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Proper weak-coupling approach to the periodics-d„f … exchange model
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The periodics-d( f ) exchange model is characterized by a wide variety of interesting applications, a simple
mathematical structure, and a limited number of reliable approximations which take care of the quantum nature
of the participating spins. We suggest the use of a projection-operator method for getting information pertur-
bationally, which are not accessible via diagrammatic approaches. In this paper we present, in particular, results
beyond perturbation theory, which are obtained such that almost all exactly known limiting cases are incorpo-
rated correctly. We discuss a variety of possible methods and evaluate their consequences for one-particle
properties. These considerations serve as a guideline for a more effective approach to the model.
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I. INTENTION

The interplay of localized magnetic moments~of d- or
f-type! with itinerants electrons of a partially filled conduc
tion band is of indisputable importance for the explanation
many effects in condensed-matter physics.1,2 In recent years
and in the context of diluted magnetic semiconductors
even became a driving mechanism for electronic applicati
~spintronics!.3,4 For a theoretical description the Hamiltonia

H5H01Hsf5(
i , j

(
s

Ti j cis
† cj s2J(

i
si•Si ~1!

is probably the simplest choice possible. The localized m
netic moments are represented by quantum-mechanical
operatorsSi and interact with the spin of the conductio
electronssi via an exchange interactionJ. The dispersion«k
of the latter is determined by the hopping integralsTi j . In
recent years one has referred to the Hamiltonian~1! as the
Kondo-lattice model, neverthelesss f, sd, or ~for very large
J) double-exchange model are probably more suitable
scriptions.

Despite the large variety of systems to which thes-f
model can be applied,5 a convincing approximation schem
is still missing. Previous attempts developed along two p
cipal directions. On the one hand the Green’s function h
archy of equations of motions has been restricted by so
decoupling schemes.6 Even though these efforts allowed
fair description of magnetic semiconductors such as
ropium chalcogenides,7 this kind of approximation always
suffers from a lack of controllability. On the other hand,
classical treatment of the localized spins lead to some s
stantial results obtained using dynamical mean-field theo8

or Monte Carlo techniques.9 However, it has been shown tha
the quantum-mechanical character of the spins has inde
substantial impact on the electronic properties of the c
cerned materials.10,11

Therefore, an analytical and numerical treatment of
s-f model should be aspired to, which retains the quant
nature of the spins and ensures the controllability. A per
bational approach would be a good candidate for the la
However, the incorporation of quantum-spin operat
causes difficulties since Wick’s theorem, which is genera
0163-1829/2004/69~8!/085110~11!/$22.50 69 0851
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used to evaluate Feynman diagrams, is not applicable to
class of operators. This is probably the reason why up to n
only few attempts exist in this direction. These are mos
limited to special situations such as one-dimensional syst
or half-filling.12,13

We suggest to circumvent these difficulties by using
projection-operator method~POM! as introduced by
Mori.14,15 Its goal is the expansion of resolvents such as
one-particle Green’s functions in a continued fraction. T
further one goes in the expansion of the continued fracti
the higher is the accuracy of the results obtained. It has
ready been applied successfully for a weak-coupling
proach to the Hubbard model where it leads to convinc
results.16,17 Its application to thes-f model would be an ob-
vious development, even though straightforward test ca
lations were not very successful.11

A weak-coupling approach to thes-f model is undoubt-
edly very interesting, both from an experimental and a th
retical point of view. First of all, the parameter regime
probably important for diluted magnetic semiconducto
Second, the well-known Rudderman-Kittel-Kasuya-Yosi
exchange mechanism,18–20 usually used for a qualitative de
scription of magnetism in these materials, is also noth
else but the application of second-order perturbation the
to Hamiltonian~1!. However, the goal of this approach is th
determination of the ground-state energy, leading to an ef
tive Heisenberg interaction. In contrast to that, here we w
show that we are able to analyze the much richer spectrum
dynamical properties of thes-f model to the same order o
the coupling constant and beyond it.

Whenever a second-order perturbation theory~SOPT! de-
scription is performed in many-body theory there are prin
pally three different ways of treating emerging propagators
conventionalSOPT uses only free propagators, a SOPTrela-
tive to Hartree-Fock~HF! replaces these propagators by t
corresponding mean-field expressions, and aself-consistent
treatmentof the SOPT replaces all propagators by~function-
als of! the full propagators as obtained in the previous step
iteration. A priori it is usually not known which version
yields the most reliable results. Of course, theself-consistent
version includes a summation of more diagrams than
other methods. However, since only a partial class of d
grams is summed, it is unclear which important diagrams
©2004 The American Physical Society10-1
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being missed out or canceled, double counted, or even ta
wrongly. There are more profound considerations as put
ward by Baym and Kadanoff21 arguing that the self-
consistent approach is a conserving approximation which
tomatically satisfies the Luttinger theorem22 and Fermi-liquid
properties. However, it is uncertain to which degree this
plies to a model which is not exclusively composed of f
mions.

Even for more established models such as the perio
Anderson model~PAM!, the Falicov-Kimball model~FKM!,
or the Hubbard model~HM! the question of the most appro
priate version has been discussed intensively. For the P
Yamada and Yosida23–25 started the perturbational investig
tions directly by considering deviations from the nonma
netic HF solution. Later Schweitzer and Czycholl26 were
able to numerically compare this approach with a se
consistent SOPT. Even though this version obeys more o
Luttinger sum rules,22 the self-consistent version~in contrast
to the version relative to HF! failed to show the one-particle
peaks nearEf andEf1U in the f-electron spectral function
The FKM is another example of a model where a not fu
self-consistent SOPT treatment qualitatively reproduces
act results, whereas the self-consistent SOPT does not.26 For
the HM the situation is slightly more complicated. One c
show that SOPT relative to HF does not yield a met
insulator transition and does not show a breakdown of
Fermi-liquid behavior.27 On the other hand, a straightforwar
application of a self-consistent SOPT does not reproduce
Hubbard bands in the atomic limit.28 More sophisticated
methods such as the interpolation scheme of Edwards
Hertz29,27 ~a version relative to HF! or the iterative perturba
tion theory of Georges and Kotliar30 ~a self-consistent ver
sion! are required. For the latter approach the restriction
half filling has been removed by the modified perturbat
theory ~MPT! of Kajueter and Kotliar,31 and Potthoff, Weg-
ner, and Nolting.32 The MPT is probably the most convincin
analytical approach to the HM.33

With the present paper we extend this kind of discuss
to the electronic part of the periodics-d( f ) exchange model
We will argue that it is indeed a self-consistent ansatz for
electronic self-energy which is the most promising for th
model. Other possible weak-coupling approaches are r
out after a direct comparison with the results of our meth
of choice. It can be shown that minor changes in the ana
cal method have drastic effects on one-particle propert
such as the density of states. We believe that a more
found analysis of thes-f model~e.g., by a combination with
band-structure calculations! can be based on these consid
ations.

The paper is organized as follows: As a starting point
derive in Sec. II a SOPT for thes-f model which makes use
of the POM. In Sec. III we will study in some detail th
exactly soluble limit of a single conduction electron in
ferromagnetically saturated semiconductor. This limit is
excellent testing ground for the implementation of the PO
Even more important, the experience with other mod
shows that it is indispensable to have nonperturbative, e
statements which can be used to judge the quality of
results obtained. In the next step~Sec. IV! the experiences
08511
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for an improvement of this limit are generalized to arbitra
parameter configurations. With all these preparations we
able to present the results of the self-consistent calcula
and a comparison with other methods in Secs. V and VI. T
findings are summarized in Sec. VII.

It is worth mentioning that our approach seems to be
lated to a moment-conserving interpolation scheme of
self-energy as published by Noltinget al.5,34There, a genera
structure of the electronic self-energy, which looks similar
the one presented here, has been found by systemati
studying all known exact statements on thes-f model. How-
ever, their analysis is focused on the low-density limit a
ensures the correctness of these statements forn→0 ~or n
→2) only. In contrast to that the approach given in th
paper concentrates on the weak-coupling behavior. Ind
independent of the occupation number the correctness o
self-energy up to orderJ̃2 in the coupling parameter and u
to order E22 in the high-energy expansion is guarantee
Additionally, we can fulfill the same criteria forn→0 as
given in the above-mentioned publication. Nevertheless,
two approaches are not identical even forn50, but other-
wise arbitrary parameters.

II. SECOND-ORDER PERTURBATION THEORY

As mentioned above, we use the POM~Refs. 14 and 15!
since it allows an expansion of resolvents without the use
Wick’s theorem. The approximation consists in consider
only a physically relevant subspace of the Liouville spa
With the simplest choice the Liouville space is spanned
single-particle statesucks

† ). Accordingly the projection op-
erator and its orthogonal complement are defined as

P5ucks
† )~cks

† u and Q512ucks
† !~cks

† u. ~2!

These definitions require the existence of a scalar prod
which in our calculations is conveniently chosen to be
thermodynamic average

~AuB![^@A1;B#1&. ~3!

Within the POM the one-particle Green’s function
given by the following dynamical equation:

Gks5S cks
† U 1

v2LUcks
† D5

xks

v2@Vks1M ks~v!#xks
21

,

~4!

where v5E1 i01 and the Liouville operatorL with its
property LuA)[u@H,A#2) has been incorporated. For th
choice ~2! the susceptibility matrixxks5(cks

† ucks
† ) is par-

ticularly simple:xks[1. The frequency matrix

Vks5~cks
† uLucks

† !5«k2 J̃zs^Sz&, ~5!

on the other hand, corresponds to the mean-field result

Gks
(MF)~v!5

1

v2«k1 J̃zs^Sz&
~6!
0-2
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PROPER WEAK-COUPLING APPROACH TO THE . . . PHYSICAL REVIEW B 69, 085110 ~2004!
for the Green’s function. Here, we have used the abbre
tions J̃5 1

2 J andz↑,↓561. All the interesting physics is in
cluded in the memory matrix

M ks~v!5S QLcks
† U 1

v2QLQUQLcks
† D , ~7!

which again has the structure of a resolvent, resulting i
form of Gks in Eq. ~4! involving continued fractions.

The expression for the memory matrix cannot be trea
exactly. However, at this stage we are only aiming at a p
turbational expansion of the self-energySks in the form

Sks52 J̃zs^Sz&1 J̃2gks1•••. ~8!

This allows some simplifications. In Eq.~7! already theHsf

contribution inuQLcks
† ) gives rise to a factorJ̃2. Hence, any

approximation of the Liouville operator in the denominat
is still correct in this order and is thus consistent with E
~8!. A conventional SOPT implies a replacement ofL by its
free partL0. A SOPT relative to HF is given by a Liouville
operator that corresponds to the Hamiltonian

H 0
(MF)5H02(

k,s
J̃zs^Sz&n̂ks . ~9!

In both cases we obtain a similar result

gks52^Sz&2Gks
(0/MF)1

1

N2 (
q

^S2q
z Sq

z&Gk1q,s
(0/MF)

1
1

N2 (
q

$^S2q
2sSq

s&12zs^S0
zn̂q1k,2s&%Gk1q,2s

(0/MF) ,

~10!

whereSq
s5Sq

x1 izsSq
y . For the expectation values containe

in Eq. ~10! we make use of the fact that we aim for a res
correct to second order inJ̃ and evaluate them using th
eigenstates of the free/mean-field system.

A self-consistent SOPT on the other hand can be obta
in the same manner as suggested by Bulk and Jelitto17 for the
Hubbard model. Within this procedure the unperturbed p
is altered in each iteration cycle by the memory matrix of
previous cycle:

H 0
(N11)5H 0

(N)1(
ks

Ms
(N)n̂ks . ~11!

It turns out that this procedure is equivalent to a replacem
of the Green’s functions at the right-hand side of Eq.~10! by
the full propagators as obtained in the previous iterat
cycle. In Eq.~11! we use the additional approximation th
the memory matrix is summed overk and hence only a loca
self-energy is considered.

III. AN EXACT SOLUTION

The model can be restricted to the limit of a ferromagne
cally saturated semiconductor. This limit is characterized
08511
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two mathematical consequences: First, a semiconducto
defined by an empty conduction band at zero temperat
hence^•••cks&50. Second, ferromagnetic saturation lea
to trivial spin expectation values:̂ •••Sq

z&5NŜ •••&,
^•••Sp

1&50. An application of these simplifications to th
result ~10! yields the self-energy

Sks5Ss52 J̃zsS1 J̃22S
1

N (
q

Gq2s
(0/MF)ds↓ . ~12!

One can see directly that in this limit aself-consistency
iteration does not yield any further results. This is beca
the s5↓ Green’s function is uniquely determined bys5↑
propagators, which have the iteration-independent s
energyS↑[2 J̃S.

Due to the restrictions of this limit the memory matrix ca
in fact be treated more accurately. Following the intention
continued-fraction expansion the memory matrix~7! can it-
self be considered as a resolvent, to which the concept of
POM is applied:

M ~v!5
1

v2@V̂1M̂ ~v!#x̂21
x̂. ~13!

The higher-order memory matrixM̂ will have a form similar
to that given in Eq.~7!. Again the Liouville operatorL in the
denominator should be approximated to allow for an anal
cal solution of the associated geometric series. Accordin
conventional perturbation theory it is replaced byL0, the
action of a free, undisturbed system of electrons. After
phisticated calculations, which will be published elsewhe
the self-energy is obtained as

Ss52 J̃zsS1ds↓J̃2

2S
1

N (
q

Gq
(0)~v!

12 J̃~12S!
1

N (
q

Gq
(0)~v!

. ~14!

This is certainly an improvement of Eq.~12! and contains the
previous result if expanded up to orderJ̃2.

Even though we called it perturbation theory, it is how
ever not correct for the next order inJ̃. The exactJ̃3 contri-
bution to the self-energy can actually be shown to be

S↓
(3)5 J̃32SH F 1

N (
q

Gq
(0)~v!G2

2
S

N (
q

@Gq
(0)~v!#2J .

~15!

As a matter of fact, the second sum in Eq.~15! is a diverging
contribution. This already becomes apparent if one looks
its imaginary part, rewrites thek sum as an integral over th
free DOS, separates a Lorentzian, and considers the fact
01 is infinitesimally small. We were able to show that after
summation over all orders inJ the diverging terms cancel
Nevertheless, Eq.~15! demonstrates that for thes-f model a
strict perturbation theory is only possible up to second or
0-3
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in J. The different orders of an expansion of the continu
fraction within the POM apparently do not have this limit
tion.

The result~14! can be further improved, if a perturbatio
theory relative to HF is chosen. Without going into the d
tails we just provide the result as

Ss52 J̃zsS1ds↓J̃2

2S
1

N (
q

Gq2s
(MF)~v!

12 J̃
1

N (
q

Gq2s
(MF)~v!

. ~16!

This expression is actually identical to the result of an ex
calculation, where the Liouville operator has not been
duced or altered. Within the POM we were able to perfo
the derivation of the memory matrix~7! using the complete
operatorL5L01Lsf . However, it is not necessary to giv
the lengthy calculations here since its result~16! has already
been verified by other methods.35–39

The self-energy~16! corresponds to an exact eigenstate
the Hamiltonian~1!. For the spin-down electrons this eige
state, which is the ground state36 for antiferromagnetic cou-
pling (J,0), is called magnetic polaron.37 Its interesting
and nontrivial dynamical features, which give rise to a sc
tering part and a quasiparticle peak in the density of sta
have been discussed in detail by Noltinget al.39 Apparently,
it is possible to retrieve these features within the projecti
operator formalism. The reason why already an approxim
tion yields the correct result is the fact that the result
two-dimensional Liouville subspace is sufficient to com
pletely describe the physics of a ferromagnetically satura
semiconductor.

Now we have obtained several approximate forms of
electronic self-energy. Formula~12! provides an expressio

for the first and second order in the coupling constantJ̃. The
~diverging! third order is given in Eq.~15!. An improvement
of the SOPT is given in Eq.~14! in a conventional way and
in Eq. ~16! relative to HF. One can compare these se
energies by looking at their quasiparticle densities of sta
~QDOSs!. Obviously, the spin-↑ spectrum is always a mean
field-shifted free DOS. Hence, we can limit ourselves to
spin-↓ spectrum, which is shown in Fig. 1.

In this figure a relatively largeJ52J̃ has been chosen t
reveal the differences more clearly. If one compares the D
of the conventional SOPT and the SOPT relative to HF w
that of the exact solution, one gets the impression that
first one is the better approximation. However, if one co
pares these two approaches for the second step of the P
~equivalent to a larger relevant Liouville subspace! it is clear
that the version relative to HF has to be preferred, since o
this one gives the exact result. Nevertheless, result~14! is
already a satisfactory approximation. As mentioned abov
self-consistent calculation is redundant for the discus
limit.
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IV. GENERALIZATION TO ARBITRARY
CONFIGURATIONS

After these considerations on the magnetic polaron
return to the discussion of the SOPT given in formula~10!.
As argued before, the limit of a ferromagnetically satura
semiconductor can be used to check the quality of this res
In this limit the SOPT result~12! turns out to be only a poo
approximation of the exact solution as demonstrated in F
1. Since the magnetic polaron is indeed an important fea
of thes-f model, ways of improving Eqs.~8! and~10! should
be considered.

In the preceding section we explained how an impro
ment can be achieved within this particular limit. A prop
application of an additional step within the projection ope
tor method finally leads to the expressions~14! and~16!. We
generalize the analytical structure of these results to the
lowing ansatzfor arbitrary band occupations:

Sks~E!52 J̃zs^Sz&1 J̃2
aksgks~E!

12bksgks~E!
. ~17!

Although obtained in a completely different manner, this
exactly the kind of a MPT~Ref. 31! which has turned out to
be the most promising analytical approach to the Hubb
model.33

For thes-f model it has two advantages: First, it does n
destroy the correctness of the second-order term proporti
to J̃2, but gives the freedom to fit the parametersaks andbks

such that further criteria are fulfilled. Second, since t
SOPT result for the self-energy~8! automatically reproduces
the first three moments of the corresponding Green’s fu
tion correctly, the choiceaks51 will ensure the same for the
ansatz~17!.

It remains to determine the parameterbks . The most
straightforward choice merely ensures the correctness of
ferromagnetically saturated semiconductor (bks5 J̃/2S).

FIG. 1. Comparison of the↓-QDOS for different self-energies in
the limit n50 and ^Sz&5S. The dotted and dashed lines are t
results of SOPT~12!, conventional and relative to HF, respectivel
The dashed-dotted and the solid lines give the corresponding re
~14! and ~16! for the next step of the POM.
0-4
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However, the resulting densities of states have unphys
features. Furthermore, we have learned from the Hubb
model33 that a fit to the spectral moments of the Gree
function yields more promising results.bks which is deter-
mined by

bks5 J̃2
~QLcks

† uLuQLcks
† !2~QLcks

† uL0uQLcks
† !

~QLcks
† uQLcks

† !2

~18!

ensures that the third coefficient of the high-energy exp
sion of Eq. ~18! is identical to the one of the exact sel
energy. As explained in more detail in Appendix A this fit
correct for the first four moments of the Green’s function

In a MPT which is based on a conventional SOPT
Liouville operatorL0 in Eq. ~18! is understood to correspon
to the free part of the HamiltonianH0. Then only theJ̃3

contribution in the numerator ofbks remains to be evaluate
and one obtains

bs5 J̃
@S~S11!2zs^Sz&2^Sz&2#~zs^Sz&11!1qs

@S~S11!2zs^Sz&2^Sz&212ps#2
,

~19!

where ps and qs are sets of further correlation function
which are given in Appendix B, but have the property
vanish in the limitn→0. It is instructive to study this limit
in more detail. On the one hand it can be combined with
additional constraint of ferromagnetic saturation^Sz&5S. If
the obtainedb↓ is placed into the MPT ansatz~17!, then the
self-energy becomes identical to the one given in Eq.~14!.
On the other hand, one can consider the zero-bandwidth
ation «k[T0 within the limit n→0. For a dispersionles
Green’s function all summations in expression~10! for gks

can readily be performed, and in this limit the self-ener
becomes

Ss52 J̃zs^Sz&1 J̃2

@S~S11!2zs^Sz&2^Sz&2#
1

E2T0

12 J̃~zs^Sz&11!
1

E2T0

.

~20!

Comparing this form ofSs to the result of an exact calcula
tion available for the zero-bandwidth limit5,40 reveals that the
expression is correct.

For a SOPT relative to HF the expression forL0 in Eq.
~18! contains an additional term according to the mean-fi
contributionSs52 J̃zs^Sz& in Eq. ~9!. This yields a correc-
tion

dbs5
Ss@^~Sz!2&2^Sz&2#1S2s@^S2sSs&12zs^Sz&n2s#

@S~S11!2zs^Sz&2^Sz&212ps#2

~21!

to the former result~19!. We will focus again on the limit
n→0. If combined with the additional constraint of ferro
magnetic saturation, the exact result~16! is obtained. A con-
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expression for the self-energy:

Ss52 J̃zs^Sz&1 J̃2Y

1 J̃2

@S~S11!2zs^Sz&2^Sz&2#
1

E2T01 J̃z2s^Sz&

12 J̃S 1

E2T01 J̃z2s^Sz&
1XD .

~22!

Apart from the correction termsX and Y this is again the
exact result~20!. However, both terms are proportional
expressions, which vanish in the paramagnetic regi
Therefore, they also vanish for the zero-bandwidth limit f
which the assumption of any finite magnetization does
lead to consistent results.41

In the discussion so far we have tested our MPT ans
~17! in the limit n→0. One can repeat the same transform
tions for the opposite casen→2. By doing this one will
notice that the same formulas are obtained. The only dif
ence is the change of the sign ofs and ofbks . This is due to
particle-hole symmetry in the system. Therefore, in the sa
sense as forn50, our MPT ansatz~17! fulfills the limit of
the magnetic polaron and the zero-bandwidth limit forn
52.

V. SELF-CONSISTENT RESULTS

Using the MPT approach of the preceding section
have the possibility to generalize the improvement to
POM for the limit of a ferromagnetically saturated semico
ductor to arbitrary parameter regimes. In Sec. III we argu
that a self-consistent calculation is redundant in this lim
This does not hold for the generalized version. Heregks , as
given in Eq.~10!, does not vanish for spin-↑ electrons and
consists of propagators for both kinds of spin directio
Consequently, we have performed a self-consistent num
cal iteration of the self-energy. This was carried out along
lines sketched at the end of Sec. II. Additionally, the MP
parameterbs has to be adjusted such thatSs in Eq. ~21!
describes the full self-energy and not only its mean-field p

The details of this procedure are discussed in Sec. V
properly performed it is an ‘‘upgrading’’ of the perturbatio
theory relative to HF in the sense that its properties are m
tained. In particular, the evaluation for the ferromagnetica
saturated semiconductor yields the previous and exact re
of the magnetic polaron. Additionally, the atomic limit
fulfilled for the empty and completely filled conductio
band, and the particle-hole symmetry of the system is c
served by the ansatz. In other regimes it is ensured tha
results are correct at least to orderJ̃2. However, because o
the self-consistency the method incorporates more corr
tions and scattering effects than a straightforward seco
order perturbation theory description does. For all these
sons we believe that the self-consistent MPT is not o
0-5
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correct in the weak-coupling regime, but also for moder
values ofJ̃.

We discuss the results in terms of the QDOSs. Accord
to our ansatz the QDOS is correct forn50,̂ Sz&5S, how-
ever its variation with a change of these parameters is
particular interest. Figure 2 shows the dependence on
first parameter. The dependence on the magnetization~con-
nected to temperature via a Brillouin function! is given in
Fig. 3. In both cases a medium value has been chosen fo
fixed parameter. It goes without saying that our calculatio
are also thermodynamically self-consistent. The iteration
sures that the values of the correlation functions are con
tent with the obtained one-particle Green’s function. Ad
tionally, the chemical potential is adjusted to the desi
particle number. Its position is indicated by vertical lines
the figures.

In particular, the change ofn in Fig. 2 has remarkable

FIG. 2. Dependence on band occupationn for a self-consistent
MPT. For free electrons a simple-cubic DOS with bandwidthW is
chosen. The parameters are as given. The vertical lines indicat
positions of the Fermi energy to allow for the different values of
band occupation.

FIG. 3. Change of the QDOS with the magnetization^Sz& for a
self-consistent MPT. The position of the Fermi energy for the hi
est and lowest̂Sz& is marked by vertical lines.
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consequences for the QDOS. The clear dependence on
filling of the conduction band points out strong correlati

effects, induced by the couplingJ̃. For n50 the structure of
the QDOS is closely related to the ferromagnetically sa
rated semiconductor. In particular, the spin-↑ spectrum has
the shape of the free~simple cubic! DOS and the scattering
part of the spin-↓ spectrum can clearly be seen. Only th
polaron subband shows a deformation, due to finite-lifeti
effects. Excited spin-↑ electrons can enter the energy regi
of the polaron, flip their spin, and absorb a magnon since
are not close to saturation.

If the chemical potential~and accordingly the band occu
pation! is increased, the spectral weight is redistributed
tween both subbands. For the chosen set of parameter
changes withn are most noticeable in the spin-↑ QDOS,
where the upper subband steadily increases in importanc
the expense of the lower subband. A sharp jump in
QDOS close to the pseudogap remains a striking feature
all values ofn. It is also interesting to note that the lowe
band edge is shifted by some 0.1 eV in the spin-↑ QDOS,
whereas it remains at almost the same position for the s
↓ QDOS. This behavior is very much different in a MP
relative to HF ~Ref. 42!, and is a hint that in the self
consistent MPT mainly the majority-spin electrons expe
ence strong correlations.

As the band occupation approaches half filling (n51),
the point-symmetric form of the QDOS nicely represents
particle-hole symmetry of the system. The character of
upper spin-↓ subband becomes identical to the lower spin↑
subband, since the latter is the polaron band forn52. For
the same reason we skip the plots forn.1, they can be
obtained from the band occupations 22n.

A higher value for the coupling strengthJ̃ is chosen in
Fig. 3. Therefore, the scattering and the polaron subband
well separated already for a nearly saturated system. The
remains present for all temperature employed in the calc
tions. There are only small changes of the position of
bands as a function of the magnetization. Nevertheless,
edge of the lower spin-↑ subband shifts to lower energies
the temperature is lowered fromT5TC (^Sz&50) to smaller
valuesT→0 ~maximum^Sz&). For semiconductors such a
effect is known as the redshift of the optical absorption ed
In metals, since the lower spin-↓ subband is shifted in the
opposite direction, it leads to a polarization of the conduct
electrons of over 60%. The existence of energy regions w
below the Fermi edge occupied entirely by majority-sp
electrons is a remarkable result. Similar effects have a
been reported in other approximations43 when studying half-
metallic ferromagnets. However, the continuous shift of
chemical potential with magnetization prevents 100% po
ization of the conduction electrons in our calculations. T
dependence on the chemical potential is such that the e
disappears completely for smaller values (n→0), where the
↑-QDOS and the↓-QDOS occupy the same energy regio
~see Fig. 2!.

The situation at the lower edge of the upper subband
Fig. 3 is less systematic. An extra peak in the spin-↑ QDOS
obtains its maximum for̂Sz&'0.3 and then vanishes agai

the

-
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The physical interpretation of this feature is not yet clear.
this context we also have to mention that the choice of
parameterbs with its explicit dependence on the self-ener
in Eq. ~21! substantially increases the numerical effort. In t
energy region just mentioned it is particularly difficult
obtain convergence.

The distribution of the spectral weight, on the other ha
is indisputable. It shows the transition from the ferromagn
cally saturated configuration~dashed lines!, which even for
n50.4 clearly displays the features of the exact solution
Sect. III, to the paramagnetic regime~solid lines!, which has
to be symmetric with respect to thex axis. Again the more
profound changes are observed for the majority-spin e
trons. The increasing spectral weight of the upper spi↑
subband can be explained with higher magnon number
this regime.

An artifact of our method is the fact that for both sp
directions two subbands are always obtained. With ot
approaches,34 one sometimes observes a third band. This
explained by atomic-limit calculations, where for finite ba
occupations always three out of four subbands have no
nishing spectral weight. It needs further modifications of o
method to retain these features. At the present stage
atomic limit is only correct forn50 andn52.

VI. THE PROPER METHOD

The last point brings us to an assessment of our s
consistent approach. Apart from the above-mentioned c
log of analytical properties, a comparison with other co
ceivable weak-coupling approaches is desirable.

A comparison with a MPT which usesgks obtained by
conventional SOPT is straightforward. From the analyti
considerations in Sec. IV we can conclude that even a M
based on a SOPT relative to HF should be preferred as c
pared to one based on a conventional SOPT. This is bec
the former correctly incorporates the important limiting ca
of the ferromagnetically saturated semiconductor, wher
the latter does only reproduce, in this limit, the less accu
expression~14!. The discussion of the atomic limit does n
provide an argument in favor of one of the approaches, s
at the end both yield physical expressions of the same q
ity. In these limits our self-consistent approach has the sa
properties as the MPT relative to HF.

Our comparison with a MPT relative to HF is based
numerical results with this method. For the same parame
as in Fig. 3 we obtain the set of QDOS given in Fig. 4. Ev
though its main features look sound again, there are a s
minor aspects which make this approach questionable.
most obvious drawback is prominent and unexplaina
peaks close to the Fermi energy. The functional depende
is not smooth and dominated by the free DOS. Also for m
netizations below saturation a gap in the spin-down QDO
expected from other theories,5,11 but this does not exist in
this approach. Additionally it is noteworthy that the onset
the spin-up QDOS starts for smaller energies as compare
that for the spin-down QDOS.

In the self-consistent MPT of the preceding section m
of these peculiarities are not present. A comparison with F
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3 permits the conclusion that the iteration of the self-ene
yields shapes of the QDOS which are broader and smoo
This can be understood analytically and is closely related
the fact that the self-energy becomes complex by iterat
These findings make the self-consistent version more r
able.

However, there are several possibilities to incorpor
self-consistency into the MPT. An ambiguous point is t
order of the applied steps. In contrast to the calculations
the preceding section one could start with the expressio
the MPT as obtained in an approach relative to HF and c
tinue by dressing all included propagators as full Gree
functions. Hence, the parametersbks are fixed, which is still
correct for a fit to the high-energy expansion up to ord
E22. The consequences for the densities of states are sh
in Fig. 5. They look reasonable for values of^Sz& close to
saturation. However, the single, broad, elliptic band wh
emerges close the paramagnetic regime is a surprising
ture. Not only is this result inconsistent with other appro

FIG. 4. Change of the QDOS with the magnetization^Sz&. The
MPT calculations are based on a SOPT relative to HF. The par
eters are chosen as in Fig. 3.

FIG. 5. Dependence on magnetization^Sz& for a MPT based on
a self-consistentSOPT. The parameters are as in Fig. 3.
0-7
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T. HICKEL AND W. NOLTING PHYSICAL REVIEW B 69, 085110 ~2004!
mations of thes-f model,5,6,8,34 moreover it is incorrect in
the zero-bandwidth limit. This is because the same struc
remains in the limitW→0/n→0, where two narrow band
around-J̃S and J̃(S11) are expected as indicated by exa
calculations.40 The shortcoming can already be seen anal
cally when looking at Eqs.~20! or ~22!. If the propagators
are dressed without a change ofbs , then an equality is no
possible with the exact solution:

J̃2

S~S11!
1

E2T02S

12 J̃
1

E2T02S

Þ J̃2

S~S11!
1

E2T0

12 J̃
1

E2T0

5S. ~23!

This conflict can be resolved if the order of arguments
changed. Now the starting point is a self-consistent SO
and only afterwards the result is fitted to the high-ene
expansion. The consequence is not a higher accuracy in p
ers ofE21 but an additionally dressed fitting parameterbs .
According to the correction given in Eq.~21! it now contains
the full self-energy and not only its mean-field contributio
This leads to the correct result for the zero-bandwidth lim
at n50:

J̃2

S~S11!
1

E2T02S

12~ J̃2S!
1

E2T02S

5 J̃2

S~S11!
1

E2T0

12 J̃
1

E2T0

. ~24!

Additionally, it has serious consequences for all other
rameter regions. We compare numerical results for the th
different approaches mentioned above in Fig. 6~a!. The set of
parametersW,J̃,S is chosen to be close to the atomic lim
The choicen50,̂ Sz&50 ensures exactness in this limit.
the input gks to the MPT ~17! is the result of the SOPT
relative to HF~dashed line!, then two nearly free subbands
the correct positions are obtained. There seems to be a
flat band between them. To dress only the propagators
not the fitting parameterbs ~dotted line! is definitely wrong.
However, one can convince oneself that an inclusion of
full self-energy in the calculation ofbs ~solid line! really
yields a considerable improvement forn50. Here one again
observes the two narrow subbands, the excitation ener
for an electron that aligns its spin parallel (2 J̃S) or antipar-
allel @ J̃(S11)# to the localized spin.

Nevertheless, there remains an uncertainty in the dete
nation ofbs as far as the correlation functionps in Eqs.~19!
and~21! is concerned. Its definition is chosen such that it c
be calculated with the help of the one-particle Green’s fu
tion Gks :

p2s52
1

p\ J̃N
(

k
E

2`

`

~E2«k!•
ImGks

ebE11
dE. ~25!

This form of the spectral theorem has the handicap to be o
applicable for determining a sum of correlation functio
~B1!. Whenever being confronted with a single correlati
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function contribution to Eq.~25!, we are forced to perform a
mean-field decoupling:̂ Szn2s&5^Sz&^n̂2s&. This is still
compatible with the expansion inJ̃ andE21. It is therefore
straightforward to treat those correlation functions for whi
relations such as Eq.~25! exist as accurate as possible, a
perform approximations for the remaining correlation fun
tions.

The consequences of this methodology for the atom
limit are shown in Fig. 6~b!. The QDOS looks sound forn
50.0, but shows a broad nonquasiparticle structure betw
the subbands forn.0. Its spectral weight increases wit
band occupation at the latter’s expense. This dependen
qualitatively different compared to that of a third, intermed
ate band in the QDOS for the SOPT relative to HF, whi
remains small for all values ofn. Here, already for a band
occupation ofn50.4 the gap is completely filled. It is diffi-
cult to find a physical explanation for such a behavior. Sm
satellite peaks between the subbands were also reporte
other approximation methods5 and were attributed to un
trapped electrons which experience the global magnetiza
^Sz& as an effective quantization axis. A shift of the spect
weight within the intermediate structure as a function of t
net magnetization has also been observed in our calculati
However, the missing symmetry in the paramagnetic reg
and the strong dependence on the band occupation doe

FIG. 6. Comparison of different MPT approaches for parame
close to the atomic limit~bandwidth W50.5 eV, J50.6 eV, S
53/2, ^Sz&50.0). ~a! Dashed line, the MPT is based on a SOP
relative to HF; dotted line, only the SOPT input is treated se
consistently and the parameterbs is not altered; and solid line, the
self-consistency has also consequences forbs . For the latter there
are two versions to treat the correlation functions~CF! in bs : either
self-consistent~b! or mean-field-like~c!. The vertical lines indicate
the energy positions of the maxima of the subbands.
0-8
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PROPER WEAK-COUPLING APPROACH TO THE . . . PHYSICAL REVIEW B 69, 085110 ~2004!
fit into this picture. The accompanying shift of the two su
bands is also surprising. For these reasons we believe
these features are an artifact of the approximations use
we know that the atomic limit is only correctly included fo
n50.

In contrast to the methodology to determinebs as accu-
rately as possible, it has apparently a much higher priority
treat all included correlation functions on an equal footin
Figure 6~c! shows results for the QDOS with the same set
parameters as in Fig. 6~b!. The only modification in the
theory is a mean-field decoupling of all correlation functio
in bs . The effects on the QDOS is dramatic, as the interm
diate structure completely vanishes now. Additionally, t
shift of the two subbands happens in a comprehensible w
Due to the particle-hole symmetry we expect forn52 two
subbands at positions2 J̃(S11) and 1 J̃S. Since our ap-
proach apparently only allows for a single band gap,
change from ann50 to ann52 configuration can only be
implemented by the system if the two peaks move conti
ously to their new positions. Accordingly their positions
half filling (n51) have to beE656 J̃(2S11)/2, as seen in
the figure. Also the redistribution of the spectral weight tak
place along these lines.

Based on our experience with the MPT we draw the f
lowing conclusion. The most promising weak-coupling a
proach to the periodics-d( f ) exchange model is the sel
consistent MPT. Expression~10! dressed with full
propagatorsGks should be used as the input from secon
order perturbation theory. Only afterwards the parame
aks and bks in the MPT ansatz~17! should be determined
such that the high-energy expansion is fulfilled to pow
E22, which implies thatbs carries a dependence on the fu
self-energy. For the correlation functions enteringbs it is
important that they are all treated on the same footing. T
is, at this stage, only possible by using a mean-field dec
pling.

VII. SUMMARY AND OUTLOOK

Within the presented work we have demonstrated how
projection-operator method can be exploited to find an a
lytical approach to the periodics-d( f ) exchange model and
that it is indeed a valuable tool in this context. Neverthele
we argued that the second-order perturbation is insuffic
and suggested an improvement in the form of a MPT. T
principal structure of this ansatz results from a study of
limit of the ferromagnetically saturated semiconductor. W
showed that the calculations have to be performed s
consistently. In a further step a clarification of the prop
treatment of the fitting parameterbs was necessary. At the
end we were able to make an informed statement, which
all possible approaches is the most reliable one. On the
hand it is satisfactory that a certain approach was able
produce considerably better results than other attempts
the other hand, the high sensitivity of the QDOS to the me
odology used to treat the correlation functions includes
danger of arbitrariness.

All of the suggested approaches have in common
they are correct up to second order in the coupling param
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J. Nevertheless, our improvements are nonperturbative in
sense that no Taylor expansion is provided. On the one h
this is for technical reasons, since the absence of a Wi
theorem for spin operators significantly complicates the c
culation of Feynman diagrams. On the other hand alre
Shastry and Mattis37 argued that a perturbation theory inJ
would fail because of the discontinuities in the physic
properties of the model asJ changes sign. Additionally, we
have pointed out that theJ3 contribution to the exact self
energy in the limit of a ferromagnetically saturated semico
ductor diverges although the sum over all orders yield
finite result.

The qualitative properties of the densities of states p
sented here are very similar to the findings of oth
approaches.6 Since the former results were based on dec
pling schemes for Green’s functions the approximations
corporated into these calculations are difficult to control
their quality. With our results we can confirma posteriori
and justify these findings. This includes a complete set
strong correlation effects discussed there.

However, in its present state the documented metho
only an approach to the electronic part of thes-f model.
Whenever correlation functions that carry a dependence
the properties of localized magnetic moments emerged
had to perform some crude approximations. It is connec
to this fact that we only considered ak-independent self-
energy by taking the average over the whole Brillouin zo
In this direction there is certainly room for further improv
ments.
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APPENDIX A: HIGH-ENERGY EXPANSION

The high-energy expansion of the Green’s function can
obtained from its representation as a resolvent~4!:

Gks5(
l 50

` mks
( l )

v l 11
5(

l 50

`
~cks

† uL l ucks
† !

v l 11
. ~A1!

The coefficientsmks
( l ) are called spectral moments and a

determined by anl-fold commutator with the Hamiltonian
H. Apart from the mean-field contribution to the frequen
matrix ~5!, the self-energy is identical to the memory matr
~7!. Hence, its high-energy expansionSks5(m50Cks

(m)/vm

is given by

Sks52 J̃zs^Sz&1 (
m50

`
~QLcks

† u~QLQ!muQLcks
† !

vm11
.

~A2!

Due to the properties ofQ, the coefficientsCks
(m) can be ex-

pressed in terms of spectral moments:
0-9



u

e
o

s

q.

o

or
ive

all
de-

ci

ys

r

v.

tter

T. HICKEL AND W. NOLTING PHYSICAL REVIEW B 69, 085110 ~2004!
Cks
(1)5mks

(2)2@mks
(1)#2, ~A3!

Cks
(2)5mks

(3)22mks
(2)mks

(1)1@mks
(1)#3. ~A4!

However, in our second-order perturbation theory the Lio
ville operatorL is replaced by a partL0:

Sks
(SOPT)52 J̃zs^Sz&1 J̃2gks

52 J̃zs^Sz&1 (
m50

`
~QLcks

† u~QL0Q!muQLcks
† !

vm11
.

~A5!

If this result is used for the MPT~17!, the high-energy ex-
pansion of the self-energy is given by

Sks
(MPT)52 J̃zs^Sz&1 J̃2aksgks1 J̃2aksbks@gks#21•••.

~A6!

A comparison with the exact expression~A2! shows thatgks

is correct to orderv21. To ensure correctness to the sam
order forSks

(MPT) the parameteraks has to be chosen as 1. T
orderv22 the self-energySks

(MPT) has the coefficient

~QLcks
† uL0uQLcks

† !1
1

J̃2
bks~QLcks

† uQLcks
† !2. ~A7!

In order to ensure that also this coefficient is exact, it ha
be equal to

Cks
(2)5~QLcks

† uLuQLcks
† !. ~A8!

Equality can be obtained ifbks is chosen as suggested in E
~18! above. As can be seen from Eq.~A4! in the high energy
this order expansion implies the correctness of the four m
mentsmks

(0) , . . . ,mks
(3) of the Green’s function.

APPENDIX B: ABBREVIATIONS

For the sake of brevity we have introduced some sh
hand notations in this papers. The full expressions are g
here.

Equation~19!:
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ps5zs^Szn2s&2^S2scs
†c2s&, ~B1!

qs54zs^Sz&ps22~xs2ps!, ~B2!

xs5S~S11!^n̂s&2zs^Szn̂s&12zs^Szn̂sn̂2s&

1^~Sz!2~ n̂2s2n̂s!&2zs^SsSzc2s
† cs1H.c.&

2^Ssc2s
† cs1H.c.&. ~B3!

We have evaluatedxs by making use of the equivalence

(
j

Tl j ~^Sl
scl 2s

† cj s&2^Sl
scj 2s

† cls&!

52 J̃~xs2S~S11!^n2s&2ps!. ~B4!

and arguing that the left-hand side vanishes for almost
parameter configurations and, in particular, if mean-field
coupling is applied.

Equation~14!:

X5 J̃Z
^~Sz!2&2^Sz&2

S~S11!2zs^Sz&2^Sz&2

22J̃
zs^Sz&^~Sz!2&2zs^Sz&3

S~S11!2zs^Sz&2^Sz&2

1

E2T02 J̃zs^Sz&

12J̃Zzs^Sz&F ^~Sz!2&2^Sz&2

S~S11!2zs^Sz&2^Sz&2G 2

, ~B5!

Y5Z
^~Sz!2&2^Sz&2

12 J̃F 1

E2T02 J̃zs^Sz&
1XG , ~B6!

Z5
1

E2T01 J̃zs^Sz&
2

1

E2T01 J̃z2s^Sz&
. ~B7!

^Sz& vanishes in the paramagnetic regime. Hence,Z becomes
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