describes thesz-coupling induced pure dephasing, th
second term dominantly contributes theT1 relaxation as well
as its associated dephasing owing to thesx coupling, and the
last two terms stem from the correlation between the t
couplings which have minor contribution to the dissipati
dynamics. Due to the dominantT1-rate contribution of the
second term, we further express it into a Lindblad-type fo

@sx ,Q̃xr2rQ̃x
†#522C~2D!D@s1#r22C~D!D@s2#r

2@C~2D!1C~D!#~s2rs21s1rs1!,

~A2!

where the Lindblad superoperators are defined as

D@s1#r5s1rs22 1
2 $s2s1,r%, ~A3a!
ys

08531
is
re-
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,

D@s2#r5s2rs12 1
2 $s1s2,r%. ~A3b!

In deriving this result, we have carried outQ̃x5C(2D)s1

1C(D)s2, wheres65 1
2 (sx6 isy). In this context, simple

algebras were used as follows. Note thatLsx[@Hqu,sx#
5(D/2)(2i )sy , L 2sx5(D/2)2(2i )(22i )sx , and so on. It
then follows that the action of an arbitrary function of th
Liouvillian operator L, say, C(L), on sx readsC(L)sx
5C1(D)sx1 iC2(D)sy , with C1(D)5@C(D)1C(2D)#/2
andC2(D)5@C(D)2C(2D)#/2.

The terms ‘‘s2rs2’’ and ‘‘ s1rs1’’ in Eq. ~A2! are out
of the rotating-wave approximation and their effects a
small compared with the Lindblad terms withD@s6#r @Eq.
~A3!#. Physically,D@s2#r describes quantum jump from th
upper qubit stateu1& to the lower stateu2&, andD@s1#r vice
versa. With satisfaction, the corresponding jump probabi
C(6D) precisely relates the qubit jump to the electron tu
neling in the detector in the presence of energy-quanta~i.e.,
D) emission~absorption!. Note that this energy exchange
essential to ensure the detailed-balance. Denoting the o
pation probabilities on the qubit statesu1& andu2& by P1 and
P2, at the stationary mixture state, the dominant term of E
~A2! leads toP1 /P25C(2D)/C(D). This is nothing but a
generalization of the usual detailed balance relation for c
pling with a thermal bath. Here the measurement volta
plays certain role of an effective temperature. This resul
also in complete consistence with the rate analysis in Sec
see Eqs.~22! and ~23!. If we neglect the energy exchang
say, let C(6D)→C(0), the detailed balance is broke
down, and equal occupation probabilities on the qubit sta
are inevitably obtained as in the previous literatures.1,5

Note added in proof. Recently, we were informed by T.M
Stace that in their recent work,24 the energy exchange be
tween the qubit and detector~i.e., the inelastic tunneling in
the detector! has also been considered.
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