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Antiferromagnetism and single-particle properties in the two-dimensional half-filled
Hubbard model: A nonlinear sigma model approach
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We describe a low-temperature approach to the two-dimensional half-filled Hubbard model which allows us
to study both antiferromagnetism and single-particle properties. This approach ignores amplitude fluctuations
of the antiferromagnetic~AF! order parameter and is valid below a crossover temperatureTX which marks the
onset of AF short-range order. Directional fluctuations~spin waves! are described by a nonlinear sigma model
(NLsM) that we derive from the Hubbard model. The parameters of the NLsM—the spin stiffness and
spin-wave velocity—are calculated as a function of the Coulomb repulsionU. The NLsM is solved by a
saddle-point approximation within theCP1 representation where the Ne´el field is parametrized by two
Schwinger bosons. At zero temperature, there is always Bose condensation of the Schwinger bosons, which
signals AF long-range order for any value of the Coulomb repulsion. At finite temperature, the AF long-range
order is suppressed~in agreement with the Mermin-Wagner theorem!, but the AF correlation length remains
exponentially large. In theCP1 representation, the fermion field is naturally expressed as the product of a
Schwinger boson and a pseudofermion whose spin is quantized along the~fluctuating! Néel field. This allows
us to write the fermion Green’s function as the product~in direct space! of the Schwinger boson propagator
~which is derived from the NLsM) and the pseudofermion propagator. At zero temperature and weak coupling,
our results are typical of a Slater antiferromagnet. The AF gap is exponentially small; there are well-defined
Bogoliubov quasiparticles~QP’s! ~carrying most of the spectral weight! coexisting with a high-energy inco-
herent excitation background. AsU increases, the Slater antiferromagnet progressively becomes a Mott-
Heisenberg antiferromagnet. The Bogoliubov bands evolve into Mott-Hubbard bands separated by a large AF
gap. A significant fraction of spectral weight is transferred from the Bogoliubov QP’s to incoherent excitations.
At finite temperature, there is a metal-insulator transition between a pseudogap phase at weak coupling and a
Mott-Hubbard insulator at strong coupling. Finally, we point out that our results straightforwardly translate to
the half-filled attractive Hubbard model, where theq5(p,p) charge andq50 pairing fluctuations combine to
form an order parameter with SO~3! symmetry.

DOI: 10.1103/PhysRevB.69.085119 PACS number~s!: 71.10.Fd, 71.10.Hf, 71.27.1a
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I. INTRODUCTION

The Hubbard model1–4 and its generalizations play a ke
role in the description of strongly correlated fermion syste
such as high-Tc superconductors, heavy fermions systems
organic conductors.5 Despite its simplicity~the model is de-
fined by two parameters—the intersite hopping amplitudt
and the local Coulomb interactionU—and the symmetry of
the lattice!, exact solutions or well-controlled approxima
tions exist only in a few special cases like in one dimensi6

~1D! or in the limit of infinite dimension.7

It is now well established that the ground state of t
half-filled Hubbard model on a cubic or square lattice h
antiferromagnetic~AF! long-range order.8,9 In the weak-
coupling limit (U!4t), a Fermi surface instability gives ris
to a spin-density-wave ground state as first suggested
Slater.10 The AF long-range order produces a gap in the q
siparticle ~QP! excitation spectrum so that the system b
comes insulating below the AF transition temperature. In
strong-coupling regime (U@4t), fermions are localized by
the strong Coulomb repulsion~Mott-Hubbard localization!,
thus creating local~magnetic! moments on the lattice site
that are well described by the Heisenberg model.4,11 These
local moments order at low temperature and give rise t
Mott-Heisenberg antiferromagnet.
0163-1829/2004/69~8!/085119~17!/$22.50 69 0851
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The main difference between Slater and Mott-Heisenb
antiferromagnets lies in the existence or absence of
formed local~magnetic! moments above the Ne´el tempera-
ture TN .4 In the weak-coupling limit, we expect a Ferm
liquid phase down to temperatures very close toTN where
critical AF fluctuations start to grow. In the strong-couplin
limit, the system is insulating both above~Mott-Hubbard in-
sulator! and below ~Mott-Heisenberg antiferromagnet! the
Néel temperature.

This simple view, while correct in 3D, breaks down in 2D
In 2D systems, thermal~classical! fluctuations preclude a
finite-temperature AF phase transition, and the phase tra
tion occurs atTN50 in agreement with the Mermin-Wagne
theorem.12 Nevertheless, below a crossover temperatureTX ,
the system enters a renormalized classical regime where
fluctuations start to grow exponentially. BelowTX , the
Fermi-liquid description breaks down even at weak coupli
although the system remains metallic. Instead of we
defined Landau’s QP’s, the fermion spectral functi
A(k,v) exhibits two ~broadened! peaks separated by
pseudogap.

The existence of a pseudogap at weak coupling is b
understood by considering the zero-temperature limit.
zero temperature,A(k,v) is expected to exhibit two peak
corresponding to the Bogoliubov QP’s as in the Hartree-F
©2004 The American Physical Society19-1
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~HF! theory. These two peaks are separated by an AF
which is due to the presence of magnetic long-range or
At any finite temperature, the AF long-range order disa
pears in 2D. However, by continuity, the two-peak structu
in A(k,v) cannot disappear as soon as we raise the temp
ture. As pointed out in Ref. 13, the only possible scenario
that at finite by low temperature, the fermion spectral fun
tion exhibits two broadened peaks, which are precursor
the zero-temperature Bogoliubov QP’s, separated by
pseudogap. At strong coupling, the zero-temperature gap
vives at finite temperature since the system is a M
Hubbard insulator.

The simplest description of the AF ground state of the
half-filled Hubbard model is based on the HF theory. It
known that the HF theory remains meaningful even at la
U. In particular, spin-wave modes obtained from the Heis
berg model with an exchange couplingJ54t2/U can be re-
produced from a random-phase-approximation~RPA! calcu-
lation about the AF HF solution.14–17 The influence of the
spin-wave modes on the fermionic excitations has been s
ied within one-loop18 and self-consistent one-loop19,20 ap-
proximations. A QP picture for the coherent motion of a p
ticle or a hole appears to be still valid. However, AF quant
fluctuations lead to a significant reduction of the Bogoliub
QP spectral weight, with a concomitant redistribution
spectral intensity into incoherent excitations and a stro
renormalization of the AF gap. These conclusions are s
ported by numerical work on the Hubbard model21–23and, in
the strong-coupling limit, by analytical or numerical analys
of the t-J model.24

In spite of its success at zero temperature, the HF the
fails in 2D since it predicts AF long-range order at fini
temperature. In the weak-coupling limit, alternative a
proaches, which do satisfy the Mermin-Wagner theore
have been proposed: Moriya’s self-consistent-renormali
theory,14,25,26 the fluctuation exchange approximatio
~FLEX!,27 or the two-particle self-consistent theory.13 None
of these approaches gives a unified description of the m
netic properties of the 2D Hubbard model at finite tempe
ture, both at weak and strong coupling. At strong coupling
the Mott-Hubbard insulating state, spin degrees of freed
are usually described by the Heisenberg model for wh
various methods are available.11,28,29

Beside their limitation to the weak-coupling regime, the
approaches are also unable to account for the strong sup
sion of the amplitude fluctuations of the AF order parame
at low temperature and therefore essentially describeGauss-
ian spin fluctuations. Below the crossover temperatureTX ,
amplitude fluctuations are indeed frozen and only directio
fluctuations@i.e., ~transverse! spin waves# survive at low en-
ergy. The calculation of the single-particle Green’s functi
usually relies on a paramagnonlike self-energy describ
free fermions that couple to Gaussian order param
fluctuations.13,27,30–32This kind of approach was originally
introduced by Lee, Rice, and Anderson to explain the s
pression of the density of states associated with order pa
eter fluctuations near a charge-density-wave instability.33 It
has been since studied by many authors, in one and
dimensions.34–47 The assumption of Gaussian spin fluctu
08511
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tions leads to an overestimation of the fermion density
states at low energy.48 Moreover, the artificial presence o
amplitude fluctuations does not allow one to reach the c
rect T→0 limit.36,49 The effect of ‘‘directional’’~i.e., phase!
fluctuations of a complex order parameter on the ferm
density of states has been studied both for incommensu
1D Peierls systems50,51 and 2D superconductors.52 Trans-
verse spin-wave fluctuations in the finite-temperature
Hubbard model have not received as much attention so

On the experimental side, antiferromagnetism a
pseudogaps are ubiquitous in low-dimensional strongly c
related fermion systems. Pseudogaps were first observe
quasi-1D systems near a charge-density-wave instability.33,53

More recently, a pseudogap has been observed in the me
phase of high-Tc superconductors.54,55 Whether the
pseudogap in these systems is of magnetic or pairing or
is still a matter of intense debate.

In this paper, we describe a theoretical approach wh
provides a unified view of the 2D half-filled Hubbard mod
at low temperature~includingT50) and for any value of the
Coulomb repulsion.56 It is based on a nonlinear sigma mod
(NLsM) description of spin fluctuations. At zero temper
ture, our theory describes the evolution from a SlaterU
!4t) to a Mott-Heisenberg (U@4t) antiferromagnet. At fi-
nite temperature, it predicts a pseudogap at weak coup
due to strong AF fluctuations and a Mott-Hubbard gap
strong coupling. Since it takes into account only direction
fluctuations of the AF order parameter, it is valid forT
!TX , whereTX is a crossover temperature which marks t
onset of AF short-range order. In Ref. 49, one of the pres
authors reported a calculation of the fermion spectral fu
tion in the weak-coupling limit of the Hubbard model usin
a NLsM description of spin fluctuations. However, the lim
tations encountered by previous approaches could no
overcome.

As first shown by Schulz,57 spin fluctuations in the 2D
Hubbard model at low temperature can be described b
NLsM for any value of the Coulomb repulsion.58 In Sec. II,
we give a detailed derivation of the NLsM starting from the
Hubbard model. The parameters of the NLsM—the bare
spin stiffnessrs

0 and the spin-wave velocityc—are calcu-
lated as a function of the ratioU/t. For U@4t, we recover
the NLsM derived from the Heisenberg model with an e
change couplingJ54t2/U. In Sec. III, we introduce the
CP1 representation of the NLsM where the Ne´el field ~giv-
ing the direction of the local AF order! is expressed in terms
of two Schwinger bosons. This allows a simple saddle-po
solution11 from which we obtain the magnetic phase diagra
of the 2D Hubbard model. At zero temperature, there is c
densation of the Schwinger bosons for any value ofU, which
signals the presence of AF long-range order. At finite te
perature, the system is disordered by thermal fluctuatio
but the AF correlation length remains exponentially lar
below a crossover temperatureTX ~renormalized classica
regime28!. In Sec. IV, we study the fermion spectral prope
ties. The fermion is written as the product of a Schwing
boson and a pseudofermion whose spin is quantized a
the ~fluctuating! Néel field. Such a decomposition is reminis
cent of slave-boson59 or slave-fermion60–62 theories.63 It al-
9-2
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lows us to approximate the fermion Green’s function by
product~in direct space! of the Schwinger boson propagat
~which is obtained from the NLsM) and the HF fermionic
propagator. At weak coupling (U!4t) and zero temperature
our results clearly describe a Slater antiferromagnet. The
gap 2D0;te22pAt/U is exponentially small. As in the HF
theory, there are well-defined Bogoliubov QP’s. Howev
because of AF quantum fluctuations, their spectral weigh
reduced by a factorn0 (0,n0,1) which is given by the
fraction of condensed Schwinger bosons in the ground s
The missing weight (12n0) is transferred to incoherent ex
citations at higher energy (12n0!1 when U!4t). As U
increases, the AF gap increases and spectral weight is
gressively transferred from the Bogoliubov QP’s to the inc
herent excitation background. At strong coupling (U@4t),
our results are typical of a Mott-Heisenberg antiferromagn
The AF gap 2D0 is of order U. The incoherent excitation
background carries a significant fraction of spectral wei
~i.e., n0 and 12n0 are of the same order! and extends ove
an energy scale of orderJ54t2/U above the Bogoliubov QP
energy6Ek . At finite temperature, the Bogoliubov QP’s di
appear (n050 in the absence of Bose condensation! and
only incoherent excitations survive. Nevertheless, precur
of the zero-temperature Bogoliubov QP’s show up as sh
peaks at6Ek in the spectral functionA(k,v), with a width
of order T. We show that these peaks continuously evo
into the zero-temperature Bogoliubov QP peaks asT→0.
This ensures that the spectral functionA(k,v) is continuous
at the TN50 phase transition. The high-energy incohere
excitation background is little affected by a finite tempe
ture, but the presence of thermal AF fluctuations gives ris
fermionic states below the zero-temperature AF gapD0. At
weak coupling, the gap is completely filled and replaced b
pseudogap. At strong coupling, the zero-temperature gap
vives at finite temperature and the system is a Mott-Hubb
insulator.

On the basis of a numerical calculation in the framewo
of the dynamical cluster approximation, Moukouri and J
rell have called into question the existence of a Slater s
nario in the 2D half-filled Hubbard model.64–66 They argue
that the system is always a Mott-Hubbard insulator at l
~but finite! temperature even at weak coupling. We will sho
that their results are not in contradiction with a Slater s
nario at weak coupling, but merely reflect the strong supp
sion of the density of states due to the pseudogap~Sec.
IV C!.

At half-filling, the repulsive Hubbard model can b
mapped exactly onto the attractive model by a canon
transformation.67 This transformation maps theq5(p,p)
spin correlations of the repulsive model onto theq50 pair-
ing and q5(p,p) charge correlations of the attractiv
model, but leaves the single-particle Green’s function and
spectral functionA(k,v) invariant. Thus the results obtaine
in this paper apply also to the attractive Hubbard model,
with a different physical meaning~Sec. V!. At zero tempera-
ture, there is superconducting and charge-density-wave lo
range orders. As the attractive interaction strength increa
there is a smooth crossover from a BCS to a Bose-Eins
behavior. At finite temperature, the weak-coupli
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pseudogap is due to strong pairing and charge fluctuati
whereas the strong-coupling gap is a consequence of
presence of preformed particle-particle pairs.

II. DERIVATION OF THE NL sM

The Hubbard model is defined by the Hamiltonian

H52(
r ,s

crs
† ~ t̂1m!crs1U(

r
cr↑

† cr↑cr↓
† cr↓ , ~1!

where t̂ is the nearest-neighbor hopping operator:

t̂ crs5t~cr1exs1cr2exs1cr1eys1cr2eys!. ~2!

At half-filling the chemical potentialm equalsU/2. ex andey

denote unit vectors along thex and y directions.crs
† (crs)

creates~annihilates! a fermion of spins at the lattice siter .
We take the lattice spacing equal to unity and set\5kB
51 throughout the paper.

We can represent the partition function of the system a
path integral over Grassmann fieldsc rs , c rs

! . The action
can be written asSkin1Sint with

Skin5E
0

b

dt(
r

C r
†~]t2m2 t̂ !C r , ~3!

Sint5UE
0

b

dt(
r

c r↑
! c r↑c r↓

! c r↓ , ~4!

whereb51/T is the inverse temperature. In the kinetic a
tion Skin we have used the spinor representationC
5(c↑ ,c↓)T. To describe collective spin and charge fluctu
tions, we introduce auxiliary fields. The standard approac
to write the interaction part of the action asc r↑

! c r↑c r↓
! c r↓

5 1
4 (C r

†C r)
22 1

4 (C r
†s3C r)

2 and to perform a Hubbard
Stratonovich transformation by means of two real auxilia
fields Dcr and Dsr . Although this procedure recovers th
standard mean-field~or HF! theory of the Ne´el state within a
saddle-point approximation, it leads to a loss of spin rotat
invariance and does not allow one to obtain the spin-w
Goldstone modes. Fluctuations ofDcr andDsr correspond to
gapped amplitude modes. Alternatively, one could writeSint
in an explicitly spin-rotation-invariant form—e.g.
c r↑

! c r↑c r↓
! c r↓52 1

6 (C r
†sC r)

2 @s5(s1 ,s2 ,s3) denotes the
Pauli matrices#—and use a vector Hubbard-Stratonovi
field. Such decompositions, however, do not reproduce
HF results at the saddle-point level.57 As noted earlier,57,68

this difficulty can be circumvented by using the decompo
tion

c r↑
! c r↑c r↓

! c r↓5
1

4
~C r

†C r !
22

1

4
~C r

†s•VrC r !
2, ~5!

whereVr is a site- and time-dependent unitary vector. Sp
rotation invariance is made explicit by performing an angu
integration overVr at each site and time~with a measure
normalized to unity!. The Hubbard-Stratonovich transforma
tion then reads
9-3
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K. BOREJSZA AND N. DUPUIS PHYSICAL REVIEW B69, 085119 ~2004!
e2Sint5E D@Dc ,Ds ,V#expS 2E
0

b

dt(
r

F 1

U
~Dcr

2 1Dsr
2 !

2C r
†~ iDcr1Dsrs•Vr !C rG D . ~6!

Equation~6! corresponds to an ‘‘amplitude-direction’’ repre
sentation, where the magnetic order parameter field is g
by DsrVr . The HF theory is now recovered from a sadd
point approximation over the auxiliary fieldsDcr , Dsr , and
Vr ~Sec. II A!. Spin-wave excitations can then be obtain
by considering small fluctuations of theVr field about its
saddle-point value. In Sec. III we show that the amplitud
direction representation~6! allows us to go beyond the Ne´el-
ordered HF state and derive an effective action for theVr
field.

A. HF theory

Making the ansatz of an antiferromagnetic order—i.
taking constant auxiliary fieldsDcr5Dc , Dsr5D and a stag-
gering vectorVr5(21)ruz parallel to thez axis—one ob-
tains the saddle-point equations

iDc52
U

2
^C r

†C r&, ~7!

D5
U

2
~21!r^C r

†s3C r&. ~8!

At half-filling, the saddle-point valueiDc52U/2 cancels
the chemical potential term in Eq.~3!. The HF action is
quadratic,

SHF5E
0

b

dt(
r

C r
†~]t2 t̂2~21!rDs3!C r , ~9!

and can easily be diagonalized. Due to the translational s
metry breaking, there is unit cell doubling. In the reduc
Brillouin zone scheme (ukxu1ukyu<p) elementary excita-
tions are exhausted by two bands of Bogoliubov QP’s
energies6Ek56AD21ek

2, ek522t(coskx1cosky) being
the energy of free fermions.

Using the HF action~9! one obtains the HF single-particl
Green’s function

2^fkvsfk8v8s8
! &5dv,v8ds,s8G s

HF~k,k8,v!, ~10!

G s
HF~k,k8,v!52dk,k8

iv1ek

v21Ek
2

1dk,k81p

sD

v21Ek
2

,

~11!

wherep5(p,p) andv[(2n11)pT (n integer! is a fermi-
onic Matsubara frequency. The propagator~10! makes it in
turn possible to give an explicit form to the gap equation~8!:

1

U
5E

k

tanh~bEk/2!

2Ek
. ~12!

We use the notation
08511
n
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.,
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E
k
5E

2p

p E
2p

p dkx

2p

dky

2p
.

Equation~12! predicts a phase transition at a finite tempe
tureTN

HF, which is exponentially small at weak coupling an
approachesU/4 at strong coupling. Similarly to the transitio
temperature, the zero-temperature gapD0 tends toU/2 at
strong coupling and is exponentially small at weak couplin

D0.32te22pAt/U. ~13!

B. Spin fluctuations

In 2D, the HF theory breaks down at finite temperatu
since it predicts AF long-range order belowTN

HF. Neverthe-
less, the HF transition temperature bears a physical mea
as a crossover temperature below which the amplitude of
AF order parameter takes a well-defined value. This is so
times interpreted as the appearance of local moments wit
amplitudeD0 /U. Note that at weak coupling the ‘‘local’
moments can be defined only at length scale of orderj0
;t/D0, which corresponds to the size of bound particle-h
pairs in the HF ground state. Thus,stricto sensu, local mo-
ments form only in the strong-coupling limit whenj0;1.

Below TN
HF, it is natural to neglect amplitude fluctuation

of the AF order parameter and derive an effective action
theVr field by integrating out the fermionic degrees of fre
dom. We callTX the crossover temperature below which A
short-range order appears. As will be shown subsequentl
the weak-coupling limitTX;TN

HF, whereas at strong cou
pling TX;J54t2/U!TN

HF. ForT!TX , the amplitude of the
AF order parameter can be approximated by its ze
temperature HF valueD0. Following Haldane,11,69 in the
presence of AF short-range order (T&TX) we write

Vr5~21!rnrA12Lr
21Lr . ~14!

n is a unitary vector representing the Ne´el field, whereasL is
the canting vector, orthogonal ton, taking account of local
ferromagnetic fluctuations.n is assumed to be slowly vary
ing andL to be small. We perform at each site and time
rotation in spin space and introduce a new fermionic fieldF r
defined by C r5RrF r . Rr is a time- and site-dependen
SU(2)/U(1) matrix satisfying

s•nr5Rrs3Rr
† . ~15!

The above definition means thatRr , the SO~3! element as-
sociated toRr , mapsuz ontonr . The U(1) gauge freedom is
due to rotations around thez axis, which do not change th
physical state of the system. The spin of the pseudofermi
F r , is quantized along thenr axis. In order to express th
action in terms of the new spinor variable, it is convenient
make use of the SU(2) gauge fieldAmr5(n51,2,3Amr

n sn de-
fined as

A0r52Rr
†]tRr , ~16!

Amr5 iRr
†]mRr , m5x,y. ~17!
9-4
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We also define the rotated canting fieldlr5Rr
21Lr . Given

that Rr
21nr5uz and Lr'nr , the lr vector lies in thex-y

plane. Using the identity

F r
†Rr

†Rr1em
F r1em

5F r
†e]m2 iAmrF r , ~18!

we reexpress the kinetic and interaction parts of the actio

Skin5E
0

b

dt(
r

F r
†F]t2A0r

22t (
m5x,y

cos~2 i ]m2Amr !GF r , ~19!

Sint52D0E
0

b

dt(
r

F r
†@~21!rs3A12 lr

21 lr•s#F r .

~20!

In the above expressions, bothl and Am are small, since
the gauge field is of the order of]mn. We expand Eqs.~19!
and ~20! to second order in these variables. To zeroth ord
we recover the HF actionSHF@F# defined in Eq.~9!. The
first- and second-order corrections inAm

n yield paramagnetic
and diamagnetic termsSp andSd , respectively. The correc
tions in l give first- and second-order ferromagnetic fluctu
tions Sl andSl 2 ~Ref. 70!:

Sp52E
0

b

dt (
m50,x,y
n51,2,3

r

j mr
n Amr

n , ~21!

Sd5
t

2E0

b

dt (
m5x,y
n51,2,3

r

Amr
n 2F r

†cos~2 i ]m!F r1c.c., ~22!

Sl52D0E
0

b

dt (
n51,2

r

l r
n j 0r

n , ~23!

Sl 25
D0

2 E
0

b

dt(
r

~21!r lr
2 j 0r

3 . ~24!

The spin-density currentsj m
n are defined by

j 0r
n 5F r

†snF r , ~25!

j mr
n 5tF r

†sin~2 i ]m!snF r1c.c., m5x,y. ~26!

We now derive an effective action for the spin variablesn
andL by integrating out the fermions. Keeping terms up
second order inAm

n and l, the effective action is given by
first- and second-order cumulants of the four perturba
termsSp , Sd , Sl , andSl 2 with respect to the HF action:

Seff@n,L #5^Sp&1^Sd&1^Sl&1^Sl 2&

2
1

2
^Sp

2&c2
1

2
^Sl

2&c2^SpSl&c . ~27!
08511
as

r,

-

e

Evaluation of the first-order cumulants is straightforwa
Defining ec as the absolute value of the~negative! kinetic
energy per site in the HF ground state we have

^Sp&52
2D0

U E
0

b

dt(
r

~21!rA0r
3 , ~28!

^Sd&5
ec

4 E0

b

dt (
m5x,y
n51,2,3

r

Amr
n 2, ~29!

^Sl&50, ~30!

^Sl 2&5
D0

2

U E
0

b

dt(
r

lr
2 . ~31!

We recognize in Eq.~28! the usual Berry phase term. Since
is believed to play no role in a two-dimension
antiferromagnet,11 we will ignore it in the following.

The calculation of the second-order cumulants see
cumbersome at first sight, since it involves~after moving to
the Fourier space! the current-current correlation functio

Pmm8
nn8 (q,vn ;q8,vn8)5^ j m

n (q,vn) j m8
n8 (q8,vn8)&HF. @vn

5n2pT (n integer! is a bosonic Matsubara frequency.# In
fact, as the correlator stands in front of second-order qua
ties, we are interested only in its zero-frequency, ze

momentum valuePmm8
nn8 (0,0;0,0) which we denote byPmm8

nn8 .
With the exception ofP00

115P00
22 and Pxx

335Pyy
33 all these

quantities vanish~see Appendix A!, so that we obtain

^Sp
2&c5P00

11E
0

b

dt (
r

n51,2

A0r
n 21Pxx

33E
0

b

dt (
r

m5x,y

Amr
3 2,

~32!

^Sl
2&c5D0

2P00
11E

0

b

dt (
r

n51,2

l r
n2, ~33!

^SpSl&c5D0P00
11E

0

b

dt (
r

n51,2

A0r
n l r

n . ~34!

Using the invariance of the current-current correlation fun
tion with respect to rotations of axisuz , one can establish the

identity ec/22Pxx
3350. It implies that theAm

32
terms in the

first- and second-order cumulants cancel each other, w
ensures the U(1) gauge invariance. The only remaining
relator is the transverse spin susceptibilityP00

11[x'. In order
to express the effective actionSeff@n,L # @Eq. ~27!# in terms
of n andL we use the relations~see Appendix B!

(
n51,2

Amr
n 25z

1

4
~]mnr !

2, ~35!

(
n51,2

A0r
n l r

n5
i

2
~nr`]tnr !•Lr , ~36!
9-5
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with z51 for m5x,y andz521 for m50. Putting every-
thing together, we obtain the effective action

Seff5
1

2E0

b

dt(
r

Fx'

4
ṅr

21
ec

8 (
m5x,y

~]mnr !
2

1D0
2S 2

U
2x'DLr

22 iD0x'~nr`ṅr !•LrG , ~37!

whereṅ5]tn. Integrating out the canting field with the con
straint Lr'nr, we eventually obtain a NLsM for the Néel
field:

SNLsM@n#5
rs

0

2 E
0

b

dtE d2r F 1

c2
ṅr

21 (
m5x,y

~]mnr !
2G ,

~38!

where we have taken the continuum limit in real space. T
bare spin stiffnessrs

0 and the spin-wave velocityc are given
by

rs
05

ec

8
, c25

ec

2 S 1

x'
2

U

2 D . ~39!

Equation~38! must be supplemented with a cutoffL in mo-
mentum space. In the strong-coupling limit, where AF flu
tuations are due to local moments, the cutoffL can be taken
of the order of unity. In the weak-coupling limit, the Ne´el
field is ill defined at length scales smaller thanj0;t/D0,
since belowj0 ‘‘local’’ moments cannot be defined~see the
discussion at the beginning of Sec. II B!. We therefore
chooseL;min(1,2D0 /c) ~Ref. 71!.

For numerical computation of the spin-wave velocity a
spin stiffness we use the expressions

x'52D0
2E

0

4t r0~e!de

~D0
21e2!3/2

, ~40!

rs
05

1

4E0

4te2r0~e!de

AD0
21e2

. ~41!

r0 is the density of states of free fermions on a square latt
It can be expressed, using the complete elliptic integral of
first kind K, asr0(e)5(2p2t)21K@(12e2/16t2)1/2# for ueu
<4t. In the strong-coupling limit we recover the results o
tained from the Heisenberg model with an exchange c
pling J54t2/U: the spin stiffness equalsJ/4 and the spin-
wave velocityA2J. At weak coupling,c goes to zero like
2p21/2t(U/t)1/4 andrs

(0);t. The factor (U/t)1/4 is due to the
Van Hove singularities. The results are shown in Fig. 1.

The NLsM defined by Eqs.~38!–~41! was first obtained
by Schulz.57 The value of the spin-wave velocity agrees w
the result obtained from an RPA calculation about the ze
temperature AF HF state.15–17

Note that we also expect a damping term with a char
teristic frequencyvsf in the NLsM action ~38! at weak cou-
pling. This term comes from the damping of spin fluctuatio
by fermion excitations which are gapless in the wea
08511
e

-

e.
e

-
-

-

-

s
-

coupling limit ~see Sec. IV!. It is missed in our approach
since we expand around the zero-temperature AF state w
has only gapped quasiparticle excitations. In the renorm
ized classical regime, this term is, however, negligible sin
vsf}j22→0 ~critical slowing down!.13,45

III. MAGNETIC PHASE DIAGRAM

Let us recast the NLsM action in a more usual form, by
making use of the coupling constantg5c/rs

0 :

SNLsM@n#5
1

2gE0

b

dtE d2r F1

c
ṅr

21c (
m5x,y

~]mnr !
2G .

~42!

To solve the NLsM, we use a saddle-point approximation
the CP1 representation,11 which proves well suited for the
computation of the fermion Green’s function. In theCP1

representation, the Ne´el field is expressed in terms of tw
Schwinger bosons,

nr5zr
†szr , ~43!

with zr5(zr↑ ,zr↓)T. The condition nr
251 translates into

zr
†zr51. The rotation matrixR can be expressed as

Rr5S zr↑ 2zr↓
!

zr↓ zr↑
! D . ~44!

The U(1) gauge symmetry now manifests itself in the inva
ance of thenr vector and the relation~15! defining the rota-
tion matrix under the transformation zr→eiarzr .

The NLsM expressed in terms of Schwinger bosons
volves terms quadratic and quartic in zr . The latter turns out
to be proportional toAmr

z 2 with Amr
z expressed in terms o

Schwinger bosons@Eqs.~17! and~44!#. It is decoupled by an
auxiliary field amr . To handle the unimodularity condition
zr

†zr51 one introduces Lagrange multipliersl r at each time
and site. The partition function then becomes~see Ref. 11!

FIG. 1. Spin-wave velocityc ~solid line! and bare spin stiffness
rs

0 ~dot-dashed line! vs U. For U@4t we recover the results ob
tained from the Heisenberg model withJ54t2/U ~dashed line,
spin-wave velocity; dotted line, bare spin stiffness!. Inset: fraction
of condensed bosons atT50. 12n0 is exponentially small at weak
coupling (U!4t), while n0.0.6 for U@4t. n0 determines the
mean value of the Ne´el field in the ground state (^nr&5n0uz) and
the spectral weight of the Bogoliubov QP’s~see Sec. IV!.
9-6



ne

e

on
ff

in

on

ra

re

e

in

a
by

sa

e
m
it

on
m

en-
ero

s a
la-

ial
of
e

p-
-
or-
ss

f-
h
are

at
pin

er
rify

las-
’

ion
an

ANTIFERROMAGNETISM AND SINGLE-PARTICLE . . . PHYSICAL REVIEW B 69, 085119 ~2004!
Z5E D@z,am ,l#e2S, ~45!

S5E
0

b

dtE d2r F il r~zr
†zr21!1

2

gc
u~]t2a0r!zru2

1
2c

g (
m5x,y

u~]m2 iamr !zru2G , ~46!

the zr↑ andzr↓ being now unconstrained bosonic fields. O
then performs a saddle-point approximation over thel r and
amr fields. When theCP1 representation is generalized to th
CPN21 representation by introducingN different z bosons,
the approximation becomes exact in the limitN→`.11

Within the ansatz of a uniform static saddle-point soluti
il r52m2/gc and amr50, the propagator can be read o
from Eq. ~46!:

2^zqvnszq8vn8s8
!

&5dq,q8dvn ,v
n8
ds,s8Ds~q,vn!, ~47!

Ds~q,vn!5
2gc

2~vn
21vq

2!
2bNn0ds,↑dvn,0dq,0 , ~48!

vq5Ac2q21m2, ~49!

where N is the number of lattice sites. The saddle-po
equation for the Lagrange multiplierm2 reads

1

b (
vn

E
uqu,L

gc

vn
21vq

2
1n051. ~50!

In Eqs.~47!–~50!, we have allowed for a Bose condensati
of the Schwinger bosons in the modeq50, with n0
5(1/Nb)^z†(q50,vn50)z(q50,vn50)& the fraction of
condensed bosons. Bose condensation signals the appea
of AF long-range order:̂nr&5n0uz . Knowing the propaga-
tor of thez field, one can then calculate the spin-spin cor
lation function using Eq.~43!. The AF correlation lengthj is
related to the massm of the bosonic propagatorD via m
5c/2j ~Ref. 11!. m vanishes whenever the fraction of th
condensed bosons is finite.

At zero temperature, the solution of the saddle-po
equation~50! shows that the NLsM is ordered at smallg
(m50 andn0.0) and disordered by quantum fluctuations
largeg (m.0 andn050). The two regimes are separated
a quantum-critical point atgc54p/L. In the ordered phase
(g<gc), the fraction of condensed bosons isn0512g/gc .

The condition of zero-temperature long-range order is
isfied in the NLsM derived from the half-filled Hubbard
model ~Fig. 2!. For U!4t, g/gc;e22pAt/U is exponentially
small. For U@4t, rs

0.J/4 and cL.A2J, so that g/gc

.A2/p,1. Notice that setting the cutoff to a higher valu
at strong coupling would lead us into the quantu
disordered regime. However, our choice is consistent w
results obtained by mapping the Hubbard model at str
coupling onto the Heisenberg model. It is known, both fro
08511
t

nce

-

t

t

t-

-
h
g

numerical and analytical work, that the 2D quantum Heis
berg model on a square lattice is ordered at z
temperature.73

Figure 1 shows the fraction of condensed bosons a
function of U. For this, and subsequent, numerical calcu
tions we use a smooth cutoff—i.e.,

E
uqu,L

→E
q

e2uquj02e2q0j0

12e2q0j0
.

In contrast to a hard cutoff, this procedure prevents artific
features in the fermion spectral function and in the density
states. The parameterq0 is adjusted so as to reproduce in th
strong-coupling limit (U@4t) the resultu^nr&u5n0.0.6 ob-
tained from the Heisenberg model.73 While the value ofn0
for U!4t andU@4t does not depend onj0, the behavior at
intermediate coupling is strongly cutoff dependent.

At finite temperature, the AF long-range order is su
pressed (n050,m.0), in agreement with the Mermin
Wagner theorem. For systems that exhibit AF long-range
der at T50, the correlation length remains neverthele
exponentially large at low temperature~renormalized classi-
cal regime; see Fig. 2!. From Eq.~50!, we deduce

j5
c

2m
, m5Te22prs /T, ~51!

where rs5rs
0(12g/gc) is the zero-temperature spin stif

ness. The massm of the bosonic propagator being muc
smaller than the temperature, the dominant fluctuations
classical.

Let us now discuss the limits of validity of the NLsM.
The derivation of the NLsM is based on the assumption th
the dominant low-energy fluctuations are transverse s
waves with a large correlation length. The conditionT
!TN

HF ensures that amplitude fluctuations of the AF ord
parameter are frozen at low energy. One should also ve
that the computation ofj within the NLsM is consistent

FIG. 2. Phase diagram of the NLsM derived from a saddle-
point approximation in theCP1 representation. AtT50, there is
long-range order when the coupling constantg,gc54p/L. The
three finite-temperature regimes correspond to ‘‘renormalized c
sical’’ ~RC!, ‘‘quantum critical’’ ~QC!, and ‘‘quantum disordered
~QD! ~Refs. 28 and 72!. The ground state of the 2D half-filled
Hubbard model is ordered for any value of the Coulomb repuls
U. At finite temperature, there are strong AF fluctuations with
exponentially large correlation lengthj@1 ~RC regime!.
9-7
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with the assumption of AF short-range order—i.e.,j@L21

or, equivalently,m!cL/2. We defineT8 as the solution of
the equationm;cL/2 obtained from Eq.~50!. Then, the
domain of validity of the NLsM is given by T!TX

;min(TN
HF,T8). At weak coupling, TX;TN

HF, while TX

;T8;J at strong coupling. The crossover temperatureTX

displayed in Fig. 3 is a smooth interpolation betweenTN
HF

andT8 ~Ref. 74!.
The phase diagram is shown in Fig. 3. AboveTN

HF, spin
fluctuations are not important and we expect a Fermi-liq
behavior. BetweenTN

HF andTX ~a regime which exists only
in the strong-coupling limit!, local moments form but with
no AF short-range order~Curie spins:j;1). BelowTX , the
system enters a renormalized classical regime of spin fl
tuations where the AF correlation length becomes expon
tially large @Eq. ~51!#. AF long-range order sets in atTN
50. Although there is a smooth evolution of the magne
properties as a function ofU, the physics is quite differen
for U!4t and U@4t. This will be shown in Sec. IV by
studying the fermion spectral properties. The main conc
sions are shown in Fig. 3. At zero temperature the system
an antiferromagnet, which evolves from a Slater to a Mo
Heisenberg behavior asU increases. At finite temperatur
there is a pseudogap phase forU!4t and a Mott-Hubbard
insulator forU@4t. These two regimes are separated by
~finite-temperature! metal-insulator transition~dotted line in
Fig. 3! defined by the vanishing of the tunneling density
statesr(v50) at zero energy.

IV. FERMION SPECTRAL PROPERTIES

In this section, we study the influence of the lon
wavelength spin fluctuations on the fermion spectral prop
ties. The fermionic Green’s function2^C r1t1

C r2t2

† &, written

FIG. 3. Phase diagram of the 2D half-filled Hubbard modelT
*TN

HF : Fermi-liquid ~FL! phase.TX&T&TN
HF : local moments with

no AF short-range order~Curie spins,j;1). T50: Slater (U
!4t) and Mott-Heisenberg (U@4t) antiferromagnets. At finite
temperature, there is a pseudogap phase (U!4t) and a Mott-
Hubbard insulator (U@4t) separated by a metal-insulator transitio
~dotted line! defined by the vanishing of the tunneling density
statesr(v50) at zero energy~Sec. IV!. All lines, exceptTN50
~thick solid line!, are crossover lines. The NLsM description is
valid belowTX ~RC regime! ~from Ref. 56!.
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here as a 232 matrix in spin space, can easily be related
the pseudofermions by use of the relationC r5RrF r :

G~1,2!52^R1F1F2
†R2

†&. ~52!

Here we use the shorthand notation 1[(r1 ,t1) and 2
[(r2 ,t2). The averaging in the above expression should
performed with respect to the actionSHF@F#1S8@z,F,L #
obtained in Sec. II B from the second-order expansion inL
and ]mn. S8 stands for the sum of the perturbative corre
tionsSp , Sd , Sl , andSl2 defined in Eqs.~21!–~24!. Integrat-
ing first the pseudofermions, we can write the propagato

G~1,2!5
1

ZE D@z#e2SNLsM[z]R1G~1,2uz!R2
† , ~53!

Z5E D@z#e2SNLsM[z] , ~54!

whereG(1,2uz) is the pseudofermion propagator calculat
for a given configuration of the bosonic field z:

G~1,2uz!52

E D@F,L #f1f2
!e2SHF[F] 2S8[z,F,L ]

E D@F, L #e2SHF[F] 2S8[z,F,L ]

. ~55!

The actionSHF@F#1S8@z,F,L # describes HF fermions in
teracting with spin fluctuations via the actionS8. Since the
HF pseudofermions are gapped, we expect a perturbative
pansion in S8 to be well behaved. To leading orde
G(1,2uz)5G HF(1,2) and the fermion Green’s function sim
plifies to

Gs1s2
~1,2!5 (

a1 ,a2

Ga1a2

HF ~1,2!^~R1!s1a1
~R2!s2a2

! &, ~56!

where the product of rotation matrices is averaged with
NLsM action. This approximation neglects the effect of sp
fluctuations on the propagation of pseudofermions. Their
fluence on the propagation of fermions is implemented o
through the decomposition of the fermion into a boson an
pseudofermion.

Using the Schwinger boson propagator derived in Sec
@Eqs.~47!–~49!#, we have

^~R1!s1a1
~R2!s2a2

! &52ds1 ,s2
da1 ,a2

@D̄~1,2!2ds1 ,a1
n0#,

~57!

whereD̄ is the noncondensed part ofDs . Using this expres-
sion in Eq. ~56! we finally obtain for the fermion Green’s
function:

2^c rtsc r8t8s8
! &5ds,s8Gs~r ,r 8,t2t8!, ~58!

Gs~k,k8,v!52
2dk,k8

b (
vn

E
q
G s

HF~kÀq,kÀq,

v2vn!D̄~q,vn!1n0G s
HF~k,k8,v!. ~59!
9-8
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Sincen0 vanishes at finite temperature, the fermion Gree
function is spin rotation and translation invariant in the a
sence of AF long-range order. We show below that the fi
term on the right-hand side of Eq.~59! corresponds to inco
herent excitations. At zero temperature, the last term of
~59! describes Bogoliubov QP’s carrying a total spect
weight n0.

To study in detail the fermion excitations, we consider t
spectral functionA(k,v)52p21Im Gs(k,k,iv→v1 i01)
and the tunneling density of states~DOS! r(v)
5*dvA(k,v). Performing the summation over boson
Matsubara frequencies in Eq.~59! we obtain

A~k,v!5Ainc~k,v!1n0AHF~k,v!, ~60!

Ainc~k,v!5E
q

gc

2vq
$@nB~vq!1nF~2EkÀq!#@ukÀq

2 d~v2vq

2EkÀq!1vkÀq
2 d~v1vq1EkÀq!#

1@nB~vq!1nF~EkÀq!#@ukÀq
2 d~v1vq2EkÀq!

1vkÀq
2 d~v2vq1EkÀq!#%, ~61!

wherenF(v) and nB(v) are the usual Fermi and Bose o
cupation numbers (ebv61)21 and AHF the HF spectral
function:

AHF~k,v!5uk
2d~v2Ek!1vk

2d~v1Ek!, ~62!

uk
25

1

2 S 11
ek

Ek
D , vk

25
1

2 S 12
ek

Ek
D . ~63!

One can check that the spectral functionA(k,v) is normal-
ized to unity. From Eqs.~60! and ~61! we deduce

E dvA~k,v!5E
uqu,L

gc

vq
S nB~vq!1

1

2D1n051,

~64!

where the second equality is obtained by using^zr
†zr&51

@Eq. ~50!#. From Eqs.~60!–~63!, we obtain

r~v!5r inc~v!1n0rHF~v!, ~65!

r inc~v!5r inc
. ~v!1r inc

. ~2v!, ~66!

r inc
. ~v!5

g

4pcEm

cL

dv8@nB~v8!rHF~v1v8!u~v1v8!

1~nB~v8!11!rHF~v2v8!u~v2v8!#, ~67!

where

rHF~v!5u~v22D0
2!

uvu

Av22D0
2
r0~Av22D0

2! ~68!

is the HF DOS andu the step function. We have approx
mated the Fermi occupation numbers by their ze
temperature limit, which is valid forT!TN

HF.
08511
’s
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A. TÄ0: Slater vs Mott-Heisenberg antiferromagnetism

At zero temperature, the incoherent part of the spec
function @Eq. ~61!# can be simplified. All the occupation fac
tors vanish, except fermionic factors at negative energ
which are equal to 1, so that

Ainc~k,v!5E
q

gc

2vq
@ukÀq

2 d~v2vq2EkÀq!

1vkÀq
2 d~v1vq1Ek2q!#. ~69!

In the same way, we obtain for the DOS

r inc
. ~v!5

g

4pcE0

cL

dv8rHF~v2v8!u~v2v8!. ~70!

In Figs. 4 and 5 we show the spectral function at thek
5(p/2,p/2) point of the noninteracting Fermi surface
weak (U5t) and strong (U512t) coupling. The spectra
function A(k,v) exhibits a gap 2D0, which is a conse-
quence of AF long-range order. There are well-defined B
goliubov QP’s with excitation energy6Ek , as in HF theory,

FIG. 4. Spectral functionA(k,v) in the weak-coupling limit
U5t for T50 ~Slater antiferromagnet! and T5D0/5 ~pseudogap
phase!. k5(p/2,p/2). The vertical lines represent Dirac peaks
weightn0/2 ~Bogoliubov QP’s!. At finite temperature, precursors o
the zero-temperature Bogoliubov QP’s show up as peaks of w
;T at 6Ek . At low energy~andT.0), we observe a pseudoga
with an exponentially small spectral weight atv50. Energies are
measured in units oft ~from Ref. 56!.

FIG. 5. Spectral functionA(k,v) in the strong-coupling regime
U512t for T50 ~Mott-Heisenberg antiferromagnet! and T5J/5
~Mott-Hubbard insulator!. At T50, when U increases, spectra
weight is transferred from the Bogoliubov QP peaks to the incoh
ent excitation background~note the difference in the energy scal
which is fixed byD0, between Figs. 4 and 5! ~from Ref. 56!.
9-9
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but their spectral weight is reduced by a factorn0,1 be-
cause of quantum spin fluctuations. The remaining wei
(12n0) is carried by an incoherent excitation background
higher energy (uvu.Ek).

There are important differences between the weak-U
!4t) and strong- (U@4t) coupling regimes. First, the AF
gap 2D0;te22pAt/U is exponentially small at weak coupling
while it tends toU for U@4t. Second, the Bogoliubov QP’
carry most of the spectral weight in the weak-coupling
gime, sinceg/gc512n0 is exponentially small whenU
!4t. As U increases, spectral weight is transferred from
Bogoliubov QP’s to the incoherent excitation backgroun
and at strong coupling (U@4t) the incoherent excitation
background carries a significant fraction of the total spec
weight ~i.e., n0 and 12n0 are of the same order!. Third, the
energy range of the incoherent excitation background
pends on the value ofU. From Eq.~69! we see that it extend
from Ek to ;AEk

2116t2L21cL. At weak coupling, the up-
per limit turns out to be of orderD0 ~for k lying on the
noninteracting Fermi surface!. Thus, the energy range of th
incoherent excitation background remains very small w
respect to the dispersion of the Bogoliubov QP energyEk ,
which is of order t when D0!t. At strong coupling, the
incoherent excitation background aboveEk;U/2 extends
over a range of orderJ. This energy range is of the sam
order of magnitude as the dispersion of the Bogoliubov
energy, which is also of orderJ whenU@4t @as can be seen
from the expansionEk.U/21J(coskx1cosky)

2].
In Figs. 6 and 7 we compare the zero-temperature D

r(v) and the noninteracting DOSr0(v). At weak coupling
(U5t), r(v) is similar to the HF result, with no visible
effect of the incoherent excitation background.r(v) differs
from r0(v) mainly at low energy, due to the~small! AF gap
2D0. At strong coupling (U512t), r(v) differs strongly
from r0(v), due to an AF gap 2D0;U exceeding the non
interacting bandwidth. There is also a significant differen
betweenr(v) andrHF(v), which results from the incoher
ent excitation background.

The spectral functionA(k,v) and the DOSr(v) are

FIG. 6. Zero-temperature DOSr(v) at weak coupling:U5t
~Slater antiferromagnet!. r(v) differs from the free-fermion DOS
r0(v) only at low energy due to the opening of the AF gap 2D0

~see inset!. Since the incoherent excitation background carrie
negligible fraction of the total spectral weight, there is no noticea
difference betweenr(v) and the HF DOSrHF(v) ~not shown in
the figure!.
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typical of a Slater antiferromagnet at weak coupling and o
Mott-Heisenberg antiferromagnet at strong coupling.
shown in the next section, Slater and Mott-Heisenberg a
ferromagnets behave very differently at finite temperatur

B. TÌ0: pseudogap vs Mott-Hubbard gap

At finite temperature,n0 vanishes andA5Ainc . The re-
sult of the numerical calculation forU5t and U512t for
k5(p/2,p/2) is shown in Figs. 4 and 5.A(k,v) exhibits
broadened peaks of widthT at the HF QP energy6Ek .
These peaks are incoherent precursors of the z
temperature Bogoliubov QP peaks. The zero-temperature
gap is partially filled at strong coupling and transforms into
pseudogap in the weak-coupling regime. At higher ene
(uvu*Ek), a roughly featureless incoherent excitation bac
ground is observed.

1. Precursors of Bogoliubov QP’s

At finite temperature, the coherent part of the spec
function disappears. However, sharp peaks are still obse
at the HF energy6Ek . To study the peak atEk , let us
perform a few approximations on the finite-temperatu
spectral function~61!. First, at positive energies, almost a
the spectral weight comes from the terms proportional
uk2q

2 in Eq. ~61! ~except at energies close to zero!, whose
sum will be denoted byA .. Second, we replace the Ferm
occupation number by the step function, given that the te
perature is small compared toEk . Regrouping terms con
taining the Bose occupation numbers we obtain

A .~k,v!5Abg
. ~k,v!1Apeak

. ~k,v!, ~71!

Apeak
. ~k,v!5E

q

gc

2vq
nB~vq!ukÀq

2 @d~v2vq2EkÀq!

1d~v1vq2EkÀq!#. ~72!

Abg
. has the same expression as the incoherent excita

background term~69! at zero temperature. It thus describes
temperature-independent incoherent excitation backgro

a
e

FIG. 7. Same as Fig. 6, but at strong coupling:U512t ~Mott-
Heisenberg antiferromagnet!. r(v) differs strongly from the nonin-
teracting DOSr0(v), as the AF gap exceeds the noninteracti
bandwidth. It also differs from the HF DOSrHF(v) due to the
incoherent excitation background carrying a significant fraction
the total spectral weight.
9-10
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at energies aboveEk . Apeak
. gives rise to the peak at the H

energyEk . To see this, let us put it into a more explicit form
Because of the bosonic occupation numbers, the sum ovq
in Eq. ~72! is dominated by wave vectors satisfyingvq&T
or, equivalently,uqu&T/c. For T!TX , T/c!1 and we can
neglect theq dependence ofEk2q anduk2q

2 . The integrand
then becomes isotropic, and one can use

E
q

c2

vq
5E

m

cLdvq

2p
.

The result is

A peak
. ~k,v!5uk

2 g

4pc
nB~ uv2Eku! ~73!

for uv2Eku.m and vanishes foruv2Eku,m. For m,uv
2Eku!T, A peak

. (k,v) behaves likeT/uv2Eku. At energies
further away from the peak center, it decreases l
e2uv2Eku/T. Thus the width of the peak is of the order of th
temperature and therefore corresponds to incoherent ex
tions. The vanishing ofA(k,v) for uv2Eku,m is clearly
unphysical~note that it cannot be seen in the figures, sincem
is exponentially small!. It would be suppressed by any finit
lifetime in the bosonic propagatorD. The finite-temperature
DOS suffers from the same artifact@i.e., r(v)50 for uv
2D0u,m].

The spectral weight of the peak atEk is

E dvApeak
. ~k,v!5uk

2 g

2pc
T lnS T

mD5uk
2S 12

g

gc
D ,

~74!

where the last result is obtained using Eq.~51!. The spectral
weight of the peak turns out to be temperature independ
and equal touk

2n0 (n0512g/gc), which is nothing else bu
the Bogoliubov QP weight in the ground state. We conclu
that the peak is an incoherent precursor of the ze
temperature Bogoliubov QP peak. As the temperature
creases, it retains its spectral weight, but becomes sha
and sharper, and eventually becomes a Dirac peak atT50.
As expected, the spectral function evolves continuou
whenT→0. As in the zero-temperature case, the depende
of n0 uponU describes the transfer of spectral weight fro
the Bogoliubov QP’s to the incoherent excitation backgrou
when the Coulomb repulsion increases.

The approximation~73! suggests that the peak inA(k,v)
should exhibit the same features, regardless of the locatio
k on the noninteracting Fermi surface. Numerical calcu
tions confirm this conclusion, with one exception. For wa
vectors near (p/2,p/2), a second~smaller! peak appears a
low energy~Fig. 8!. From a mathematical point of view, it i
due to the vanishing of the first-order derivative of the arg
ment of thed function in Eq.~72!, which occurs for“qvq
5“qEk2q . The energy at which the integration contour
the q plane, defined by thed function, passes through thi
point can be estimated to beD0A12(c/uvku)2, where vk
5“kek is the free-fermion velocity. For wave vectors ve
fying uvku,c—i.e., sufficiently close to the Van Hov
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singularities—the second peak disappears. We believe
second peak to be an artifact of our lowest-order approxim
tion in the pseudo-fermion-boson interaction.

2. Pseudogap vs Mott-Hubbard gap

As shown in Figs. 4 and 5, the spectral functionA(k,v)
extends below the HF energyEk ~and above2Ek for v
,0) at finite temperature. The corresponding contribution
A(k,v) is given by@see Eq.~61!#

E
q

gc

2vq
nB~vq!@uk2q

2 d~v1vq2Ek2q!

1vk2q
2 d~v2vq1Ek2q!#. ~75!

The presence of the Bose occupation numbernB(vq) shows
that the low-energy fermion states (uvu,Ek) are due to ther-
mal bosons—i.e., thermally excited spin fluctuations. A f
mion added to the system with momentumk and energy
uvu,Ek can propagate by absorbing a thermal boson of
ergy vq and emitting a pseudofermion with energyEk2q
5v1vq .

The lowest fermion energies are obtained by solvingv
5Ek2q2vq ~or v52Ek1q1vq). In the weak-coupling
limit, maxq(vq)5cL;2D0 and Ek2q;Ek . Thus there is
spectral weight at zero energy: the spectral function and
density of states exhibit a pseudogap~Figs. 4 and 9!. Note
that the DOS remains exponentially small at low energy:

FIG. 8. Finite-temperature spectral function at weak coupl
for two different points of the noninteracting Fermi surface. Fork
close to (p/2,p/2) a second peak appears belowD0 ~see text!.

FIG. 9. Finite-temperature DOSr(v) at weak coupling:U5t,
T5D0/5 ~pseudogap phase!. At v50 the DOS is finite but expo-
nentially small@Eq. ~76!#.
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r~v!;e2D0 /TcoshS v

T D , uvu!D0 . ~76!

This result differs from pseudogap theories based on Ga
ian spin fluctuations which find a much weaker suppress
of the density of states at low energy.48 It bears some simi-
larities with the results obtained by Bartosch and Kopietz
fermions coupled to classical phase fluctuations in inco
mensurate Peierls chains.51 In the strong-coupling limit, ther-
mally excited spin fluctuations lead to a small reduction
the zero-temperature gap sincecL;J!Ek;U/2. The sys-
tem is a Mott-Hubbard insulator with a gap 2D0 of orderU
~Figs. 5 and 10!.

A last comment is in order here. Since the system is in
renormalized classical regime, it is tempting to treat
NLsM in the classical limit@which amounts to neglecting
the quantum~temporal! fluctuations of the Ne´el field n].
Such an approach is expected to be at least qualitatively
rect for the low-energy bosons (vq&T) and should then give
a good approximation ofA(k,v) in the vicinity of the peaks
aroundv56Ek . Retaining only thevn50 contribution in
Eq. ~59!, one finds

Acl~k,v!5TE
q

gc

vq
2 @uk2q

2 d~v2Ek2q!1vk2q
2 d~v1Ek2q!#.

~77!

Equation~77! can also be obtained from Eq.~61! by using
nB(vq)11;nB(vq);T/vq@1 and neglecting the term
6vq in the argument of thed functions. It is readily seen
that the classical calculation does not reproduce
pseudogap, sinceAcl(k,v) vanishes foruvu,Ek . Although
the pseudogap originates from thermally excited spin fl
tuations in the renormalized classical regime, a fu
quantum-mechanical calculation ofA(k,v) turns out to be
necessary to account for the presence of low-energy ferm
excitations.

C. Finite-temperature metal-insulator transition

We conclude from the results of Sec. IV B that our a
proach predicts a finite-temperature metal-insulator transi
between a pseudogap phase and a Mott-Hubbard insulat
the strength of the Coulomb interaction increases: at a c
cal valueUc , the density of states at zero energyr(v50)

FIG. 10. Finite-temperature DOSr(v) at strong coupling:U
512t, T5J/5 ~Mott-Hubbard insulator!.
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vanishes and the pseudogap becomes a Mott-Hubbard
~Fig. 3!. Uc is obtained by equating the minimum energyD0
of a HF fermion to the maximum energy of a Schwing
boson Am21c2L2. For T→0 the result isUc.4.25t. It
should be noted that the NLsM, which is a low-energy
theory, does not allow us to describe accurately the hi
energy Schwinger bosons~with uqu;L) and in turn the low-
energy fermion excitations. In particular, the critical value
U calculated above depends on the cutoff procedure use
the NLsM. Note also that we do not know at which tem
perature and how the metal-insulator transition ends.

Figure 11 shows the linesr(v50)5const in the (U,T)
plane. Our results are in~semiquantitative! agreement with
the numerical calculation of Moukouri and Jarrell.64 Using
the criterion r(v50),1022/(2t) to identify the Mott-
insulating phase, these authors concluded that the syste
always insulating at low~but finite! temperature even in the
weak-coupling limit, which seems to invalidate the Sla
scenario as the mechanism for the metal-insulator transi
~which requiresTMIT5TN50). Our approach shows that th
results of Ref. 64 are not in contradiction with a Slater s
nario at weak coupling, but merely reflect the exponen
suppression of the density of states due to the presence
pseudogap. A similar conclusion was reached in Ref. 65

V. ATTRACTIVE HUBBARD MODEL

In this section, we show that the results obtained in
previous sections translate directly to the attractive Hubb
model. The latter is defined by the Hamiltonian

H52(
r ,s

crs
† ~ t̂1m!crs2U(

r
cr↑

† cr↑cr↓
† cr↓ , ~78!

where 2U(U>0) is the on-site attraction.m52U/2 at
half-filling.

Under the particle-hole transformation67

cr↓→~21!rcr↓
† , cr↓

† →~21!rcr↓ , ~79!

the Hamiltonian becomes~up to a constant term!

FIG. 11. Linesr(v50)5const in the (U,T) plane. The vertical
line corresponds tor(v50)50.
9-12
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H52(
r ,s

crs
† ~ t̂1U/2!crs1U(

r
cr↑

† cr↑cr↓
† cr↓

2~m1U/2!(
r

~cr↑
† cr↑2cr↓

† cr↓!, ~80!

and the charge-density and pairing operators transform a

r r5(
s

crs
† crs→2Sr

z11, ~81!

D r5cr↓cr↑→~21!rSr
2 , ~82!

D r
†5cr↑

† cr↓
† →~21!rSr

1 , ~83!

where Sr5cr
†scr/2 and Sr

65Sr
x6 iSr

y . The transformed
Hamiltonian ~80! corresponds to the repulsive half-fille
Hubbard model with a uniform magnetic fieldm1U/2 along
the z axis coupled to the fermion spins. At half-filling (m
52U/2), the latter vanishes and the Hamiltonian~80! re-
duces to the one studied in the previous sections. Thus, in
attractive model,q5p charge andq50 pairing fluctuations
combine to form an order parameter with SO~3! symmetry.
Away from half-filling, the degeneracy between charge a
pairing fluctuations is lifted~by the uniform magnetic field
m1U/2 in the repulsive model!, and the~superconducting!
order parameter exhibits SO~2! symmetry at low tempera
ture. As a result, there is a Berezinskii-Kosterlitz-Thoule
phase transition to a superconducting state at a finite t
peratureTBKT ~Refs. 75–77!.

In the following, we consider only the half-filled cas
where the attractive model maps onto the repulsive mo
studied in the present work. Since the Green’s function
the spectral function are invariant under the particle-h
transformation~79!, we can directly apply the results ob
tained in the previous sections. The phase diagram is sh
in Fig. 12. The crossover lines are the same as in Fig. 3,
their physical meaning is different. Below the HF transiti
temperatureTc

HF, the SO~3! order parameter (rq5p ,Dq50)
acquires a finite amplitudeD0. This corresponds to the ap
pearance of bound particle-hole and particle-particle p
with a sizej0;t/D0. Below TX , directional correlations of
the order parameter (rq5p ,Dq50) start to grow exponen
tially ~renormalized classical regime! and eventually long-
range order sets in at theTc50 phase transition. Because
the SO~3! symmetry, the ground state can have any com
nation of superconducting and charge-density-wave lo
range orders. AsU increases, the ground state smooth
evolves from the BCS to the Bose-Einstein limits. In t
weak-coupling limit (U!4t), there is a pseudogap regime
finite temperature due to the directional fluctuations of
SO~3! order parameter. In the strong-coupling limit (U
@4t), betweenTc

HF andTX , there is a regime of preforme
~local! particle-particle pairs with no superfluid or charg
density-wave short-range order (j;1). Only belowTX do
these bosonic pairs begin to develop short-range order
T50, the particle-particle pairs Bose condense and/or lo
ize, thus giving rise to superfluid and/or charge-density-w
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long-range orders. The dotted line in Fig. 12 is obtained fr
the vanishing of the tunneling DOSr(v50) at zero energy.

VI. SUMMARY AND CONCLUSION

We have presented an approach to the 2D half-filled H
bard model which describes both collective spin fluctuatio
and single-particle properties for any value of the Coulo
repulsionU. It is valid below a crossover temperatureTX
where amplitude fluctuations of the AF order parameter
frozen out and AF short-range order starts to grow expon
tially ~renormalized classical regime!.

The magnetic phase diagram is obtained from a NLsM
that is derived from the Hubbard model. The parameters
the NLsM—the bare spin stiffnessrs

0 and the spin-wave
velocity c—are expressed in terms of the mean value of
kinetic energy and current-current correlation functions
the HF state. The model is solved by a saddle-point appr
mation within theCP1 representation where the Ne´el field is
represented by two Schwinger bosons. Bose-Einstein c
densation of the Schwinger bosons at zero temperature
nals the appearance of AF long-range order. At finite te
perature ~below TX), the system is in a renormalize
classical regime where the AF correlation lengthj is expo-
nentially large. The single-particle properties are obtained
writing the fermion field in terms of a Schwinger boson a
a pseudofermion whose spin is quantized along the~fluctu-
ating! Néel field. This decomposition allows us to approx
mate the fermion Green’s function by the product~in real
space! of the Schwinger boson propagator~which is obtained
from the NLsM) and the HF fermionic propagator.

Our results are summarized in Fig. 3, which shows
phase diagram of the 2D half-filled Hubbard model, a
Figs. 4–10. At weak coupling and zero temperature,
theory clearly describes a Slater antiferromagnet with an

FIG. 12. Phase diagram of the 2D half-filled Hubbard mod
with an attractive interaction2U(U>0). T*Tc

HF : Fermi liquid
~FL! phase.TX&T&Tc

HF : preformed pairs with no superfluid o
charge-density-wave order (j;1). T&TX : renormalized classica
~RC! regime (j@1). T50: superconducting~SC! and charge-
density-wave~CDW! long-range orders@U!4t, BCS limit; U
@4t, Bose-Einstein~BE! limit #. The dotted line is obtained from
the vanishing of the tunneling DOSr(v50) at zero energy. All
lines, exceptTc50 ~thick solid line!, are crossover lines.
9-13
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K. BOREJSZA AND N. DUPUIS PHYSICAL REVIEW B69, 085119 ~2004!
ponentially small AF gap, well-defined Bogoliubov QP’s ca
rying most of the spectral weight, and an incoherent exc
tion background at higher energy. AsU increases, the Slate
antiferromagnet progressively evolves into a Mo
Heisenberg antiferromagnet with an AF gap of orderU and a
significant fraction of spectral weight transferred from t
Bogoliubov QP’s to the incoherent excitation background.
finite temperature, the Bogoliubov QP’s disappear and o
incoherent excitations survive. Nevertheless, precursor
the zero-temperature Bogoliubov QP’s show up as sh
peaks in the fermion spectral function, with a width of ord
T. The presence of thermal spin fluctuations gives rise
fermionic states below the zero-temperature AF gap. At w
coupling, the latter is completely filled and replaced by
pseudogap. The DOSr(v) remains, however, exponentiall
small at low energy. At strong coupling and finite tempe
ture (0,T&TX;J), the system is a paramagnetic Mo
Hubbard insulator in a renormalized classical regime of s
fluctuations. At higher temperatureTX;J&T&TN

HF, the sys-
tem is characterized by the presence of preformed local
ments without AF short-range order. Thus our theory pred
a metal-insulator transition at finite temperature betwee
pseudogap phase at weak coupling and a Mott-Hubbard
sulator at strong coupling. For the 3D Hubbard model,
expect a similar phase diagram, but withTX replaced by a
true transition lineTc between a paramagnetic phase and
AF phase. The weak-coupling pseudogap phase therefor
pears as a consequence of the low dimensionality of the
tem and the high symmetry@i.e., SO~3!# of the AF order
parameter.

At half-filling the attractive and repulsive Hubbard mo
els can be mapped onto one another by a canonical tran
mation so that our results also apply to the attractive ca
AF fluctuations in the repulsive model correspond toq5p
charge andq50 pairing fluctuations in the attractive mode
The corresponding phase diagram is discussed in Sec. V~see
Fig. 12!.

Besides its validity both at weak and strong coupling, o
approach differs from previous weak-coupling theories33–47

of the pseudogap phase in two respects. First, it takes
fluctuations into account within a highly non-Gaussi
theory ~the NLsM) and is valid at low temperature (0<T
!TX). On the contrary, most of the other approaches ass
Gaussian spin fluctuations so that their range of validity
restricted toT;TX . Second, our NLsM approach is an ex-
pansion about the AF ordered state which is a valid star
point in presence of AF short-range order. When calculat
fermion propagators, we have to consider HF pseudofer
ons interacting with Schwinger bosons whose dynamic
determined by the NLsM. Since the HF pseudofermions a
gapped, we expect a perturbative expansion in the pse
fermion-boson interaction to be well behaved. Our resu
were obtained to lowest order where the fermion Gree
function is given by the product~in real space! of the HF
fermionic propagator and the Schwinger boson propag
~which is obtained from the NLsM). This should be con-
trasted with perturbative treatments applied to free fermi
interacting with soft collective fluctuations where no sm
expansion parameter is available.
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Our NLsM approach is reminiscent of slave-fermio
theories60–62where the fermion is written as the product of
spinless pseudofermion and a Schwinger boson carrying
spin degrees of freedom. Slave-fermion theories apply to
t-J model where the Hilbert space is truncated by forbidd
double occupancy of the lattice sites. In our work, t
pseudofermion also carries a spin, which is a necessary
dition to describe both the weak- and strong-coupling
gimes.

Our approach bears also some analogies with the wor
Gusyninet al.52,78,79on 2D fermion systems with an attrac
tive interaction. These authors use a ‘‘modulus-phase’’ r
resentation for the SO~2! superconducting order paramet
which is analog to our ‘‘amplitude-direction’’ representatio
of the SO~3! AF order parameter. At low temperature, th
phase of the superconducting order parameter is governe
a SO~2! sigma model. The fermion Green’s function is ca
culated both above and below the Berezinskii-Kosterli
Thouless phase transitionTBKT by writing the fermion field
as the product of a pseudofermion and a bosonic field wh
is related to the phase of the order parameter. As in our w
a simple decoupling procedure between pseudofermions
bosons is used. A pseudogap phase is found both above
below TBKT . Gusyninet al. also point out the necessity t
perform a fully quantum-mechanical calculation to descr
the pseudogap phase.79 The main difference with our work
comes from the SO~2! symmetry of the order paramete
which leads to a finite-temperature Berezinskii-Kosterli
Thouless phase transition.

Let us now mention some limitations of our approach.~i!
The feedback of spin fluctuations on~pseudo!fermions is not
fully taken into account. As a result, we miss important
fects, like the renormalization of the zero-temperature
gapD0 by quantum spin fluctuations.~ii ! The crossover tem-
peratureTX , which is identified to the HF transition tem
peratureTN

HF at weak coupling, is overestimated. Due
Kanamori screening effects,TX should be smaller thanTN

HF

~Refs. 13 and 65!. ~iii ! The NLsM approach is restricted to
low temperature (T!TX). In particular, it does not give ac
cess to the crossover regime between the Fermi liquid
the pseudogap phase at weak coupling. This regime is c
acterized, as the temperature decreases, by the suppress
Landau’s QP’s.~iv! At finite temperature, we predict a meta
insulator transition between a pseudogap phase and a M
Hubbard insulator. However, being a low-energy theory,
NLsM does not allow us to study the finite-temperatu
metal-insulator transition in detail~see Sec. IV!.

But the main shortcoming of our approach is that it do
not distinguish between Bogoliubov and Mott-Hubba
bands. We find a single energy scale (D0) in the density of
statesr(v) and the spectral functionA(k,v). On physical
grounds, we expect instead two energy scales: namely,D0
andU/2, corresponding to Bogoliubov bands~or precursors
thereof at finite temperature! and Mott-Hubbard bands
respectively.13 In the weak-coupling limit,D0 depends cru-
cially on the nesting properties of the Fermi surface~Slater
antiferromagnetism!. On the other hand, the energy sca
U/2 has a purely local origin, which is independent of t
Fermi surface geometry and is associated with the M
9-14
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Hubbard localization. A proper description of the Mo
Hubbard localization would require one to treat the cha
fluctuations beyond the HF approximation for theDc field
~Sec. II!. In the strong-coupling limit, charge fluctuations a
frozen out. This is the reason why the HF saddle point for
amplitude fieldsDc andDs provides an accurate descriptio
of the local moments~whose direction is given by theVr
field! which form in the strong-coupling limit.80 Note that for
U@4t, D0→U/2 so that the system is characterized by
single energy scale. At intermediate coupling (U;8t), a
four-peak structure corresponding to the simultaneous p
ence of Bogoliubov and Mott-Hubbard bands has been
served in numerical simulations81,82 and analytical
studies13,83 of the Hubbard model. Although it misses som
aspects of the Mott-Hubbard localization, in particular at
termediate coupling, we believe that our theory captures
main features of the physics of the 2D half-filled Hubba
model.

There are several directions in which this work could
further developed. The most obvious one is to consider s
ations where antiferromagnetism is frustrated due to eith
nonbipartite lattice or a finite next-neighbor hopping amp
tude. Doping would also induce magnetic frustration. T
opens up the possibility to stabilize more exotic magne
orders ~e.g., a noncollinear order! and/or to reach the
quantum-disordered and quantum-critical regimes of
NLsM ~Fig. 2! and study the corresponding fermion spect
functions.
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APPENDIX A: HF CURRENT-CURRENT CORRELATION
FUNCTION

In this appendix we calculate the static uniform curre
current correlation function

Pmm8
nn8 5^ j m

n ~0,0! j m8
n8 ~0,0!&HF. ~A1!

From the definition of the currentj m
n @Eqs.~25! and~26!#, we

see that its zero-frequency zero-momentum Fourier tra
form involved in Eq.~A1! is given by

j m
n ~0,0!5

1

AbN (
k,v

vm~k!Fkv
† snFkv , ~A2!

where

v0~k!51, ~A3!

vm~k!52t sin~km!, m5x,y. ~A4!

Using the Wick’s theorem to evaluate HF averages ofF

fields, we can expressPmm8
nn8 as
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Pmm8
nn8 52

1

bN (
k,v

k8,v8

vm~k!vm8~k8!

3Tr@sn^FkvFk8v8
† &sn8^Fk8v8Fkv

† &#, ~A5!

where Tr denotes the trace with respect to the spin indic
Writing the HF propagator@Eq. ~11!# as

2^FkvFk8v8
† &5dv,v8@dk,k8G~k,v!1dk,k81ps3F~k,v!#,

~A6!

G~k,v!5
2 iv2ek

v21Ek
2

, F~k,v!5
D0

v21Ek
2

, ~A7!

and using Tr(snsn8)52dn,n8 , Tr(s3sns3sn8)
52dn,n8(2dn,321), andF(k1p,v)5F(k,v), we obtain

Pmm8
nn8 52

2dn,n8
bN (

k,k8,v
vm~k!vm8~k8!@dk,k8G~k,v!2

1dk,k81p~2dn,321!F~k,v!2#. ~A8!

Pmm8
nn8 is thus diagonal inn andn8. One can show that it is

also diagonal inm andm8. Indeed, whenever these two in
dices are different, the right-hand side of Eq.~A8! is odd in
kx or ky and vanishes after wave-vector summation. Furth
more, v0(k1p)5v0(k) and vm(k1p)52vm(k) for m
5x,y, so that

Pmm8
nn8 52

2dn,n8dm,m8
bN (

k,v
vm~k!2@G~k,v!21~2dm,021!

3~2dn,321!F~k,v!2#. ~A9!

For T!TN
HF, one can perform the Matsubara frequency su

mation in the zero-temperature limit. This gives

2
1

b (
v

G~k,v!25
1

b (
v

F~k,v!25
D0

2

4Ek
3

. ~A10!

The only nonvanishing correlator functions are therefore

P00
115P00

225E
k

D0
2

Ek
3

, ~A11!

Pxx
335Pyy

3354D0
2t2E

k

sin2kx

Ek
3

. ~A12!

APPENDIX B: SU„2… GAUGE FIELD

In this appendix we give a proof of Eqs.~35! and ~36!,
relating the Ne´el and canting fieldsnr and Lr to the gauge
field Amr

n and the rotated canting fieldlr . Let us recall the
definition of the gauge field:

Amr5 iRr
†]mRr , m5t,x,y. ~B1!
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The indext stands for real-time derivation. Imaginary-tim
results are obtained usingt5 i t . The SU(2)/U(1)rotation
matrix Rr is defined, up to a U(1) gauge transformationRr
→Rre

iars3, by

s•nr5Rrs3Rr
† , ~B2!

which means that the SO~3! elementRr associated toRr
mapsuz onto nr . The gauge fieldAmr

n is a zero-trace Her-
mitian matrix which can be decomposed on Pauli matri
sn :

Amr5 (
n51,2,3

Amr
n sn5Amr•s, ~B3!

where the bold notation denotes the three-component ve
(Am

1 ,Am
2 ,Am

3 ).
The main result of this appendix is the following gene

form for theAmr field:

Amr5Rr
21S 1

2
nr`]mnr1kmrnr D ~B4!

5
1

2
uz`Rr

21~]mnr !1kmruz . ~B5!

kmr is some function of position and time, fixed by th
choice of a gauge. Notice, however, that it cannot be
function, since it appears in the expression of the gauge-fi
density tensor, which must be zero.

Equations~35! and~36! follow quite easily. First, we have

(
n51,2

Amr
n 25

1

4
[Rr

21~nr`]mnr !u2

5
1

4
~nr`]mnr !

25
1

4
~]mnr !

2. ~B6!

Using ] t5 i ]t we obtain Eq.~35!. Second, recalling that th
rotated canting vectorlr5Rr

21Lr has no component alon
uz , we can write
ar

v

.J

ti
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Amr
n l r

n5Amr• lr

5
1

2
Rr

21~nr`]mnr !•Rr
21~Lr !

5
1

2
~nr`]mnr !•Lr , ~B7!

hence Eq.~36!.
We now give a derivation of Eq.~B5!. The first step is to

differentiate Eq.~B2!. Derivatives of the rotation matrix are
calculated using Eq. ~B1! and the identity ]mRr

†5
2Rr

†(]mRr)Rr
† which results from the unitarity ofRr . We

obtain

s•]mnr52 iRrAmrs3Rr
†1 iRrs3AmrRr

†

52 iRrAmrRr
†Rrs3Rr

†1 iRrs3Rr
†RrAmrRr

† .

~B8!

Let us define a new field

Ãmr5RrAmrRr
†5Ãmr•s. ~B9!

Using Ãmr and Eq.~B2! we can rewrite Eq.~B8! as

s•]mnr52 i @Ãmr ,s•nr#

52 i @s•Ãmr ,s•nr#52s•~Ãmr`nr !. ~B10!

We have used the identity

@s•u,s•v#52i s•~u`v!. ~B11!

Identifying the coefficients ofs in Eq. ~B10! and vector
multiplying by nr we arrive at

Ãmr5
1

2
nr`]mnr1~nr•Ãmr !nr . ~B12!

To conclude, it is sufficient to define the last term in E
~B12! as kmr and to remark that, owing to the definition o
Ãmr , we haveÃmr5RrAmr .
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