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Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum
physics and an essential issue in quantum computing. In this work, by employing a unified quantum master
equation approach constructed in our recent publications, we study the measurement-induced relaxation and
dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays par-
ticular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy
exchange between the qubit and detector during the measurement process. As a result, our theory is applicable
to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit
relaxation and dephasing are carried out, and important features are highlighted in concern with their possible
relevance to future experiments.
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[. INTRODUCTION particle wave function of the entire qubit-plus-detector sys-
tem. This approach was also applied to study the breakdown
Measuring a two-state quantum systéqubit) typically  of the Anderson localization in the presence of quantum
represents the long-standing and still controversial issue imeasurement: and its conditional version was exploited to
quantum measurement. Ideally, based on the standaahalyze the readout of the detectdt® By an alternative
Copenhagen postulate, quantum measurement is describedrasans, Goaret al. derived a Lindblad QME for the same
a wave-function collapsé.e., projects the qubit state to one measurement setup, based on which a quantum trajectory
of the possible eigenstates of the observed quantity witldescription was developed for the single continuous
state-dependent probabilities. However, in practice, any reameasuremem.The Lindblad QME obtained by Goaet al.
istic measurement is performed by a realistic device that ithas also been demonstrated to be equivalent to the Bloch
self is a physical system. Response of the measured systesguations derived by GurvifzHowever, we notice that their
to the measuring device is in general a nontrivial problemmaster equations would inevitably lead to certain peculiar
which has attracted considerable attention in recent ye&ts. features such as thwaysequal occupation probabilities on
This renewed interest also stems from the rapidly developingndividual dots (siteg in the asymmetric qubit(disorder
field of quantum computing, since the quantum-measuremerhain after the completion of dephasing and relaxatidh.
procedure is needed, for instance, at the end of computation In this work, we revisit this well-defined quantum-
to read out the final results, or even in the course of compumeasurement problem by employing a unified Markovian
tation for the purpose of error correction. QME approac®?2 We pay particular attention on the
A possible implementation of the two-state quantum measdetailed-balance relation, which properly accounts for the en-
surement is to consider a charge qubit being measured byeaxgy exchange between the qubit and detector during the
charge sensible detector, such that the transport current in tieeasurement process. Consequently, our approach is valid at
detector carries information of the measured qubit. Thearbitrary measurement voltage and temperature. It will show
charge qubit can be either an extra electron stored in coupletthat the results in Refs. 1 and 5 break down at small voltage
quantum dotCQD’s),'® or an extra Cooper pair in super- and the peculiar features in Refs. 1 and 14 survive only in
conducting boX;**'” meanwhile the detector can be a high-voltage regime. Note that the measurement voltage can
quantum-point contatt®!?!® (QPQ, or a single-electron in a certain sense be interpreted as an effective
transistof~*1/(SET). In these studies, in addition to theo- temperaturé? thus the equal occupation probabilities on in-
retical discussion’; %1617 experimental results have also dividual states may be viewed as the result of an effectively
been reported 13 strong thermalization. To our knowledge, this kind of clari-
To study the effects of measurement on a quantum sydication lacks so far in literature. Recently, similar quantum
tem, the standard procedure is to trace out the microscopimeasurement under arbitrary voltage is analyzed in terms of
degrees of freedom of the detector, which would result in ahe noise spectrum of the detector output sighaf:*’In the
reduced description in terms of quantum master equatiofarge voltage regime, the noise spectrum is symmetric; and in
(QME) for the relaxation and dephasing of the measuredsmall voltage regime, the noise spectrum becomes asymmet-
system. In the seminal work by Gurvitzhe quantum mea- ric. This change of spectral shape indicates a transition from
surement of the charge state in coupled CQD’s by a QPClassical to quantum. In the quantum regime, it is right the
was studied based on a reducing procedure from the mangnergy exchangbetween the qubit and detector that leads to
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Hqu= €ala)(al + ep|b)(b| + Q([b)(a| +|a)(b]), (1b)

Hies™ 2 EkCleﬂL E eﬁdédq ) (10
k a
H’:gq (Tout+ xqrl@)(al)cldg+H.c. (1d)
|a> Q |b> The two terms irH ¢ are for electrons in the two reservoirs

(electrodeslabeled by L” and “R,” respectively. The in-
teraction HamiltoniarH' here describes the electron tunnel-
ing through QPC, e.g., from stalg) in the R reservoir to
state|k) in the L reservoir, with the tunneling coupling am-
FIG. 1. Schematic diagram of a solid-state qubéupled quan-  plitude of (Tqc+ xqdl@)(al) that depends explicitly on the

tum dotg being measured by a quantum-point con{@PQG. Oc-  qubit-state. It is right this qubit-state dependence of the tun-
cupation of the extra electron in different dots would have distinctneling amplitude that makes it possible to draw out the qubit-
influence on the transport current through the QPC, which makes &tate information from the transport current through QPC. In
possible to draw out the qubit-state information. On the other handhe ghove microscopic Hamiltonian, the detector is described
asa result of back action of the detector, quantum coherence of thg terms of second guantization to address the many-particle
qubit state would be destroyed. nature, meanwhile for the measured systemubit) single-

. _ particle description is adopted since there is only one extra
the asymmetry of noise spectrum. Our present work, whiclgjectron in it. Here we denote the qubit stategdyand|b),
deals with the measurement-induced qubit dephasing and reprresponding to the electron locating in the left and right
laxation under arbitrary voltage and temperature, thus progets. In this work we shall also introduce the qubit eigen-

vides an alternative perspective to elucidate the nature thates|1> and |2), which are the superpositions of the dot
energy exchange and its importance in describing quantungltateﬂ@ and|b).

measurement.

The remainder of this paper is organized as follows. In the
context of the considered quantum-measurement model, we
outline in Sec. Il the derivation of the QME for the reduced Quantum measurement can be characterized by dephasing
dynamics of the qubit. The detailed-balance property of ouand relaxation of the measured system. In this section, we
QME and its relation to the energy exchange processes agresent a unified QME description for the reduced dynamics
companying the quantum measurement will be elaborated iof the qubit which is subjected to the measurement of a QPC.
the Appendix. In Sec. lll, numerical results of the relaxationDetails of the formal derivation and the adopted approxima-
and dephasing behaviors of the measured qubit are preions are referred to in Ref. 21. Here we only outline the key
sented, and discussions are highlighted to some importaprocedure and the main results with respect to the measure-
features resulting from the detailed balance. Section IV conment model in concern.
tributes to the relaxation and dephasing rates where the de- It is well known that in weak-coupling regime one can
rived analytical formulas clearly describe effects of variousderive the QME by carrying out a second-order cumulant
measurement parameters, such as the bias voltage across #xpansion with respect to the system-environment interac-
QPC and the temperature in the electronic reservoirs. Finallfion Hamiltonian. In our case, we treat the qubit-state-
in Sec. V we summarize the main results and implications otlependent tunneling Hamiltoniah’ as perturbation, since it

B. Reduced description for the measured qubit

this work. fully contains the coupling information between the qubit
and detector. In the interaction picture with respect to the
Il. QME APPROACH FOR QUANTUM MEASUREMENT: QPC_ res_erv0|r, Hamiltoniaf .5 of EQ. (1.c), the interaction
FORMAL RESULT HamiltonianH’ of Eq. (1d) becomes time dependent and

o reads(settingA = e — €f)
A. Model description
Following the previous work*® we consider here a
coupled quantum ddi.e., a solid-state qubimeasured by a
guantum-point contact, as schematically shown in Fig. 1. To
present a microscopic description for the measurement, asdaking connection with the formalism developed in Ref. 21,
sume the Hamiltonian of the entire qubit-plus-reserviros syswe denote W= T+ xqil@)(al and f(‘;k(t) =cldqe'Akq‘,

H'(t)= Ek (Takt Xqxl a)(a|)cldqemkqt+ Hec. (2
q,

tem as which are operators in the qubit and the stochastic bath res-
ervoir subspaces, respectively, and recast (Bg.as H'(t)
H=HgtHestH', (13 =Eq,k[quf:;k(t)+W;quk(t)]. With this form and starting
from the Liouville equation, the QME satisfied by the re-
with duced density matrix can be derived after tracing out the
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microscopic degree of freedom of the QPC reservoirs, pretions, EquﬁngRdekdfﬁ, where the energy-
cisely following the procedures in Ref. 21. _ independent density of stateDOS g, and gy are
For simplicity, we assum&q =T and xqx=x, i.e., the introduced for the two reservoirs. The analytical expressions

tunneling amplitudes are reservoir-state independent. Acpr C(*)(+ £) can then be readily integrated out as

cordingly, the interaction Hamiltonian simplifies ta’(t)
=Wf'(t) + W'f(t), where X

() = -
CH(+L)=27g.0r PR (©)

W=T+X|a)(a|, fT(t):E CldqeiAkqt. 3) x==*(L+eV)
k.a Equations(6)—(9) constitute the QME formulation that con-
The measurement current fluctuation-induced dephasing art@ins the full effects of measurement on the qubit and will
relaxation effects on the qubit are characterized by the interserve as the starting point of the following studies.

action bath correlation functions, which in relation to the
QPC detector shown in Fig. 1 can be carried out explicitly as C. Comments and discussions

5 ' Let us start with the high measurement voltage limit
CH()=(fT(1)f(0))=>, €N (1—Ngy), (48 (eV>L), in which the applied measurement voltage is much
k.a larger than the internal energy scale of the qubit. In this case,
the superoperatc™)(+ £) of Eq. (9) reduces to & num-

6<*><t>z<f<t>ff<0>>=k2 e %' (1- N )Ngq. (4b)  ber
,q

Here,(- - -) stands for the statistical average over both the CEN(+L)—CcH(0)==+ ngLgRl (10

. . . . _ aFpeVv’
left and right electron reservoirs, which are assumed to be in e’

thg local thermal equilibrium, WiEh the Fermi-Dirac functions With this approximation, Eq(7) recovers the QME derived
being given by Ny=[eX« *)+1]7" and Ng, inRef.5,ie.,
R
=[eflea#R+1]7 1, respectively. Herep=1/(kgT) is the ) “ )
inverse temperature, ang, and uy are the chemical poten- Rp=—-C(0)D[W]p—C(0)D[W']p,  (11)
tials that relate to the applied voltage across the detector b\X/ith DIW]p=WpW'— [W'W,p], andD[W']p being de-
- 2 ’ +

MLt_hMRF_ e?i/. r'l't?enlnfterrr?]ctlg?hba:th SE\?CITUT Ifr tzen ?re];mt?dfined similarly by swapping betweaf andW'. It is easy to
zjsnctﬁ)nzolu er transtorm ot the reservoir-electron correlationy, s that the QME of Eq(11) is in fact also equivalent to
’ the Bloch equation derived by Gurvitz.
w0 Our QME formulation in Eqs(6)—(9) is valid for arbi-
C(i)(iw)=J dtCHE)(t)eriet, (5)  trary measurement voltage. In contrast with theumber of
- Cc(*)(0), theoperator nature oE™)(* £) in our QME for-
It satisfies the detailed-balance relation @(*)(w)/  Mulation properly describes not only the dephasing but also
CO(—w)=efleteV), the |mportantenergy exchangbetween the qub|t and detec—_

With the above clarifications, the unified QME developedtO- Phy3|ca_lly, the quantum-measu_re_ment-mduced dephasing
in Ref. 21 applied here to describe the dephasing and rela@"d relaxation on the qubit are originated from the current
ation of the measured qubit can now be completely identiluctuations in the detectd?'®’As mentioned earlier, the
fied: current fluctuations are characterized by the correlation func-

tions C)(t) of Eq. (4), and their spectra satisfy the
p=—iLp—Rp, (6)  detailed-balance relation &) (w)/C(7)(—w)=ef0TeV)

. . o at arbitrary temperature and measurement volfadie Eq.
with L(- - -)=[Hqu.(- - -)] being the qubit Liouvilian and qg); Cons}e/quenitjlyc(i)(iﬁ) manifests the back?ctioﬂ of
_R being the dISSIplatIOI’I superoperator defined via the foIIowv[he detector on the qubit by correlating the measurement
ing compact fornf, current fluctuations with the qubit dissipations, leading to our
QME in Egs.(6)—(9) satisfying the detailed-balance relation.
More specifically, the energy exchange between the qubit
and detector can be described as follo®S™)(£) accounts
for the current fluctuations associated with electron tunneling
®) in the detector from the left to the right reservoirs, accompa-

nied by energy absorption from the qubit, whd)(— £)
Here, C*)(+ L) is a superoperator, specified by the qubitcorresponds to tunneling from the right reservoir to the left
Liouvillian £ and the interaction bath spectru®™)(+ o). one, accompanied by energy emission to the qubit. The en-
To obtain the explicit expressions 6X*)(+ L), we further  ergy exchange characterized 8§")(+ £), i.e., the current-
adopt the continuum and wideband approximations for thdluctuation spectrun€(*)(+ ) correlated with qubit Liou-
QPC reservoir electrons. Accordingly, the discrete summavillian w= L, is an essential feature hold by our QME that
tions in Eq.(4) can be replaced by the continuous integra-manifests the important detailed-balance relation. This issue

Rp= W W)p—pWH]+H.c. 7)
Formally, W(*) is related to the coupling operat® as

W =cH) (= Lyw.
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§ § FIG. 2. Measurement-induced qubit relax-
5 2 o0s p..andp_: C(0) T ation in (a) the individual dot-state representa-
5 s ! 2 tion, and (b) the eigenstate representation. The
‘g § 0.4 J results in the presence and the absence of the de-
§ 3 tailed balance are symbolized byC{L£)” and
8 S sl p,, : C(L) | “C(0),” respectively.
. : : 0.0 : . .
0 5 10 15 20 0 5 10 15 20
time t (in units: 1/Q) time ¢t (in units: 1/Q)
is fu_rt_her elabqrated in the Ap_pendix by carrying_ out the W§§)=(T+X/2)C(t)(0)—x)\t, (15b)
explicit expression of the QME in terms of the qubit atomic
operators. ~ ~ —
Wi = - W)= . (150
1. MEASUREMENT-INDUCED DEPHASING Substituting Eq(15) into the formal QME Eqgs.(6) and(7)],
AND RELAXATION the Bloch equations for the reduced density matrix in the

Wi in th ition to highliaht th tial rol dot-state representation can be readily obtained. For instance,
€ are now In the position to highlig € essential r0le, o off-diagonal density-matrix element satisfies
and impact of the detailed balance on the qubit dephasing

and relaxation under measurement. In order to have a close: _ . . 2

comparison with the previous results that neglect the Pab= ~i(€a™ €)PapT1Q(Paa= Pob) =X (A +A-)pap

detailed-balance effects,instead of the QME given explic- x2 — —

itly in the Appendix in terms of the qubit atomic operators 5 (As=A)(paat pob)- (16)

and o™, in this section we would like to elaborate it in the

individual dot-state basis. For clarity, our results will be pre-For simplicity, we have assumed here the tunneling coeffi-

sented for the symmetric and asymmetric qubit cases, sepaientsT and y to be real. It is easy to see that in the absence

rately, in the following two sections. of detailed balance, i.eG(*)(+A)—C(*)(0), Eq.(16) re-
duces to

A. Symmetric case:e,= €y, 5

In the individual dot-state representati¢fa),|b)}, the Pan=—1(€a— Eb)pab+iQ(paa—pbb)—X?[C(H(O)
coupling operatokV takes a matrix form

Ty 0 +CA0)]pa, (17)
=l 0 Tl (12)  which is nothing but the result derived in Refs. 1 and 5.
Under the quantum measurement, a pure state of the qubit
and its spectral conjugate in E@®) is state evolves into a statistical mixture. Figure 2 shows such
evolution by plotting the time-dependent occupation prob-
W W) abilities on the individual dot states. In the following numeri-
W =| af - a+ . (13 cal studies, the relevant parameters are adopted as follows:
Wiy Wy the applied voltage over the QR&/=(), the inverse tem-

. LS . perature3=1/Q), the DOS in both electron reservoigg
The involving W'=/-matrix elements can be evaluated =gr=2/Q, and the tunneling amplitude¥=Q and y

readi!y via the standard operator algebra. To simplify the_q 150 |n the dot representation as shown in Figa)2
notation, let us denote despite certain quantitative difference in short time scale,
. o, common final occupation probability of 1/2 in each dot is
-=[CH(=A)+CEN(FA)]/4, (14a approached, irrelevant to the detailed balance being satisfied
_ or not. Physically, due to the measurement-induced dephas-
L=[CH(xA)-CH)(FA)]/4. (140 ing, a transition occurs for the qubit electron tunneling from
the coherent to incoherent regime. In the coherent regime,
the tunneling results in the well-known Rabi oscillations. In
the incoherent regime, no phase correlation exists between
the tunneling events, and the readout appears as telegraphic
) () signals. In the symmetric case, owing ég9= ¢, the final
Wea' = (T+x/12)CH(0) + XA+, (158 equal occupation probability of 1/2 in each dot is anticipated.

Here A=E;—E,, with E; andE, being the qubit eigenen-
ergies.
For the symmetric qubitd,= €,= €;), we have then
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06

04l (a) i (b) FIG. 3. Measurement-induced dephasing in
real part 04 —— realpant i (a) the individual dot-state representation, gbg
i imaginary part N maginary par the eigenstate representation. The real part and

imaginary parts of the off-diagonal matrix ele-
ment are plotted by the solid and dashed curves,
respectively. In(a), the result in the absence of
detailed balance is shown by the constant zero
solid line and the dashed curve with larger oscil-
lation amplitude. The other two curves are for the
detailed-balance preserved result. Similarly, in
(b), the curves with smaller and larger amplitudes
correspond, respectively, to the detailed-balance
hold and unhold results.

0 5 1I0 1I5 20 0 5 1|0 1I5 20
time t (in units: 1/Q) time t (in units: 1/Q)

However, as shown by Gurvitzin the asymmetric casge.,  balance-preserved QME indicates that the dot-state basis is
for nonidentical coupled doxsfinal equal occupation prob- not a proper representation to show dephasing. Under the
ability of 1/2 in each dot would also be approached. Similarweak measurement considered here, the qubit is weakly per-
confusing feature also existed in the breakdown of theurbed by the detector and its eigenstates remain a good rep-
Anderson localization, where equal occupation probabilitiegesentation to describe its dissipative dynamics. In this qubit-
on each site of the disordered chain were fotth@ihis pe-  Hamiltonian dominated regime, complete dephasing is
culiar feature is only valid in the limit of large measurementanticipated to take place between the qubit eigenstates rather
voltage, which causes an effective thermalization in terms ofhan the dot state’s?® In Fig. 3b) we transform the off-
an effective temperature. The equal stationary occupation idiagonal density-matrix elemept,, into p4,, i.e., from the
a general asymmetric case is however unphysical; it violatedot-state basis to the eigenstate basis. A complete dephasing
the detailed balance since it does not properly account for this observed satisfactorily between the qubit eigenstates.
energy exchange between the measured system and the de-So far, we have restricted our discussion in the symmetric
tector. qubit, and have already got insight in the impact of detailed
To reveal the significant implication of the detailed bal- balance on the qubit relaxation and dephasing. Below, we
ance, let us transform the result in FigaRinto the qubit-  briefly show results for the asymmetric qubit, where more
eigenstate representation, as shown in Fig).2/iewing that  apparent effects can be observed.
initially the electron locates in the left dot, which is equiva-
lent to 1/2 probability in each eigenstate of the symmetric B. Asymmetric case:e,# €,
qubit, the constant dashed line in Figb® indicates that
equal occupation probabilities on the two eigenstates woul
be unaffected if the detailed balance could be neglected,

However, the proper relaxation between the eigenstates WJI dix. We still d he ei diff A
result in quite different occupation probabilities as shown b ppendix. e still denote the €lgenenergy ditierencesby
the solid curves in Fig. (®). =E,;—E,. With the knowledge of eigenstates, one can

Despite the drastic consequence of the detailed balance g#raightforwardly evaluate the operatdf™) in the master
relaxation, our QME also stimulates an interesting issue iffquation. In dot representation, the result reads
dephasing. In Fig. & the dephasing behavior is described
by the off-diagonal density-matrix element in the dot-state W) =
representation. We see that in the absence of detailed bal- aa
ance,complete dephasingetween the dot states takes place
at the long measurement time limit. However, in the presence G =
of detailed balance, the real partmf,, approaches a nonzero bb ™
constant. We notice that a similar feature of nonzero off-
diagonal matrix element in dot-state basis appears also in o X _ _ )
Ref. 18[see Eq.(11) therg by coupling the qubit with an ng)=zc(*)(0)sm 20— x(A++\.cos@)sing,
additional thermal bath. In contrast, our result stems merely
from the coupling with the detector, owing to the fact that o
our theory properly accounts for the energy exchange be- vajg)zzc(i)(O)sin 20+ x(A-—\.cosf)sing. (18)
tween the qubit and detector, and thus its consequence on 4
dephasing and relaxation. Mathematically, noting thaf  |n Figs. 4a) and 4b), the measurement-induced qubit-state
=ppp=0.5 ast—oo, the off-diagonal matrix element ap- rejaxation is shown irfa) dot state, andb) eigenstate repre-
proaches asymptotically to a nonzero value @fy(t)  sentations. In the absence of detailed balance, we see in both
—0.50M_—N)/(N_+N\.) via Eq. (16), rather thanp,,(t) representations that the qubit state relaxes to a statistical
—0 via Eq.(17). Physically, our result based on the detailed-mixture with equal probabilities on the two states of the qu-

In an asymmetric case, simple diagonalization of the qubit
amiltonian gives rise to the eigenstatds =cos@/2)|a)
sin(@/2)|b) and |2)=sin(6/2)|a) —cos@2)|b); see the

C)(0)+ y\ L sirf6,

T+)2—((1+00520)

T+ gsinzo) C)(0)— y\ . sir?o,
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[ [2]
5o °
& s Plleserecneme s
Soal s
g g FIG. 4. Measurement-induced relaxation and
g o2y 3 dephasing of an asymmetric qukitith dot-level
S Py ° offset e,— €,=0.5Q) in, respectively, the indi-
00, 5 10 15 20 00, 5 10 15 20 vidual dot-state representati¢te) and (c)], and
time ¢t (in units: 1/Q) time ¢ (in units: 1/9) the eigenstate representatigh) and(d)]. In (a)—
(c), the results in the presence and the absence of
oal ol 0a d the cjetalle(j balance_art_a symbolized b@(’L) _
real part ( ) real part and “C(0).” The qualitative feature of dephasing
Y imaginary part 1 o2l . imaginary part | in (c) and (d) is similar to the symmetric qubit,

and the corresponding figure description is re-
ferred to in Fig. 3.

0 5 10 15 20 0 5 10 15 20
time f (in units: 1/Q) time t (in units: 1/Q)

bit. This peculiar feature in asymmetric qubit is owing to theweak measurement under study is in the qubit-Hamiltonian
equal probabilities with which the transitions froft) to  dominated regime, we present our analysis in the qubit-
|2), and from|2) to |1), take place in the absence of de- eigenstate representatidsee the Appendix in which Eq.
tailed balance, as shown by the dominant Lindblad relaxatioii6) can be expressedZs
terms in the master equation in the Appendix. However, if
the detailed balance is properly accounted for, remarkably . )
different statistical mixture will be approached after the mea- Pik= 1 wikpjk__,z RikjrkPjrkr (19
surement, see the solid curves in Figgsa)dand 4b). We k=1
anticipate that the relaxation behavior in Figacan be Where w)=E;—E, and the dissipation tensor element
demonstrated by future experiment. For asymmetric qubitieads
the dephasing characteristics shown in Figs) 4nd 4d) are .
similar to that in the symmetric qubit. Again, complete Rik,jrkr = (Kjk,jrer + Ky rj )12, (20
dephasing takes place between the eigenstates rather than Wi?h
dot states of the qubit under weak measurement.

It is desirable to compare the measurement-induced relax- _ R~ ST st G)
ation described in this workcf. Figs. 2 and % with that Kikgrio = e [WWO + WWEDT], = W W
originated from coupling with an additional thermal bath as +kak\7V(r+-)*]- (21)
discussed in Ref. 18. In both cases, relaxations are owing to "
the energy exchange between the system of interest and tfféese tensor elements have clear physical meaning. For ex-
environment. In this sense, the relaxation induced here by ample,—Rj; « (with j #k) amounts to transfer of the occu-
measurement device should be similar to that by a thermalation probability fromk) to |j), while Rjjk describes the
bath. This analogy is also discussed in Ref. 15, where th@iephasing betweefj) and |k). This can be further eluci-
measurement voltage across the detector is shown to hgated by making the so-called secular approximation which
equivalent to an effective temperature of thermal bath in cerretains only the diagonal relaxation tensor elements, such as
tain sense. Since the measurement in Ref. 18 is described Bk and Ry j - In the qubit-eigenstate badikl),[2)}, the
the previous workwhich causes only decoherence, an addi-secular approximation leads to the following Bloch equation:
tional bath is introduced there for relaxation. It is expected

2

that our QME appro_ach aIIov_vs the measuremen_t itself to_ bllz_bzzz_rlpll+r2p22y (229
generate the relaxation and its consequences discussed in
Ref. 18. p12=—iAp1— yip12, (22b
IV. RELAXATION AND DEPHASING RATES where
In this section we carry out the analytical expressions for [1=—Rp 1= |Wi2[C(A)+CH(A)], (23

relaxation and dephasing rates and discuss their characteris-
tics which depend on the measurement conditions. Since the — T',=—TRy; o= W,/ [CT)(—A)+CH(—A)],
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Y12= Rap1=7(F1+ o) + 3 (Wy— W, C(0) eV (in units: )
+C((0)].

The relaxation betweefl) and|2) is characterized by the
evolution ofp,(t)=p44(t) — poo(t). From Eq.(229 it is easy
to show that

Relaxation/Dephasing Rate

p()=—(F1+T)[pt) = p ()], (29
which results in the solution
pAt)=py(2)+[p,(0) = p,()]e” T (25)

0.0 0.5 1.0 1.5 2.0

0.2 .
Accordingly, theT;-relaxation rate is obtained as

kT (in units: ©)
9u9r

1 .
T—=T1+F2= o= [F(eV+A)+F(eV—A)]x’sirPg, FIG. 5. The measurement-induced qubit relaxation ratg')
! (26) and dephasing rateT§ 1) as functions of the temperature for fixed
voltageeV= (solid curve$, and of the measurement voltage for
with fixed temperaturézT= (dashed curves
F(x)=x coth( 8x/2). (27)  whereas ther,-coupling induced pure-dephasing rate, i.e.,

the second term in Eq28), is «kgT. This difference in

Similarly, the T,-dephasing rate can be obtained[es Eq.  {gmperature dependence is due to that energy exchange be-

(22D] tween the qubit and detector takes place during relaxation,
1 but there exists no such exchange during pure dephasing.
—=y1,==— + 79, grF(eV) xy’cos . (28) Under zero-bias voltage, the detector no longer plays the role
T2 2T, of measurement, the qubit relaxation and dephasing are

In this result, the first term stems from the relaxation-induced"erely caused by the zero-voltage quantum and thermal
dephasing and the second term describes the pure dephasiffctuations due to random tunneling of electrons through the
This identification can be simply understood as follows. InQPC. Second, at zero-temperature limit, the pure-dephasing
the eigenstate representati¢see the Appendix the qubit rate linearly depends on the measuremt_ent voltage by noting
and interaction Hamiltonians read, respectivelif, thflIF(e\OmeV. Interestmgly,l the .relaxatlon rate reduces to
=(A/2)a, and H' =WX=[(T+ x)! + (x/2)(cosbo, T oc(e\_/+A+|eV—A|), which linearly d_epends on the
+sinfa,)]X. From a master equation based analf&isne voltage ifeV>A, but becomes a voltage-independent con-
can easily prove that the, coupling would cause th@,  Stant whereV<A.

relaxation with rate I/, given by Eg.(26), and simulta-

neously induce dephasing with rate 11(2. Meanwhile, the V. CONCLUSION

o, coupling only results in pure dephasing with rate given by
the second term of Eq298).

Equations(26) and (28) describe the dependence of the
qubit relaxation and dephasing rates on the various measur
ment parameters. Most apparently, the rates depend on t
visibility parametery via = x?, which is the result in weak-
coupling regime, but implies also that design of an appropr
ately largey is essential in order to perform efficient mea-
surement. The dependence of the relaxation and dephas
rates on the measurement voltage and temperature is num
cally plotted in Fig. 5. In general, both the applied voltage
and temperature will enhance the qubit relaxation ant{
dephasing. Dephasing will, in principle, benefit quantum
measurement. However, in practice the detector should

In summary, we have studied the relaxation and dephasing
of a solid-state charge qubit under quantum measurement of
a mesoscopic detector. Our treatment emphasizes in particu-

r the energy exchange between the qubit and detector dur-
ing the measurement process. The measurement current fluc-
.tuation is shown to have significant impact on not only the
Idecoherence but also the detailed-balance-preserved relax-
.ation of qubit. We have carried out both numerical and ana-
Nical results for the qubit relaxation and dephasing, and
I|’gh|ighted the important features which might be relevant to
uture experiments. Our unified QME approach is expected
0 be generalized to a conditional version which enables to
study the readout statistics, and to be unraveled by stochastic

. . ave function which can describe an individual continuous
kept at very low temperatures, since there exists a tradeo easurement of a single qubit. The work along these two
between the signal and noise strengths in the detector, analwﬁes is in progress and will be published elsewhere
sis on which has appeared in recent publicatfohtr what '
follows, based on Eqg26) and (28), we detail the voltage
and temperature dependence of the relaxation and dephasing
rates under certain limits. First, in the limit of zero-bias volt-
age across the detector, the temperature dependence of theln this appendix we carry out the explicit operator form
relaxation rate is characterized by, Lo coth(A/2kgT), for the relaxation superoperatBp, from which the detailed

APPENDIX: ELABORATION ON THE DETAILED
BALANCE
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balance retained by our QME can be revealed clearly. To this

PHYSICAL REVIEW B 69, 085315 (2004

Do lp=0 pot—3{cto ,pl. (A3b)

end, we express the qubit operators in the eigenstate repre-
sentation. In general, for asymmetric qubit, the individual dot;, deriving this result, we have carried oQt=C(—A)o™

level e,# €,, we introducee= (e,— €,)/2 for the dot-level

+C(A)o ™, whereo™

3(oxxioy). In this context, simple

offset, andA = E;— E, for the qubit eigenenergy difference. algebras were used as follows. Note thk,=[H,, o]

By a simple diagonalization of the qubit Hamiltonian, the

eigenenergies are obtained &;=\e’+0? and E,
=—e’+ Q2. Correspondingly, the eigenstates ale)
=cos(@?2)|a)+sin(0/2)|b) and |2)=sin(6/2)|a)
—cos(@?2)|b), where is introduced by cog= €+ 072,
and sind=0/\/e’+ Q2. In the eigenstate basfl),|2)}, the
qubit Hamiltonian readsd,,=(A/2)o,, and the coupling
between the qubit and detector is described Hy=WX
=[(T+x) I+ (x/2)(cosbo,+sinbo,) |X. Herel is the 2x2
unit matrix, X stands for the tunneling operator of the
QPC, and the Pauli operators,=|1)(1|—|2)(2| and oy
=|1)(2|+|2){1|, which map the two-state qubit to a spin-
1/2 particle.

In terms of the Pauli matrices, the formal QME, Eg),
can be recast to an explicit form with

Rp=n3C(0)[o,,[o,,p11+ 7L 0%, Quo— pQ}]

+7172C(0) [0y [ 07,p11+ i 7m2l 07, Qup— p Q1]
(A1)
where 7,=(x/2)cosb, n,=(x/2)sind, C(0)=C(*)(0)

+C)(0), and Q,=C(— L)y with C(—L£)=CH(—L)
+CI)(=L). In the right-hand side of Eq(AL), the first

=(A/2)(2)ay, L%0=(AI2)%(2i)(—2i)oy, and so on. It
then follows that the action of an arbitrary function of the
Liouvillian operator £, say, C(£), on o, readsC(L)ay
=C1(A)oy+iCy(A)ay, with C;(A)=[C(A)+C(—A)]/2
andC,(A)=[C(A)—C(—A)]/2.

The terms ‘o po~"and “o* po™”in Eq. (A2) are out
of the rotating-wave approximation and their effects are
small compared with the Lindblad terms wit’{ o~ ]p [Eq.
(A3)]. Physically,D[ o~ ]p describes quantum jump from the
upper qubit statél) to the lower stat¢2), andD[ o *]p vice
versa. With satisfaction, the corresponding jump probability
C(*=A) precisely relates the qubit jump to the electron tun-
neling in the detector in the presence of energy-quérea
A) emission(absorption. Note that this energy exchange is
essential to ensure the detailed-balance. Denoting the occu-
pation probabilities on the qubit statds and|2) by P, and
P,, at the stationary mixture state, the dominant term of Eq.
(A2) leads toP;/P,=C(—A)/C(A). This is nothing but a
generalization of the usual detailed balance relation for cou-
pling with a thermal bath. Here the measurement voltage
plays certain role of an effective temperature. This result is
also in complete consistence with the rate analysis in Sec. 1V,
see EQqs(22) and (23). If we neglect the energy exchange,
say, let C(=A)—C(0), the detailed balance is broken

term describes the,-coupling induced pure dephasing, the down, and equal occupation probabilities on the qubit states

second term dominantly contributes therelaxation as well
as its associated dephasing owing to éyecoupling, and the

are inevitably obtained as in the previous literatdres.
Note added in proofRecently, we were informed by T.M.

last two terms stem from the correlation between the twastace that in their recent wofR,the energy exchange be-
couplings which have minor contribution to the dissipativetween the qubit and detectéice., the inelastic tunneling in

dynamics. Due to the dominafit;-rate contribution of the

the detectorhas also been considered.

second term, we further express it into a Lindblad-type form,

[0,Qup—pQ)1=—2C(=A) D[ ]p—2C(A) Do ]p
—[C(=A)+C(A) (o po +o pa’),
(A2)
where the Lindblad superoperators are defined as

Do lp=0c"po —3{c a",p}, (A3a)
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