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Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
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We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density
ranger = 100-150. We have tested different types of orbital for use in the approximate wave functions but
none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing
the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the poten-
tial biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from
a ferromagnetic fluid to a body-centered-cubic Wigner crystalatl06+=1. The diffusion quantum Monte
Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role
played by exchange and correlation in Wigner crystals. We also study “floating” Wigner crystals and give
results for their pair-correlation functions.
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I. INTRODUCTION II. QUANTUM MONTE CARLO METHODS

. . . . We have performed both VMC and DMC calculations us-
Electrons in a uniform potential are expected to crystalhzeing the casiNO packagé?® In VMC, expectation values are
at. Iow-denS|t|§s to minimize their mterag:ﬂon ene?‘éyln _ calculated using an approximate many-body wave function,
thl_s paper we investigate Wigner crystals in threg d|'menS|onsaqe integrals being performed by a Monte Carlo method. The
using quantum Monte Carl¢QMC) methods within the 555 0ximate wave function normally contains a number of
variational (VMC) and diffusion (DMC) approaches. The \aiiaple parameters, whose values are obtained by an opti-

DMC method is currently the most accurate available for,i,tion procedure.
calculating the zero-temperature ground-state energy of €X- |, the DMC method! the imaginary time Schicinger
tended quantum-mechanical systems. , _equation is used to evolve an ensemble of electronic configu-
There has been some debate about the density at whi¢l;ons towards the ground state. The fermionic symmetry is
the transition from a Fermi fluid to a Wigner crystal should ., 5intained by the fixed-node approximatirin which the
occur in three dimensions. In their pioneering DMC study ofyy,4a) surface of the wave function is constrained to equal
the phases of the electron gas, Ceperley and Aldetained 4t of an approximate wave function. We will refer to the
a transition density O'fS? 10020, but @ more recent DMC  5565imate wave functions used in VMC and DMC as trial-
study gavers=65+10." Moreover, highly accurate DMC \yaye functions. The fixed-node DMC energy provides a
energies for the low-density fluid have recently become s iational upper bound on the ground-state energy with an

available; which may further modify predictions of the tran- oo that is second order in the error in the nodal

sition density. The primary goal of this work is to provide g if5ce!3.14
highly accurate DMC energies for three-dimensional Wigner - thg trial wave function introduces importance sampling
crystals ang to use them in conjunction with the fluid data ofyq controls both the statistical efficiency and the final accu-
Zong et al” to predict an accurate value for the transmonracy that can be obtained. In DMC the final accuracy de-
density. » . pends on the nodal surface of the trial wave function via the
To achieve sufficient accuracy we have carefully studiegiyad-node approximation, while in VMC the final accuracy
the possible sources of error in our calculations, i”dUdi”Qdepends on the entire trial wave function, so that VMC en-
finite-size effects, timestep errors, and population control €lergies are more sensitive to the quality of the trial wave
rors. We have used three procedures for optimizing the trigfynction than DMC energies. Apart from the fixed-node ap-
wave funct|o7n83: minimization of the variance of the energyp oximation, DMC results may be subject to bias from the
within VMC, ** minimization of the VMC energy, and mini- ,se of the short-time approximatidfinite timestep errons
mization of the DMC energy. _ population control errors, and effects from the finite size of
We compare our results with recently published fully-self-he simulation cell. We have made strenuous attempts to re-
consistent unrestricted Hartree-FogkF) calculations, and  yce these errors: see Sec. IV. The statistical errors in our
with the results of a simple version of Hartree theory, WhichQMC data are estimated using the blocking metfao
allows us to understand the effects of exchange and correlgiminate the effects of serial correlation.
tion in Wigner crystals.
Finally, we discuss “floating” Wigner crystals in which
the homogeneous and isotropic nature of the ground state is ll. TRIAL WAVE FUNCTIONS
restored, relating their properties to those of a “fixed” crys-
tal. DMC results for the pair-correlation functiofBCF’y of
floating Wigner crystals are compared with those of the fluid We have used trial wave functions of the standard Slater-
phases. Jastrow form,

A. The Slater-Jastrow form
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¥(R, ,Rl):e‘l(RT vRL)DT(RT)Dl(Rl), (1) differences between electron coordinates being evaluated un-
der the minimum image convention. Hence the overall wave
whereD; andD, are Slater determinants of up- and down- function is periodic.

spin single-particle orbitals arﬁT andR; denote the coor- In their VMC and DMC studies of Wigner crystals,
dmates of the up- and down-spin electrons, respectively, andeperley’ and Ceperley and Ald2used Gaussian orbitals,
e’ is the Jastrow correlation factor.
B(r)=exp(—Cr?). 5
B. Jastrow factors They determined by variational methods, with the Jastrow

factor being optimized simultaneously.

We have used Jastrow factors of the form ) 3 .
Ortiz et al®> used exponentials of two-parameter Pade

1 functions,
=5 2 2 (olry) +Su(ryp), 2 o
ry=ex . 6
here é(r) p<1+kr (6)
and determined the values 6fandk and the parameters in
A i rizj their Jastrow factor by minimizing the variance of the energy
Uo(rij) = " (1 exp( - F—”) exp( - L—) , (3 within VMC.
0

We have also investigated two new types of orbital for

with Fij=V2A if electronsi andj have the same spin and Wigner crys.tals. A straightforward generalizati(_)n of KB
t|s to use a linear combination of Gaussian orbitals,

ﬂ if the electrons have opposite spins. This term sa
|sf|es the electron-electron cusp conditidh! The constant Ng
Lo is set to 0.3 of the Wigner-Seitz radius of the simulation d(r)=2, Nexp(—Cir). 7
cell andA is a free parameter. The, term is set to zero for i=1
rij greater than the Wigner-Seitz radius, resulting in a smal
discontinuity in the Jastrow factor of less thax 20 °
magnitude. To investigate possible bias from this d|scont|nu
ity we compared the values of the two standard estimators
the kinetic energy ipvolving the gradient and Laplacian Ofsite the polynomial should have the full symmetry of the
the trial wave function from a very long VMC run at lattice. i.e.
=100. The estimators agreed to within the statistical error, T
which was smaller than in our final DMC runs. d(r)=exp(—Cr2)[1+ ar?+ Bri+ y(x2y?+ x?2%+ y?z?)

The second term in the Jastrow factor is given by

We have also considered orbitals based on an expansion in

the eigenstates of a simple harmonic oscillator. An orbital is
onstructed by multiplying the simple Gaussian function by
polynomial. For a bcc lattice with identical orbitals on each

+0(r%], (8)
L
, 2rj—L’ wherer =(x,y,z). This orbital has considerable flexibility at
Si(rij)=(rjj—L )Zrﬁ-E T —” ) smallr (x.y.2) y
= .
—I—B’(rij —L’)2 _,+rij ’ (4) D. Optimization of the trial wave functions

Parameters in the trial wave functions may be optimized

whereT, is thelth Chebyshev polynomial,’ is the Wigner-  in @ variety of ways. In principle the DMC energy depends
Seitz radius of the simulation cell, a®&l anda, are param- only on the nodal surface of the wave function, which is
eters to be determined. determined by the form of the orbital. It is therefore best to

minimize the DMC energy directly with respect to the pa-
rameters in the orbitals, but this is a costly and laborious
procedure which we have carried out only for the Gaussian
The Slater determinants for the crystalline phases werparametelC of the simple Gaussian orbital. In principle the
formed from localized nonorthogonal single-particle orbitalsDMC energy does not depend on the Jastrow factor, so it
centered on the lattice sites of a body-centered-c(ic) cannot be optimized in this fashion.
crystal. A bcc crystal is expected to be favored in the low- We first studied the simple Gaussian and Ptatens of
density limit because it has the lowest Madelung energyEgs.(5) and(6), using energy variance minimization to op-
Throughout, we useé(r) to denote a spatial orbital centered timize theC parameter and the parameters in Jastrow factor,
on the origin. Periodic orbitals for use in a simulation of aand minimization of the VMC energy with respect to varia-
finite system subject to periodic boundary conditions ardions ink, but we found the optimal value df to be very
constructed for each lattice point in the simulation cell byclose to zero. The Padebital seems to offer little advantage
summing over all the replicas ap centered on that lattice over a simple Gaussian orbital at the densities studied (100
point. Clearly, if all the individual orbitals are periodic then <ry=<150).
their Slater determinant is too. We use a Jastrow factor con- We optimized the expansion coefficients and Gaussian ex-
taining only homogeneous terms, see Sec. lll B, with theponents of the linear combination of Gaussian orbitals form

C. Orbitals for the Slater determinants
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of Eq. (7), together with a Jastrow factor, using VMC energy -0.007690
variance minimization. However, again, it was found that in -
practice this orbital offers no advantage over a single Gauss-
ian function at the densities studied.

We attempted to optimize the parameter in the har-
monic oscillator form of Eq(8) for a Wigner crystal at
=100, but the resulting wave function gave a DMC energy
within the error bars of the one obtained by setting 0.

We have therefore adopted the simple Gaussian orbital of

-0.007691

-0.007692

-0.007693

-0.007694

DMC energy (a.u. per electron)

Eq. (5) for our main calculations. We have adopted the fol- -0.007695 -
lowing procedure to optimize the trial wave functions. The 0T I000 2000 3000 4000
parameter in the Jastrow factor was optimized by minimiza- Target population (configurations)

tion of the VMC energy, the parameters in tBgpart of the

Jastrow factor by energy variance minimization, and @e
parameter in the Gaussian orbitals by minimization of thethe Jastrow factor contained only tig term, with A= 438.389
DMC energy. These minimizations were performed in turny o timestep was 20 a.u. ' B
until the changes in the parameters were negligible. We

found ,t?,?t th_e DMC-opt|m|zed exponents  obeg¢ where the constant&.. and Ey are the total energies per
~0.11r ™, which gives rather smaller values than thoseg|aciron of the infinite system and the system witrelec-
used by Ceperléy*(C~0.2r; *?) and considerably smaller ons andb is independent of both, andN.
than those predi;:ted by HF theory or the simple Hartree Starting from a two-parameter Padebital and corre-
model C~0.5; %%, see Sec. VII. sponding Jastrow factor optimized in a 64-electron simula-
tion cell, we attempted to further optimize the wave function
in a 216-electron unit cell. This attempt did not lead to a
IV. ACCURACY OF THE DMC RESULTS lowering of the VMC energy, suggesting that the 64-electron
. : . . 18 Simulation cell is adequate for optimization purposes; this
Our DMC algorithm is essentially tha_t of Umrigat al size of cell was used Ciln all of ou? subsequer?t oF;))timization
Here we explore the sources of error in our DMC calcula-

tions and justify our choices of the parameters for the final!"s"
production runs, which are summarized in Sec. IV D. Unless _ o
otherwise stated, we use simple Gaussian orbitals throughout B. Population control biasing

this section. The use of a finite population of configurations results in
a positive bias in the DMC energy which, it is argued, falls
L off as the reciprocal of the target populatitiThis turns out
A. Finite-size effects to be a genuine problem in the case of Wigner crystals where

We used periodic boundary conditions and the Ewald inwe are able to work to extremely high precision. An example
teraction energy to reduce the finite-size effects. We testedf the problem of population control biasing is shown in Fig.
the convergence of the Ewald sums and found that truncatioh, where it can be seen that the bias is indeed positive and
errors were less than 18 of the statistical error bars on the that it falls off roughly as the reciprocal of the target popu-
final DMC runs. lation.

The energy per electron at a given density depends on the The simplest method for avoiding population control bi-
number of electrons in the simulation cell. We wish to obtainasing is to use a large target population. Alternatively, the
the energy per electron in the limit that the number of elecreweighting scheme developed by Umrigetral®® can be
trons per simulation cell goes to infinity. Two approachesused. In our tests we found this scheme to work well, pro-
have been used previously when dealing with finite-size efvided the number of reweighting factors was about the same
fects in QMC simulations of Wigner crystals. Ortit al®>  as the number of timesteps over which average local energies
used large simulation cells and found the finite-size errors tere correlatedbetween 100 and 1000 timesteps of 30)a.u.
be less than their statistical error bars of 8 © a.u. per However, with this many reweighting factors present, the
electron for numbers of electrons in excess of 500total weight at each timestep fluctuated enormously and very
Ceperley'”® on the other hand, used smaller system sizes ifong simulations were required in order to obtain meaningful
conjunction with an extrapolation scheme. statistics. We found it to be more efficient to use larger popu-

Because we wish to work to very high accuracy, we usdations than to employ the reweighting scheme. For this rea-
quite large simulations cells and the extrapolation formulason, we did not use the reweighting scheme in our produc-
derived by Ceperlel/ tion runs.

Including more parameters in the Jastrow factor can lead
to a significant reduction in population control biasing, as
illustrated in Fig. 2. This shows that, when the reweighting

TN 9 scheme is not used, DMC energies obtained with a a poor
rs'N Jastrow factor and a small target populatisolid line) are

FIG. 1. DMC energy against target population for a 64-electron
crystal atr=100. The Gaussian exponent w@s-0.000 135 and

EOO:ENJF

085116-3



N. D. DRUMMOND et al. PHYSICAL REVIEW B 69, 085116 (2004

-0.006246 . : : -0.007044 : : , : , :
2 0006248} . A _
g 0.006248 i ] 2 -0.007045
[3
8 L
< -0.006250| 1 ®
g | 1 2.-0.007046
5 -0.006252} - g
32 I ] g
el
83_0.006254| . el
g | | 5
U -0.006256] . £ .0.007048
b I ] a
z I 3 s
-0.0062581 i SR i 0.007049 ' ' ;
1 L L - ' I I I
: 0 20 30 60 80
0.00005 0.0001 DMC time step (a.u.)

Gaussian exponent (a.u.)

FIG. 2. DMC energy against Gaussian exponent for a 64- FIG. 4. DMC energy of a 64-electron crystalrgt= 110 against
electron crystal ar,=125, using a timestep of 30 a.u. ad timestep. The Jastrow.factor contalned.optlmlx@mnd St terms
=597.901. Solid line: DMC energies with a Jastrow factor consist-and the target population was 640 configurations. The straight line

ing of only theu, term and a target population of 100 configura- is & fit to the DMC data.

tions; dashed line: DMC energies for the same Jastrow factor, but . P —
with a target population of 800 configurations; dotted line: DMC du;zrh[g gfg&ﬁﬂfoens fgg‘{ggﬁgﬁgiin[igﬂsfegngge%ne Zg“g :;3
energies obtained with a fully Optimi?ed Jastrow fa(.(wnh .bOth dashed curves were obtained using the sarﬁe target popula-
Uo and$, terms and a target population of 100 configurations. tion of 100 configurations, but with different Jastrow factors.
. . . . . The population control bias at fixed timestep is clearly
too high, but when a larger population is used in conjunctionsmajier for the Jastrow factor with=438.389(solid line)
with the same Jastrow factédashed lingthe energies are  than for A=563.157(dashed ling The dotted line was ob-
similar to those obtained with a good Jastrow factor and aajned with a target population of 800 configurations, which
small population(dotted ling. Improving the overall quality ~essentially removes the population control bias. Because the
of the trial wave function reduces the population control biassolid and dotted curves are approximately parallel we deduce
because it reduces the fluctuations in the population. Thehat the population and timestep errors are approximately
results shown in Fig. 1 in which the Jastrow factor consistedndependent of one another. Furthermore, it is clear that al-
only of theug term therefore represent a worst-case scenaridering the Jastrow factor has a considerably greater effect on
the population control bias than on the timestep bias.
C. Timestep biasing In Fig. 4 we shov_v that timestep bias remains a problem
' even with a well-optimized Jastrow factor and a large target

The variation of DMC energy with timestep is shown in population which essentially removes the population bias.
Fig. 3 for three different Jastrow factors. It can be seen thaHowever, this figure again shows that a linear fit is appropri-
the bias is always positive and that it grows linearly with ate when extrapolating to zero timestep.
timestep; therefore we can largely eliminate the bias by car-
rying out simulations at a number of different timesteps and
performing a linear extrapolation to zero timestep. The final production runs were characterized as follows.

(1) The Gaussian exponents in the orbitals were optimized
by minimizing the DMC energy, thé parameters by mini-
mizing the VMC energy, and the other parameters in the
Jastrow factors by minimizing the variance of the energy, as
described in Sec. lll D. Th&, terms in the Jastrow factors
contained between four and six parameters per spin.

(2) A target population of 640 configurations was used.
This, together with the optimized Jastrow factor, should en-
sure that population control errors are negligible.

(3) At each density, DMC calculations were performed
using between four and six different timesteps and the energy
was extrapolated linearly to zero timestep.

D. Parameters for the production runs

-0.007688
-0.007690
0007692

-0.007694

DMC energy (a.u. per electron)

-0.007696 .

0 -2 0 30 40 50 60 (4) A variety of system sizes were uséke Table [, and

DMC timestep (a.u.) . - Uov . .
the energies were extrapolated to infinite system size using

FIG. 3. DMC energy of a 64-electron crystalrgt=100 against  EQ. (9).
timestep for different values of theeparameter in the Jastrow factor
of Eq. (3) and different target population sizes. TBgterm was not V. RESULTS AND DISCUSSION
present in the Jastrow factor. The Gaussian exponent @as . . . o
=0.00011 in all cases. Solid lin&s=438.389, target population A. DMC energleéaczjbst;:r?ir%sitlgg DMC-optimized
100 configurations; dotted liné&s=438.389, target population 800
configurations; dashed lin&=563.157, target population 100 con-  The values of the exponents obtained by optimizing the
figurations. DMC energy are shown in Table |, along with the final DMC
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TABLE I. Orbital exponents optimized by minimizing the DMC 200 : T y T y T
energy, and the final DMC energies per electfertrapolated to
zero timestep and infinite system sizer the differentrg. All

entries are in a.u. 150

rs C (DMC) DMC energy

100
100 0.00011 —0.0076765(4)
110 0.0001 —0.0070312(5) |
125 0.00009 —0.0062458(4) 30
150 0.000063 —0.0052690(3)

Electronic charge density (arb. units)

0 L NS, Newd,

o 200 300 600
. . Dist al 111]-direction in BCC Wi tal (a.u.

energies. These were found by using the DMC results shown istance along [111}-direction in igner crystal (an.)

in Table 11 in conjunction with the finite-size extrapolation  giG. 5. Electronic charge density along H11) direction pass-

formula of Eq. .(9)- Using th? re.sglts fors=100 andrs  ing through the lattice sites of a bcc Wigner crystalr gt 100.

=125, we obtained a good fit, giving=1.263). Solid line: HF charge density; dotted line: charge density from the
DMC-optimized orbitals without a Jastrow factor; dashed line:

B. Electronic charge densities obtained using the different DMC charge density.

orbitals alty; hence the overall charge density is less localized than in

In Fig. 5 we plot the electronic charge densities far,a HF theory, and the kinetic energy is lower as a result.
=100 crystal, calculated using HF theory orbitédee Sec.
VII), from the DMC-optimized orbitals but without a Jastrow v|. LOCATING THE FLUID-TO-CRYSTAL TRANSITION
factor, and within DMC using an optimized Jastrow factor. DENSITY

The HF theory orbitals are very localized, whereas the ) ) -
orbitals optimized within DMC are much more diffuse. In order to locate the density at which the transition from
However, the inclusion of a Jastrow factor results in thethe Fermi fluid to the crystal occurs, we fit the DMC energy
charge density from the DMC-optimized orbitals becomingqata for thes_e ph:_;lses to interpolating functions. The correla-
more localized on lattice sites, although not to the same exion energy is defined as
tent as the HF orbitals. The VMC charge density obtained
with the optimized Slater-Jastrow wavge functio¥1 is very Ec(rs,)=E(rs,{) —Enr(rs,0), (10)
close to the DMC density shown in Fig. 5. The peak differ-whereE is the total energyE ¢ is the HF ground-state en-
ence between the VMC and DMC charge densities is 4.7% 0érgy, ¢ is the polarization. Ceperléyproposed a fitting form

the peak DMC density, and therefore an extrapolated estimgor the correlation energy of a Fermi fluid as a function of
tion of the QMC charge densityp(r)~2ppmc— Pvmc s s,

would be very similar to the DMC density.

The Jastrow factor in a Wigner crystal serves to further e
localize the electrons on their lattice sites. Therefore, Ei(ry)= ﬁ (11
whereas HF theory gives very localized Gaussian orbitals, in 1+ BN+ Bars

an optimized Slater-Jastrow wave function we find ¢hieit- |\ 1o e ,8%, andﬂg are fitting parameters. We make use

als to be much more diffuse, with the localization being of the highly accurate DMC energies of Zosgal® for the
caused by correlation effects from the Jastrow factor. Correferromagnetic fluid phase at low densities, which used trial-

lation effects allow electrons to invade each other’s space tQave functions including “backflow” effects. We found an
some extent without incurring a high potential-energy PeN~ cellent fit to Eq. (11) giving 71__0.093 99, gt
. - . y 1

=1.5268, and33=0.28882. We also tried fitting the fluid
data to the form proposed by Perdew and Zurigerhich is
based upon Eq11), but includes an assumed dependence on
polarization, so that the partially polarized and unpolarized
data of Zonget al. could be used. Thg? value of this fit was

TABLE II. DMC energies in a.u. per electrof@xtrapolated to
zero timestep at different densities and system sizes, which are
characterized by the number of electrons in the simulation cell.

ls System size DMC energy not so good, however.

100 64 —0.0076961(2) At low densities the total energy of a crystal phase can be
100 216 —0.0076823(3) expanded as

100 512 —0.0076788(8)

110 64 —0.0070483(2) fo f1 f 52

125 64 —0.0062599(2) Blro=r + 55100, (12)

125 216 —0.0062495(1) S0

150 64 —0.0052797(1) where the{f} are constant® The first of these is taken to be

fo=—0.89593 in order to give the Madelung energy in the
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- Zong et al® or on our Wigner crystal data, which hampers
g 13 detailed comparisons. However, it appears that the main rea-
3 son for the discrepancy is that Ortét al. place the ferro-

2 128 magnetic fluid higher in energy than Zoegal. Some bias in

g the results of Ortizet al. is expected because they used
{“ 154 plane-wave nodes while Zorej al. used optimized backflow
A nodes, but this is not enough to explain the difference be-
2[4 tween the results.

g L For the crystal phase, we may estimate the fixed-node
& error resulting from the use of the HF orbitals by taking the
T 18 = . i . L . 3 difference between DMC energies calculated using the HF

and DMC-optimized orbitals. At;=100 we find this differ-
ence to be 8.9(2¥ 10" ° a.u. per electron. Zonet al?® have

FIG. 6. Energies of the ferromagnetic fluid and bec crystallinecalculated the fixed node errors resulting from the use of
phases at low density. The Madelung energy of the bcc lattice haglane-wave orbitals for the fluid phases as 1.87(5)
been subtracted off and the resulting energy multiplied$yto X 10 % a.u. per electron for the unpolarized fluid and
highlight the differences between phases. The circles show th@.84(7)x 10™° a.u. per electron for the fully polarized fluid.
DMC data of Zonget al® for the ferromagnetic Fermi fluid; the Therefore, although the correlation energy of crystals is
dashed line is a fit to this data. The diamonds show our DMCsmaller than fluids at the same density, the fixed-node errors

results for the bcc Crystal; the solid line is a fit to this data. ThEresu|ting from the use of HF orbitals are Considerab|y |arger
left-pointing triangles show the Ceperley-Aldeesults for the fer- in crystals than in fluids.

romagnetic fluid; the dotted line is a fit to this data. The up-pointing
triangles show the Ceperley-Alder results for the bcc crystal; the
dashed-dashed-dotted line is a fit to this data. Finally, the dash- VII. HF AND OTHER SIMPLE THEORIES

dotted line shows the prediction of the phonon model of @arr : : “ : » : .
al.?* Where error bars on the DMC data cannot be seen, it is bep HF theory is described as "restricted” when the spin or

cause they are smaller than the symbols showing the data points.b!tals. are prodgctg of space and spin parts V\{‘h'Ch are OCC,,U'
pied in pairs with identical space parts, and “unrestricted
low-density limit. We found that our DMC data fitted Eq. When the space parts are different or when they are not oc-
(12) very well, givingf,=1.3379 and ,= —0.552 70. These cupied in pairs. _V\_/lfchln the quantum chemistry community
values are in reasonable agreement with the parametefide standard definition of the correlation energy is the differ-
found using a completely different method by Grand  €nce between the exact and restricted HF energies, but in a
Carr, Coldwell-Horsfall and Feiff, who have calculated the Wigner crystal the electrons are localized in space individu-
zero-point lattice-vibrational energy of a Wigner crystal in ally and a description within restricted HF theory is not pos-
order to give an analytical result f =1.325. Furthermore, Sible. We therefore define the correlation energy as the dif-
they use perturbation theory to obtain the approximate resuference between the exact and unrestricted HF energies.
f,=—0.365. This phonon model is in good agreement with A recent self-consistent unrestricted HF study of electrons

our Wigner crystal energies at largg, but it gives energies in @ uniform potential gave stable Wigner crystal solutions

which are too high at smaller,. for rs=4.5 in three dimensioriSHere we develop simplified
The energies of the ferromagnetic fluid and bce crystalling/ersions of the HF model which almost exactly reproduce

phases at low densities calculated by different authors arie results of the fully self-consistent HF studies low

shown in Fig. 6. We found the transition from the fluid to densities and compare the results with our DMC ones.

crystalline phases to occur mg=106+1, in agreement with [N the low-density regime, the overlap between orbitals

the original result of Ceperley and Ald&mNote, however, ~centered on neighboring lattice sites is small and therefore

that the transition density predicted using the fluid data ofve expect the Hartree and HF energies to be similar. Let us

Zonget al® in conjunction with the crystal data of Ceperley take the wave function of the crystalline phase to be a Har-

and Alder would be somewhat lower, at aboyt 127. Our ~ tree product of normalized Gaussian orbitals,

Wigner crystal energies are slightly lower than those of Cep-

erley and Alder, even though they studied a Bose crystal, b(r)=

which must have a lower energy than the corresponding fer-

mion one. We believe this difference must be due to some

small bias in the results of Ceperley and Alddvitting Eq.  centered on lattice sites. The Gaussian expofeigt to be

(12) to the crystal data of Ceperley and Alder, we find thatdetermined variationally.

f,=1.4309 and ,= —1.1058. The discrepancy with the ana-  The resulting kinetic energy per electron is easily evalu-

lytical result of Carr forf; is consistent with the presence of ated asT=3C/2. The spatial charge density is simply the

a small, positive, systematic bias in the crystal results oBuperposition of the Gaussian charge densities due to each

Ceperley and Alder. orbital. The electrostatic enerdy, of this charge distribu-
Our transition density is considerably lower than the valuetion may be readily evaluated, but we must subtract off the

of r4=65+ 10 obtained by Ortizt al>?2The statistical error  self-energie€, of each Gaussian. The total energy per elec-

bars on their data are much larger than on the fluid data dfon is therefore given by

T, (a.u.)

34
—) exp(—Cr?), (13

o
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TABLE Ill. HF results and DMC results obtained using HF |ation scheme with his value df=1.51" Comparing the
theory orbitals. All entries are in a.u. data in Table Il with that in Tables | or,Il we see that the
DMC energy obtained at;=100 with the HF orbitals is

DMC energy significantly higher than that obtained with DMC optimized
r« C(HF) HFenergy (512 electrons (Infinite system  orbitals. Some population control bias is present in the re-
S0 000141 00136760 001G —00ADse(s) Sl Tble I B estmate sl be about 2% of e
100 0.0005 —0.0074593 —0.007589(1) 0.007586(1) the HE and DMC-optimized orbitals.
The strength of correlations in a system may be measured
3c 2 exp(— G2/4C) e by the ratio of the correlation energ)_/ tc_J the total_ energy,
E=T+E —Ep=—+ =T 2 _ \/: E./E. The DMC results of Zonget al.’ indicate that in the
=0 G2 ™ fluid phasesk./E tends to a positive constant ag—«,
(14 while for the Wigner crystal our results show ti&aY/ E tends
to zero asrg—. In this sense one may think of Wigner
crystals as being weakly correlated systems at low densities.

where the G are the reciprocal lattice vectors ard
=47r3/3 is the volume of the primitive unit cell.
Differentiating this energy with respect to the Gaussian

exponent and approximating the sum by an integral, we find Viil. MAGNETIC BEHAVIOR OF THE CRYSTALLINE
that PHASES

The tiny energy differences between ferromagnetic and
E . §_ ™ (15) antiferromagnetic crystals proved to be too small to resolve
dC 2 20C2 in our QMC calculations. It might be possible to resolve
them using a correlated sampling approach within VMC.
The approximation is valid for large;, where the density of Such an approach should provide an accurate value for the
reciprocal lattice vectors is large. Hence we find the optimaknergy difference between two systems, 1 and 2Wif|?
value of C to be C=1/2r32, which is precisely the result =|W,|? throughout the configuration space, which should
obtained by Wignérusing a spherical approximation. hold for ferromagnetic and antiferromagnetic crystalline
Integrating Eq.(15) with respect toC we obtain the en- phases at sufficiently low densities. HF theory predicts fer-
ergy E=3C/2+ w/2QC+f(rg), where the functiorf(rg) is  romagnetic behavior in the low density limit but according to
the “constant” of integration. Inserting the optimal value of the theory of Thoule€8 such a system should be antiferro-
C and making use of the fact that, in the limit of low densi- magnetic. In their path integral QMC calculations, Candido,
ties, E must tend to the Madelung energy of the crystal lat-Bernu, and Ceperléy have indeed found antiferromagnetic

tice, we find behavior for bcc Wigner crystals at low densities, although
the energy differences are much smaller than our statistical
£ 3 M 16 error bars.
= — 4 —
2I’§/2 I's ’ ( )

IX. FLOATING WIGNER CRYSTALS

whereM is the Madelung constant of the lattice. o ] o )

The simple Hartree model of Eq14) and the further The Hamiltonian of the uniform electron gas is invariant
simplifying approximation of Eq(16) give energies which under the simultaneous translation or rotation of the electron
are very close to the full HF results fog>50; for example, POsitions. However, our trial Wigner crystal wave functions
the energy of Eq(14) agrees with that of the full HF result to Préak these symmetries and, for example, the resulting
within 0.006%, whereas the energies rat 100 agree to charge densities are ||jhomogeneous, see Fig. 5..These wave
within 0.001%. The agreement between the fully self-functions represent Wigner crystals which are “pinned” by
consistent HF data and the simpler approximations is just a3°Mme small external influence. Pinning of Wigner crystals
good for a face centered lattice. These results demonstrafB2y arise from the presence of impurities or boundaries, and
that exchange energies between orbitals on different sitd§i€refore the broken symmetry solutions are physically rel-
are extremely small. The exchange interactions are onl§fVant butWigner crystals may also be mobile, in which case
significant between nearest-neighbor Gaussian orbitals arlfiiS better to describe them diating crystals. _
the exchange energy per electron is given by One way of restoring the homogeneous and isotropic na-

Ex=—(N,/2) Clm exp(—CR?), whereN,, is the number of ture of the trial function is to consider a linear combination
n 1 n - . . .
nearest neighbors anR is the nearest-neighbor distance. of displaced and rotated copies of the fixed wave function

This expression gives extremely small energies for the low? - This gives a floating wave function,

densities studied here.

V\l_e have also calculated DMC energies using_ the orbitals ‘I’F:f ‘If(R(ﬁ)({ri—A}))dﬁ dA, (17)
obtained from HF theory,and Jastrow factors optimized us-
ing energy variance minimization. The results are summa- ~ ) N
rized in Table IIl. The extrapolation of the DMC results to WhereR({2) represents a rotation of all the electron positions
infinite system size was carried out using Ceperley’s extrapoand the integrals are over all possible solid andlesnd
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displacementd. W gives rise to a homogeneous and iso-crystal. Since the expectation value of any operator that de-
tropic charge densitp(r)=N/Q, whereN is the number of pends only on the difference between electron coordinates is
electrons and is the volume of the system. the same for fixed and floating crystals, see Sec. IX, we can
Wave functions for floating Wigner crystals in extendedevaluateg, ,(r) using our fixed trial function.
systems have been discussed briefly by, for example, Bishop Furthermore, the expectation value of the potential energy
and Lihrmann?® and by Mikhailov and Zieglet’ Rather of the system can be written in terms of the spin-independent
more attention has been devoted to restoring(tbgationa)  PCF.9(r) =32, ;s . (r),
symmetry in two-dimensional models of quantum ddt&
In finite systems the energy gain per electron from restoring
the symmetry can be substantial but for an infinite system it<_2_ U(|ri_rj|)> :J n(rn(r’)g(r,r o (fr—r')drdr’
turns out to be negligible. e
Using a trial function where the single-particle orbitals in

N2
_ 2
the Slater determinant ae=e ", we have obtained ana- ) f 4areg(rjv(r)dr, (20)
lytical results at the variational level for the case when the

translational symmetry is restored. We found that the differ\yhich holds even for an inhomogeneous system such as the
ence in total energy is equal to the kinetic energy of theiyeq Wigner crystal. Studying the PCF of a floating crystal

center of mass of the fixed crystal ¢&), making the en-  therefore provides insight into the physics of the fixed crystal
ergy difference per electron negligiblthis result also holds 55 well.

when a translationally invariant Jastrow factor is included
We also found that the expectation value of any operator that
only depends on relative electron coordinates is the same for
¥ and W at the variational level. We expect the same con- We evaluated Eq(19) within VMC and DMC by accu-
clusions to be true in DMC as well; in particular, we found mulating g, ,(r) in radial bins. Our best estimates gf
that undepenboundary conditions the nodal surface of thewere obtained using the extrapolated estimat(r)
fixed and the translationally averaged trial functions are~2gpwc—9vmc. We calculatedy, ,(r) atrs=110 for a
identical. ferromagnetic and an antiferromagnetic Wigner crystal using
Despite the similarities in their energies, there is an im-our optimized trial wave functions. For comparison, we have
portant qualitative difference between the fixed and floatingflso calculatedy,, ,(r) for the unpolarized fluid phase at
Wigner crystal wave functions. The fixed wave function canrs=110, using a trial wave function consisting of determi-
be written as a sum of disconnected partial wave functionghants of plane waves and a Jastrow factor optimized using
in the formW =34y , where the overlap between tilg,  energy variance minimization.
tend exponentially to zero &— . From this it follows that All of the biasing effects that apply to the DMC energy
it represents an insulatét3® On the other hand, the same may also affect the PCF's. We found that this was indeed the
is not true for the floating wave function, resulting in con- case, as we have obtained results that showed very small but
ducting behavior. statistically significant differences when, for example, differ-
ent timesteps were used or when different Jastrow factors
were used in conjunction with small population sizes. Unlike
the energy, it was not possible to use an extrapolation
scheme to remove the timestep bias, as it showed no clear
A. Definitions pattern. We found that finite-size effects in the PCF's were
very small, however, as results obtained for 64 electrons
were not significantly different from those obtained with 512

B. Discussion and results for the PCF'’s

X. PAIR-CORRELATION FUNCTIONS

The spin-dependent PCF is defined as

electrons.
Z 5gyoi50,,,,j5(r—ri)a(r’—rj) A further source of bias, which does not apply to the
Gy o (F )= LF _ energy, arises from the use of the extrapolated estimator. Fig-
M n,(r)n,.(r’) ure 7 shows that the extrapolation can make a significant

(18)  difference, and to check the reliability of this method we
o i have evaluated the PCF using different quality Jastrow fac-
It woyld be very ’costly to .evaluate the fgIIIS|x—d|menS|onaI tors. As might be expected, the VMC and DMC results var-
functiong,, ,(r,r’) for a Wigner crystal within QMC. How- ey significantly, but the final extrapolated results were al-
ever, for a homogeneous and isotropic systhepends most independent of the Jastrow factor, the differences being
only on the separation between electrans|r—r’|, sothat oy slightly larger than the statistical error. This source of
bias is therefore small and on a comparable level to the oth-

0 1 D ers.
9.0 (1)= 4112 NGN,/ \ 77 Sr=lri=rih), @9 The final PCF calculations were carried out in a $328)
7 electron system for the Wigner crystéfluid), using a
where we have used,(r)=N,/Q. This one-dimensional timestep of 30 a.u. and a target population of 960. Figure 8
function is much less costly to evaluate accurately than Egshows the extrapolated spin-independent PCF for the antifer-
(18), hence we can obtain the PCF for a floating Wignerromagnetic crystal and unpolarized fluid phasescat110.
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FIG. 7. Spin-independent PCF in the antiferromagnetic floating FIG. 9. Parallel and antiparallel spin PCF'’s in the antiferromag-
crystal atrg=110, illustrating the extrapolation procedure. Solid netic crystal and unpolarized fluid af=110. Solid line: parallel
line: extrapolated estimator; dashed line: DMC result; dotted linesspin crystal PCF; dashed line: parallel spin fluid PCF; dash-dotted
VMC result. The statistical errors are less than 0.003. line: antiparallel spin crystal PCF; dotted line: antiparallel spin fluid

PCF. The statistical errors are less than 0.005.

For comparison, the HF result is also shown, together with . .

the result obtained from the DMC-optimized orbitals, but!gg s_plnls, \r/]vhereas _for t?ehflmd phase the twohare almoslt
without the Jastrow factor. The spin-independent PCF for th migtlct:r?é ;’ar(ra]eenergles of the two systems are, however, al-
ferromagnetic crystal is not included as it was found to be '
almost identical to that of the antiferromagnetic crystal. The
HF orbitals are very strongly localized and give the most

rapidly varying PCF, whereas the PCF from the more diffuse XI. CONCLUSIONS

DMC-optimized orbitals is much smoother. We have carried out a careful DMC study of the bcc
It is interesting that the extrapolated PCF of the roatingWigrler crystal in the density range 180.<150. We have
crystal shows strong oscillations at distances much largegxperimented with several types of orbital in the trial wave
thanrg. This can be understood in terms of H@0). The  functions but have been unable to improve upon the Gauss-
potential energies of the fixed and floating crystals are thgan form used in previous work. We have, however, opti-
same, but their charge densities and PCF's are quite differentnized the Gaussian exponent by directly minimizing the
For the floating crystah(r) is constant whileg(r,r’) oscil-  DMC energy, which reduces the fixed node errors. We have
lates strongly, whereas for a fixed crystal the charge densityilso taken care to eliminate other biases in our DMC simu-
n(r) oscillates andy(r,r’) is expected to be much smoother. lations, particularly those from timestep errors, population

Another interesting point is the large difference betweercontrol bias, and finite-size effects. We estimate that the uni-
the extrapolated parallel/antiparallel-spin PCF's of the crysform electron gas undergoes a transition from a ferromag-
tal and the fluid, see Fig. 9. For the crystal, the PCF stronglyietic fluid to a bcc crystal at,=106+1.
reflects the underlying crystal structure composed of alternat- We have used Slater-Jastrow-type trial wave functions

for our studies. Multiplying the Slater determinant by a
yr——— pairwise repulsive Jastrow factor makes the charge density
more inhomogeneous because the electrons in Wigner
crystals are localized in space individually. This behavior

i contrasts with that found in many other systems where a
pairwise repulsive Jastrow factor tends to smooth out the

& charge density.
The results of HF theory and Hartree theory are very simi-
0.5k lar because the exchange interaction between orbitals on dif-

ferent sites is small. The orbitals obtained within unrestricted
HF theory (and Hartree theojyare very strongly localized
0 00 400 600 800 and the kinetic energy within HF theory is larger than in our
r(au.) DMC calculations with the fully optimized trial wave func-
FIG. 8. Spin-independent PCF for the antiferromagnetic floatingions- We have defined the correlation energy to be the dif-
crystal and unpolarized fluid at.=110. Solid line: extrapolated ference between the exact and unrestricted HF energies. With
estimator for the crystal; dotted line: HF result; dashed-dotted linethis definition, and in the low density limit, Wigner crystals
VMC result obtained using the DMC optimized orbitals but without &re weakly correlated systems. The inclusion of correlation
a Jastrow factor. The dashed line shows the extrapolated estimatit @ Wigner crystal wave function beyond the unrestricted
for the unpolarized fluid. The statistical errors are less than 0.0081F level results in the electronic charge density spreading
except for the dashed-dotted line around0. out from the lattice sites. In this sense correlation delocalizes
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the electrons. Although the correlation energies of the crystdiore obtain the PCF’s of a floating Wigner crystal rather sim-

phases are smaller than those of the fluid phases at thdy from calculations on the fixed crystal.

same density, the use of HF orbitals within the trial wave

functions results in larger fixed node errors for the crystal ACKNOWLEDGMENTS
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