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Conductance oscillations in strongly correlated fractional quantum Hall line junctions
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We present a detailed theory of transport through line junctions formed by counterpropagating single-branch
fractional–quantum Hall edge channels having different filling factors. Intriguing transport properties are
exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly

correlated line junctions can be classified according to the value of an effective line-junction filling factorñ

that is the inverse of an even integer. Interactions turn out to affect transport most importantly forñ51/2 and

ñ51/4. A particularly interesting case isñ51/4 corresponding to, e.g., a junction of edge channels having
filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function
of voltage. This behavior directly reflects the existence of Majorana-fermion quasiparticle excitations in this
type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples
enables direct testing of our theoretical predictions.

DOI: 10.1103/PhysRevB.69.085307 PACS number~s!: 73.43.Cd, 73.43.Jn
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I. INTRODUCTION

One-dimensional~1D! electron systems1 have long been
the focus of theoretical and experimental research. Initia
theorists studied them as rare examples of exactly sol
interacting many-body systems.2–4 They served as a basis fo
the development of powerful new theoretical tools such
bosonization5–7 and refermionization8 techniques. Due to
their intriguing non-Fermi-liquid properties, interacting 1
electron systems are classified within the distinct pheno
enology of Luttinger-liquid behavior.9 Eventually, realiza-
tions of quasi-1D electron systems were found in meta
materials with strongly anisotropic resistivity.10 Recent fab-
rication of clean long semiconductor quantum wires11 as well
as carbon nanotubes12 created new possibilities to observ
Luttinger-liquid behavior in experiment.

An especially versatile type of 1D electron system is
alized at the boundary of two-dimensional~2D! electron sys-
tems in a strong perpendicular magnetic field. At particu
values of the filling factor n52p,2n2D , where ,
5A\c/ueBu is the magnetic length andn2D the electron
sheet density, the 2D system becomes incompressible in
bulk,13 giving rise to quantized values of the Hall resistan
In this regime where the quantum Hall~QH! effect14,15 is
observed, low-lying excitations exist at the samp
boundary16 whose electronic properties are analogous to c
ral versions of Luttinger liquids when the filling factor at th
incompressibility is fractional.17 Unlike the more conven-
tional types of quasi-1D metals, the properties of edge e
tations in a QH sample can be easily tailored. Simple adj
ment of the magnetic field can create different QH state
the bulk of the 2D system with concomitant change in
edge’s chiral-Luttinger-liquid properties. Advanced nan
structuring techniques enable the creation of novel tunne
geometries18–21involving QH edges as well as line junction
between them.22–24 While line junctions between counte
0163-1829/2004/69~8!/085307~9!/$22.50 69 0853
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propagating chiral edge channels having the same inte
filling factor closely mirror properties of conventiona
quasi-1D systems,25–27 an entirely new arena for novel cor
relation effects is opened up when the edge channels form
the junction belong to fractional-QH samples. For the case
a disordered junction, these have been investigated in R
28,29. A related study for a clean system of tunnel-coup
copropagatingfractional-QH edge channels in bilayers w
performed recently.30,31

Here we consider the situation where the single-bra
edge channels forming the line junction have opposite chi
ity and belong to QH systems with fractional filling facto
1/(m111) and 1/(m211) with even integersm1Þm2. We
assume the junction region to be clean and of finite lengthL,
having edge-channel leads attached that have contact
four reservoirs where transport measurements can be
formed. This sample geometry is experimentally realizable
recently grown corner junctions between mutually orthog
nal 2D electron systems.21,24 To enable tunneling transpor
between them, the two edge channels have to be c
enough in space, which typically facilitates strong intercha
nel Coulomb interactions within the junction region. Th
turns out to significantly affect the junction conductan
when the effective filling factorñ51/um12m2u is equal to
1/2 or 1/4. Using bosonization and refermionization tec
niques, we succeed for both cases in mapping the origin
strongly interacting line-junction system onto a system
noninteracting fermions. Forñ51/2, these new quasiparti
cles are fictitious chiral spin-1/2 fermions which ha
no direct physical meaning. Only observables related
their pseudospin degree of freedom correspond to mea
able quantities. In the other case ofñ51/4, two Majorana
fermions having different velocitiesv1 and v2 turn
out to be the fundamental particle excitations in t
line junction. The existence of a velocity splitting direct
results in oscillations of the differential junction conductan
©2004 The American Physical Society07-1
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as a function of the transport voltage, which can be detec
experimentally. Its observation would confirm the existen
of yet another type of exotic quasiparticle in low
dimensional systems.

This article is organized as follows. We start, in Sec. II,
specifying the model for an isolated QH line junction a
apply the techniques of bosonization and refermionization
obtain its solution. The emergence of new quasiparticles
be elucidated. In Sec. III, the coupling of such a line juncti
to external edge-channel leads is considered. We derive
tions between the chemical potentials in the leads and q
tities describing the line junction that take full account
charging effects. These results are then applied in Sec. I
calculate transport properties of line junctions, with partic
lar focus on the casesñ51/2 andñ51/4. A summary and
conclusions are presented in Sec. V. This article provides
details of and extends results reported in a previous s
publication.32

II. EFFECTIVE LOW-ENERGY MODEL FOR A
QUANTUM HALL LINE JUNCTION

A single branch of low-lying edge excitations exists
QH samples at the Laughlin series of filling factorsnm
51/(m11). These form chiral 1D electron systems th
can be described,17 using the bosonization33 approach,
by a single chiral boson fieldfm(x). The ~suitably
normal-ordered! electronic charge density at a locationx
along the edge is given by%m(x)5:cm

† (x)cm(x):
5Anm]xfm(x)/(2p). Its dynamics is determined by th
Hamiltonian

Hm5
\vm

4p E dx~]xfm!2. ~1!

The edge velocityvm is the sum of a one-electron contribu
tion vF , which is proportional to the slope of the extern
potential confining electrons in the QH sample, and
interaction contributionnmU/(2p\) that typically domi-
nates in the long-wavelength limit.34 The chirality of a QH
edge is manifested by the fact that disturbances in the e
tronic charge density propagate only in one particu
direction along the sample perimeter. Mathematically, this
expressed by the canonical commutation relatio
@fm(x),fm(x8)#5 ixp sgn(x2x8) for the boson fieldfm .
The chirality parameterx assumes the value11 (21)
for right ~left! movers. An especially useful property o
chiral 1D systems is the complete equivalence of their
scriptions in terms of bosonic and fermionic degrees
freedom.8,35 For single-branch QH edges, this is express
by the bosonization identity17 of the electron annihilation
operator,

cm~x!5AzmFm expH ix
Y

,2
1 ix

fm~x!

Anm
J . ~2!

Here zm is a normalization constant andY denotes the
guiding-center location of electrons at the Fermi energy. T
Klein factor Fm acts as a ladder operator for the electr
08530
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number and ensures fermionic statistics of bosonized e
tron operators from different QH edges or edge branche8

We are interested in studying a QH line junction that
formed when two parallel fractional-QH edge channels w
opposite chirality are coupled by uniform tunneling along
finite lengthL. Such a junction can be realized, e.g., by fa
ricating two 2D electron systems that are latera
separated22 or form a corner junction.21,24 In the junction
region, the charge densities and, hence, respective bos
fieldsfm1

andfm2
describing the two edges are coupled v

interactions and tunneling. The total Hamiltonian of the li
junction is thus given byHJ5HLL1H tun, where

HLL5Hm1
1Hm2

1H int , ~3a!

H int5
Anm1

nm2

4p2
UE

2L/2

L/2

dx ]xfm1
]xfm2

, ~3b!

H tun5E
2L/2

L/2

dx$tcm1

† cm2
1H.c.%. ~3c!

Here we have assumed equal strengths for intrachannel
interchannel interactions which is the case for typical li
junctions.

The part HLL of the line-junction Hamiltonian can
be diagonalized in a straightforward manner. For the c
m15m2, the familiar phase-field description9 of a nonchiral
Luttinger liquid is recovered in the typical situatio
where the Coulomb matrix element dominates the b
velocitiesvFj ( j 51,2). Addition of the tunneling termH tun
in its bosonized form yields an orthodox sine-Gord
model whose properties have been studied extensive36

We do not discuss this nonchiral case here any furth
Instead, we focus on situations wherem1Þm2. Then the
line junction is intrinsically chiral, also in the limit of strong
Coulomb interactions.51 Instead, we can writeHLL as
a sum of independent contributions from two chiral norm
modes,

HLL5
\

4pE2L/2

L/2

dx$va~]xfa!
21vb~]xfb!

2%. ~4!

The normal-mode boson fieldsfa andfb obey the commu-
tation relations@fa,b(x),fa,b(x8)#5 ixa,bp sgn(x2x8) with
xa52xb . Assuming the realistic limit where the bare ed
velocities are much smaller than the Coulomb matrix e
ment, we find the expressions

va5
unm12nm2uU

2p\
1

nm1
vF11nm2

vF2

unm12nm2u
, ~5a!

vb5
nm2

vF11nm1
vF2

unm12nm2u
, ~5b!

xb52x1 sgn~nm1
2nm2

!, ~5c!
7-2
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fa5
~Anm1

2«Anm2
!fm1

1~Anm2
2«Anm1

!fm2

Aunm1
2nm2

u
,

~5d!

fb5
~Anm2

1«Anm1
!fm1

1~Anm1
1«Anm2

!fm2

Aunm1
2nm2

u
.

~5e!

Here we have defined a small parameter~of order\vFj /U)

«5
Anm1

nm2

unm1
2nm2

u
vF11vF2

va
~6!

and neglected terms of quadratic order in«.52

After bosonization, the tunneling Hamiltonian reads

H tun52utuAzm1
zm2

E
2L/2

L/2

dx cosS fn

Añ
1x

D

,2D , ~7!

where we have absorbed the phase of the tunneling m
element into the neutral-mode bosonic field

fn5
Anm2

fm1
1Anm1

fm2

Aunm1
2nm2

u
2x1Añ arg~ t !. ~8!

The abbreviationñ5nm1
nm2

/unm1
2nm2

u[1/um12m2u has

the meaning of an effective junction filling factor, andD
5Y12Y2 is a measure for the width of the line junction. T
first order in small quantities defined above, the neutral m
is given in terms of the normal modes ofHLL as fn5fb
2«fa. ~Here we have used the freedom to redefine
normal-mode fields by a constant shift to absorb the phas
the tunneling matrix element infb .) If we furthermore as-
sume weak enough tunneling such thatt,!U, then terms in
H tun that couple the normal modes ofHLL are of second
order in small quantities. As we will see below, this is ge
erally the relevant physical situation and even required in
case ñ51/4. In what follows we restrict ourselves to th
approximation«→0 ~corresponding toU→`). We note,
however, that corrections to leading order in« can be in-
cluded perturbatively, yielding small corrections to our fin
results which do not affect them significantly. The Ham
tonian of the line junction is then diagonalized, to a go
approximation, by the normal modesfa andfb of HLL , and

we find HJ5Ha1Hb
(1/ñ) , where

Ha5
\va

4p E
2L/2

L/2

dx~]xfa!
2, ~9a!

Hb
(1/ñ)5E

2L/2

L/2

dxH \vb

4p
~]xfb!

212utuAzm1
zm2

3cosS fb

Añ
1x

D

,2D J . ~9b!
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The fast normal mode, labeleda, turns out to be free and
unaffected by tunneling. This is quite clear physically, as t
mode is closely related to the total charge density in the
junction (ra[]xfa/2p), which is left invariant in any tun-
neling process. As we are only interested in studying tunn
ing transport, we do not consider the fast mode any furth
The slow mode, being approximately equal to the neu
mode which measures thedifferencein electron densities for
the two edge branches forming the junction, has a dynam
that is strongly influenced by the tunneling term. Its Ham

tonianHb
(1/ñ) is that of a chiral sine-Gordon model which ha

been studied in different contexts before.30,37 Such theories
can be classified according to the different values of the
fective junction filling factor ñ that is given here by the
inverse of even integers. For 1/ñ.4, the cosine term has
been shown30 to be irrelevant in a renormalization-grou
sense. This means that it does not alter the excitation s
trum of the free chiral boson theory in any important w
and can therefore be treated as a perturbation. The situa
when 1/ñ54 and 2, however, turn out to be different. Whi
no perturbative approach is permissible for these cases
effect of the cosine term can nevertheless be calculated, e
exactly, using bosonization identities of the kind expresse
Eq. ~2!. Namely, it is possible30,37 to map the rather compli-
cated chiral bosonic field theory for the slow mode onto t
of noninteracting fictitious fermions. We proceed to sho
this in the following two sections, as the refermionized d
scription of the slow-mode dynamics forms the basis for o
subsequent transport calculations.

A. CaseñÄ1Õ2: Fictitious chiral fermion tunneling

To solve the chiral sine-Gordon Hamiltonian wit
ñ51/2, we introduce—for purely mathematical reasons—
ghost fieldh(x) that has the same chirality and dynami
as the slow modefb . It is then possible to define a
pair of fictitious chiral fermions, distinguished by a pse
dospin degree of freedoms5↑,↓ using the bosonization
identity

Cs~x!5AzbFs expH ixb

h~x!1sfb~x!

A2
J . ~10!

In this new notation, the HamiltonianHb
(2) of the slow mode

represents tunneling between the two flavors of fictitious f
mions:

Hb
(2)5E

2L/2

L/2

dxH \vb(
s

Cs
†~2 ixb]x!Cs

1 t̃ m1m2
@C↑

†C↓e2 ixbxD/,2
1H.c.#J . ~11!

The tunneling strengtht̃ m1m2
5utuAzm1

zm2
/zb is generally

different, because of chiral-Luttinger-liquid propertie
from the matrix element for tunneling between the origin
line-junction edge channels.53 Physical observables ar
expressed in terms of pseudospin-related quantities, w
7-3
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the charge degree of freedom for fictitious fermio
remains hidden from measurement. For example, the
density and the density associated with the slow mode
equivalent:

C↑
†C↑2C↓

†C↓5A2%b[
]xfb

A2p
. ~12!

The representation ofHb
(2) in terms of the fictitious chiral

pseudo-spin-1/2 fermion, being quadratic in this field, ma
it possible to treat transport straightforwardly. This will b
discussed below in Section IV A.

B. CaseñÄ1Õ4: Velocity-split Majorana fermions

A bosonization identity of the type given in Eq.~2! can be
used to define a Dirac fermion in terms of the chiral bos
field fb :

cb~x!5AzbFb expH ixbFx
D

2,2
1fb~x!G J . ~13!

The density %b of the slow mode is related to th
normal-ordered density :cb

†cb : of the new fictitious fermion
via

%b[
]xfb

2p
5:cb

†cb :2
D

2,2
. ~14!

With the help of the relation30

cbi ]xcb522pxbzb
2 Fb

2 expH ixbF2fb1x
D

,2G J , ~15!

the Hamiltonian of the slow mode can be rewritten as

Hb
(4)5E

2L/2

L/2

dxH \vbcb
†~2 ixb]x!cb2\vb

D

2,2
cb

†cb

1
\v t

2
@cb~2 ixb]x!cb1cb

†~2 ixb]x!cb
†#J , ~16!

where the tunneling matrix element has been absorbed
the velocity parameterv t5utuAzm1

zm2
/p\zb

2 . In the repre-

sentation of the fictitious fermioncb , Hb
(4) looks like the

Bogoliubov-de Gennes Hamiltonian38 of a spinless p-wave
superconductor. It differs from similar systems conside
previously39,40 by its chiral 1D nature. We do not explicitly
pursue the superconducting analogy here any further~al-
though the formalism employed below could be phras
within such a framework!. Instead, we use the fact that th
real and imaginary parts of a Dirac fermion are Majora
fermions and define fieldsj6[j6

† via

j15
cb1cb

†

A2
, ~17a!
08530
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j25
cb2cb

†

A2i
. ~17b!

Note that :cb
†cb :5 i j1j2 . The expression for the Hamil

tonian of the slow mode reads

Hb
(4)5E

2L/2

L/2

dxH \

2 (
r 56

v rj r~2 ixb]x!j r2 i
\vbD

,2
j1j2J ,

~18!

with different velocitiesv r5vb1rv t for the two Majorana
fields. Hence, while the slow mode is characterized by
single velocityvb , tunneling leads to the generation of tw
different velocities for the resulting quasiparticles that tu
out to be Majorana fermions. A dynamically generated v
locity splitting of this type has been found before in tunn
coupled interacting quantum wires41–43 and quantum Hall
bilayers.30 It is reminiscent of the spin-charge separation e
pected to occur in interacting 1D electron systems.1 The rep-
resentation ofHb

(4) in terms of the fictitious noninteracting
Majorana fermions enables treatment of transport thro
the line junction, which will be shown below in Sec. IV B
Diagonalization ofHb

(4) is straightforward. Its spectrum ha
two branches,

Ek,65\xbk~vb6v tA11r k
2!, ~19!

with r k5vbD/(v tk,2). The corresponding eigenstates a
given, using a spinor notation in the basis of Majorana f
mionsj6 , as

S j1

j2
D

1

5S ck

ixbsk
D eikx, ~20a!

S j1

j2
D

2

5S ixbsk

ck
D eikx. ~20b!

Here we used the abbreviations

ck

sk
J 5

AA11r k
261

A2A11r k
2

. ~21!

III. TUNNELING CURRENT, CHEMICAL POTENTIAL,
AND COUPLING TO VOLTAGES

To be able to calculate conductances, it is necessar
treat the nonequilibrium situation where a finite voltage
applied to the line junction. This requires proper definition
operators for currents and chemical potentials within
junction region, which we set out to do in the first part of th
section. Our results are then applied to relate these quan
to externally adjustable lead voltages.

A standard calculation yields the expression for the tu
neling current flowing from edge channel 1 to edge chan
2 within the line junction as
7-4
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I J5
i

\E2L/2

L/2

dx$tcm1

† cm2
2H.c.%. ~22!

After bosonization, and within the same approximatio
used above, i.e., for small« @see Eq.~6!#, we find the
following expression for the transport current through t
line junction:

I J
(1/ñ)5x1

2utu

\
Azm1

zm2
E

2L/2

L/2

dx sinS fb

Añ
1x

D

,2D . ~23!

It comes as no surprise that the current, as the tunne
Hamiltonian, depends only on the slow normal mode. Hen
only the latter features in our transport calculation. Defin
the spatially varying partial current

I b
(1/ñ)~x!5x1

utu

\Añ
Azm1

zm2
E

2L/2

L/2

dx8

3sinS fb~x8!

Añ
1x8

D

,2D sgn~x2x8! ~24!

turns out to be useful for later. Obviously,I b
(1/ñ)(L/2)5

2I b
(1/ñ)(2L/2)[I J

(1/ñ)/(2Añ).
The local chemical potential of the slow normal mode c

be defined in the usual way44 as the functional derivative o
the Hamiltonian with respect to density:mb

(J)(x)
5dHJ/d%b(x). Using the commutation relations for chira
boson fields, it is straightforward to prove thatxbfb is ca-
nonically conjugate to%b , and therefore

dO
drb~x!

5 ixb@fb~x!,O# ~25!

for an arbitrary functionalO. Application of this identity
yields an expression for the local chemical potential,

mb
(J)~x!52p\$vb%b~x!2x1I b

(1/ñ)~x!%. ~26!

As a special case of this equation, we find the chemical
tentials at the endpoints of the junction to be

mb
(J)S 6

L

2
D 52p\H vb%bS 6

L

2
D 7

x1I J
(1/ñ)

2Añ
J . ~27!

The continuity equation for the slow-mode density can
derived in a similar way,

d

dt
%b5]t%b1

i

\
@HJ,%b#, ~28a!

5]t%b1xb]x$vb%b2x1I b
(1/ñ)%.

~28b!

In the stationary limit where]t%b50, Eqs.~26! and ~28b!
imply the exact relation
08530
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]xmb
(J)52p\xb

d

dt
%b . ~29!

Integrating it, and observing the relationAñ(d/dt)*x%b

5I J
(1/ñ)sgn(nm1

2nm2
), we find

mb
(J)S L

2
D 2mb

(J)S 2
L

2
D 522p\x1

I J
(1/ñ)

Añ
, ~30!

and comparison with Eqs.~27! yields

%bS L

2D5%bS 2
L

2D[%̄b . ~31!

The periodic boundary condition expressed in Eq.~31! is a
nontrivial property of the stationary state that enables us
treat the line junction as separate from any edge-chan
leads that couple it to external reservoirs. The effect of
ternal voltages will be to set the appropriate value of%̄b
consistent with the valueI J for the line-junction current. A
derivation of these relations will be presented in the follo
ing paragraphs.

Edge channels forming the line junction typically exi
beyond the junction region but are not coupled anymore
tunneling or interactions. These incoming and outgoing e
branches serve as noninteracting leads that couple the j
tion to external reservoirs with experimentally controllab
chemical potentials.~See the figure in Ref. 32 and Fig.
below for illustration.! The Hamiltonian for the lead region
uxu.L/2 is therefore given by that of two uncoupled edge
HE5Hm1

1Hm2
. As the separate chiral edge densities

each edge branch are just linear combinations of the dens
%a and%b that are the normal modes in the junction, we c

FIG. 1. Line junction attached to chiral edge-channel lea
The chemical potentials of incoming lead branches~1 and 3! are
fixed experimentally by external reservoirs. These, together w
the tunneling current in the junction region~defined to flow from
the m1 branch to them2 branch and indicated by vertical dashe
lines!, determine the boundary condition for the slow normal-mo
density at the junction boundariesx56L/2. Panels~a! and ~b!
show the two possible chiralities of the junction that can be dis
guished, e.g., by the chirality of them1 branch:x1511 (21) for
~a! @~b!#.
7-5
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write down an expression forHE in terms of the latter. In the
limit of strong intraedge Coulomb interactions, which is t
physically relevant situation that we have been conside
all along, it reads

HE5
U

2unm1
2nm2

u Euxu.L/2
dx$~nm1

2 1nm2

2 !%a
212nm1

nm2
%b

2

22Anm1
nm2

~nm1
1nm2

!%a%b%. ~32!

While thea andb modes are certainly not normal modes
the lead region, it is nevertheless possible to define t
chemical potentials viama,b

(E)(x)5dHE/d%a,b(x). As HE is a
nondiagonal quadratic form when expressed in terms of%a

and %b , each of the chemical potentialsma
(E) and mb

(E) de-
pends on both densities. In other words, there exists a fi
cross capacitance between thea and b modes in the lead
region. Reexpressingma,b in terms of the original chiral edge
densities, we find

ma
(E)

U
5

nm1
%m1

2nm2
%m2

Aunm1
2nm2

u
sgn~nm1

2nm2
!, ~33a!

mb
(E)

U
52Añ~%m1

2%m2
!sgn~nm1

2nm2
!, ~33b!

where again terms of order« have been neglected. The e
pressions given in Eq.~33! are useful because the loc
chemical potential in each of the chiral edge branches wi
the lead region is directly related to the local chiral ed
density in that branch viam j5U% j , within the limit
of strong intraedge Coulomb interactions conside
here. Experimentally, two of the four lead branches’ che
cal potentials are controlled by attachment to exter
reservoirs, namely, those having chiral edge den
waves propagatingawayfrom a reservoir. We adopt the con
vention that the incoming~outgoing! edge lead for
x,2L/2 is labeled 1~4!, whereas the incoming~outgoing!
edge lead forx.L/2 is labeled 3~2!. ~See Fig. 1.! We find
then, from Eqs.~33!,

mb
(E)ux"7L/25xbAñ~m1/22m4/3!. ~34!

Requiring continuity of the chemical potentialsma,b at the
lead-junction interfaces, and using Eqs.~27!, ~31!, and ~5c!
as well as the constancy ofma throughout the line junction
we find the relations

4p\xbvb%̄b5Añ~m12m31m22m4!, ~35a!

2p\I J
(1/ñ)

sgn~nm1
2nm2

!
52 ñ~m11m32m22m4!, ~35b!

nm1
~m1(4)2m2(3)!5nm2

~m4(1)2m3(2)!. ~35c!

Here we used a compact notation in Eq.~35c! to show the
cases corresponding to both line-junction chiralitiesx15
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1(2)1 in one line. Straightforward elimination yields a
equation for the voltage drop across the junction,

m12m3

2p\
5

xb

Añ
vb%̄b1x1

nm1
1nm2

2nm1
nm2

I J
(1/ñ) , ~36!

providing a link between the externally applied voltageeV
5m12m3 and intrinsic line-junction quantities, such as th
tunneling current and the boundary value%̄b of the slow-
mode density. This is one of the central results of our wo
presented here. In deriving Eq.~36!, we have fully taken into
account charging of the line junction arising from its co
pling to leads. Solving it together with the intrinsic dynami

of the slow mode~induced by its HamiltonianHb
(1/ñ)) com-

pletely determines the current.

IV. RESULTS FOR TRANSPORT THROUGH
LINE JUNCTIONS

We have seen, in Sec. II, that the tunneling curre
through the line junction is determined by the dynamics
the slow mode only. Relating its Hamiltonian to that of fre
quasiparticles, which are Dirac fermions forñ51/2 and Ma-
jorana fermions forñ51/4, we are able to calculate it
dynamics exactly. With the help of Eq.~36!, quantities
determining this dynamics are related to the externa
applied voltage. Pulling both understandings togeth
we find the line-junction conductance. As it is quite differe
for the two cases mentioned above, we discuss them in s
rate sections.

A. CaseñÄ1Õ2: Conductance oscillations as a function
of junction length

Within the refermionization procedure applied in Se
II A, we find the current through the junction as the tunn
ing current between the two flavors of a fictitious chir
Dirac pseudospin-1/2 fermion:

I J
(2)52 ixbx1

t̃ m1m2

\ E
2L/2

L/2

dx$C↑
†C↓e2 ixbxD/,2

2H.c.%.

~37!

The chemical-potential difference between the↑ and ↓
branches is related to that of the slow mode via

m↑2m↓5A2mb
(J) . ~38!

Equation ~31!, together with Eq.~12!, implies a constant
density difference between the two fermion flavors along
junction. This provides the driving force for the current.

The chiral-tunneling problem can be solved exactly us
standard methods.45–47 Here we employ the scattering ap
proach to transport.48,49Using an obvious spinor notation fo
the pseudospin-1/2 fermion wave functions, the followi
Ansätzefor eigenstates of the HamiltonianHb

(2) @displayed in
Eq. ~11!# in the three regionsxbx,2L/2, xbx.L/2, and
uxu,L/2 can be written as
7-6



n
e
c
s
io

va
y
ity
re

al

e
r
he

rt

c-

en
as

ng

de

n-
ve
er-

ed
n

n-

ns

ion
mis-

line

CONDUCTANCE OSCILLATIONS IN STRONGLY . . . PHYSICAL REVIEW B69, 085307 ~2004!
S C↑
C↓

D U
xbx,2L/2

5S 1

0D eix~xbE/\vb!, ~39a!

S C↑
C↓

D U
xbx.L/2

5S t↑
0 D eix~xbE/\vb!1S 0

t↓
D eix~xbE/\vb!,

~39b!

S C↑
C↓

D U
uxu,L/2

5aS d1

d2
D eixk11bS 2d2*

d1*
D eixk2, ~39c!

with the abbreviations

d656AA11z26ze7 ixbx~D/2,2!, ~39d!

k65xb

E6 t̃ m1m2
A11z2

\vb
. ~39e!

The parameterz5\vbD/(2 t̃ m1m2
,2) measures the deviatio

from perfect energy and momentum conservation for tunn
ing pseudofermions. Requiring continuity of the wave fun
tion at x56L/2 yields a system of linear equation
that we can use to find expressions for the transmiss
coefficientst↑ and t↓ . Note that, due to chirality, continuity
of the wave function is sufficient to ensure current conser
tion. As t↑ and t↓ turn out to be independent of energ
E, the tunneling current is proportional to the dens
difference of the pseudospin components. Its explicit exp
sion is

I J
(2)52ut↓u2A2vb%̄b sgn~nm1

2nm2
!, ~40a!

with the transmission probability found from the above c
culation as

ut↓u2[T~L !5

sin2FpL

Lt
A11z2G

11z2
. ~40b!

Here Lt5p\vb / t̃ m1m2
is a length scale set by the effectiv

tunneling strength. From Eq.~36!, we find the expression fo
the current through the line junction as a function of t
externally applied voltage

I J
(2)5

x1

2p\

T~L !

11
nm1

1nm2

2nm1
nm2

T~L !

~m12m3!. ~41!

With Eq. ~41!, we have the full solution of the transpo
problem for line junctions with effective filling factorñ
51/2. A linearI -V characteristic is obtained, with a condu
tance oscillating as a function of junction lengthL and mag-
netic field ~through dependence on the parameterz). Its
maximum value, reached forT(L)→1 and given by

GJ
max5

e2

2p\
min$nm1

,nm2
%, ~42!
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is smaller than that of an adiabatic point contact betwe
chiral fractional edge channels considered in Ref. 50,
should be expected.

B. CaseñÄ1Õ4: Conductance oscillations as a function
of transport voltage

Refermionization yields an expression for the tunneli
current in terms of the fictitious Dirac fermioncb ,

I J
(4)5x1

v t

2 E2L/2

L/2

dx$cb
†]xcb

†2cb]xcb%, ~43!

or the Majorana fermions that diagonalize the slow-mo
Hamiltonian whenD50:

I J
(4)5

v t

2 E2L/2

L/2

dx$j1~2 ix1]x!j21j2~2 ix1]x!j1%.

~44!

In close analogy with the chiral-tunneling problem encou
tered forñ51/2 and discussed in Sec. IV A above, we sol
the transport problem through the line junction by consid
ing the scattering of Dirac fermionscb in terms of the Ma-
jorana normal modes. As in the Landauer-Bu¨ttiker formalism
for transport,48,49 incoming scattering states are postulat
for xbx,2L/2, given in terms of a Majorana spinor notatio
as

S j1

j2
D U

xbx,2L/2

5S 1

ixb
D eix[(xbE/\vb)2(D/,2)] . ~45!

Outgoing scattering states exist forxbx.L/2 and are super-
positions of a Dirac-fermion statecb and a Dirac ‘‘hole’’
statecb

† :54

S j1

j2
D U

xbx.L/2

5t2S 1

ixb
D eix[(xbE/\vb)2D/,2)]

1t1S 1

2 ixb
D eix[(xbE/\vb)1(D/,2)] . ~46!

In the line-junction region, a superposition of the two eige
states with energy eigenvalueE is realized:

S j1

j2
D U

uxu,L/2

5aS ck1

ixbsk1

D eik1x1bS ixbsk2

ck2

D eik2x.

~47!

Their respective wave vectors are solutions ofEk6 ,65E.
Requiring continuity of the Majorana spinor wave functio
at the line-junction interfacesx56L/2, which simulta-
neously ensures current conservation for the chiral-ferm
problem considered here, yields expressions for the trans
sion amplitudest6 . In contrast to the caseñ51/2, the latter
are energy dependent. The transport current through the
junction is given by
7-7
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I J
(4)5

x1xb

2p\E0

2p\vb%̄b
dEut1~E!u2, ~48!

hence we only need the general expression forut1u2, which
is found to be

ut1u252
~A11r k1

2 2ur k1
u!~A11r k2

2 1ur k2
u!

11ur k1
uur k2

u1A11r k1

2 A11r k2

2

3sin2F1

2
~k12k2!LG . ~49!

Note that the energy dependence ofut1u2 is implicit through
the dependence ofk6 on E.

Solving Eq. ~48! in conjunction with Eq.~36! yields
I J

(4) as a function of the externally applied voltag
V5(m12m3)/e and, hence, solves the transport proble
through line junctions having effective filling facto
ñ51/4. While such a solution is accessible, even if on
numerically, in the general case, it is instructive to look at
special situation whereD50 and tunneling is weak. In this
limit, we find for the differential tunneling conductance th
expression

e
dIJ

(4)

dV
5

e2

2p\

1

4 H 12cosS v tL

\v1v2
eVD J , ~50!

which is valid as long as the expression in curly bracket
smaller than unity. It exhibits an oscillatory dependence
both junction length and applied voltage, which we illustra
in Fig. 2 for a realistic set of parameters. The conducta
oscillations as a function ofV are a direct consequence of th
velocity splitting of the Majorana pseudofermions that a
the quasiparticle excitations in the line junction. This sign
ture behavior forñ51/4 will survive in the general case a
long as the junction is narrow enough such thatD
,v t,

2ueVu/(\vb
2). Its observation in real samples wou

provide strong evidence for the reality of the Majorana q

FIG. 2. Illustration of conductance oscillations. The dimensio
less differential tunneling conductanceg5(2p\/e2)(dI/dV) is
plotted as a function ofVeff5(e,/e)V andLeff5L/,, according to
Eq. ~50!. Our choice of units is motivated by the fact that magne
length , and Coulomb energye2/(e,) are characteristic scales i
the fractional-quantum Hall regime. We assumede2v t /(e\v1v2)
50.1 here but results for different values can be obtained by lin
scaling ofVeff or Leff .
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siparticles in QH line junctions, showing yet another e
ample of how strongly correlated condensed-matter syst
exhibit features of relativistic quantum-field theorie
typically encountered in the realm of elementary-parti
physics.

V. SUMMARY AND CONCLUSIONS

In this article, we provide a detailed theory of transpo
through line junctions formed between tunnel-coupled co
terpropagating fractional–quantum Hall edge channels h
ing different filling factors of the Laughlin type. Strong co
relations within the tunneling region result in a nontrivi
spectrum of elementary excitations when the effective filli
factor ñ of the junction is equal to 1/2 or 1/4. An example fo
the former~latter! case is a line junction between edge cha
nels having filling factor 1 and 1/3 (1/5). Using bosonizati
and refermionization techniques, we map the original lin
junction problem to a model of tunneling between nonint
acting chiral spin-1/2 Dirac pseudofermions~for ñ51/2) or a
chiral spinless p-wave superconductor with Majora
pseudofermion quasiparticles~for ñ51/4). In both situa-
tions, we find the excitation spectrum and eigenstates of
line junction exactly. Together with an exact general relati
given by Eq.~36!, between the externally applied chemica
potential differencem12m3 and intrinsic line-junction quan-
tities, such as the total currentI J, we can solve for the trans
port I -V characteristics. The full solution for the caseñ
51/2 is given by Eq.~41!, together with Eq.~40b!. It exhib-
its oscillations as a function of junction length that are sim
lar to those found in tunnel-coupled quantum wires.45–47 To
calculate transport through junctions havingñ51/4 in
the most general case requires simultaneous nume
solution of Eqs.~48! and~36! for specific parameters realize
in experiment. For the special situation of a narrow junctio
analytical results are available. We give the different
tunneling conductance in Eq.~50!, which shows oscillations
as a function of transport voltage. This behavior is the s
nature of a nontrivial velocity splitting similar to spin-charg
separation in interacting quasi-1D systems. Its observa
would provide evidence of yet another mechanism for el
tron fractionalization in strongly correlated electron system
Experiments in samples of 90° bent21,24 or laterally
separated22 2D electron systems, suitably modified to rea
the fractional– quantum Hall regime, could be used to t
our predictions.
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49M. Büttiker, IBM J. Res. Dev.32, 317 ~1988!.
50D.B. Chklovskii and B.I. Halperin, Phys. Rev. B57, 3781~1998!.
51A description in terms of nonchiral phase fields would only

possible at the special~but unphysical! point in parameter space
whereU52p\(nm2

2nm1
)(vF12vF2).

52As it would be unphysical to neglect the velocityvb of the slow
normal mode, all terms to first order in the small quantities ha
to be kept for consistency. We thank C. Chamon for focusing
attention on this point. Note that, for this reason, the norm
modes ofHLL are only approximately, and not exactly, equal
the familiar charged and neutral modes defined, e.g., in Ref.

53This is due to the power-law system-size dependence of the
malization factorszmj

. See, e.g., J.M. Kinaret, Y. Meir, N.S
Wingreen, P.A. Lee, and X.G. Wen, Phys. Rev. B46, 4681
~1992!.

54This is not surprising, as the refermionized slow-mode Ham
tonianHb

(4) in the representation of Dirac fermions is analogo
to the Bogoliubov-de Gennes equation for a p-wave superc
ductor. See Eq.~16! and remarks below.
7-9


