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Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
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We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density
ranger s5100–150. We have tested different types of orbital for use in the approximate wave functions but
none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing
the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the poten-
tial biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from
a ferromagnetic fluid to a body-centered-cubic Wigner crystal atr s510661. The diffusion quantum Monte
Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role
played by exchange and correlation in Wigner crystals. We also study ‘‘floating’’ Wigner crystals and give
results for their pair-correlation functions.
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I. INTRODUCTION

Electrons in a uniform potential are expected to crystall
at low-densities to minimize their interaction energy.1,2 In
this paper we investigate Wigner crystals in three dimensi
using quantum Monte Carlo~QMC! methods within the
variational ~VMC! and diffusion ~DMC! approaches. The
DMC method is currently the most accurate available
calculating the zero-temperature ground-state energy of
tended quantum-mechanical systems.

There has been some debate about the density at w
the transition from a Fermi fluid to a Wigner crystal shou
occur in three dimensions. In their pioneering DMC study
the phases of the electron gas, Ceperley and Alder3 obtained
a transition density ofr s5100620,4 but a more recent DMC
study gaver s565610.5 Moreover, highly accurate DMC
energies for the low-density fluid have recently beco
available,6 which may further modify predictions of the tran
sition density. The primary goal of this work is to provid
highly accurate DMC energies for three-dimensional Wig
crystals and to use them in conjunction with the fluid data
Zong et al.6 to predict an accurate value for the transiti
density.

To achieve sufficient accuracy we have carefully stud
the possible sources of error in our calculations, includ
finite-size effects, timestep errors, and population control
rors. We have used three procedures for optimizing the
wave functions: minimization of the variance of the ener
within VMC,7,8 minimization of the VMC energy, and mini
mization of the DMC energy.

We compare our results with recently published fully-se
consistent unrestricted Hartree-Fock~HF! calculations,9 and
with the results of a simple version of Hartree theory, wh
allows us to understand the effects of exchange and cor
tion in Wigner crystals.

Finally, we discuss ‘‘floating’’ Wigner crystals in which
the homogeneous and isotropic nature of the ground sta
restored, relating their properties to those of a ‘‘fixed’’ cry
tal. DMC results for the pair-correlation functions~PCF’s! of
floating Wigner crystals are compared with those of the fl
phases.
0163-1829/2004/69~8!/085116~10!/$22.50 69 0851
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II. QUANTUM MONTE CARLO METHODS

We have performed both VMC and DMC calculations u
ing the CASINO package.10 In VMC, expectation values are
calculated using an approximate many-body wave functi
the integrals being performed by a Monte Carlo method. T
approximate wave function normally contains a number
variable parameters, whose values are obtained by an
mization procedure.

In the DMC method3,11 the imaginary time Schro¨dinger
equation is used to evolve an ensemble of electronic confi
rations towards the ground state. The fermionic symmetr
maintained by the fixed-node approximation,12 in which the
nodal surface of the wave function is constrained to eq
that of an approximate wave function. We will refer to th
approximate wave functions used in VMC and DMC as tri
wave functions. The fixed-node DMC energy provides
variational upper bound on the ground-state energy with
error that is second order in the error in the nod
surface.13,14

The trial wave function introduces importance sampli
and controls both the statistical efficiency and the final ac
racy that can be obtained. In DMC the final accuracy d
pends on the nodal surface of the trial wave function via
fixed-node approximation, while in VMC the final accurac
depends on the entire trial wave function, so that VMC e
ergies are more sensitive to the quality of the trial wa
function than DMC energies. Apart from the fixed-node a
proximation, DMC results may be subject to bias from t
use of the short-time approximation~finite timestep errors!,
population control errors, and effects from the finite size
the simulation cell. We have made strenuous attempts to
duce these errors: see Sec. IV. The statistical errors in
QMC data are estimated using the blocking method15 to
eliminate the effects of serial correlation.

III. TRIAL WAVE FUNCTIONS

A. The Slater-Jastrow form

We have used trial wave functions of the standard Sla
Jastrow form,
©2004 The American Physical Society16-1
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C~R↑ ,R↓!5eJ(R↑ ,R↓)D↑~R↑!D↓~R↓!, ~1!

whereD↑ andD↓ are Slater determinants of up- and dow
spin single-particle orbitals andR↑ andR↓ denote the coor-
dinates of the up- and down-spin electrons, respectively,
eJ is the Jastrow correlation factor.

B. Jastrow factors

We have used Jastrow factors of the form

J52
1

2 (
i

(
j

„u0~r i j !1S1~r i j !…, ~2!

where

u0~r i j !5
A

r i j
X12expS 2

r i j

Fi j
D CexpS 2

r i j
2

L0
2D , ~3!

with Fi j 5A2A if electronsi and j have the same spin an
Fi j 5AA if the electrons have opposite spins. This term s
isfies the electron-electron cusp conditions.16,11 The constant
L0 is set to 0.3 of the Wigner-Seitz radius of the simulati
cell andA is a free parameter. Theu0 term is set to zero for
r i j greater than the Wigner-Seitz radius, resulting in a sm
discontinuity in the Jastrow factor of less than 231025 in
magnitude. To investigate possible bias from this disconti
ity we compared the values of the two standard estimator
the kinetic energy involving the gradient and Laplacian
the trial wave function from a very long VMC run atr s
5100. The estimators agreed to within the statistical er
which was smaller than in our final DMC runs.

The second term in the Jastrow factor is given by

S1~r i j !5~r i j 2L8!2r i j
2 (

l 50

L

a lTlS 2r i j 2L8

L8
D

1B8~r i j 2L8!2S L8

2
1r i j D , ~4!

whereTl is thel th Chebyshev polynomial,L8 is the Wigner-
Seitz radius of the simulation cell, andB8 anda l are param-
eters to be determined.

C. Orbitals for the Slater determinants

The Slater determinants for the crystalline phases w
formed from localized nonorthogonal single-particle orbit
centered on the lattice sites of a body-centered-cubic~bcc!
crystal. A bcc crystal is expected to be favored in the lo
density limit because it has the lowest Madelung ene
Throughout, we usef(r ) to denote a spatial orbital centere
on the origin. Periodic orbitals for use in a simulation of
finite system subject to periodic boundary conditions
constructed for each lattice point in the simulation cell
summing over all the replicas off centered on that lattice
point. Clearly, if all the individual orbitals are periodic the
their Slater determinant is too. We use a Jastrow factor c
taining only homogeneous terms, see Sec. III B, with
08511
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differences between electron coordinates being evaluated
der the minimum image convention. Hence the overall wa
function is periodic.

In their VMC and DMC studies of Wigner crystals
Ceperley17 and Ceperley and Alder3 used Gaussian orbitals

f~r !5exp~2Cr2!. ~5!

They determinedC by variational methods, with the Jastro
factor being optimized simultaneously.

Ortiz et al.5 used exponentials of two-parameter Pa´
functions,

f~r !5expS 2Cr2

11kr D , ~6!

and determined the values ofC andk and the parameters in
their Jastrow factor by minimizing the variance of the ener
within VMC.

We have also investigated two new types of orbital
Wigner crystals. A straightforward generalization of Eq.~5!
is to use a linear combination of Gaussian orbitals,

f~r !5(
i 51

NG

l iexp~2Cir
2!. ~7!

We have also considered orbitals based on an expansio
the eigenstates of a simple harmonic oscillator. An orbita
constructed by multiplying the simple Gaussian function
a polynomial. For a bcc lattice with identical orbitals on ea
site the polynomial should have the full symmetry of t
lattice, i.e.,

f~r !5exp~2Cr2!@11ar 21br 41g~x2y21x2z21y2z2!

1O~r 6!#, ~8!

wherer5(x,y,z). This orbital has considerable flexibility a
small r.

D. Optimization of the trial wave functions

Parameters in the trial wave functions may be optimiz
in a variety of ways. In principle the DMC energy depen
only on the nodal surface of the wave function, which
determined by the form of the orbital. It is therefore best
minimize the DMC energy directly with respect to the p
rameters in the orbitals, but this is a costly and laborio
procedure which we have carried out only for the Gauss
parameterC of the simple Gaussian orbital. In principle th
DMC energy does not depend on the Jastrow factor, s
cannot be optimized in this fashion.

We first studied the simple Gaussian and Pade´ forms of
Eqs.~5! and ~6!, using energy variance minimization to op
timize theC parameter and the parameters in Jastrow fac
and minimization of the VMC energy with respect to vari
tions in k, but we found the optimal value ofk to be very
close to zero. The Pade´ orbital seems to offer little advantag
over a simple Gaussian orbital at the densities studied (
<r s<150).

We optimized the expansion coefficients and Gaussian
ponents of the linear combination of Gaussian orbitals fo
6-2
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DIFFUSION QUANTUM MONTE CARLO STUDY OF . . . PHYSICAL REVIEW B 69, 085116 ~2004!
of Eq. ~7!, together with a Jastrow factor, using VMC ener
variance minimization. However, again, it was found that
practice this orbital offers no advantage over a single Ga
ian function at the densities studied.

We attempted to optimize thea parameter in the har
monic oscillator form of Eq.~8! for a Wigner crystal atr s
5100, but the resulting wave function gave a DMC ene
within the error bars of the one obtained by settinga50.

We have therefore adopted the simple Gaussian orbita
Eq. ~5! for our main calculations. We have adopted the f
lowing procedure to optimize the trial wave functions. TheA
parameter in the Jastrow factor was optimized by minimi
tion of the VMC energy, the parameters in theS1 part of the
Jastrow factor by energy variance minimization, and theC
parameter in the Gaussian orbitals by minimization of
DMC energy. These minimizations were performed in tu
until the changes in the parameters were negligible.
found that the DMC-optimized exponents obeyC
'0.11r s

23/2, which gives rather smaller values than tho
used by Ceperley17,3 (C'0.2r s

23/2) and considerably smalle
than those predicted by HF theory or the simple Hart
model (C'0.5r s

23/2), see Sec. VII.

IV. ACCURACY OF THE DMC RESULTS

Our DMC algorithm is essentially that of Umrigaret al.18

Here we explore the sources of error in our DMC calcu
tions and justify our choices of the parameters for the fi
production runs, which are summarized in Sec. IV D. Unle
otherwise stated, we use simple Gaussian orbitals throug
this section.

A. Finite-size effects

We used periodic boundary conditions and the Ewald
teraction energy to reduce the finite-size effects. We tes
the convergence of the Ewald sums and found that trunca
errors were less than 1023 of the statistical error bars on th
final DMC runs.

The energy per electron at a given density depends on
number of electrons in the simulation cell. We wish to obta
the energy per electron in the limit that the number of el
trons per simulation cell goes to infinity. Two approach
have been used previously when dealing with finite-size
fects in QMC simulations of Wigner crystals. Ortizet al.5

used large simulation cells and found the finite-size error
be less than their statistical error bars of 8.531026 a.u. per
electron for numbers of electrons in excess of 5
Ceperley,17,3 on the other hand, used smaller system size
conjunction with an extrapolation scheme.

Because we wish to work to very high accuracy, we u
quite large simulations cells and the extrapolation form
derived by Ceperley,17

E`5EN1
b

r s
3/2N

, ~9!
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where the constantsE` and EN are the total energies pe
electron of the infinite system and the system withN elec-
trons, andb is independent of bothr s andN.

Starting from a two-parameter Pade´ orbital and corre-
sponding Jastrow factor optimized in a 64-electron simu
tion cell, we attempted to further optimize the wave functi
in a 216-electron unit cell. This attempt did not lead to
lowering of the VMC energy, suggesting that the 64-electr
simulation cell is adequate for optimization purposes; t
size of cell was used in all of our subsequent optimizat
runs.

B. Population control biasing

The use of a finite population of configurations results
a positive bias in the DMC energy which, it is argued, fa
off as the reciprocal of the target population.18 This turns out
to be a genuine problem in the case of Wigner crystals wh
we are able to work to extremely high precision. An exam
of the problem of population control biasing is shown in F
1, where it can be seen that the bias is indeed positive
that it falls off roughly as the reciprocal of the target pop
lation.

The simplest method for avoiding population control b
asing is to use a large target population. Alternatively,
reweighting scheme developed by Umrigaret al.18 can be
used. In our tests we found this scheme to work well, p
vided the number of reweighting factors was about the sa
as the number of timesteps over which average local ener
are correlated~between 100 and 1000 timesteps of 30 a.u!.
However, with this many reweighting factors present, t
total weight at each timestep fluctuated enormously and v
long simulations were required in order to obtain meaning
statistics. We found it to be more efficient to use larger po
lations than to employ the reweighting scheme. For this r
son, we did not use the reweighting scheme in our prod
tion runs.

Including more parameters in the Jastrow factor can l
to a significant reduction in population control biasing,
illustrated in Fig. 2. This shows that, when the reweighti
scheme is not used, DMC energies obtained with a a p
Jastrow factor and a small target population~solid line! are

FIG. 1. DMC energy against target population for a 64-elect
crystal atr s5100. The Gaussian exponent wasC50.000 135 and
the Jastrow factor contained only theu0 term, with A5438.389.
The timestep was 20 a.u.
6-3
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N. D. DRUMMOND et al. PHYSICAL REVIEW B 69, 085116 ~2004!
too high, but when a larger population is used in conjunct
with the same Jastrow factor~dashed line! the energies are
similar to those obtained with a good Jastrow factor an
small population~dotted line!. Improving the overall quality
of the trial wave function reduces the population control b
because it reduces the fluctuations in the population.
results shown in Fig. 1 in which the Jastrow factor consis
only of theu0 term therefore represent a worst-case scena

C. Timestep biasing

The variation of DMC energy with timestep is shown
Fig. 3 for three different Jastrow factors. It can be seen
the bias is always positive and that it grows linearly w
timestep; therefore we can largely eliminate the bias by c
rying out simulations at a number of different timesteps a
performing a linear extrapolation to zero timestep.

FIG. 2. DMC energy against Gaussian exponent for a
electron crystal atr s5125, using a timestep of 30 a.u. andA
5597.901. Solid line: DMC energies with a Jastrow factor cons
ing of only theu0 term and a target population of 100 configur
tions; dashed line: DMC energies for the same Jastrow factor,
with a target population of 800 configurations; dotted line: DM
energies obtained with a fully optimized Jastrow factor~with both
u0 andS1 terms! and a target population of 100 configurations.

FIG. 3. DMC energy of a 64-electron crystal atr s5100 against
timestep for different values of theA parameter in the Jastrow facto
of Eq. ~3! and different target population sizes. TheS1 term was not
present in the Jastrow factor. The Gaussian exponent waC
50.000 11 in all cases. Solid line:A5438.389, target population
100 configurations; dotted line:A5438.389, target population 80
configurations; dashed line:A5563.157, target population 100 con
figurations.
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The differences between the DMC energies in Fig. 3
due to population control and timestep bias. The solid a
dashed curves were obtained using the same target po
tion of 100 configurations, but with different Jastrow facto
The population control bias at fixed timestep is clea
smaller for the Jastrow factor withA5438.389~solid line!
than forA5563.157~dashed line!. The dotted line was ob-
tained with a target population of 800 configurations, whi
essentially removes the population control bias. Because
solid and dotted curves are approximately parallel we ded
that the population and timestep errors are approxima
independent of one another. Furthermore, it is clear that
tering the Jastrow factor has a considerably greater effec
the population control bias than on the timestep bias.

In Fig. 4 we show that timestep bias remains a probl
even with a well-optimized Jastrow factor and a large tar
population which essentially removes the population bi
However, this figure again shows that a linear fit is approp
ate when extrapolating to zero timestep.

D. Parameters for the production runs

The final production runs were characterized as follow
~1! The Gaussian exponents in the orbitals were optimi

by minimizing the DMC energy, theA parameters by mini-
mizing the VMC energy, and the other parameters in
Jastrow factors by minimizing the variance of the energy,
described in Sec. III D. TheS1 terms in the Jastrow factor
contained between four and six parameters per spin.

~2! A target population of 640 configurations was use
This, together with the optimized Jastrow factor, should
sure that population control errors are negligible.

~3! At each density, DMC calculations were performe
using between four and six different timesteps and the ene
was extrapolated linearly to zero timestep.

~4! A variety of system sizes were used~see Table II!, and
the energies were extrapolated to infinite system size u
Eq. ~9!.

V. RESULTS AND DISCUSSION

A. DMC energies obtained using DMC-optimized
Gaussian orbitals

The values of the exponents obtained by optimizing
DMC energy are shown in Table I, along with the final DM

-

t-

ut

FIG. 4. DMC energy of a 64-electron crystal atr s5110 against
timestep. The Jastrow factor contained optimizedu0 andS1 terms
and the target population was 640 configurations. The straight
is a fit to the DMC data.
6-4



ow
n

w
r.
th
e.
h
ng
e
e
ry
r

m

e
re
,

g
rr
e
en

n in

m
gy
ela-

-

of

e

ial-
n

on
ed

be

e
he

ar
.

the
e:
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energies. These were found by using the DMC results sh
in Table II in conjunction with the finite-size extrapolatio
formula of Eq. ~9!. Using the results forr s5100 and r s
5125, we obtained a good fit, givingb51.26(3).

B. Electronic charge densities obtained using the different
orbitals

In Fig. 5 we plot the electronic charge densities for ar s
5100 crystal, calculated using HF theory orbitals~see Sec.
VII !, from the DMC-optimized orbitals but without a Jastro
factor, and within DMC using an optimized Jastrow facto

The HF theory orbitals are very localized, whereas
orbitals optimized within DMC are much more diffus
However, the inclusion of a Jastrow factor results in t
charge density from the DMC-optimized orbitals becomi
more localized on lattice sites, although not to the same
tent as the HF orbitals. The VMC charge density obtain
with the optimized Slater-Jastrow wave function is ve
close to the DMC density shown in Fig. 5. The peak diffe
ence between the VMC and DMC charge densities is 4.7%
the peak DMC density, and therefore an extrapolated esti
tion of the QMC charge density,r(r )'2rDMC2rVMC ,
would be very similar to the DMC density.

The Jastrow factor in a Wigner crystal serves to furth
localize the electrons on their lattice sites. Therefo
whereas HF theory gives very localized Gaussian orbitals
an optimized Slater-Jastrow wave function we find theorbit-
als to be much more diffuse, with the localization bein
caused by correlation effects from the Jastrow factor. Co
lation effects allow electrons to invade each other’s spac
some extent without incurring a high potential-energy p

TABLE I. Orbital exponents optimized by minimizing the DMC
energy, and the final DMC energies per electron~extrapolated to
zero timestep and infinite system size! for the different r s . All
entries are in a.u.

r s C ~DMC! DMC energy

100 0.00011 20.0076765(4)
110 0.0001 20.0070312(5)
125 0.00009 20.0062458(4)
150 0.000063 20.0052690(3)

TABLE II. DMC energies in a.u. per electron~extrapolated to
zero timestep! at different densities and system sizes, which
characterized by the number of electrons in the simulation cell

r s System size DMC energy

100 64 20.0076961(2)
100 216 20.0076823(3)
100 512 20.0076788(8)
110 64 20.0070483(2)
125 64 20.0062599(2)
125 216 20.0062495(1)
150 64 20.0052797(1)
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alty; hence the overall charge density is less localized tha
HF theory, and the kinetic energy is lower as a result.

VI. LOCATING THE FLUID-TO-CRYSTAL TRANSITION
DENSITY

In order to locate the density at which the transition fro
the Fermi fluid to the crystal occurs, we fit the DMC ener
data for these phases to interpolating functions. The corr
tion energy is defined as

Ec~r s ,z!5E~r s ,z!2EHF~r s ,z!, ~10!

whereE is the total energy,EHF is the HF ground-state en
ergy,z is the polarization. Ceperley17 proposed a fitting form
for the correlation energy of a Fermi fluid as a function
r s ,

Ec
z~r s!5

gz

11b1
zAr s1b2

zr s

, ~11!

wheregz , b1
z , andb2

z are fitting parameters. We make us
of the highly accurate DMC energies of Zonget al.6 for the
ferromagnetic fluid phase at low densities, which used tr
wave functions including ‘‘backflow’’ effects. We found a
excellent fit to Eq. ~11! giving g1520.093 99, b1

1

51.5268, andb2
150.28882. We also tried fitting the fluid

data to the form proposed by Perdew and Zunger,19 which is
based upon Eq.~11!, but includes an assumed dependence
polarization, so that the partially polarized and unpolariz
data of Zonget al. could be used. Thex2 value of this fit was
not so good, however.

At low densities the total energy of a crystal phase can
expanded as

E~r s!5
f 0

r s
1

f 1

r s
3/2

1
f 2

r s
2

1O~r s
25/2!, ~12!

where the$f% are constants.20 The first of these is taken to b
f 0520.895 93 in order to give the Madelung energy in t

e

FIG. 5. Electronic charge density along a^111& direction pass-
ing through the lattice sites of a bcc Wigner crystal atr s5100.
Solid line: HF charge density; dotted line: charge density from
DMC-optimized orbitals without a Jastrow factor; dashed lin
DMC charge density.
6-5
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N. D. DRUMMOND et al. PHYSICAL REVIEW B 69, 085116 ~2004!
low-density limit. We found that our DMC data fitted Eq
~12! very well, giving f 151.3379 andf 2520.552 70. These
values are in reasonable agreement with the parame
found using a completely different method by Carr20 and
Carr, Coldwell-Horsfall and Fein,21 who have calculated the
zero-point lattice-vibrational energy of a Wigner crystal
order to give an analytical result off 151.325. Furthermore
they use perturbation theory to obtain the approximate re
f 2520.365. This phonon model is in good agreement w
our Wigner crystal energies at larger s , but it gives energies
which are too high at smallerr s .

The energies of the ferromagnetic fluid and bcc crystall
phases at low densities calculated by different authors
shown in Fig. 6. We found the transition from the fluid
crystalline phases to occur atr s510661, in agreement with
the original result of Ceperley and Alder.3 Note, however,
that the transition density predicted using the fluid data
Zong et al.6 in conjunction with the crystal data of Ceperle
and Alder would be somewhat lower, at aboutr s5127. Our
Wigner crystal energies are slightly lower than those of C
erley and Alder, even though they studied a Bose crys
which must have a lower energy than the corresponding
mion one. We believe this difference must be due to so
small bias in the results of Ceperley and Alder.3 Fitting Eq.
~12! to the crystal data of Ceperley and Alder, we find th
f 151.4309 andf 2521.1058. The discrepancy with the an
lytical result of Carr forf 1 is consistent with the presence
a small, positive, systematic bias in the crystal results
Ceperley and Alder.

Our transition density is considerably lower than the va
of r s565610 obtained by Ortizet al.5,22The statistical error
bars on their data are much larger than on the fluid data

FIG. 6. Energies of the ferromagnetic fluid and bcc crystall
phases at low density. The Madelung energy of the bcc lattice
been subtracted off and the resulting energy multiplied byr s

3/2 to
highlight the differences between phases. The circles show
DMC data of Zonget al.6 for the ferromagnetic Fermi fluid; the
dashed line is a fit to this data. The diamonds show our DM
results for the bcc crystal; the solid line is a fit to this data. T
left-pointing triangles show the Ceperley-Alder3 results for the fer-
romagnetic fluid; the dotted line is a fit to this data. The up-point
triangles show the Ceperley-Alder results for the bcc crystal;
dashed-dashed-dotted line is a fit to this data. Finally, the d
dotted line shows the prediction of the phonon model of Carret
al.21 Where error bars on the DMC data cannot be seen, it is
cause they are smaller than the symbols showing the data poi
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Zong et al.6 or on our Wigner crystal data, which hampe
detailed comparisons. However, it appears that the main
son for the discrepancy is that Ortizet al. place the ferro-
magnetic fluid higher in energy than Zonget al.Some bias in
the results of Ortizet al. is expected because they us
plane-wave nodes while Zonget al.used optimized backflow
nodes, but this is not enough to explain the difference
tween the results.

For the crystal phase, we may estimate the fixed-n
error resulting from the use of the HF orbitals by taking t
difference between DMC energies calculated using the
and DMC-optimized orbitals. Atr s5100 we find this differ-
ence to be 8.9(1)31025 a.u. per electron. Zonget al.23 have
calculated the fixed node errors resulting from the use
plane-wave orbitals for the fluid phases as 1.87(
31025 a.u. per electron for the unpolarized fluid an
0.84(7)31025 a.u. per electron for the fully polarized fluid
Therefore, although the correlation energy of crystals
smaller than fluids at the same density, the fixed-node er
resulting from the use of HF orbitals are considerably lar
in crystals than in fluids.

VII. HF AND OTHER SIMPLE THEORIES

HF theory is described as ‘‘restricted’’ when the spin o
bitals are products of space and spin parts which are o
pied in pairs with identical space parts, and ‘‘unrestricte
when the space parts are different or when they are not
cupied in pairs. Within the quantum chemistry commun
the standard definition of the correlation energy is the diff
ence between the exact and restricted HF energies, but
Wigner crystal the electrons are localized in space indivi
ally and a description within restricted HF theory is not po
sible. We therefore define the correlation energy as the
ference between the exact and unrestricted HF energies

A recent self-consistent unrestricted HF study of electro
in a uniform potential gave stable Wigner crystal solutio
for r s>4.5 in three dimensions.9 Here we develop simplified
versions of the HF model which almost exactly reprodu
the results of the fully self-consistent HF studies9 at low
densities and compare the results with our DMC ones.

In the low-density regime, the overlap between orbit
centered on neighboring lattice sites is small and there
we expect the Hartree and HF energies to be similar. Le
take the wave function of the crystalline phase to be a H
tree product of normalized Gaussian orbitals,

f~r !5S 2C

p D 3/4

exp~2Cr2!, ~13!

centered on lattice sites. The Gaussian exponentC is to be
determined variationally.

The resulting kinetic energy per electron is easily eva
ated asT53C/2. The spatial charge density is simply th
superposition of the Gaussian charge densities due to
orbital. The electrostatic energyEH of this charge distribu-
tion may be readily evaluated, but we must subtract off
self-energiesE0 of each Gaussian. The total energy per ele
tron is therefore given by

as

e

e
h-

e-
.
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E5T1EH2E05
3C

2
1

2p

V (
GÞ0

exp~2G2/4C!

G2
2AC

p
.

~14!

where the G are the reciprocal lattice vectors andV
54pr s

3/3 is the volume of the primitive unit cell.
Differentiating this energy with respect to the Gauss

exponent and approximating the sum by an integral, we
that

]E

]C
'

3

2
2

p

2VC2
. ~15!

The approximation is valid for larger s , where the density of
reciprocal lattice vectors is large. Hence we find the optim
value of C to be C51/2r s

3/2, which is precisely the resul
obtained by Wigner2 using a spherical approximation.

Integrating Eq.~15! with respect toC we obtain the en-
ergyE53C/21p/2VC1 f (r s), where the functionf (r s) is
the ‘‘constant’’ of integration. Inserting the optimal value
C and making use of the fact that, in the limit of low dens
ties, E must tend to the Madelung energy of the crystal l
tice, we find

E5
3

2r s
3/2

1
M

r s
, ~16!

whereM is the Madelung constant of the lattice.
The simple Hartree model of Eq.~14! and the further

simplifying approximation of Eq.~16! give energies which
are very close to the full HF results forr s.50; for example,
the energy of Eq.~14! agrees with that of the full HF result t
within 0.006%, whereas the energies atr s5100 agree to
within 0.001%. The agreement between the fully se
consistent HF data and the simpler approximations is jus
good for a face centered lattice. These results demons
that exchange energies between orbitals on different s
are extremely small. The exchange interactions are o
significant between nearest-neighbor Gaussian orbitals
the exchange energy per electron is given
EX52(Nn/2)AC/p exp(2CR2), whereNn is the number of
nearest neighbors andR is the nearest-neighbor distanc
This expression gives extremely small energies for the
densities studied here.

We have also calculated DMC energies using the orbi
obtained from HF theory,9 and Jastrow factors optimized u
ing energy variance minimization. The results are summ
rized in Table III. The extrapolation of the DMC results
infinite system size was carried out using Ceperley’s extra

TABLE III. HF results and DMC results obtained using H
theory orbitals. All entries are in a.u.

DMC energy
r s C ~HF! HF energy ~512 electrons! ~Infinite system!

50 0.00141 20.0136768 20.014060(4) 20.014052(4)
100 0.0005 20.0074593 20.007589(1) 20.007586(1)
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lation scheme with his value ofb51.5.17 Comparing the
data in Table III with that in Tables I or,II we see that th
DMC energy obtained atr s5100 with the HF orbitals is
significantly higher than that obtained with DMC optimize
orbitals. Some population control bias is present in the
sults in Table III, but we estimate this to be about 2% of t
difference between ther s5100 DMC energies obtained with
the HF and DMC-optimized orbitals.

The strength of correlations in a system may be measu
by the ratio of the correlation energy to the total ener
Ec /E. The DMC results of Zonget al.6 indicate that in the
fluid phasesEc /E tends to a positive constant asr s→`,
while for the Wigner crystal our results show thatEc /E tends
to zero asr s→`. In this sense one may think of Wigne
crystals as being weakly correlated systems at low densi

VIII. MAGNETIC BEHAVIOR OF THE CRYSTALLINE
PHASES

The tiny energy differences between ferromagnetic a
antiferromagnetic crystals proved to be too small to reso
in our QMC calculations. It might be possible to resol
them using a correlated sampling approach within VM
Such an approach should provide an accurate value for
energy difference between two systems, 1 and 2, ifuC1u2

.uC2u2 throughout the configuration space, which shou
hold for ferromagnetic and antiferromagnetic crystalli
phases at sufficiently low densities. HF theory predicts f
romagnetic behavior in the low density limit but according
the theory of Thouless24 such a system should be antiferr
magnetic. In their path integral QMC calculations, Candid
Bernu, and Ceperley25 have indeed found antiferromagnet
behavior for bcc Wigner crystals at low densities, althou
the energy differences are much smaller than our statis
error bars.

IX. FLOATING WIGNER CRYSTALS

The Hamiltonian of the uniform electron gas is invaria
under the simultaneous translation or rotation of the elect
positions. However, our trial Wigner crystal wave functio
break these symmetries and, for example, the resul
charge densities are inhomogeneous, see Fig. 5. These
functions represent Wigner crystals which are ‘‘pinned’’ b
some small external influence. Pinning of Wigner cryst
may arise from the presence of impurities or boundaries,
therefore the broken symmetry solutions are physically
evant, but Wigner crystals may also be mobile, in which c
it is better to describe them asfloating crystals.

One way of restoring the homogeneous and isotropic
ture of the trial function is to consider a linear combinati
of displaced and rotated copies of the fixed wave funct
C. This gives a floating wave function,

CF5E C~R~Ṽ !~$r i2D%!!dṼ dD, ~17!

whereR(Ṽ) represents a rotation of all the electron positio
and the integrals are over all possible solid anglesṼ and
6-7
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displacementsD. CF gives rise to a homogeneous and is
tropic charge densityn(r )5N/V, whereN is the number of
electrons andV is the volume of the system.

Wave functions for floating Wigner crystals in extend
systems have been discussed briefly by, for example, Bis
and Lührmann,26 and by Mikhailov and Ziegler.27 Rather
more attention has been devoted to restoring the~rotational!
symmetry in two-dimensional models of quantum dots.27,28

In finite systems the energy gain per electron from restor
the symmetry can be substantial but for an infinite system
turns out to be negligible.

Using a trial function where the single-particle orbitals
the Slater determinant aref5e2Cr2

, we have obtained ana
lytical results at the variational level for the case when
translational symmetry is restored. We found that the diff
ence in total energy is equal to the kinetic energy of
center of mass of the fixed crystal (3C/2), making the en-
ergy difference per electron negligible~this result also holds
when a translationally invariant Jastrow factor is include!.
We also found that the expectation value of any operator
only depends on relative electron coordinates is the same
C andCF at the variational level. We expect the same co
clusions to be true in DMC as well; in particular, we foun
that underopenboundary conditions the nodal surface of t
fixed and the translationally averaged trial functions
identical.

Despite the similarities in their energies, there is an i
portant qualitative difference between the fixed and float
Wigner crystal wave functions. The fixed wave function c
be written as a sum of disconnected partial wave functio
in the formC5(McM , where the overlap between thecM
tend exponentially to zero asN→`. From this it follows that
it represents an insulator.29,30 On the other hand, the sam
is not true for the floating wave function, resulting in co
ducting behavior.

X. PAIR-CORRELATION FUNCTIONS

A. Definitions

The spin-dependent PCF is defined as

gs,s8~r ,r 8!5

K (
i , j Þ i

ds,s i
ds8,s j

d~r2r i !d~r 82r j !L
ns~r !ns8~r 8!

.

~18!

It would be very costly to evaluate the full six-dimension
functiongs,s8(r ,r 8) for a Wigner crystal within QMC. How-
ever, for a homogeneous and isotropic systemg depends
only on the separation between electrons,r 5ur2r 8u, so that

gs,s8~r !5
V

4pr 2

1

NsNs8
K (

i , j Þ i
d~r 2ur i2r j u)L , ~19!

where we have usedns(r )5Ns /V. This one-dimensiona
function is much less costly to evaluate accurately than
~18!, hence we can obtain the PCF for a floating Wign
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crystal. Since the expectation value of any operator that
pends only on the difference between electron coordinate
the same for fixed and floating crystals, see Sec. IX, we
evaluategs,s8(r ) using our fixed trial function.

Furthermore, the expectation value of the potential ene
of the system can be written in terms of the spin-independ
PCF,g(r )5 1

4 (s,s8gs,s8(r ),

K (
i , j Þ i

v(ur i2r j u)L 5E n~r !n~r 8!g~r ,r 8!v~ ur2r 8u!dr dr 8

5
N2

V E 4pr 2g~r !v~r !dr, ~20!

which holds even for an inhomogeneous system such as
fixed Wigner crystal. Studying the PCF of a floating crys
therefore provides insight into the physics of the fixed crys
as well.

B. Discussion and results for the PCF’s

We evaluated Eq.~19! within VMC and DMC by accu-
mulating gs,s8(r ) in radial bins. Our best estimates ofg
were obtained using the extrapolated estimatorg(r )
'2gDMC2gVMC . We calculatedgs,s8(r ) at r s5110 for a
ferromagnetic and an antiferromagnetic Wigner crystal us
our optimized trial wave functions. For comparison, we ha
also calculatedgs,s8(r ) for the unpolarized fluid phase a
r s5110, using a trial wave function consisting of determ
nants of plane waves and a Jastrow factor optimized us
energy variance minimization.

All of the biasing effects that apply to the DMC energ
may also affect the PCF’s. We found that this was indeed
case, as we have obtained results that showed very sma
statistically significant differences when, for example, diffe
ent timesteps were used or when different Jastrow fac
were used in conjunction with small population sizes. Unli
the energy, it was not possible to use an extrapolat
scheme to remove the timestep bias, as it showed no c
pattern. We found that finite-size effects in the PCF’s we
very small, however, as results obtained for 64 electr
were not significantly different from those obtained with 5
electrons.

A further source of bias, which does not apply to t
energy, arises from the use of the extrapolated estimator.
ure 7 shows that the extrapolation can make a signific
difference, and to check the reliability of this method w
have evaluated the PCF using different quality Jastrow f
tors. As might be expected, the VMC and DMC results v
ied significantly, but the final extrapolated results were
most independent of the Jastrow factor, the differences be
only slightly larger than the statistical error. This source
bias is therefore small and on a comparable level to the
ers.

The final PCF calculations were carried out in a 512~518!
electron system for the Wigner crystal~fluid!, using a
timestep of 30 a.u. and a target population of 960. Figur
shows the extrapolated spin-independent PCF for the ant
romagnetic crystal and unpolarized fluid phases atr s5110.
6-8
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For comparison, the HF result is also shown, together w
the result obtained from the DMC-optimized orbitals, b
without the Jastrow factor. The spin-independent PCF for
ferromagnetic crystal is not included as it was found to
almost identical to that of the antiferromagnetic crystal. T
HF orbitals are very strongly localized and give the m
rapidly varying PCF, whereas the PCF from the more diffu
DMC-optimized orbitals is much smoother.

It is interesting that the extrapolated PCF of the float
crystal shows strong oscillations at distances much la
than r s . This can be understood in terms of Eq.~20!. The
potential energies of the fixed and floating crystals are
same, but their charge densities and PCF’s are quite diffe
For the floating crystaln(r ) is constant whileg(r ,r 8) oscil-
lates strongly, whereas for a fixed crystal the charge den
n(r ) oscillates andg(r ,r 8) is expected to be much smoothe

Another interesting point is the large difference betwe
the extrapolated parallel/antiparallel-spin PCF’s of the cr
tal and the fluid, see Fig. 9. For the crystal, the PCF stron
reflects the underlying crystal structure composed of alter

FIG. 7. Spin-independent PCF in the antiferromagnetic float
crystal at r s5110, illustrating the extrapolation procedure. So
line: extrapolated estimator; dashed line: DMC result; dotted li
VMC result. The statistical errors are less than 0.003.

FIG. 8. Spin-independent PCF for the antiferromagnetic float
crystal and unpolarized fluid atr s5110. Solid line: extrapolated
estimator for the crystal; dotted line: HF result; dashed-dotted l
VMC result obtained using the DMC optimized orbitals but witho
a Jastrow factor. The dashed line shows the extrapolated estim
for the unpolarized fluid. The statistical errors are less than 0.
except for the dashed-dotted line aroundr 50.
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ing spins, whereas for the fluid phase the two are alm
identical. The energies of the two systems are, however
most the same.

XI. CONCLUSIONS

We have carried out a careful DMC study of the b
Wigner crystal in the density range 100<r s<150. We have
experimented with several types of orbital in the trial wa
functions but have been unable to improve upon the Ga
ian form used in previous work. We have, however, op
mized the Gaussian exponent by directly minimizing t
DMC energy, which reduces the fixed node errors. We h
also taken care to eliminate other biases in our DMC sim
lations, particularly those from timestep errors, populat
control bias, and finite-size effects. We estimate that the u
form electron gas undergoes a transition from a ferrom
netic fluid to a bcc crystal atr s510661.

We have used Slater-Jastrow-type trial wave functio
for our studies. Multiplying the Slater determinant by
pairwise repulsive Jastrow factor makes the charge den
more inhomogeneous because the electrons in Wig
crystals are localized in space individually. This behav
contrasts with that found in many other systems wher
pairwise repulsive Jastrow factor tends to smooth out
charge density.

The results of HF theory and Hartree theory are very si
lar because the exchange interaction between orbitals on
ferent sites is small. The orbitals obtained within unrestric
HF theory ~and Hartree theory! are very strongly localized
and the kinetic energy within HF theory is larger than in o
DMC calculations with the fully optimized trial wave func
tions. We have defined the correlation energy to be the
ference between the exact and unrestricted HF energies.
this definition, and in the low density limit, Wigner crysta
are weakly correlated systems. The inclusion of correlat
in a Wigner crystal wave function beyond the unrestrict
HF level results in the electronic charge density spread
out from the lattice sites. In this sense correlation delocali

g

:

g

:

tor
3

FIG. 9. Parallel and antiparallel spin PCF’s in the antiferroma
netic crystal and unpolarized fluid atr s5110. Solid line: parallel
spin crystal PCF; dashed line: parallel spin fluid PCF; dash-do
line: antiparallel spin crystal PCF; dotted line: antiparallel spin flu
PCF. The statistical errors are less than 0.005.
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the electrons. Although the correlation energies of the cry
phases are smaller than those of the fluid phases at
same density, the use of HF orbitals within the trial wa
functions results in larger fixed node errors for the crys
phases.

The variational energy for a floating Wigner crystal
lower than that of the fixed crystal by the kinetic energy
the center of mass, which is a negligible energy per part
for large systems. The expectation value of any operator
depends only on the difference between electron coordin
is the same for the fixed and floating crystals. We can the
nd

e

J.
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fore obtain the PCF’s of a floating Wigner crystal rather si
ply from calculations on the fixed crystal.
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