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We describe a low-temperature approach to the two-dimensional half-filled Hubbard model which allows us
to study both antiferromagnetism and single-particle properties. This approach ignores amplitude fluctuations
of the antiferromagneti¢AF) order parameter and is valid below a crossover temperatushich marks the
onset of AF short-range order. Directional fluctuatig¢ssin waves are described by a nonlinear sigma model
(NLoM) that we derive from the Hubbard model. The parameters of theMi-the spin stiffness and
spin-wave velocity—are calculated as a function of the Coulomb repuldiofhe NLoM is solved by a
saddle-point approximation within th€ P! representation where the dlefield is parametrized by two
Schwinger bosons. At zero temperature, there is always Bose condensation of the Schwinger bosons, which
signals AF long-range order for any value of the Coulomb repulsion. At finite temperature, the AF long-range
order is suppresse@h agreement with the Mermin-Wagner theopneout the AF correlation length remains
exponentially large. In th&€ P! representation, the fermion field is naturally expressed as the product of a
Schwinger boson and a pseudofermion whose spin is quantized alofitutiieating Neel field. This allows
us to write the fermion Green'’s function as the prodlictdirect spacgof the Schwinger boson propagator
(which is derived from the N&zM) and the pseudofermion propagator. At zero temperature and weak coupling,
our results are typical of a Slater antiferromagnet. The AF gap is exponentially small; there are well-defined
Bogoliubov quasiparticle§QP’s) (carrying most of the spectral weightoexisting with a high-energy inco-
herent excitation background. Ad increases, the Slater antiferromagnet progressively becomes a Mott-
Heisenberg antiferromagnet. The Bogoliubov bands evolve into Mott-Hubbard bands separated by a large AF
gap. A significant fraction of spectral weight is transferred from the Bogoliubov QP’s to incoherent excitations.
At finite temperature, there is a metal-insulator transition between a pseudogap phase at weak coupling and a
Mott-Hubbard insulator at strong coupling. Finally, we point out that our results straightforwardly translate to
the half-filled attractive Hubbard model, where tire (7, 7) charge andj=0 pairing fluctuations combine to
form an order parameter with $8) symmetry.
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I. INTRODUCTION The main difference between Slater and Mott-Heisenberg
antiferromagnets lies in the existence or absence of pre-
The Hubbard modét* and its generalizations play a key formed local(magnetid moments above the éetempera-
role in the description of strongly correlated fermion systemsure Ty.* In the weak-coupling limit, we expect a Fermi-
such as highF. superconductors, heavy fermions systems, offiquid phase down to temperatures very closeTtpwhere
organic conductordDespite its simplicity(the model is de-  critical AF fluctuations start to grow. In the strong-coupling
fined by two parameters—the intersite hopping amplittde limit, the system is insulating both abolott-Hubbard in-
and the local Coulomb interactidd—and the symmetry of sulatoy and below (Mott-Heisenberg antiferromagnethe
the latticg, exact solutions or well-controlled approxima- Neel temperature.
tions exist only in a few special cases like in one dimerfsion  This simple view, while correct in 3D, breaks down in 2D.
(1D) or in the limit of infinite dimensior. In 2D systems, thermalclassical fluctuations preclude a
It is now well established that the ground state of thefinite-temperature AF phase transition, and the phase transi-
half-filled Hubbard model on a cubic or square lattice hastion occurs aff=0 in agreement with the Mermin-Wagner
antiferromagnetic(AF) long-range ordet® In the weak- theorem'? Nevertheless, below a crossover temperalyre
coupling limit (U<4t), a Fermi surface instability gives rise the system enters a renormalized classical regime where AF
to a spin-density-wave ground state as first suggested bjuctuations start to grow exponentially. BeloWy, the
Slater:® The AF long-range order produces a gap in the quafFermi-liquid description breaks down even at weak coupling,
siparticle (QP) excitation spectrum so that the system be-although the system remains metallic. Instead of well-
comes insulating below the AF transition temperature. In thelefined Landau’s QP’s, the fermion spectral function
strong-coupling regime> 4t), fermions are localized by A(k,w) exhibits two (broadenel peaks separated by a
the strong Coulomb repulsiofMott-Hubbard localization  pseudogap.
thus creating localmagneti¢ moments on the lattice sites = The existence of a pseudogap at weak coupling is best
that are well described by the Heisenberg mddéiThese understood by considering the zero-temperature limit. At
local moments order at low temperature and give rise to aero temperatured(k,) is expected to exhibit two peaks
Mott-Heisenberg antiferromagnet. corresponding to the Bogoliubov QP’s as in the Hartree-Fock
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(HF) theory. These two peaks are separated by an AF gations leads to an overestimation of the fermion density of
which is due to the presence of magnetic long-range ordestates at low enerdy. Moreover, the artificial presence of
At any finite temperature, the AF long-range order disap-amplitude fluctuations does not allow one to reach the cor-
pears in 2D. However, by continuity, the two-peak structurerect T—0 limit.***° The effect of “directional’(i.e., phasg
in A(k, ) cannot disappear as soon as we raise the temperductuations of a complex order parameter on the fermion
ture. As pointed out in Ref. 13, the only possible scenario ig:iensny_ of states hasélbeen studied both for incommensurate
that at finite by low temperature, the fermion spectral func-1D Peierls systeni&° and 2D superconducto?é. Trans-
tion exhibits two broadened peaks, which are precursors oférse spin-wave fluctuations in the finite-temperature 2D
the zero-temperature Bogoliubov QP’s, separated by Klubbard model ha_ve not rec_elved as _much attention so far.
pseudogap. At strong coupling, the zero-temperature gap sur- On the experimental side, antiferromagnetism and
vives at finite temperature since the system is a Mott?Seudogaps are ubiquitous in low-dimensional strongly cor-
Hubbard insulator. related fermion systems. Pseudogaps were first observed in
The simplest description of the AF ground state of the 2Dduasi-1D systems near a charge-density-wave instabiffty.
half-filled Hubbard model is based on the HF theory. It isMore recently, a pseudogap has been observed in the metallic
known that the HF theory remains meaningful even at larg®®hase of highF, superconductor¥:®> Whether the
U. In particular, spin-wave modes obtained from the HeisenPseudogap in these systems is of magnetic or pairing origin
berg model with an exchange couplide 4t%/U can be re- IS still a matter of intense debate. _ _
produced from a random-phase-approximatiB®A) calcu- In_ this paper, we describe a theore_tlcal approach which
lation about the AF HF solutioH~1” The influence of the Provides a unified view of the 2D half-filled Hubbard model

spin-wave modes on the fermionic excitations has been studt low temperatqréigclgdingT:o) and for any value of the
ied within one-loop® and self-consistent one-lobj® ap- ~ Coulomb repulgloﬁ. Itis bgsed ona nonllnear sigma model
proximations. A QP picture for the coherent motion of a par-(NLoM) description of spin fluctuations. At zero tempera-
ticle or a hole appears to be still valid. However, AF quantumture, our theory describes the evolution from a Slater (
fluctuations lead to a significant reduction of the Bogoliubov<4t) to a Mott-Heisenbergl{>4t) antiferromagnet. At fi-
QP spectral weight, with a concomitant redistribution ofNite temperature, it predicts a pseudogap at weak coupling
spectral intensity into incoherent excitations and a stronglue to strong AF fluctuations and a Mott-Hubbard gap at
renormalization of the AF gap. These conclusions are supstrong coupling. Since it takes into account only directional
ported by numerical work on the Hubbard madef®and, in  fluctuations of the AF order parameter, it is valid for
the strong-coupling limit, by analytical or numerical analysis<Tx, WhereTy is a crossover temperature which marks the
of thet-J model?* onset of AF short-range order. In Ref. 49, one of the present
In spite of its success at zero temperature, the HF theorguthors reported a calculation of the fermion spectral func-
fails in 2D since it predicts AF long-range order at finite tion in the weak-coupling limit of the Hubbard model using
temperature. In the weak-coupling limit, alternative ap-@ NLoM description of spin fluctuations. However, the limi-
proaches, which do satisfy the Mermin-Wagner theoremtations encountered by previous approaches could not be
have been proposed: Moriya’s self-consistent-renormalize@Vvercome.
theoryi‘-4r25v26 the fluctuation exchange approximation As first shown by SChUliZ spin fluctuations in the 2D
(FLEX),?” or the two-particle self-consistent thedfyNone  Hubbard model at low temperature can be described by a
of these approaches gives a unified description of the magNLoM for any value of the Coulomb repulsifin Sec. II,
netic properties of the 2D Hubbard model at finite temperawe give a detailed derivation of the NiM starting from the
ture, both at weak and strong coupling. At strong coupling, inrHubbard model. The parameters of the dW—the bare
the Mott-Hubbard insulating state, spin degrees of freedonspin stiffnessp] and the spin-wave velocitg—are calcu-
are usually described by the Heisenberg model for whicHated as a function of the ratid/t. For U>4t, we recover
various methods are availabfe?®2° the NLoM derived from the Heisenberg model with an ex-
Beside their limitation to the weak-coupling regime, thesechange couplingl=4t?/U. In Sec. lll, we introduce the
approaches are also unable to account for the strong suppred@P?! representation of the NEM where the Nel field (giv-
sion of the amplitude fluctuations of the AF order parameteing the direction of the local AF ordgrs expressed in terms
at low temperature and therefore essentially desddhass- of two Schwinger bosons. This allows a simple saddle-point
ian spin fluctuations. Below the crossover temperaflifge  solutiort! from which we obtain the magnetic phase diagram
amplitude fluctuations are indeed frozen and only directionabf the 2D Hubbard model. At zero temperature, there is con-
fluctuationg[i.e., (transversgspin wave$ survive at low en-  densation of the Schwinger bosons for any valu& gfvhich
ergy. The calculation of the single-particle Green'’s functionsignals the presence of AF long-range order. At finite tem-
usually relies on a paramagnonlike self-energy describingerature, the system is disordered by thermal fluctuations,
free fermions that couple to Gaussian order parametdout the AF correlation length remains exponentially large
fluctuations:>?"29-32This kind of approach was originally below a crossover temperatufig, (renormalized classical
introduced by Lee, Rice, and Anderson to explain the supregime®). In Sec. IV, we study the fermion spectral proper-
pression of the density of states associated with order paranies. The fermion is written as the product of a Schwinger
eter fluctuations near a charge-density-wave instafSility.  boson and a pseudofermion whose spin is quantized along
has been since studied by many authors, in one and twihe (fluctuating Neel field. Such a decomposition is reminis-
dimensions*~4’ The assumption of Gaussian spin fluctua-cent of slave-bosdf or slave-fermiof®=2 theories®® It al-
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lows us to approximate the fermion Green’s function by thepseudogap is due to strong pairing and charge fluctuations,
product(in direct spacgof the Schwinger boson propagator whereas the strong-coupling gap is a consequence of the
(which is obtained from the N&ztM) and the HF fermionic  presence of preformed particle-particle pairs.

propagator. At weak couplind<4t) and zero temperature,

our results clearly describe a Slater antiferromagnet. The AF Il. DERIVATION OF THE NL oM

gap A,~te 2™V js exponentially small. As in the HF . , o

theory, there are well-defined Bogoliubov QP’s. However, "€ Hubbard model is defined by the Hamiltonian
because of AF quantum fluctuations, their spectral weight is

reduced by a factony (0<ng<1) which is given by the H=-> ¢! (t+u)c,,+UD CITCTTC:LCW' (1)
fraction of condensed Schwinger bosons in the ground state. ro r

The missing weight (% ng) is transferred to incoherent ex- - ) ,

citations at higher energy (An,<1 whenU<4t). As U wheret is the nearest-neighbor hopping operator:

increases, the AF gap increases and spectral weight is pro- -

gressively transferred from the Bogoliubov QP’s to the inco- tc,(,—t(cr+exa+ Creo™ Cr+ey"+cr_ey")' )
herent excitation background. At strong couplingt4t),  ,y it filling the chemical potentiak equalsU/2. e, ande
our results are typical of a Mott-Heisenberg antiferromagne denote unit vectors along theandy directions.c.. (c )V
The AF gap 2, is of orderU. The incoherent excitation i inilat f 9 f Y tthe | {t.”’ .t“’
background carries a significant fraction of spectral weigh reateannihila ¢$a ermion of spino” at the fatlice Sii¢.
(i.e., ng and 1-ng are of the same ordeand extends over e take the lattice spacing equal to unity and &etkg

an energy scale of orddr=4t%/U above the Bogoliubov QP — 1V\}hroughout the ??ﬁer' tition funct f th ¢
energy= E, . At finite temperature, the Bogoliubov QP’s dis- € can represent the partition function ot the system as a

appear fi,=0 in the absence of Bose condensatiamd path integ_ral over Grassmz_ann fields,, 47, . The action

only incoherent excitations survive. Nevertheless, precursor§an P& written asyiy + Sy with

of the zero-temperature Bogoliubov QP’s show up as sharp 8

peaks at+ E, in the spectral functiopd(k,w), with a width Skm:J de \P;‘(@T—M—f)\lfr, ®)

of order T. We show that these peaks continuously evolve 0 r

into the zero-temperature Bogoliubov QP peaksTasO.

This ensures that the spectral functidik, ) is continuous . B N N

at the Ty=0 phase transition. The high-energy incoherent S‘m_ujo der Yreythe e “)

excitation background is little affected by a finite tempera-

ture, but the presence of thermal AF fluctuations gives rise tovhere 8=1/T is the inverse temperature. In the kinetic ac-

fermionic states below the zero-temperature AF gapAt  tion S, we have used the spinor representatidn

weak coupling, the gap is completely filled and replaced by & (¢ ,1,)". To describe collective spin and charge fluctua-

pseudogap. At strong coupling, the zero-temperature gap suions, we introduce auxiliary fields. The standard approach is

vives at finite temperature and the system is a Mott-Hubbarto write the interaction part of the action &g,y ¢,

insulator. =3(w/w,)2—(W!s3¥,)? and to perform a Hubbard-
On the basis of a numerical calculation in the frameworkStratonovich transformation by means of two real auxiliary

of the dynamical cluster approximation, Moukouri and Jar-fields A, and A, . Although this procedure recovers the

rell have called into question the existence of a Slater scestandard mean-fieltbr HF) theory of the Nel state within a

nario in the 2D half-filled Hubbard mod&t-°®They argue  saddle-point approximation, it leads to a loss of spin rotation

that the system is always a Mott-Hubbard insulator at lowinvariance and does not allow one to obtain the spin-wave

(but finite) temperature even at weak coupling. We will show Goldstone modes. Fluctuations &f, andA, correspond to

that their results are not in contradiction with a Slater scegapped amplitude modes. Alternatively, one could wéig

nario at weak coupling, but merely reflect the strong suppresin  an  explicitly ~ spin-rotation-invariant  form—e.g.,

sion of the density of states due to the pseudo@agc. lr/,r*“/,”,/,r*lwrl:_%(qugqfr)z[g:(gl,gz,%) denotes the

IV C). Pauli matrices—and use a vector Hubbard-Stratonovich
At half-filling, the repulsive Hubbard model can be field. Such decompositions, however, do not reproduce the

mapped exactly onto the attractive model by a canonicaHF results at the saddle-point levélAs noted earlief/ 8

transformatior?” This transformation maps thg=(m,7) this difficulty can be circumvented by using the decomposi-
spin correlations of the repulsive model onto the 0 pair-  tion

ing and q=(m,7) charge correlations of the attractive

model, but leaves the single-particle Green’s function and the . . T 5

spectral functiond(k, ) invariant. Thus the results obtained Ui =7 (V)= 2 (Vro- Q)5 (5)

in this paper apply also to the attractive Hubbard model, but

with a different physical meanin@ec. V). At zero tempera- where(, is a site- and time-dependent unitary vector. Spin-
ture, there is superconducting and charge-density-wave longetation invariance is made explicit by performing an angular
range orders. As the attractive interaction strength increaseitegration overQ}, at each site and timéwith a measure
there is a smooth crossover from a BCS to a Bose-Einsteinormalized to unity. The Hubbard-Stratonovich transforma-
behavior. At finite temperature, the weak-couplingtion then reads
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™ dk, dk,

fk_ J*';TJLWZW 27
Equation(12) predicts a phase transition at a finite tempera-
ture TH™, which is exponentially small at weak coupling and
approache$l/4 at strong coupling. Similarly to the transition
Equation(6) corresponds to an “amplitude-direction” repre- temperature, the zero-temperature gep tends toU/2 at
sentation, where the magnetic order parameter field is givestrong coupling and is exponentially small at weak coupling:
by A, Q,. The HF theory is now recovered from a saddle-
point approximation over the auxiliary fields; , A, and
Q, (Sec. Il A). Spin-wave excitations can then be obtained

B 1
e—Sm:J D[AC,AS,Q]EXF{—f dTE {U(Aiﬁ—Agr)
0 r

—\If;r(iAcr+AS,a-Qr)‘IfrD. (6)

Ag=32te~2mUU, (13

by considering small fluctuations of th@, field about its

saddle-point value. In Sec. Ill we show that the amplitude-

direction representatio(®) allows us to go beyond the Nk
ordered HF state and derive an effective action for &e
field.

A. HF theory

Making the ansatz of an antiferromagnetic order—i.e.

taking constant auxiliary field&.,=A;, A=A and a stag-
gering vectorQ,=(—1)"u, parallel to thez axis—one ob-
tains the saddle-point equations

_ U
|AC:—5<~PI%>, (7

u
A= 5(—1)%@?03«14). (8)

At half-filling, the saddle-point valueéA.=—U/2 cancels
the chemical potential term in Ed3). The HF action is
quadratic,

B -
SHE= fo er V/(3,~t=(~1)'Aoy)¥,, (9

amplitude Ay/U. Note that at weak coupling the

B. Spin fluctuations

In 2D, the HF theory breaks down at finite temperature,
since it predicts AF long-range order beld\'ﬂF. Neverthe-
less, the HF transition temperature bears a physical meaning
as a crossover temperature below which the amplitude of the
AF order parameter takes a well-defined value. This is some-
times interpreted as the appearance of local moments with an
“local”
moments can be defined only at length scale of orler
~t/A,, which corresponds to the size of bound particle-hole
pairs in the HF ground state. Thustricto sensulocal mo-
ments form only in the strong-coupling limit wheg~ 1.

BelowTHF, it is natural to neglect amplitude fluctuations
of the AF order parameter and derive an effective action of
the Q, field by integrating out the fermionic degrees of free-
dom. We callTy the crossover temperature below which AF
short-range order appears. As WiII be shown subsequently, in
the weak-coupling limitTy~ T , Whereas at strong cou-
pling Ty~J=4t2/U<TK". ForT<Ty, the amplitude of the
AF order parameter can be approximated by its zero-
temperature HF valué\,. Following Haldané!® in the
presence of AF short-range ordér£Ty) we write

Q=(—1)'n\1-L+L,.

(14)

and can easily be diagonalized. Due to the translational sym-
metry breaking, there is unit cell doubling. In the reducedn is & unitary vector representing the ¢léeld, whereas. is

Brillouin zone scheme |k,|+|k,|<) elementary excita-

the canting vector, orthogonal tg taking account of local

tions are exhausted by two bands. of Bogoliubov QP’s aferromagnetic fluctuations is assumed to be slowly vary-

energies+ E, =+ A%+ ezk, €= —2t(cosk,+cosky) being
the energy of free fermions.

Using the HF actiori9) one obtains the HF single-particle

Green'’s function

~(DkooPrry o) = w0 0o G (KK @), (10
|w+ek oA
G (KK, 0)=— 8 + 8k im
( ) Kk gz s 2 =3
(11)

wheres=(m,7) andwo=(2n+1)#T (n integey is a fermi-
onic Matsubara frequency. The propagatb®) makes it in
turn possible to give an explicit form to the gap equati®n

1 J tani BE/2)
T 2E.

%] 2E,

U 12

We use the notation

ing andL to be small. We perform at each site and time a
rotation in spin space and introduce a new fermionic fiejd
defined byV,=R,®,. R, is a time- and site-dependent
SU(2)/U(1) matrix satisfying

n,=R,o3R} . (15)

The above definition means th&t, , the SA3) element as-
sociated tdR, , mapsu, onton, . The U(1) gauge freedom is
due to rotations around theaxis, which do not change the
physical state of the system. The spin of the pseudofermions,
®,, is quantized along tha, axis. In order to express the
action in terms of the new spinor variable, it is convenient to
make use of the SU(2) gauge field, =2, , A, 0, de-
fined as

Aor=—RI0,R;, (16)

A =iRl9,R, u=xy. 17)
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Evaluation of the first-order cumulants is straightforward.

that R, n,=u, and L,Ln,, thel, vector lies in thex-y Defining €. as the absolute value of theegative kinetic
plane. Using the identity energy per site in the HF ground state we have
tpt —dbTad, A, 2A~ (B
(errRHeM(I)He# O e Purd, (18) <Sp>=_Tof dTE (_1)rAgr, (29)
we reexpress the kinetic and interaction parts of the action as ° '
B —
Siin= fo o|72r ®fl9,— Ao (Sg)= f dTuEny AL, (29
’ r
_2tM:2X'y cog—id,—A,) |, (19 ($)=0, 30
B . Ad (8 ,
Sin= —Aofo drY, O[(—1) ogy1-12+1,- o] D, . (Sp2)= UL er 12 (31)
r

20
20 We recognize in Eq.28) the usual Berry phase term. Since it

In the above expressions, bdtland A, are small, since is believed to play no role in a two-dimensional

the gauge field is of the order @f,n. We expand Eqs(19) antiferromagne’c.,l we will ignore it in the following.

and (20) to second order in these variables. To zeroth order, The calculation of the second-order cumulants seems

we recover the HF actio®,{ ®] defined in Eq.(9). The cumbersome at first sight, since it involv@dter moving to

first- and second-order correctionsAf yield paramagnetic the Fourler spagethe current- current correlation function

and diamagnetic termS, and Sy, respectively. The correc- (q 0,9, ,0))= (J(a, a),,)j (q ) HE- [w,

tions inl give first- and second-order ferromagnetic fluctua—— V2T (v intege) is a bosonic Matsubara frequenkcin

tions S andS;2 (Ref. 70: fact, as the correlator stands in front of second-order quanti-
ties, we are interested only in its zero-frequency, zero-

S=- J’BdT D i A (21) ~ momentum valué*[;:/,(o,o 0,0) Which we denote bi][;;
0 %Y With the exception oflIgg=1155 and II33=1137 all these
guantities vanistisee Appendlx A o) that we obtam

t (8 .
Sd=§f0d7 > AL2dlcog—ia,)®,+c.c., (22 S2) =113 deE A3r2+n33f dr > A2

B2 v=12 w=xy
: (32)
ﬁ Vv
S|=—Aof0dfy21’2h10r, 23 (S?)e=A2I1 fd E 12, (33)
r v= 12
y=—2 2 B
= Jer( SUET (24) <sp3>c=AonggfodTZ AT (34)
v=12

The spin-density currentg, are defined by
Using the invariance of the current-current correlation func-

tion with respect to rotations of axig,, one can establish the
identity e./2—TI33=0. It implies that theAi2 terms in the
first- and second-order cumulants cancel each other, which
ensures the U(1) gauge invariance. The only remaining cor-
We now derive an effective action for the spin variabies relator is the transverse spin susceptibilitje= x". In order
andL by integrating out the fermions. Keeping terms up toto express the effective actidq n,L] [Eq. (27)] in terms
second order im; andl, the effective action is given by of n andL we use the relationéee Appendix B
first- and second-order cumulants of the four perturbative
termsS;, Sy, §, andS;2 with respect to the HF action:

Seff[n,L]=<Sp>+<5d>+<34>+<5|2>

jor=®lo,®,, (25)

jn =tdfsin(=ig,)o,® +cc, u=xy. (26

21 Al 2= z (9,02, (35)

=

(S8 @D r=s(nAdn)-L, (36

(e 3 A
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—_
ot

with (=1 for u=x,y and{=—1 for u=0. Putting every-
thing together, we obtain the effective action

Seft= 2] dTE

—n +— E (0, n,)? c/t o0/t

-
Loy oo 1404

2 .
+Aé(U_Xl)er_iAOXl(nr/\nr)'Lrj|u (37

0 LA LN L BN N BB LR 0

wheren=4_n. Integrating out the canting field with the con- 0 5 10 15 20 25
straintL,Ln,, we eventually obtain a NkM for the Neel U/t
field:

FIG. 1. Spin-wave velocitg (solid line) and bare spin stiffness
p? (dot-dashed lingvs U. For Us>4t we recover the results ob-
tained from the Heisenberg model with=4t?>/U (dashed line,
spin-wave velocity; dotted line, bare spin stiffnpdsiset: fraction

(38) of condensed bosons &t 0. 1—ng is exponentially small at weak
where we have taken the continuum limit in real space. Th&oupling U<4t), while ny=0.6 for U>4t. n, determines the

bare spin stiffnesp? and the spin-wave velocityare given ~ mean value of the Na field in the ground state(f,)=nou,) and
the spectral weight of the Bogoliubov QRsee Sec. IV.

0
ps (B 1.
sNLaM[n]=§fodrf dzr{gn% 2 (3,0
B=X,

by
c el 1 U coupling limit (see Sec. IV. It is missed in our approach
pg:_", CZ__C( - _) (39) since we expand around the zero-temperature AF state which
8 2\t 2 has only gapped quasiparticle excitations. In the renormal-

ized classical regime, this term is, however, negligible since

n 13,45

Equation(38) must be supplemented with a cutdffin mo- g £~2—0 (critical slowing down.

mentum space. In the strong-coupling limit, where AF fluc-
tuations are due to local moments, the cutbftan be taken
of the order of unity. In the weak-coupling limit, the” dle IIl. MAGNETIC PHASE DIAGRAM

field is ill defined at length scales smaller thgp~t/A,, Let us recast the NizM action in a more usual form, by
since below¢, “local” moments cannot be definetsee the making use of the coupling constagc/p°:

discussion at the beginning of Sec. I.BWe therefore S

chooseA ~min(1,2A,/c) (Ref. 71).
For numerical computation of the spin-wave velocity and Sy om[N]= —f de d?r —n +c E (9,n)?
spin stiffness we use the expressions (42)
L a2 [* pole)de To solve the NloM, we use a saddle-point approximation in
Bl (AS+62)3/2' (40 the cP! representationt which proves well suited for the

computation of the fermion Green’s function. In tigP?
at representation, the e field is expressed in terms of two
_1(%e pO(E)dE (41  Schwinger bosons,
VA O—I—e T
n,=z oz, (43

po is the density of states of free fermions on a square lattice.
It can be expressed, using the complete elliptic integral of thavith z.=(z;,z;)". The conditionn?=1 translates into
first kind K, as pg(€) = (27%t) "1K[(1— e2/16t2)Y2] for |e|]  z'z=1. The rotation matrbR can be expressed as
=<4t. In the strong-coupling limit we recover the results ob-
tained from the Heisenberg model with an exchange cou-
pling J=4t?/U: the spin stiffness equal¥4 and the spin-
wave velocity y2J. At weak coupling,c goes to zero like
27 YUt andp®~t. The factor U/t)Y*is due to the ~ The U(1) gauge symmetry now manifests itself in the invari-
Van Hove singularities. The results are shown in Fig. 1.  ance of then, vector and the relatiofil5) defining the rota-

The NLoM defined by Eqs(38)—(41) was first obtained ~tion matrix under the transformation-z e'“rz, .
by Schulz>” The value of the spin-wave velocity agrees with ~ The NLoM expressed in terms of Schwinger bosons in-
the result obtained from an RPA calculation about the zerovolves terms quadratic and quartic in Z'he latter turns out
temperature AF HF stafé %’ to be proportional toAf”Z with A%, expressed in terms of

Note that we also expect a damping term with a characSchwinger bosonEqgs.(17) and(44)]. It is decoupled by an
teristic frequencywg in the NLoM action (38) at weak cou- auxmary field a,, . To handle the unimodularity condition
pling. This term comes from the damping of spin fluctuationsz'z,=1 one mtroduces Lagrange multipliexs at each time
by fermion excitations which are gapless in the weak- and site. The partition function then beconiese Ref. 11

R = (44)

Zp _Zr*¢>

z, 1z
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T
Z=J D[z,a,,\]e”5, (45)
B o | T 2 5 \\\ ///
=f drf d?r|in(zfz—1)+ —C|(aT—a0r)z,| N QC o
0 9 RC QD
2c ) AN d
+— 2 |(d,~ia,)z|?, (46) S
9 u=xy - mm g

Ukt U>»t g

thez, andz;| being now unconstrained bosonic fields. One Hubbard model

then performs a saddle-point approximation overxhend

a,,, fields. When theC P* representation is generalized to the  FIG. 2. Phase diagram of the MM derived from a saddle-
CPN"1 representation by introducinly different z bosons,  point approximation in theCP* representation. AT=0, there is
the approximation becomes exact in the limit—c.'*  long-range order when the coupling constgrtg.=4m/A. The
Within the ansatz of a uniform static saddle-point solutionthree finite-temperature regimes correspond to “renormalized clas-

i)\r:2m2/gc anda 0 the propagator can be read off sical” (RC) “gquantum critical” (QC) and ‘quantum disordered’

from Eq. (46): (QD) (Refs. 28 and 72 The ground state of the 2D half-filled
Hubbard model is ordered for any value of the Coulomb repulsion
B * _ U. At finite temperature, there are strong AF fluctuations with an
<Zq‘°u‘fzq’w’u<r’>_ 5‘4"4'5‘”»'wya"*"'p‘f(q'w”)’ (47) exponentially large correlation leng®1 (RC regime.

numerical and analytical work, that the 2D quantum Heisen-

D (q,w,)= —g_B/\[nonggw 09q.0. (49 berg model on a square lattice is ordered at zero
(@2t wf) ’ temperaturé?
Figure 1 shows the fraction of condensed bosons as a
0= Je2Z+m?, (49  function of U. For this, and subsequent, numerical calcula-

tions we use a smooth cutoff—i.e.,
where NV is the number of lattice sites. The saddle-point

equation for the Lagrange multiplien® reads f f el — g~dobo
—
lal<A S 1-e Wi
1 gc , iy
- E — —— tne=1. (50 In contrast to a hard cutoff, this procedure prevents artificial
B oy Jld<a w3+ Wq features in the fermion spectral function and in the density of

. states. The parametqg is adjusted so as to reproduce in the
Ir:, Etgs.(ég);(S_O), Webhave allqwetﬂ for a BOS% con_(;iﬁnsanon strong-coupling limit > 4t) the resulf(n,}|=ny=0.6 ob-
of the Schwinger bosons in the modg=0, With No  aineq from the Heisenberg mod@lWhile the value ofng

_ o= — - - ;
= (LNB)(z (q—O,w,,—O)Z(q—O,w,,—_O)) _the fraction of for U<4t andU >4t does not depend afy, the behavior at
condensed bosons. Bose condensation signals the appearaj)t& mediate coupling is strongly cutoff dependent.

of Ai Iﬁng—fr_a:wdge order{n,)hz nouzl' KanWng th? propaga- At finite temperature, the AF long-range order is sup-
tor of thez field, one can then calculate the spin-spin corre-Ioresseol ,=0m=>0), in agreement with the Mermin-

lation function using Eq(43). The AF. correlation Iengltlg is Wagner theorem. For systems that exhibit AF long-range or-
related to ]Ehe masan of tr?e bOEOI’]IC pro;;ag:\tcp via T ho der atT=0, the correlation length remains nevertheless
=c/2¢ (Ref. 1). m vanishes whenever the fraction of the o, hqnentially large at low temperatufenormalized classi-

condensed bosons is finite.
cal regime; see Fig.)2From Eq.(50), we deduce
At zero temperature, the solution of the saddle-point g 9. a.(50),

equation(50) shows that the N&M is ordered at smalf c
(m=0 andny>0) and disordered by quantum fluctuations at £=5m m=Te 27¢s/T, (51
largeg (m>0 andny=0). The two regimes are separated by
a quantume-critical point ai.=4m/A. In the ordered phase where psng(l—g/gc) is the zero-temperature spin stiff-
(9=gc). the fraction of condensed bosonsnig=1—g/g..  ness. The masm of the bosonic propagator being much
The condition of zero-temperature long-range order is satsmaller than the temperature, the dominant fluctuations are
isfied in the NLorM derived from the half-filled Hubbard classical.
model (Fig. 2). For U<4t, g/g.~e ?™"U is exponentially Let us now discuss the limits of validity of the NIM.
small. For U>4t, p)=J/4 and cA=.2J, so thatg/g.  The derivation of the N&zM is based on the assumption that
=~ 2/7<1. Notice that setting the cutoff to a higher value the dominant low-energy fluctuations are transverse spin
at strong coupling would lead us into the gquantum- Waves with a large correlation length. The conditidn
disordered regime. However, our choice is consistent W|th<T ensures that amplitude fluctuations of the AF order
results obtained by mapping the Hubbard model at strongarameter are frozen at low energy. One should also verify
coupling onto the Heisenberg model. It is known, both fromthat the computation of within the NLoM is consistent
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1 T here as a X2 matrix in spin space, can easily be related to
S the pseudofermions by use of the relatibn=R, D, :
IR o5 ot
Lo £~1 G(1,2)= — (R ®P;R)). (52
T // \‘\\ Here we use the shorthand notation=(r,,m) and 2
1 4 RC regime T =(r,,7,). The averaging in the above expression should be
. Mot=Huhbard ) .
,'I 16>1 [;nsul:?ol)g[‘~zf- performed with respect to the actid®y P ]+ S'[z,P,L]
] /PG : obtained in Sec. Il B from the second-order expansioh in
i *  Néel order Hei Ty andd,n. S' stands for the sum of the perturbative correc-
0 "‘M—'—'—I'MMM— tionsS,, Sy, S, andSe defined in Eqs(21)—(24). Integrat-
0 10 20 ing first the pseudofermions, we can write the propagator as
U/t
1
_ - t
FIG. 3. Phase diagram of the 2D half-filled Hubbard model. 9(1,2=5 f Dlz]e” Sweml@R G(1,42)R], (53

=THF: Fermi-liquid (FL) phaseTy<T=<Tx": local moments with

no AF short-range orde(Curie spins,é~1). T=0: Slater (U

<4t) and Mott-Heisenberg > 4t) antiferromagnets. At finite z:f D[z]e*SNLaM{Z], (54)
temperature, there is a pseudogap phade<4t) and a Mott-

kéubb?jr(?_insn:jla]:[_orl(éim)hsepare}tiq bya:cn;}etal-insull_ator(j‘[ran§itior; where G(1,2z) is the pseudofermion propagator calculated
(dotted ling defined by the vanishing of the tunneling density of ¢, given configuration of the bosonic field z:
statesp(w=0) at zero energySec. V). All lines, exceptTy=0

(thick solid line, are crossover lines. The NIM description is

valid below Ty (RC regime (from Ref. 56. f D[q),L]d)l(ﬁze*SHF[q’]*S'[ZVCI’YL]
4(1,22)= - . (59

with the assumption of AF short-range order—igs A1 j D[®, L]e Sl ®1-S'[z.L]

or, equivalentlym<cA/2. We defineT’ as the solution of

the equatlonmft_:AIZ obtained from Eq.(50). Then, the Tpe actionSy ®]+S'[z,®,L] describes HF fermions in-
domain Hgf validity of the NloM is given by T<Tx  teracting with spin fluctuations via the acti@. Since the
~min(Ty",T"). At wea!< coupling, Tx~Ty", while Tx  HF pseudofermions are gapped, we expect a perturbative ex-
~T'~J at strong coupling. The crossover temperatlite  pansion in S' to be well behaved. To leading order,
displayed in Fig. 3 is a smooth interpolation betwe‘éﬁ G(1,22)=G""(1,2) and the fermion Green’s function sim-
andT' (Ref. 74. plifies to

The phase diagram is shown in Fig. 3. Abolg", spin
fluctuations are not important and we expect a Fermi-liquid HE N
behavior. BetweelTHF and Ty (a regime which exists only 90102(1’2):(1%2 ga1a2(1’2)<(Rl)”lal(R2)02a2>' (56)
in the strong-coupling limjt local moments form but with
no AF short-range ordéCurie spinsé~1). BelowTy, the ~ Where the product of rotation matrices is averaged with the
system enters a renormalized classical regime of spin fludNLoM action. This approximation neglects the effect of spin
tuations where the AF correlation length becomes exponerfluctuations on the propagation of pseudofermions. Their in-
tially large [Eq. (51)]. AF long-range order sets in &ty fluence on the propagation of fermions is implemented only
=0. Although there is a smooth evolution of the magneticthrough the decomposition of the fermion into a boson and a
properties as a function df, the physics is quite different Pseudofermion.
for U<4t and Us4t. This will be shown in Sec. IV by Using the Schwinger boson propagator derived in Sec. |
studying the fermion spectral properties. The main conclutEds.(47)—(49)], we have
sions are shown in Fig. 3. At zero temperature the system is _
an antiferromagnet, which evolves from a Slater to a Mott- {(R1)¢,a,(R2)5,0,) = = 95, 0,0, .a)l P(1.2) = 85, a,Nol,
Heisenberg behavior ad increases. At finite temperature (57)
there is a pseudogap phase for<4t and a Mott-Hubbard _
insulator forUs4t. These two regimes are separated by avhereD is the noncondensed part DY, . Using this expres-
(finite-temperaturemetal-insulator transitioridotted line i~ Sion in Eq.(56) we finally obtain for the fermion Green’s
Fig. 3 defined by the vanishing of the tunneling density of function:

statesp(w=0) at zero energy. ot V=, Gt 3 58
- troWr151) = Oa,0' Y\l T— T ),

IV. FERMION SPECTRAL PROPERTIES 28 k'

. . : Go(k k' w)=~
In this section, we study the influence of the long- B

wavelength spin fluctuations on the fermion spectral proper- _ HE ,
ties. The fermionic Green's function (¥, . W[ ), written w—,)D(q,»,)+NeG ; (Kk' w). (59

> f G F(k—q,k—q,
w,, q

r171
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1.5

Sincen, vanishes at finite temperature, the fermion Green'’s
function is spin rotation and translation invariant in the ab-
sence of AF long-range order. We show below that the first
term on the right-hand side of E(G9) corresponds to inco-

herent excitations. At zero temperature, the last term of Eq.
(59) describes Bogoliubov QP’s carrying a total spectral

b=l
I
|

o>
I
I

0.0564¢

weightng.

To study in detail the fermion excitations, we consider the

spectral functionA(k,w)=—7"mgG (k. K,io—w+i0")
and the tunneling density of statesDOS p(w)

=[dwA(k,w). Performing the summation over bosonic

Matsubara frequencies in E9) we obtain

A(k,ﬁ)):AinC(k,ﬁ))+noAHF(k,(D), (60)

gc )
Aind(k,0) = fqg{[nB(wq) +Ne(— Ek—q)][uk—qﬁ(w_ Wq
q

—Ey—q) T0f_ @+ wg+Ey_q)]
+[Ng(wg) + NE(E—g) I[Ug_q8( @+ 0q— Ey—q)
+oi_ (0= wy+Ex_g) T}, (61)

whereng(w) andng(w) are the usual Fermi and Bose oc-
cupation numbers ef°+1)"! and Aye the HF spectral
function:

An(K, 0)=U28(w—E) +vid(w+Ey), (62)
1 € 1 €
2_~ K 2_"[q1_ Kk
Uk—2(1+ Ek), Uy 2(1 Ek) (63)

One can check that the spectral functid(k, w) is normal-
ized to unity. From Eqs(60) and (61) we deduce

gc
f dw.A(k,w)ZJ —
g <A @q

where the second equality is obtained by usiafz,)=1
[Eq. (50)]. From Eqs.(60)—(63), we obtain

+n0:1,

1
(64)

p(®) = pinc( @)+ Noppe(w), (65

Pmc(w):P;c(w)"‘P;c(_w)' (66)

cA

g ! ! ! !
prd @)= 72 | dw/Ing(w)pur(w+ ) oo+ o)

t(ng(w )+ puro—0")l(o-o0’)],  (67)

where

prr(@) = 0(w?—AD)

\/%Po(\/wz—Ag) (68)
0

is the HF DOS and) the step function. We have approxi-

S~

!

N

o
-
-

[
(=}
[~

OJ/AO

FIG. 4. Spectral functiond(k,) in the weak-coupling limit
U=t for T=0 (Slater antiferromagngtand T=A,/5 (pseudogap
phase. k= (#/2,77/12). The vertical lines represent Dirac peaks of
weightny/2 (Bogoliubov QP’3. At finite temperature, precursors of
the zero-temperature Bogoliubov QP’s show up as peaks of width
~T at =E, . At low energy(andT>0), we observe a pseudogap
with an exponentially small spectral weightat=0. Energies are
measured in units df (from Ref. 56.

A. T=0: Slater vs Mott-Heisenberg antiferromagnetism

At zero temperature, the incoherent part of the spectral
function[Eq. (61)] can be simplified. All the occupation fac-
tors vanish, except fermionic factors at negative energies
which are equal to 1, so that

Kw)= | o [u?
Ainc(K, )= qZ_wq[uk_qa(w_wq_Ek_q)

+of_g8(w+ wg+Ex_g)]. (69

In the same way, we obtain for the DOS

g CA ! ! !
Prd@)= 72 | 00’0 =w)) (0= w"). (70)

In Figs. 4 and 5 we show the spectral function at khe
=(m/2,77/2) point of the noninteracting Fermi surface at
weak U=t) and strong U=12t) coupling. The spectral
function A(k,w) exhibits a gap A, which is a conse-
quence of AF long-range order. There are well-defined Bo-
goliubov QP’s with excitation energy E, , as in HF theory,

15
- T=0 — U=12%
[ T=4%---  Ag=5.68t
[ 1o = 0.63
1 —
Ak,w) [
os £ ‘
U-lj\llllllllll\l
1 ] 1
OJ/AO

FIG. 5. Spectral functiotd(k, ) in the strong-coupling regime
U=12 for T=0 (Mott-Heisenberg antiferromagneand T=J/5
(Mott-Hubbard insulatgr At T=0, when U increases, spectral
weight is transferred from the Bogoliubov QP peaks to the incoher-

mated the Fermi occupation numbers by their zeroent excitation backgrounthote the difference in the energy scale,

temperature limit, which is valid fof <Tg".

which is fixed byA,, between Figs. 4 and) %from Ref. 5.
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1

I : I plw) — | U=12t
X i i po(w) ==,
| i i pur(w) —---
- | i
0.5 |- ; !
| | !
' i
[ vl‘-
[ // \\
0 : L L L L I L L L L L L L L I L L L L L L l—‘l—‘l‘-l ] I Il 1 ‘I-~|.‘| Il
4 -2 0 2 4 4 0 4 8
w/t w/ft
FIG. 6. Zero-temperature DOB(w) at weak couplingU=t FIG. 7. Same as Fig. 6, but at strong couplitly=12t (Mott-

(Slater antiferromagngtp(w) differs from the free-fermion DOS Heisenberg antiferromagnep(w) differs strongly from the nonin-
po(w) only at low energy due to the opening of the AF gap,2 teracting DOSpy(w), as the AF gap exceeds the noninteracting
(see inset Since the incoherent excitation background carries aandwidth. It also differs from the HF DOS,(w) due to the
negligible fraction of the total spectral weight, there is no noticeableincoherent excitation background carrying a significant fraction of
difference betweemp(w) and the HF DOS(w) (not shown in  the total spectral weight.
the figure.

typical of a Slater antiferromagnet at weak coupling and of a
but their spectral weight is reduced by a factgr<1l be-  Mott-Heisenberg antiferromagnet at strong coupling. As
cause of quantum spin fluctuations. The remaining weighthown in the next section, Slater and Mott-Heisenberg anti-
(1—ng) is carried by an incoherent excitation background atferromagnets behave very differently at finite temperature.
higher energy |w|>Ey).

There are important differences between the wedk- ( B. T>0: pseudogap vs Mott-Hubbard gap

<4t) and strong- U>4t) coupling regimes. First, the AF
gap 2A,~te 2™V s exponentially small at weak coupling,
while it tends toU for U>4t. Second, the Bogoliubov QP’s
carry most of the spectral weight in the weak-coupling re-

gime, smcc_ag/gc=1—no IS expor)entl_fallly small wherU These peaks are incoherent precursors of the zero-
<4t. As U increases, spectral weight is transferred from thetemperature Bogoliubov QP peaks. The zero-temperature AF

Bogoliubov QP's to the incoherent excitation background,gap is partially filled at strong coupling and transforms into a
and at strong couplingU>4t) the incoherent excitation seudogap in the weak-coupling regime. At higher energy

ba(_:kgro_und carries a significant fraction of the to_tal spectraﬁw|ZEk) a roughly featureless incoherent excitation back-
weight (i.e., ng and 1—ng are of the same orderThird, the eground is observed.

energy range of the incoherent excitation background d
pends on the value &f. From Eq.(69) we see that it extends
from E, to ~ EZ+ 16:2A2+cA. At weak coupling, the up-
per limit turns out to be of ordeA, (for k lying on the
noninteracting Fermi surfageThus, the energy range of the
incoherent excitation background remains very small wit
respect to the dispersion of the Bogoliubov QP endtgy
which is of ordert when Ay<<t. At strong coupling, the

At finite temperaturen, vanishes andd= A;,.. The re-
sult of the numerical calculation fdd=t and U=12t for
k= (m/2,7/2) is shown in Figs. 4 and 54(k,w) exhibits
broadened peaks of width at the HF QP energy-E,.

1. Precursors of Bogoliubov QP’s

At finite temperature, the coherent part of the spectral
function disappears. However, sharp peaks are still observed
Hat the HF energy*E,. To study the peak aE, let us
perform a few approximations on the finite-temperature
spectral function61). First, at positive energies, almost all

incoherent excitation background abofe~U/2 extends thze spectral weight comes from -the terms proportional to
over a range of orded. This energy range is of the same Yk-q IN EQ. (61) (except St energies close to zgravhose
order of magnitude as the dispersion of the Bogoliubov QFEUM Will be denoted byA~. Second, we replace the Fermi
energy, which is also of ordérwhenU 4t [as can be seen occupation number by the step function, given that the tem-

from the expansiorEk:U/2+J(coskx+cosky)2]. perature is small compa_red . Regrouping terms con-
In Figs. 6 and 7 we compare the zero-temperature DO&INING the Bose occupation numbers we obtain

p(w) and the noninteracting DO&,(w). At weak coupling > _ > >

(U=t), p(w) is similar to the HF result, with no visible ATk 0) = Apg(k, @)+ Apeaf ks ), (71)

effect of the incoherent excitation backgroupdw) differs gc

from po(w) mainly at Ipw energy, due to tk(gsmalb AF gap A,?ea;(kyw) = f Z_nB(wq)uE—q[ﬁ(w_ wq—Ex—g)

2A,. At strong coupling U=12t), p(w) differs strongly qs®q

from po(w), due to an AF gap 2,~U exceeding the non-

interacting bandwidth. There is also a significant difference

betweenp(w) and pye(w), which results from the incoher- Ab>g has the same expression as the incoherent excitation

ent excitation background. background terni69) at zero temperature. It thus describes a
The spectral functiond(k,w) and the DOSp(w) are  temperature-independent incoherent excitation background

+8(0+ wq—Ex_q)]- (72)
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at energies abovg, . A;eakgives rise to the peak at the HF 2
energyE, . To see this, let us put it into a more explicit form.

Because of the bosonic occupation numbers, the sumaver

in Eq. (72) is dominated by wave vectors satisfying<T

or, equivalently,|q|=<T/c. For T<Tyx, T/c<1 and we can Alk, w)1
neglect theq dependence o, and uﬁ_q. The integrand

then becomes isotropic, and one can use

ww

2 cA 0 =
fc_:f dog 0.8 09 1 11
q®q m 2 (IJ/AO

The result is FIG. 8. Finite-temperature spectral function at weak coupling
g for two different points of the noninteracting Fermi surface. kor
2 close to ¢r/2,7/2) a second peak appears beldy (see te
Apeal k) = Uz ng(|o—Ex) (73 trl2.mi2) peak app W (see text

) singularities—the second peak disappears. We believe this
for Jo— Ek|>>m and vanishes fofo —E,J<m. Form<|o  gecond peak to be an artifact of our lowest-order approxima-
—E|<T, Acafk, ) behaves likeT/|w—E|. At energies ion in the pseudo-fermion-boson interaction.

further away from the peak center, it decreases like

e~ l*~Bd/T_ Thus the width of the peak is of the order of the 2. Pseudogap vs Mott-Hubbard gap
temperature and therefore corresponds to incoherent excita-
tions. The vanishing ofd(k,w) for |w—E|<m is clearly
unphysical(note that it cannot be seen in the figures, simce
is exponentially small It would be suppressed by any finite
lifetime in the bosonic propagatd®. The finite-temperature
DOS suffers from the same artifafite., p(w)=0 for |w c
—Ag|<m]. fg—nB(wq)[uﬁ,qa(erwq—Ek,q)
The spectral weight of the peak By, is 42@q

As shown in Figs. 4 and 5, the spectral functidk, )
extends below the HF enerdy, (and above—E, for o
<0) at finite temperature. The corresponding contribution to
A(k,w) is given by[see Eq(61)]

)_ 2( g) Uk qO(@— 0t g (75)
=ufl1- o).

g T
doA (K o)=ui—T In( — _
J @ Apeail ;) kK2arc m The presence of the Bose occupation nuntiggiw,) shows

(74)  that the low-energy fermion statelss{ <E,) are due to ther-
mal bosons—i.e., thermally excited spin fluctuations. A fer-
weight of the peak turns out to be temperature independerwIon added to the system with .momentUmand energy

2 _ C . |w|<E, can propagate by absorbing a thermal boson of en-
and equal tasn (no=1-g/gc), which is nothing else but o " " 4" emitting a pseudofermion with energy
the Bogoliubov QP weight in the ground state. We conclude:gy N gap —d
that the peak is an incoherent precursor of the zero- The ?owest fermion energies are obtained by solving
temperature Bogoliubov QP peak. As the temperature de;E ~wg (OF @=—Ey.qtwy). In the weak-couplin
creases, it retains its spectral weight, but becomes sharpﬁr k=a  ®qg ktg' ®al: piing

and sharper, and eventually becomes a Dirac pedk=al. mit, mlaxq(_w?]):cA~2Ao and. Er‘;*quk' 'II'?us t_here '3 h
As expected, the spectral function evolves continuoustSpeCFra weight at zero energy: the spectral function and the
' density of states exhibit a pseudogdpgs. 4 and 9 Note

whenT—0. Asin the zero-temperature case, the dependen%%at the DOS remains exponentially small at low energy:
of ng uponU describes the transfer of spectral weight from

the Bogoliubov QP’s to the incoherent excitation background
when the Coulomb repulsion increases. U=t
The approximatior{73) suggests that the peak ik, w)

should exhibit the same features, regardless of the location of

k on the noninteracting Fermi surface. Numerical calcula- () 05
tions confirm this conclusion, with one exception. For wave '
vectors near 4/2,7/2), a secondsmalle) peak appears at
low energy(Fig. 8). From a mathematical point of view, it is
due to the vanishing of the first-order derivative of the argu-

where the last result is obtained using Esfl). The spectral

:

ment of thes function in Eq.(72), which occurs forV jwq 0.05 0.06 0.07 0.08
=V Ex_q. The energy at which the integration contour in w/t

the g plane, defined by thé function, passes through this

point can be estimated to h&y\1—(c/|v,])*, wherevy, FIG. 9. Finite-temperature DOS(w) at weak couplinglJ=t,

= V€ is the free-fermion velocity. For wave vectors veri- T=A,/5 (pseudogap phaseAt w=0 the DOS is finite but expo-
fying |vi|<c—i.e., sufficiently close to the Van Hove nentially small[Eqg. (76)].
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1
[ =12t RPYTYT=p— '
[ 1 pl0)=10"% ------ :
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FIG. 10. Finite-temperature DOB(w) at strong couplingU
=12, T=J/5 (Mott-Hubbard insulator FIG. 11. Linesp(w=0)=const in the U, T) plane. The vertical
line corresponds tp(w=0)=0.

w
p(w)~eA0’Tcosr(?

, lo[<A. (76 vanishes and the pseudogap becomes a Mott-Hubbard gap
(Fig. 3. U, is obtained by equating the minimum enetyy
This result differs from pseudogap theories based on Gausgf g HF fermion to the maximum energy of a Schwinger
ian spin fluctuations which find a much weaker suppressioyoson /m2+c2A2. For T—0 the result isU.~4.25. It
of the density of states at low enertjyit bears some simi- should be noted that the NtM, which is a low-energy
larities with the results obtained by Bartosch and Kopietz fortheory, does not allow us to describe accurately the high-
fermions coupled to c_IassicaI phase fluctugtior}s .in incom—energy Schwinger bosortwith |g|~A) and in turn the low-
mensurate Peierls Cha'ﬁJS"? the strong-coupling limit, ther- gnerqy fermion excitations. In particular, the critical value of
mally excited spin fluctuations lead to a small reduction ofy .aiculated above depends on the cutoff procedure used in
the zero-temperature gap sinca ~J<E,~U/2. The sys- 1o NLoM. Note also that we do not know at which tem-
tem is a Mott-Hubbard insulator with a gap\g of orderU  erature and how the metal-insulator transition ends.
(Figs.5and 10 _ . Figure 11 shows the lines(w=0)=const in the U,T)
Alast comment s in order here. Since the system is in thejane Our results are ifsemiquantitative agreement with
renormalized classical regime, it is tempting to treat theye nymerical calculation of Moukouri and JarféliUsing
NLoM in the classical limitfwhich amounts to neglecting the criterion p(w=0)<10"%(2t) to identify the Mott-
the quantum(tempora) fluctuations of the Nel field n].  jnqylating phase, these authors concluded that the system is
Such an approach is expected to be at least qualitatively cogyyays insulating at lowbut finite) temperature even in the
rect for the low-energy boson&{=<T) and should then give \yeak-coupling limit, which seems to invalidate the Slater
a good approximation ofi(k, ) in the vicinity of the peaks  gcenario as the mechanism for the metal-insulator transition
aroundw= * E, . Retaining only thew,=0 contribution in (which requiresT,,r = Ty=0). Our approach shows that the

Eq. (59), one finds results of Ref. 64 are not in contradiction with a Slater sce-
gc nario at weak coupling, but merely reflect the exponential

Ak, :Tf 21w S(w—Ep )+v2 S(w+E, 1. suppression of Fhe_ density of_states due to the_ presence of a

ok @) q wé[ -q0(@ ™ Bog) H0icgdl@+ Big)] pseudogap. A similar conclusion was reached in Ref. 65.
(77)

Equation(77) can also be obtained from E¢61) by using V. ATTRACTIVE HUBBARD MODEL

Ng(wq) +1~ng(wy) ~T/wg>1 and neglecting the term

* wq in the argument of thed functions. It is readily seen In this section, we show that the results obtained in the

that the classical calculation does not reproduce therevious sections translate directly to the attractive Hubbard
pseudogap, sincely(k,») vanishes fofw|<E,. Although  model. The latter is defined by the Hamiltonian
the pseudogap originates from thermally excited spin fluc-
tuations in the renormalized classical regime, a fully
guantum-mechanical calculation gf(k,w) turns out to be H=-> cl (t+u)c,—U>, C:TCFTC:LCU’ (79)
necessary to account for the presence of low-energy fermion ro r
excitations.
where —U(U=0) is the on-site attractionu=—U/2 at

C. Finite-temperature metal-insulator transition half-filling.

Under the particle-hole transformatfn
We conclude from the results of Sec. IV B that our ap-

proach predicts a finite-temperature metal-insulator transition

between a pseudogap phase and a Mott-Hubbard insulator as c—(=D)'cel,, ¢ = (=1, (79
the strength of the Coulomb interaction increases: at a criti-

cal valueU_, the density of states at zero energfw=0) the Hamiltonian become@ip to a constant term
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1
H=—> cl(t+U/2)c,+U cficiclic,, ;T
r,o r i K
FL ' et
—(w+U2) 2 (cfieq—clic), (80) ]
' T ,i//: \\\\
. - | 7RG regi L
and the charge-density and pairing operators transform as ”, fi zef;li‘e pre-formed. pairs 7,
I . =~
- / *
T 2 / PG
= c,,C 25 +1, 81 / .
P2 Cror 28, (&0 o ddpgl  SC.CDW order gy T.
e 0 10 20
Ar:CriCrT_’(_l) Sr 1 (82) U/t
Al=clcl —(-1)'s’, (83) FIG. 12. Phase diagram of the 2D half-filled Hubbard model

with an attractive interaction-U(U=0). T=TH": Fermi liquid

where S=cloc,/2 and Sy =S/*iS!. The transformed (FL) phase.Ty=T=T"": preformed pairs with no superfluid or
Hamiltonian (80) corresponds to the repulsive half-filled charge-density-wave ordeé{1). T<Ty: renormalized classical
Hubbard model with a uniform magnetic fielch-U/2 along  (RC) regime ¢>1). T=0: superconductingSC) and charge-
the z axis coupled to the fermion spins. At half-fillingu(  density-wave(CDW) long-range order§U<4t, BCS limit; U
=—U/2), the latter vanishes and the Hamiltoni¢80) re- >4t, Bose-EinsteinBE) limit]. The dotted line is obtained from
duces to the one studied in the previous sections. Thus, in tHBe vanishing of the tunneling DOS(w=0) at zero energy. All
attractive modelg= # charge andj=0 pairing fluctuations lines, excepfl.=0 (thick solid line, are crossover lines.
combine to form an order parameter with @Dsymmetry.
Away from half-filling, the degeneracy between charge andong-range orders. The dotted line in Fig. 12 is obtained from
pairing fluctuations is liftedby the uniform magnetic field the vanishing of the tunneling DO w=0) at zero energy.
p+U/2 in the repulsive modgl and the(superconducting
order parameter exhibits $2) symmetry at low tempera-
ture. As a result, there is a Berezinskii-Kosterlitz-Thouless
phase transition to a superconducting state at a finite tem- \We have presented an approach to the 2D half-filled Hub-
peratureTgyr (Refs. 75-77. bard model which describes both collective spin fluctuations

In the following, we consider only the half-filled case and single-particle properties for any value of the Coulomb
where the attractive model maps onto the repulsive modekepulsionU. It is valid below a crossover temperatufg
studied in the present work. Since the Green's function angvhere amplitude fluctuations of the AF order parameter are
the spectral function are invariant under the particle-holefrozen out and AF short-range order starts to grow exponen-
transformation(79), we can directly apply the results ob- tially (renormalized classical regime
tained in the previous sections. The phase diagram is shown The magnetic phase diagram is obtained from arNL
in Fig. 12. The crossover lines are the same as in Fig. 3, buhat is derived from the Hubbard model. The parameters of
their physical meaning is different. Below the HF transitionthe NLoM—the bare spin stiffnesg’ and the spin-wave
temperatureT¢", the SQ3) order parameterdy-,,Aq-0)  velocity c—are expressed in terms of the mean value of the
acquires a finite amplitudd,. This corresponds to the ap- kinetic energy and current-current correlation functions in
pearance of bound particle-hole and particle-particle pairghe HF state. The model is solved by a saddle-point approxi-
with a size§y~t/A,. Below Ty, directional correlations of mation within theC P* representation where the’ dldield is
the order parameterp(_ ,,Aq-o) start to grow exponen- represented by two Schwinger bosons. Bose-Einstein con-
tially (renormalized classical regimend eventually long- densation of the Schwinger bosons at zero temperature sig
range order sets in at tfieg =0 phase transition. Because of nals the appearance of AF long-range order. At finite tem-
the S@3) symmetry, the ground state can have any combiperature (below Ty), the system is in a renormalized
nation of superconducting and charge-density-wave longclassical regime where the AF correlation lengtlis expo-
range orders. AdJ increases, the ground state smoothlynentially large. The single-particle properties are obtained by
evolves from the BCS to the Bose-Einstein limits. In thewriting the fermion field in terms of a Schwinger boson and
weak-coupling limit U <4t), there is a pseudogap regime at a pseudofermion whose spin is quantized along(thetu-
finite temperature due to the directional fluctuations of theating Neel field. This decomposition allows us to approxi-
SQ(3) order parameter. In the strong-coupling limiU ( mate the fermion Green’s function by the produit real
>4t), betweenTi" and Ty, there is a regime of preformed spacg of the Schwinger boson propagaterhich is obtained
(local) particle-particle pairs with no superfluid or charge- from the NLoM) and the HF fermionic propagator.
density-wave short-range orde§~1). Only belowTy do Our results are summarized in Fig. 3, which shows the
these bosonic pairs begin to develop short-range order. Athase diagram of the 2D half-filled Hubbard model, and
T=0, the particle-particle pairs Bose condense and/or localFigs. 4—10. At weak coupling and zero temperature, our
ize, thus giving rise to superfluid and/or charge-density-waveheory clearly describes a Slater antiferromagnet with an ex-

VI. SUMMARY AND CONCLUSION
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ponentially small AF gap, well-defined Bogoliubov QP’s car-  Our NLoM approach is reminiscent of slave-fermion
rying most of the spectral weight, and an incoherent excitatheorie§®~%2where the fermion is written as the product of a
tion background at higher energy. Asincreases, the Slater spinless pseudofermion and a Schwinger boson carrying the
antiferromagnet progressively evolves into a Mott-spin degrees of freedom. Slave-fermion theories apply to the
Heisenberg antiferromagnet with an AF gap of ordesnd a  t-J model where the Hilbert space is truncated by forbidding
significant fraction of spectral weight transferred from thedouble occupancy of the lattice sites. In our work, the
Bogoliubov QP’s to the incoherent excitation background. Atpseudofermion also carries a spin, which is a necessary con-
finite temperature, the Bogoliubov QP’s disappear and onlylition to describe both the weak- and strong-coupling re-
incoherent excitations survive. Nevertheless, precursors dfimes.
the zero-temperature Bogoliubov QP’s show up as sharp Our approach bears also some analogies with the work of
peaks in the fermion spectral function, with a width of order Gusyninet al>*"8"%on 2D fermion systems with an attrac-
T. The presence of thermal spin fluctuations gives rise tdive interaction. These authors use a “modulus-phase” rep-
fermionic states below the zero-temperature AF gap. At weakesentation for the S@) superconducting order parameter
coupling, the latter is completely filled and replaced by awhich is analog to our “amplitude-direction” representation
pseudogap. The DOS w) remains, however, exponentially of the SA3) AF order parameter. At low temperature, the
small at low energy. At strong coupling and finite tempera-phase of the superconducting order parameter is governed by
ture (0<T=<Ty~J), the system is a paramagnetic Mott- a SA2) sigma model. The fermion Green’s function is cal-
Hubbard insulator in a renormalized classical regime of spirculated both above and below the Berezinskii-Kosterlitz-
fluctuations. At higher temperatuig~J<T=<TL", the sys- Thouless phase transitiohgcr by writing the fermion field
tem is characterized by the presence of preformed local mas the product of a pseudofermion and a bosonic field which
ments without AF short-range order. Thus our theory predictss related to the phase of the order parameter. As in our work,
a metal-insulator transition at finite temperature between & simple decoupling procedure between pseudofermions and
pseudogap phase at weak coupling and a Mott-Hubbard irffosons is used. A pseudogap phase is found both above and
sulator at strong coupling. For the 3D Hubbard model, webelow Tgyr. Gusyninet al. also point out the necessity to
expect a similar phase diagram, but wikl replaced by a perform a fully quantum-mechanical calculation to describe
true transition lineT, between a paramagnetic phase and arihe pseudogap phaé&The main difference with our work
AF phase. The weak-coupling pseudogap phase therefore agemes from the SQ@) symmetry of the order parameter
pears as a consequence of the low dimensionality of the sydthich leads to a finite-temperature Berezinskii-Kosterlitz-
tem and the high symmetrji.e., SQ3)] of the AF order ~Thouless phase transition.
parameter. Let us now mention some limitations of our approagh.

At half-filling the attractive and repulsive Hubbard mod- The feedback of spin fluctuations gpseudgfermions is not
els can be mapped onto one another by a canonical transfdtlly taken into account. As a result, we miss important ef-
mation so that our results also apply to the attractive casdects, like the renormalization of the zero-temperature HF
AF fluctuations in the repulsive model correspondgte w  9apAg by quantum spin fluctuationgi) The crossover tem-
charge andj=0 pairing fluctuations in the attractive model. peratureTy, which is identified to the HF transition tem-
The corresponding phase diagram is discussed in Sézee/  perature Ty™ at weak coupling, is overestimated. Due to
Fig. 12. Kanamori screening effect3,x should be smaller tha?ﬁﬁF

Besides its validity both at weak and strong coupling, our(Refs. 13 and 65 (iii) The NLoM approach is restricted to
approach differs from previous weak-coupling thectie¥  low temperature T<Ty). In particular, it does not give ac-
of the pseudogap phase in two respects. First, it takes spicess to the crossover regime between the Fermi liquid and
fluctuations into account within a highly non-Gaussianthe pseudogap phase at weak coupling. This regime is char-
theory (the NLoM) and is valid at low temperature €T  acterized, as the temperature decreases, by the suppression of
<Ty). On the contrary, most of the other approaches assumieandau’s QP’s(iv) At finite temperature, we predict a metal-
Gaussian spin fluctuations so that their range of validity ignsulator transition between a pseudogap phase and a Mott-
restricted toT~Tyx. Second, our NzM approach is an ex- Hubbard insulator. However, being a low-energy theory, the
pansion about the AF ordered state which is a valid startingfN\LoM does not allow us to study the finite-temperature
point in presence of AF short-range order. When calculatingnetal-insulator transition in detaisee Sec. IV.
fermion propagators, we have to consider HF pseudofermi- But the main shortcoming of our approach is that it does
ons interacting with Schwinger bosons whose dynamics isiot distinguish between Bogoliubov and Mott-Hubbard
determined by the N&M. Since the HF pseudofermions are bands. We find a single energy scalkyj in the density of
gapped, we expect a perturbative expansion in the pseudstatesp(w) and the spectral functiosl(k,w). On physical
fermion-boson interaction to be well behaved. Our resultgrounds, we expect instead two energy scales: namgyy,
were obtained to lowest order where the fermion Green'sandU/2, corresponding to Bogoliubov ban¢sr precursors
function is given by the produdin real spacgof the HF  thereof at finite temperatureand Mott-Hubbard bands,
fermionic propagator and the Schwinger boson propagatarespectively® In the weak-coupling limitA, depends cru-
(which is obtained from the N&M). This should be con- cially on the nesting properties of the Fermi surfé&tater
trasted with perturbative treatments applied to free fermionantiferromagnetism On the other hand, the energy scale
interacting with soft collective fluctuations where no smallU/2 has a purely local origin, which is independent of the
expansion parameter is available. Fermi surface geometry and is associated with the Mott-
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Hubbard localization. A proper description of the Mott- , 1

Hubbard localization would require one to treat the charge ) ,=- BN > vu(K)v, (k")
fluctuations beyond the HF approximation for the field Ko
(Sec. I)). In the strong-coupling limit, charge fluctuations are
frozen out. This is the reason why the HF saddle point for the XTI Py ®Prs ) )T (P PN, (AD)
amplitude fieldsA, and A provides an accurate description ) o

of the local momentéwhose direction is given by the, Wh_e_re Tr denotes the trace with respect to the spin indices.
field) which form in the strong-coupling limH Note that for  Writing the HF propagatofEq. (11)] as

U>4t, A;—U/2 so that the system is characterized by a
single energy scale. At intermediate coupling +8t), a

! r
k' o

_<(Dka) k' w ’> 5(0 ' [5k k’G(k w)+5k k’+ﬂU3F(k w)]

four-peak structure corresponding to the simultaneous pres- (A6)
ence of Bogoliubov and Mott-Hubbard bands has been ob-

served in numerical simulatiofi®? and analytical —lw— e A
studies®3 of the Hubbard model. Although it misses some Gk w)= "w2iE2 F(kw)= 2, g2’ (A7)

T ; . ®
aspects of the Mott-Hubbard localization, in particular at in- K K

termediate coupling, we believe that our theory captures thgnd using Trg,o,)=25,,,, Tr(o30,030,/)
main features of the physics of the 2D half-filled Hubbard=2s, ,.(25,5— 1), andF(k+w w)=F(k,0), we obtain
model.

There are several directions in which this work could be ! 26,, ) 5
further developed. The most obvious one is to consider situ- 11,/ =~ BN 2 v u(K)v o (K[ Gk, )
ations where antiferromagnetism is frustrated due to either a kk'so
nonbipartite lattice or a finite next-neighbor hopping ampli- + Ok 4 m(28,3— 1)F(k,w)?]. (A8)

tude. Doping would also induce magnetic frustration. This

opens up the possibility to stabilize more exotic magneticﬂl”;, is thus diagonal inv and»’. One can show that it is
orders (e.g., a noncollinear orderand/or to reach the also diagonal inw and’. Indeed, whenever these two in-
quantum-disordered and quantum-critical regimes of thejices are different, the right-hand side of E48) is odd in
NLoM (Fig. 2) and study the corresponding fermion spectralk, or k, and vanishes after wave-vector summation. Further-

functions. more, vo(k+w) vo(k) and v ,(k+m)=—-v,(k) for u
=X,Y, so that
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X(28,3—1)F(k,w)?]. (A9)
APPENDIX A: HF CURRENT-CURRENT CORRELATION

FUNCTION For T<TR", one can perform the Matsubara frequency sum-

mation in the zero-temperature limit. This gives
In this appendix we calculate the static uniform current-

current correlation function 2

1 1 A
-2 Gkw)?=2 > F(k,w>2=—4E°3. (A10)
, , w w k
HVV = JV(OIO)JV/(Ovo) . (Al)

= {1 " e The only nonvanishing correlator functions are therefore

From the definition of the currerjl}j [Egs.(25) and(26)], we

see that its zero-frequency zero-momentum Fourier trans- U 2 Aé

form involved in Eq.(A1) is given by Hgp=1T5= —i, (A11)
JV(OO):LZ v (k)q)T g (I) (Az) 33 33 2,2 S|nzkx
u\ \/ﬂ_./\/ ) M ko v+ ko Hxx:Hyy:4A0t fk . (A]_Z)

k

where
APPENDIX B: SU(2) GAUGE FIELD

vo(k)=1, (A3) In this appendix we give a proof of Eq&35) and (36),

relating the Nel and canting fields, andL, to the gauge
v (k)=2tsink,), wu=Xxy. (A4)  field A}, and the rotated canting field. Let us recall the
definition of the gauge field:
Using the Wick’s theorem to evaluate HF averagesdof

fields, we can expresH;’:, as A,”=iRI&ﬂR,, n=t,X,y. (B1)
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The indext stands for real-time derivation. Imaginary-time

results are obtained using=it. The SU(2)/U(1)rotation
matrix R, is defined, up to a U(1) gauge transformati®n
—>Rre'“f”3, by

(B2)

o-n=Ro3R/,

which means that the S@) elementR, associated tdR,

mapsu, onto n,. The gauge fieldA;, is a zero-trace Her-

PHYSICAL REVIEW B89, 085119 (2004

>

v=12

vV o |v_
A=A,

urtr
1 -1 -1
:ERr (nr/\a#nr)'Rr (I—r)

1
=§(n,/\aﬂn,)‘L,, (B7)

mitian matrix which can be decomposed on Pauli matricesience Eq(36).

T,

.o, (B3)

2 ALo,=A

.
V2123 "

We now give a derivation of E4B5). The first step is to
differentiate Eq.(B2). Derivatives of the rotation matrix are
calculated usmg Eq.(B1) and the identity d, RT—
—R/(9,R)R! which results from the unitarity oR
obtain

where the bold notation denotes the three-component vector

(A} A2 AY).

The main result of this appendix is the following general

o 3,n=—iR A, o3RI +iR03A R

=—iRA,RIR o3RI +iR,03RIR A Rl .

form for the A ,, field:
(B8)
AL =R LA (B4)  Let us define a new field
L A =RA,R=A, o (B9)
=5UAR, (3,00 + Kl (BS)  usingA,,, and Eq.(B2) we can rewrite Eq(B8) as
K, i1s some function of position and time, fixed by the o %nr:—i[:&m,ﬂ'nr]
choice of a gauge. Notice, however, that it cannot be any o~ ~
function, since it appears in the expression of the gauge-field =—ilo-Ay o0 ]=20(A,/An). (B1O)
density tensor, which must be zero. We have used the identity
Equationg35) and(36) follow quite easily. First, we have ]
[o-u,o-v]=2io-(UN\V). (B11)

1
E:LZA;rZZZ[Rr 1(nr/\‘9,unr)|2

=

1 1

z(m N, n)?= 700, n,)2. (B6)
Using d,=id, we obtain Eq(35). Second, recalling that the
rotated canting vectorr=R,‘1L, has no component along

u,, we can write

Identifying the coefficients ofo- in Eq. (B10) and vector
multiplying by n, we arrive at

~ 1

A, =—n N, n+(n;- Mr)n, (B12)
To conclude, it is sufficient to define the last term in Eq.
(B12) as«,, and to remark that, owing to the definition of

A we haveA =RiAur

ur
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