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Conductance oscillations in strongly correlated fractional quantum Hall line junctions
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We present a detailed theory of transport through line junctions formed by counterpropagating single-branch
fractional-quantum Hall edge channels having different filling factors. Intriguing transport properties are
exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly
correlated line junctions can be classified according to the value of an effective line-junction filling Factor
that is the inverse of an even integer. Interactions turn out to affect transport most importantly ¥ and
v=1/4. A particularly interesting case is= 1/4 corresponding to, e.g., a junction of edge channels having
filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function
of voltage. This behavior directly reflects the existence of Majorana-fermion quasiparticle excitations in this
type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples
enables direct testing of our theoretical predictions.
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I. INTRODUCTION propagating chiral edge channels having the same integer
filling factor closely mirror properties of conventional
One-dimensiona(1D) electron systenishave long been quasi-1D system®, 2" an entirely new arena for novel cor-

the focus of theoretical and experimental research. Initiallyrelation effects is opened up when the edge channels forming
theorists studied them as rare examples of exactly solubléhe junction belong to fractional-QH samples. For the case of
interacting many-body systeris? They served as a basis for a disordered junction, these have been investigated in Refs.
the development of powerful new theoretical tools such a28,29. A related study for a clean system of tunnel-coupled
bosonizatiofi”’ and refermionizatich techniques. Due to copropagatingfractional-QH edge channels in bilayers was
their intriguing non-Fermi-liquid properties, interacting 1D performed recently?3!
electron systems are classified within the distinct phenom- Here we consider the situation where the single-branch
enology of Luttinger-liquid behavior® Eventually, realiza- edge channels forming the line junction have opposite chiral-
tions of quasi-1D electron systems were found in metallicty and belong to QH systems with fractional filling factors
materials with strongly anisotropic resistivifyRecent fab- 1/(Mm1+1) and 1/n,+1) with even integersn, #m,. We
rication of clean long semiconductor quantum witess well ~ @ssume the junction region to be clean and of finite lehgth

as carbon nanotubBscreated new possibilities to observe Naving edge-channel leads attached that have contact with
Luttinger-liquid behavior in experiment four reservoirs where transport measurements can be per-

formed. This sample geometry is experimentally realizable in

An especially versatile type of 1D electron system is re_recently grown corner junctions between mutually orthogo
alized at the boundary of two-dimensionaD) electron sys- % % o o systent$:?* To enable tunneling transport

tems in a strong perpendicular magnetic field. At particularbe,[ween them. the two edae channels have to be close
values of the filling factor v=2m€?n,p, where ¢ ! 9

_ JficlleB is th ic | h and he el enough in space, which typically facilitates strong interchan-
= Vhc/|eB is the magnetic length andyp the electron o coylomb interactions within the junction region. This

sheet density, the 2D system becomes incompressible in thg s o4t to significantly affect the junction conductance

bulk,'® giving rise to quantized values of the Hall resistance. . < .
ging d {415 g when the effective filling factow=1/m;—m,| is equal to

In thi i h h H4H) eff : o L2
n this regime where the quantum HalDH) effec 1/2 or 1/4. Using bosonization and refermionization tech-

observed, low-lying excitations exist at the sample” . ) -
boundary® whose electronic properties are analogous to chifl'aues, we succeed for both cases in mapping the originally

ral versions of Luttinger liquids when the filling factor at the strongly interacting Ilne-JunEtlon system onto a system of
incompressibility is fractional’ Unlike the more conven- honinteracting fermions. For=1/2, these new quasiparti-
tional types of quasi_lD meta|sy the properties of edge exciCIGS are fictitious chiral Spin-l/2 fermions which have
tations in a QH sample can be easily tailored. Simple adjust?0 direct physical meaning. Only observables related to
ment of the magnetic field can create different QH states iheir pseudospin degree of freedom correspond to measur-
the bulk of the 2D system with concomitant change in theable quantities. In the other case of 1/4, two Majorana
edge’s chiral-Luttinger-liquid properties. Advanced nano-fermions having different velocitiess, and v_ turn
structuring techniques enable the creation of novel tunnelingut to be the fundamental particle excitations in the
geometrie®~2!involving QH edges as well as line junctions line junction. The existence of a velocity splitting directly
between themd?~2* While line junctions between counter- results in oscillations of the differential junction conductance
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as a function of the transport voltage, which can be detectedumber and ensures fermionic statistics of bosonized elec-
experimentally. Its observation would confirm the existencetron operators from different QH edges or edge branéhes.
of yet another type of exotic quasiparticle in low- We are interested in studying a QH line junction that is
dimensional systems. formed when two parallel fractional-QH edge channels with
This article is organized as follows. We start, in Sec. Il, byopposite chirality are coupled by uniform tunneling along a
specifying the model for an isolated QH line junction andfinite lengthL. Such a junction can be realized, e.g., by fab-
apply the techniques of bosonization and refermionization tsicating two 2D electron systems that are laterally
obtain its solution. The emergence of new quasiparticles wilseparatet or form a corner junctiod™?* In the junction
be elucidated. In Sec. lll, the coupling of such a line junctionregion, the charge densities and, hence, respective bosonic
to external edge-channel leads is considered. We derive reléields ¢, and¢, describing the two edges are coupled via
tions between the chemical potentials in the leads and quainteractions and tunneling. The total Hamiltonian of the line
tities describing the line junction that take full account of junction is thus given byd;=H,, +Hy,, where
charging effects. These results are then applied in Sec. IV to

calculate transport prgperties of Line junctions, with particu- Hue=Hum, +Hin +Hine, (33
lar focus on the cases=1/2 andv=1/4. A summary and
conclusions are presented in Sec. V. This article provides full
details of and extends results reported in a previous short Ho— \/le”mzu L2 dx o P (3b)
publication®? g I x®m, IxPm,»
Il. EFFECTIVE LOW-ENERGY MODEL FOR A L2
QUANTUM HALL LINE JUNCTION Hun= f_uzdx{t%lwm;r H.c}. (30

A single branch of low-lying edge excitations exists in
QH samples at the Laughlin series of filling factors, Here we have assumed equal strengths for intrachannel and
=1/(m+1). These form chiral 1D electron systems thatinterchannel interactions which is the case for typical line
can be describet!, using the bosonizatidA approach, junctions.

by a single chiral boson fieldg,,(x). The (suitably The part H of the line-junction Hamiltonian can
normal-orderef electronic charge density at a location be diagonalized in a straightforward manner. For the case
along the edge is given bme(X)ZilﬁrTn(X) (X)) m;=m,, the familiar phase-field descriptidof a nonchiral

= v bm(X)/(277). Its dynamics is determined by the Luttinger liquid is recovered in the typical situation
Hamiltonian where the Coulomb matrix element dominates the bare

velocitiesv (j=1,2). Addition of the tunneling terrhl,
. in its bosonized form vyields an orthodox sine-Gordon
Hm="7— f dX(dypm)?. (1) model whose properties have been studied extensitely.
We do not discuss this nonchiral case here any further.
The edge velocity , is the sum of a one-electron contribu- Instead, we focus on situations whemg #m,. Then the
tion vg, which is proportional to the slope of the external line junction is intrinsically chiral, also in the limit of strong
potential confining electrons in the QH sample, and anCoulomb interactions! Instead, we can writeH,, as
interaction contributiony,,U/(27#4) that typically domi- a sum of independent contributions from two chiral normal
nates in the long-wavelength limit. The chirality of a QH modes,
edge is manifested by the fact that disturbances in the elec-
tronic charge density propagate only in one particular ho (L2 ) )
direction along the sample perimeter. Mathematically, this is HLL:ELUZdX{Ua(‘?xd’a) +Up(dxdp) - (4)
expressed by the canonical commutation relations

[ #m(X), pm(x")]=ixmsgnk—x") for the boson fieldp,.  The normal-mode boson fields, and ¢, obey the commu-
The chirality parametery assumes the valug-1 (—1) tation relations] ¢, fX), b dX')1=ixaxm SINK—X') with

for right (left) movers. An especially useful property of , — = Assuming the realistic limit where the bare edge
chiral 1D systems is the complete equivalence of their deye|ocities are much smaller than the Coulomb matrix ele-

scriptions in terms of bosonic and fermionic degrees ofment, we find the expressions
freedom®3® For single-branch QH edges, this is expressed

by the bosonization identity of the electron annihilation vy = vglU PmURit VU

operator, _

P a 2wh | Vm1— Vm2| 53

Y X
Pin(X) = NZFim exp{ ix yrd iX(b\r;i_)] _ ) V1t Vim0 2
" L P (5b)

Here z,, is a normalization constant and denotes the mLma
guiding-center location of electrons at the Fermi energy. The
Klein factor F,, acts as a ladder operator for the electron Xb= = X189V, ~ V), (50
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_(\/V_”h_s\/v_“b)¢m1+(\/y_“12_8\/y_“"1)¢mz
ba \/|le_ Vm2| ’

(5d)
(VVm, & \m) b, + (¥, +&\Vm,) b,
oo v | Vm,— Vm2| .
(5¢)

Here we have defined a small paramétarorderfivg; /U)

VVmiVm, vt ues

Ua

(6)

8 =

| Vm, ™ Vm2|
and neglected terms of quadratic ordefin?

After bosonization, the tunneling Hamiltonian reads

L2 1) A
Hun=2]t| \/zmlzmzf_uzdx cos( —

”+x—>, (7)

NG
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The fast normal mode, labeles turns out to be free and
unaffected by tunneling. This is quite clear physically, as this
mode is closely related to the total charge density in the line
junction (p,=dyd27), which is left invariant in any tun-
neling process. As we are only interested in studying tunnel-
ing transport, we do not consider the fast mode any further.
The slow mode, being approximately equal to the neutral
mode which measures tl#fferencein electron densities for
the two edge branches forming the junction, has a dynamics
that is strongly influenced by the tunneling term. Its Hamil-

tonianH{"" is that of a chiral sine-Gordon model which has
been studied in different contexts befdPé’ Such theories

can be classified according to the different values of the ef-
fective junction filling factorv that is given here by the
inverse of even integers. Foritt4, the cosine term has
been showi? to be irrelevant in a renormalization-group
sense. This means that it does not alter the excitation spec-
trum of the free chiral boson theory in any important way
and can therefore be treated as a perturbation. The situations
when 15=4 and 2, however, turn out to be different. While

where we have absorbed the phase of the tunneling matrixo perturbative approach is permissible for these cases, the

element into the neutral-mode bosonic field

Y sz‘ll’m1 + Y Vm1¢m2
v | Vm, ™ Vm2|

The abbreviationy= vy, vm, /| v, — vm,|=1[m;—my,| has
the meaning of an effective junction filling factor, amnd
=Y;—Y, is a measure for the width of the line junction. To

—xlﬁar@(t)-

8

n:

first order in small quantities defined above, the neutral mode

is given in terms of the normal modes bfi, as ¢,= ¢y

effect of the cosine term can nevertheless be calculated, even
exactly, using bosonization identities of the kind expressed in
Eq. (2). Namely, it is possibf&>"to map the rather compli-
cated chiral bosonic field theory for the slow mode onto that
of noninteracting fictitious fermions. We proceed to show
this in the following two sections, as the refermionized de-
scription of the slow-mode dynamics forms the basis for our
subsequent transport calculations.

A. Caser=1/2: Fictitious chiral fermion tunneling

—e¢,. (Here we have used the freedom to redefine the To solve the chiral sine-Gordon Hamiltonian with
normal-mode fields by a constant shift to absorb the phase af=1/2, we introduce—for purely mathematical reasons—a

the tunneling matrix element ig,.) If we furthermore as-
sume weak enough tunneling such thé&&U, then terms in
Hy,, that couple the normal modes &f, are of second

order in small quantities. As we will see below, this is gen-

ghost field (x) that has the same chirality and dynamics
as the slow modeg,. It is then possible to define a
pair of fictitious chiral fermions, distinguished by a pseu-
dospin degree of freedomr=1,| using the bosonization

erally the relevant physical situation and even required in thédentity

casev=1/4. In what follows we restrict ourselves to the
approximatione—0 (corresponding tdJ—). We note,
however, that corrections to leading orderdncan be in-

cluded perturbatively, yielding small corrections to our final
results which do not affect them significantly. The Hamil-

7(X) + 0 Pp(X)

\PU(X):\/Z—b}—anp{iXb \/E

In this new notation, the Hamiltoniar(? of the slow mode

} . (10

tonian of the line junction is then diagonalized, to a goodrepresents tunneling between the two flavors of fictitious fer-

approximation, by the normal modeg and ¢, of H, , and
we findH;=H+H{", where

LY 2 9
2 i X(dyha)*, (99
(W7 L/2 hoy 5
Hb - 7L/2dx 4W(ﬁx¢b) +2|t| \/Zmlzm2
¢p A
Xc0§ ——=+X— (9b)
e
14

mions:

L/2
Héz):J L/ZdX{ﬁvbz ‘I’;(_iXbax)\I’U

g [V W e el (1)

The tunneling strengtﬁmlm2=|t|\/zmlzmzlzb is generally
different, because of chiral-Luttinger-liquid properties,
from the matrix element for tunneling between the original
line-junction edge channets. Physical observables are
expressed in terms of pseudospin-related quantities, while
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the charge degree of freedom for fictitious fermions Do— %
remains hidden from measurement. For example, the spin &= — (17b
density and the density associated with the slow mode are V2i
equivalent: o : .
Note that ¥, ¥,:=i&. €. The expression for the Hamil-
o tonian of the slow mode reads
Viw, -wiw = \20,= JXE: (12

=+ £2

L/2 A hvpA
Hé‘”=f dX[E S vk (il E i
The representation dfi{?) in terms of the fictitious chiral L2
pseudo-spin-1/2 fermion, being quadratic in this field, makes
it possible to treat transport straightforwardly. This will be (18)

discussed below in Section IV A. with different velocitiesv, =v,+ruvy for the two Majorana

_ fields. Hence, while the slow mode is characterized by a
B. Caser=1/4: Velocity-split Majorana fermions single velocityvy,, tunneling leads to the generation of two

A bosonization identity of the type given in E(®) can be different velocities for the resulting quasiparticles that turn
out to be Majorana fermions. A dynamically generated ve-

used to define a Dirac fermion in terms of the chiral bosoq . - ; .
field ¢y : ocity spll_ttlng Of.thIS type has bgerl found before in tunnel-
coupled interacting quantum wif#s*® and quantum Hall

bilayers® It is reminiscent of the spin-charge separation ex-

] _ (13) pected to occur in interacting 1D electron systériifie rep-
resentation oH{" in terms of the fictitious noninteracting

, , Majorana fermions enables treatment of transport through

The density ¢, of _theT slow mode is related t0 the {he jine junction, which will be shown below in Sec. IV B.

normal-ordered density/p iy, Of the new fictitious fermion  piagonalization ofH( is straightforward. Its spectrum has

A
Po(X)=\ZoFp exp{ i Xb X2_€2 + ¢p(X)

via two branches,
0 E&x%:_ww/ A (14) Ev, =fixpk(vpT vy 1+r)), (19
o2m  TRTRT g2 . 2 . .
with r.=vpA/(vk€<). The corresponding eigenstates are
With the help of the relatiold given, using a spinor notation in the basis of Majorana fer-
mionsé.., as
: _ 2 2 ; A 3 c
thol Ixipp=— 27 x0Zp Fy €XP) i X 2¢b+xﬁ . (19 ( *) :(_ k )eikx, (203
-/, \ixpS«
the Hamiltonian of the slow mode can be rewritten as
§+> iXbSk) )
= e, (20b)
(§ _ Ck

@) L2 . A N
Hyp'= 7L/2dx ﬁvb‘ﬂb(")(b@)%_ﬁvb_zez botho
Here we used the abbreviations

h
S T~ i)+ w£<—ixbax>w£]], (16) Ck} NNeee

= (21
where the tunneling matrix element has been absorbed into

V21412
the velocity parametevt=|t|\/zmlzmzlwﬁzﬁ. In the repre-

sentation of the fictitious fermiomy,, Hg‘) looks like the IIl. TUNNELING CURRENT, CHEMICAL POTENTIAL,
Bogoliubov-de Gennes Hamiltoni&hof a spinless p-wave AND COUPLING TO VOLTAGES

superconductor. It differs from similar systems considered o

previously>*° by its chiral 1D nature. We do not explicitly To be able to calculate conductances, it is necessary to
pursue the superconducting analogy here any furtabr freat the nonequilibrium situation where a finite voltage is

though the formalism employed below could be phrased®Pplied to the line junction. This requires proper definition of

within such a framework Instead, we use the fact that the Operators for currents and chemical potentials within the

real and imaginary parts of a Dirac fermion are Majoranaunction region, which we set out to do in the first part of this
fermions and define fields. =£'. via section. Our results are then applied to relate these quantities

to externally adjustable lead voltages.

Sk

ot A standard calculation yields the expression for the tun-
£, = Yo ‘ﬁb’ (179 neling current flowing from edge channel 1 to edge channel
NA 2 within the line junction as
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i (L2 a m
IJ:_ dx{t‘ﬁm lﬁm _H-C-}- (22) ( ) 1 [ ll = 11 2
h 7|_/2 1 2 1 1 1 1 1 1 1 1
After bosonization, and within the same approximations 4 L1 11 3
used above, i.e., for small [see Eq.(6)], we find the m3
following expression for the transport current through the -L2 0 L2 X
line junction:
2| (b)4 oL 3
L/2 T T T 1 T T
(1/)_X1_‘/Zmlzmzf dxsm(T+x—) (23 R
1 1 1 ;@I Iml 2
It comes as no surprise that the current, as the tunneling 5 2
Hamiltonian, depends only on the slow normal mode. Hence, -L2 0 L2 x

only the latter features in our transport calculation. Defining g 1. Line junction attached to chiral edge-channel leads.

the spatially varying partial current

- t]
I é)lh})(x) = X \/ Zmlzmzf

L/2

L/2

[ PuX) A

X sin = +x’—2 sgnx—x") (24
N

turns out to be useful for later. Obviouslygllz)(L/2)=

— 1 (= L2)=111(247).

The chemical potentials of incoming lead brancligsand 3 are
fixed experimentally by external reservoirs. These, together with
the tunneling current in the junction regiddefined to flow from
the m; branch to them, branch and indicated by vertical dashed
lines), determine the boundary condition for the slow normal-mode
density at the junction boundaries= +L/2. Panels(a) and (b)
show the two possible chiralities of the junction that can be distin-
guished, e.g., by the chirality of thm; branch:y;=+1 (—1) for

@ [(b)].

d
ENT —ZWﬁde Op- (29

The local chemical potential of the slow normal mode can

be defined in the usual wébas the functional denvatlve of
the Hamiltonian with respect to density:;u{(x)

= 6H;/60(x). Using the commutation relations for chiral
boson fields, it is straightforward to prove thaieo, is ca-
nonically conjugate t@,, and therefore

50
m—lxb[%(x),@] (25

for an arbitrary functional®. Application of this identity
yields an expression for the local chemical potential,

100 =2mh{vyos0) -yl B0} (26

As a special case of this equation, we find the chemical po
tentials at the endpoints of the junction to be

xal§ (1)

2\/—

L
g

(27)

L
iz =27h Ube

Integrating it, and observing the reIauon‘:(d/dr)fXQb
=1 Sl”’)sgn(vml— Vm,), We find

L L R
O Z| = u@ = =)= —2ahps—,  (30)
Mp 2 Mp 2 X1 \/:{} ’
and comparison with Eq$27) yields
L Ly —
Qb 5| =Cbl ~ 5| =Cb- (32)

The periodic boundary condition expressed in B&{) is a

nontrivial property of the stationary state that enables us to
treat the line junction as separate from any edge-channel
leads that couple it to external reservoirs. The effect of ex-

ternal voltages will be to set the appropriate valueopgf
consistent with the valug; for the line-junction current. A
derivation of these relations will be presented in the follow-
ing paragraphs.

The continuity equation for the slow-mode density can be Edge channels forming the line junction typically exist

derived in a similar way,
d [
g-9p= 9:CpT g[HJ,Qb], (283

=3.0p% Xbdxdvp@— X1l 5}
(28b)

In the stationary limit where?,0,=0, Eqgs.(26) and (28b)
imply the exact relation

beyond the junction region but are not coupled anymore via
tunneling or interactions. These incoming and outgoing edge
branches serve as noninteracting leads that couple the junc-
tion to external reservoirs with experimentally controllable
chemical potentials(See the figure in Ref. 32 and Fig. 1
below for illustration) The Hamiltonian for the lead regions
|x|>L/2 is therefore given by that of two uncoupled edges;
He=Hp +Hm,. As the separate chiral edge densities for

each edge branch are just linear combinations of the densities
0, andoy that are the normal modes in the junction, we can
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write down an expression fdf ¢ in terms of the latter. In the +(—)1 in one line. Straightforward elimination yields an
limit of strong intraedge Coulomb interactions, which is theequation for the voltage drop across the junction,
physically relevant situation that we have been considering
all along, it reads H1— M3 Xp  — Vm,tVm,

ISl/V) , (36)

27h \/'i b0 X1 2V, Vi,

HE:2|V — dx{(vﬁh-i- v%z)gg—Fvalvszﬁ o - _
my Ym,l Jx|>L/2 providing a link between the externally applied voltegé
= u1— 3 and intrinsic line-junction quantities, such as the
- 2\/ levmz( le+ sz)eae b}- (32 pa— s ] q

tunneling current and the boundary valgg of the slow-
While thea andb modes are certainly not normal modes in mode density. This is one of the central results of our work
the lead region, it is nevertheless possible to define theipresented here. In deriving E6), we have fully taken into
chemical potentials via.{5)(x) = SHel 80, 4X). AsHgisa  account charging of the line junction arising from its cou-
nondiagonal quadratic form when expressed in termg pf pling to leads. Solving it together with the intrinsic dynamics
and gy, each of the chemical potentigls® and u{® de-  of the slow mode(induced by its Hamiltoniai {") com-
pends on both densities. In other words, there exists a finitgletely determines the current.
cross capacitance between theand b modes in the lead

region. Reexpressing, ,,in terms of the original chiral edge IV. RESULTS FOR TRANSPORT THROUGH
densities, we find LINE JUNCTIONS
(E) _ We have seen, in Sec. I, that the tunneling current
)72 Vm,@m,;~ Ym,€m S Lo . .
fa 171 2~ 2 _ through the line junction is determined by the dynamics of
U ogr(le sz); (339 . . . .
‘/|”m1_ um2| the s_Iow mode on_Iy. Relatlr?g its Hamlltonlan to that of free
quasiparticles, which are Dirac fermions fe# 1/2 and Ma-
,uE)E) jorana fermions forv=1/4, we are able to calculate its

T:_\ﬁ(gml_g m,)S9M¥m, ~¥m,), (33D Gynamics exactly. With the help of Eq36), quantities
determining this dynamics are related to the externally

where again terms of order have been neglected. The ex- applied voltage. Pulling both understandings together,
pressions given in EQq(33) are useful because the local we find the line-junction conductance. As it is quite different
chemical potential in each of the chiral edge branches withirfor the two cases mentioned above, we discuss them in sepa-
the lead region is directly related to the local chiral edgerate sections.
density in that branch vigu;=Upg;, within the limit
of strong intraedge Coulomb interactions considered
here. Experimentally, two of the four lead branches’ chemi-
cal potentials are controlled by attachment to external
reservoirs, namely, those having chiral edge density Within the refermionization procedure applied in Sec.
waves propagatingwayfrom a reservoir. We adopt the con- Il A, we find the current through the junction as the tunnel-
vention that the incoming(outgoing edge lead for ing current between the two flavors of a fictitious chiral
x<—L/2 is labeled 1(4), whereas the incomingputgoing  Dirac pseudospin-1/2 fermion:
edge lead fox>L/2 is labeled 32). (See Fig. 1. We find ~
then, from Eqs(33), t L/2 _

(33 Igz)z—i)(b)(lm dx{\If%r\Ifle*'XbXA’fz—H.c.}.

& _ \/: - i JoLpe
b lxs512= XoN V(R 12— Ha)- (34) (37)

Requiring continuity of the chemical potentials, , at the  The chemical-potential difference between theand |
lead-junction interfaces, and using E¢87), (31), and(5¢)  pranches is related to that of the slow mode via
as well as the constancy @f, throughout the line junction,

we find the relations = =\2u8). (39)

A. Caser=1/2: Conductance oscillations as a function
of junction length

A7rh X0 b0 b= ﬁ(#l_ﬂ3+ﬂ2_ﬂ4)! (359  Equation(31), together with Eq.(12), implies a constant
density difference between the two fermion flavors along the
junction. This provides the driving force for the current.

The chiral-tunneling problem can be solved exactly using
standard methodS*’ Here we employ the scattering ap-
proach to transpof£*°Using an obvious spinor notation for

Vi, (K104~ H2(3) = Vm,( a1y~ 13(2)- (350 the__pseudos_,pin—ll2 fermion wave fuqctig?s,_the folloyving
Ansazefor eigenstates of the Hamiltoniad#y,™ [displayed in
Here we used a compact notation in E850 to show the Eg. (11)] in the three regiongx<—L/2, xpx>L/2, and
cases corresponding to both line-junction chiralities= |x|<L/2 can be written as

201 (M) - . @sh
- == + — — ,
SO ¥, — ) v(p1t pma— po— Mg
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v, _ is smaller than that of an adiabatic point contact between
v =| _|eX(xeE/hvp) (399  chiral fractional edge channels considered in Ref. 50, as
Pl < -1z should be expected.
_ eiX(xpE/fvp) 4 e X (xpE/hvp) B. Caser=1/4: Conductance oscillations as a function
v, L2 t) of transport voltage
(39b) Refermionization yields an expression for the tunneling
v . current in terms of the fictitious Dirac fermiaf,,
T _ T Lixk e iXK_
(q’ ) =al 4 |e *+b g )e , (399 “ vy (L2 o
Hi <L " "=x15 AX{ ¢ dx by = Pudxihpt, (43)
with the abbreviations L2
or the Majorana fermions that diagonalize the slow-mode
— 2
d. == V14 2+ ze™ XA, (39d  Hamiltonian whenA =0:
Ext 1+ 72 vy (L2 , .
Ki:Xb%. (399 l\(]4):§ 7L/2dx{§+(_|)(1’9x)§—+f—(_|X1f9x)§+}-
(44)

The paramete{=+#v bA/(27m1m2€2) measures the deviation i . )

from perfect energy and momentum conservation for tunnelln closejmalogy with the chiral-tunneling problem encoun-
ing pseudofermions. Requiring continuity of the wave func-téred forr=1/2 and discussed in Sec. IV A above, we solve
tion at x==L/2 yields a system of linear equations the transport problem through the line junction by consider-
that we can use to find expressions for the transmissioff’d the scattering of Dirac fermiong, in terms of the Ma-
coefficientst; andt, . Note that, due to chirality, continuity Jorana normafl} zr;qdes. As in the LandauertBer formalism

of the wave function is sufficient to ensure current conservafor transport®® incoming scattering states are postulated
tion. Ast, andt, turn out to be independent of energy for xpx<—L/2, given in terms of a Majorana spinor notation
E, the tunneling current is proportional to the density @S
difference of the pseudospin components. Its explicit expres-

sion is (§+ N Ky~ (45
_ g* —L2 IXb
1= —|t, >\ 20505 S9NV~ ¥m,), (403 e
with the transmission probability found from the above caI-OUtg.0 Ing scatter[ng state§ exist fppx>L/2 anq are“supe::r-
: positions of a Dirac-fermion staté, and a Dirac “hole
culation as statez,bg .54
L
Sin?| —/1+ 2 1
v - 1+22 &- Xp>LI2 'Xb

HerelL,;= Wﬁvb/TmlmZ is a length scale set by the effective

tunneling strength. From E@36), we find the expression for

the current through the line junction as a function of the o ) ) - )
externally applied voltage In the line-junction region, a superposition of the two eigen-

states with energy eigenvalieis realized:

' )eix[(XbE/ﬁub)+(A/e2)]_ (46)
1 Xb

T(L)
2)_ X1 _ .
IJ 2t le+ sz (Ml MS)- (41) §+ Ck+ . IXbSk_ ”
=a e*+*+b e'v-x,
1+ ———T(L) -
2levm & |x|<L/2 I XbSk, Ci_

4
With Eq. (41), we have the full solution of the transport _ _ _ “0
problem for line junctions with effective filling factop  Their respective wave vectors are solutionskgf . =E.
=1/2. Alinearl-V characteristic is obtained, with a conduc- Requiring continuity of the Majorana spinor wave functions
tance oscillating as a function of junction lendttand mag-  at the line-junction interfacex=*L/2, which simulta-
netic field (through dependence on the paramefyr Its  neously ensures current conservation for the chiral-fermion

maximum value, reached faf(L)— 1 and given by problem considered here, yields expressions for the transmis-
’ sion amplitudes.. . In contrast to the case=1/2, the latter
e .
max_ ; are energy dependent. The transport current through the line
G; 27rﬁmm{yml’ym2}’ (42) junction is given by

085307-7



U. ZULICKE AND E. SHIMSHONI PHYSICAL REVIEW B 69, 085307 (2004

siparticles in QH line junctions, showing yet another ex-
ample of how strongly correlated condensed-matter systems
exhibit features of relativistic quantum-field theories
typically encountered in the realm of elementary-particle
physics.

V. SUMMARY AND CONCLUSIONS

In this article, we provide a detailed theory of transport
through line junctions formed between tunnel-coupled coun-
terpropagating fractional—-quantum Hall edge channels hav-
ing different filling factors of the Laughlin type. Strong cor-
relations within the tunneling region result in a nontrivial

FIG. 2. lllustration of conductance oscillations. The dlmenslon'spectrum of elementary exc“a“ons When the effectlve fllhng
less differential tunneling conductanag=(2m#/e?)(d1/dV) is factor v of the junction is equal to 1/2 or 1/4. An example for
plotted as a function o¥es=(e(/€)V andLex=L/¢, according to the former(latter) case is a line junction betWeen edge chan-
Eq. (50). Our choice of units is motivated by the fact that magnetic having filling factor 1 and 1/3 (1/5). Using bosonization
length ¢ and Coulomb energg?®/(e€) are characteristic scales in and refermionization techniques, we rﬁap the original line-

the fractional-quantum Hall regime. We assune@d,/(efv_ v_) uncti bl ¢ del of t ling bet int
=0.1 here but results for different values can be obtained by lineajt!NCUION probiem 1o a model of tunneling between noninter-

scaling ofVeg Or Log. acting chiral spin-1/2 Dirac pseudofermiofisr »=1/2) or a
chiral spinless p-wave superconductor with Majorana

(4)_ X1Xb 2mhupop 5 pseudofermion quasiparticlegor V= 1/4). In both situa-
I o fo dE[t,(E)/%, (48 tions, we find the excitation spectrum and eigenstates of the

line junction exactly. Together with an exact general relation,
hence we only need the general expressiontfof?, which  given by Eq.(36), between the externally applied chemical-

is found to be potential differenceu; — u3 and intrinsic line-junction quan-
tities, such as the total curreht, we can solve for the trans-
2 2 ~
- (\/1+rk+_|rk+|)(\/1+rk,+|rk_|) port |-V characteristics. The full solution for the case
ty[*=2 Tr e |+ \/1+r§ \/1+rﬁ =1/2 is given by Eq(41), together with Eq(40b). It exhib-
+ - + -

its oscillations as a function of junction length that are simi-
lar to those found in tunnel-coupled quantum witeg"’ To

1
§(k+—k—)L}- (49 calculate transport through junctions having=1/4 in
the most general case requires simultaneous numerical

Note that the energy dependencedtaf|? is implicit through  solution of Eqs(48) and(36) for specific parameters realized
the dependence d&f. on E. in experiment. For the special situation of a narrow junction,

Solving Eq. (48) in conjunction with EQ.(36) yields analytical results are available. We give the differential
11 as a function of the externally applied voltage tunneling conductance in E¢50), which shows oscillations
V=(u;—u3)/e and, hence, solves the transport problemas a function of transport voltage. This behavior is the sig-
through line junctions having effective filling factor nature of a nontrivial velocity splitting similar to spin-charge
7=1/4. While such a solution is accessible, even if On|yseparation _in inte_:racting quasi-1D systems. Its_ observation
numerically, in the general case, it is instructive to look at theVould provide evidence of yet another mechanism for elec-
special situation wherd =0 and tunneling is weak. In this tron frgcnonah;auon in strongly correlated4electron systems.
limit, we find for the differential tunneling conductance the EXPeriments in samples of 90° béht* or laterally

X Sir?

expression separate_?tf 2D electron systems, _suitably modified to reach
the fractional— quantum Hall regime, could be used to test
difV 2 1( S( vl )) our predictions.
e———=——-11—-co eVv|t, (50
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