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T. Hickel* and W. Nolting
Festkapertheorie, Institut fu Physik, Humboldt-Universita 12489 Berlin, Germany
(Received 21 August 2003; revised manuscript received 14 October 2003; published 25 February 2004

The periodics-d(f) exchange model is characterized by a wide variety of interesting applications, a simple
mathematical structure, and a limited number of reliable approximations which take care of the quantum nature
of the participating spins. We suggest the use of a projection-operator method for getting information pertur-
bationally, which are not accessible via diagrammatic approaches. In this paper we present, in particular, results
beyond perturbation theory, which are obtained such that almost all exactly known limiting cases are incorpo-
rated correctly. We discuss a variety of possible methods and evaluate their consequences for one-particle
properties. These considerations serve as a guideline for a more effective approach to the model.
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I. INTENTION used to evaluate Feynman diagrams, is not applicable to this
class of operators. This is probably the reason why up to now
The interplay of localized magnetic momer(tsf d- or  only few attempts exist in this direction. These are mostly
f-type) with itinerants electrons of a partially filled conduc- limited to special situations such as one-dimensional systems
tion band is of indisputable importance for the explanation ofor half-filling.12*3
many effects in condensed-matter physiésn recent years We suggest to circumvent these difficulties by using the
and in the context of diluted magnetic semiconductors itprojection-operator method(POM) as introduced by
even became a driving mechanism for electronic applicationMmori.***°Its goal is the expansion of resolvents such as the
(spintronic$.3'4 For a theoretical description the Hamiltonian one-particle Green’s functions in a continued fraction. The
further one goes in the expansion of the continued fraction,
the higher is the accuracy of the results obtained. It has al-
ready been applied successfully for a weak-coupling ap-
proach to the Hubbard model where it leads to convincing
is probably the simplest choice possible. The localized magresultst®!’ Its application to thes-f model would be an ob-
netic moments are represented by quantum-mechanical spiious development, even though straightforward test calcu-
operatorsS and interact with the spin of the conduction lations were not very successftil.
electronso; via an exchange interactiah The dispersiom A weak-coupling approach to thef model is undoubt-
of the latter is determined by the hopping integrals. In edly very interesting, both from an experimental and a theo-
recent years one has referred to the Hamiltor{Bnas the retical point of view. First of all, the parameter regime is
Kondo-lattice model, nevertheles$, sd, or (for very large  probably important for diluted magnetic semiconductors.
J) double-exchange model are probably more suitable deSecond, the well-known Rudderman-Kittel-Kasuya-Yosida
scriptions. exchange mechanisti;?°usually used for a qualitative de-
Despite the large variety of systems to which thé scription of magnetism in these materials, is also nothing
model can be applieta convincing approximation scheme else but the application of second-order perturbation theory
is still missing. Previous attempts developed along two printo Hamiltonian(1). However, the goal of this approach is the
cipal directions. On the one hand the Green’s function hierdetermination of the ground-state energy, leading to an effec-
archy of equations of motions has been restricted by somve Heisenberg interaction. In contrast to that, here we will
decoupling schemésEven though these efforts allowed a show that we are able to analyze the much richer spectrum of
fair description of magnetic semiconductors such as eudynamical properties of the-f model to the same order of
ropium chalcogenideSthis kind of approximation always the coupling constant and beyond it.
suffers from a lack of controllability. On the other hand, a Whenever a second-order perturbation the6@®P7) de-
classical treatment of the localized spins lead to some sulscription is performed in many-body theory there are princi-
stantial results obtained using dynamical mean-field tieorypally three different ways of treating emerging propagators: a
or Monte Carlo techniquesHowever, it has been shown that conventionalSOPT uses only free propagators, a SO&la-
the quantum-mechanical character of the spins has indeedti@e to Hartree-FockHF) replaces these propagators by the
substantial impact on the electronic properties of the coneorresponding mean-field expressions, anseHl-consistent
cerned material¥ treatmentof the SOPT replaces all propagators(lynction-
Therefore, an analytical and numerical treatment of theals of the full propagators as obtained in the previous step of
s-f model should be aspired to, which retains the quantuniteration. A priori it is usually not known which version
nature of the spins and ensures the controllability. A perturyields the most reliable results. Of course, fedf-consistent
bational approach would be a good candidate for the latterersion includes a summation of more diagrams than the
However, the incorporation of quantum-spin operatorsother methods. However, since only a partial class of dia-
causes difficulties since Wick’s theorem, which is generallygrams is summed, it is unclear which important diagrams are
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being missed out or canceled, double counted, or even takdar an improvement of this limit are generalized to arbitrary
wrongly. There are more profound considerations as put forparameter configurations. With all these preparations we are
ward by Baym and Kadandff arguing that the self- able to present the results of the self-consistent calculation
consistent approach is a conserving approximation which aiand a comparison with other methods in Secs. V and VI. The
tomatically satisfies the Luttinger theor&and Fermi-liquid ~ findings are summarized in Sec. VII.
properties. However, it is uncertain to which degree this ap- It is worth mentioning that our approach seems to be re-
plies to a model which is not exclusively composed of fer-latéd to a moment-conserving interpolation scheme of the
mions. self-energy as published by Noltireg al>3* There, a general
Even for more established models such as the periodigtructure of the electronic self-energy, which looks similar to
Anderson mode{PAM), the Falicov-Kimball mode(FKM), ~ the one presented here, has been found by systematically
or the Hubbard modeHM) the question of the most appro- Studying all known exact statements on e model. How-
priate version has been discussed intensively. For the PANVer, their analysis is focused on the low-density limit and
Yamada and Yosidd?*started the perturbational investiga- ensures the correctness of these statementa-fe@ (orn
tions directly by considering deviations from the nonmag-—2) only. In contrast to that the approach given in this
netic HF solution. Later Schweitzer and CzycRblivere ~ Paper concentrates on the weak-coupling behavior. Indeed,
able to numerically compare this approach with a self-independent of the occupation number the correctness of the
consistent SOPT. Even though this version obeys more of theelf-energy up to orde¥? in the coupling parameter and up
Luttinger sum rule€? the self-consistent versidin contrast to order E~2 in the high-energy expansion is guaranteed.
to the version relative to HFailed to show the one-particle Additionally, we can fulfill the same criteria fon—0 as
peaks neaE; andE;+ U in thef-electron spectral function. given in the above-mentioned publication. Nevertheless, the
The FKM is another example of a model where a not fullytwo approaches are not identical even for 0, but other-
self-consistent SOPT treatment qualitatively reproduces exwise arbitrary parameters.
act results, whereas the self-consistent SOPT doe? far.
the HM the situation is slightly more complicated. One can Il. SECOND-ORDER PERTURBATION THEORY
show that SOPT relative to HF does not yield a metal-
insulator transition and does not show a breakdown of the As mentioned above, we use the PGRefs. 14 and 16
Fermi-liquid behaviof” On the other hand, a straightforward since it allows an expansion of resolvents without the use of
application of a self-consistent SOPT does not reproduce thé/ick's theorem. The approximation consists in considering
Hubbard bands in the atomic linfif. More sophisticated only a physically relevant subspace of the Liouville space.
methods such as the interpolation scheme of Edwards andith the simplest choice the Liouville space is spanned by
Hert2°?7 (a version relative to HFor the iterative perturba- single-particle statefcf,). Accordingly the projection op-
tion theory of Georges and Kotli#r(a self-consistent ver- erator and its orthogonal complement are defined as
sion) are required. For the latter approach the restriction to
half filling has been removed by the modified perturbation P=|ci,)(cl,] and Q=1—[cf,)(ch,l. 2
theory (MPT) of Kajueter and Kotliaf! and Potthoff, Weg-
ner, and Nolting®2 The MPT is probably the most convincing
analytical approach to the HRA.
With the present paper we extend this kind of discussio
to the electronic part of the periodsed(f) exchange model. —ITA+-
We will argue that it is indeed a self-consistent ansatz for the (AIB)=([AT;B].). ®
electronic self-energy which is the most promising for this  \njithin the POM the one-particle Green’s function is

model. Other possible weak-coupling approaches are ru'i&iven by the following dynamical equation:
out after a direct comparison with the results of our metho

of choice. It can be shown that minor changes in the analyti-

These definitions require the existence of a scalar product,
which in our calculations is conveniently chosen to be the
&hermodynamic average

. . : 1
cal method have drastic effects on one-particle properties, Gku-:(cl(r E— CL) = Xka —
such as the density of states. We believe that a more pro- 0L 0= [ Qe+ My @) DXk
found analysis of the-f model(e.g., by a combination with (4)
gfi\cr)\g;structure calculationsan be based on these con&der—where ©=E+i0" and the Liouville operator’ with its

JProperty L|A)=|[H,A]_) has been incorporated. For the
choice (2) the susceptibility matrixy,,=(c,|cl,) is par-
ticularly simple: x,,=1. The frequency matrix

The paper is organized as follows: As a starting point wi
derive in Sec. Il a SOPT for the f model which makes use
of the POM. In Sec. Il we will study in some detail the
exactly soluble limit of a single conduction electron in a + + ~ ,
ferromagnetically saturated semiconductor. This limit is an Qo= (Cyol Ll Cy) =8k I2(S?), (5
excellent testing ground for the implementation of the POM
Even more important, the experience with other model
shows that it is indispensable to have nonperturbative, exact 1
statements which can be used to judge the quality of the G(kMF)(w): - -
results obtained. In the next stéfec. IV) the experiences 7 w—gt+Jz(F)

'Son the other hand, corresponds to the mean-field result
(6)
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for the Green’s function. Here, we have used the abbreviatwo mathematical consequences: First, a semiconductor is
tionsJ=3J andz, | ==1. All the interesting physics is in- defined by an empty conduction band at zero temperature,
cluded in the memory matrix hence(- - - c¢,)=0. Second, ferromagnetic saturation leads
to trivial spin expectation values{---Sp)=Ng--),
(- -S;>=0. An application of these simplifications to the
QEQ Qﬁckv ' @) result(10) yields the self-energy

M k(r(w) = ( Q‘Ccku'

which again has the structure of a resolvent, resulting in a 1

form of Gy, in Eq. (4) involving continued fractions. Se=3,= —jz,,SJerZSN > G"™Ps, . (12
The expression for the memory matrix cannot be treated a

exactly. However, at this stage we are only aiming at a per-

turbational expansion of the self-enerBy,, in the form One can see directly that in this limit gelf-consistency
iteration does not yield any further results. This is because
So=—IZA( )+ Pyt - - -. (8) theo=| Green's function is uniquely determined by= 1

_ o propagators, which have the iteration-independent self-
This allows some simplifications. In E¢7) glready theH energys = —Js.
contribution in|QLc},) gives rise to a factai®. Hence, any Due to the restrictions of this limit the memory matrix can
approximation of the Liouville operator in the denominator in fact be treated more accurately. Following the intention of
is still correct in this order and is thus consistent with Eq.continued-fraction expansion the memory matix can it-
(8). A conventional SOPT implies a replacementby its  self be considered as a resolvent, to which the concept of the
free partCy. A SOPT relative to HF is given by a Liouville POM is applied:
operator that corresponds to the Hamiltonian

1 -
(MF) 2y N 55, sanvh M(w)= — X 13
HE'P=H, %JZASMU- 9) o—[0+NM(w)]y
In both cases we obtain a similar result The higher-order memory matr will have a form similar
to that given in Eq(7). Again the Liouville operator in the
denominator should be approximated to allow for an analyti-
2 (O/MF) G(O/MF)
—(S)°Gk + 2 <S S Ch cal solution of the associated geometric series. According to

conventional perturbation theory it is replaced By, the
1 R action of a free, undisturbed system of electrons. After so-
+— 2 {(Sjgsg)+220<Sénq+k,,g>}G,(<°+”\§,F_)g, phisticated calculations, which will be published elsewhere,
N“ "a the self-energy is obtained as
(10

1
whereS] = S;+iz,S}. For the expectation values contained 25— 2 G (w)
i 0) we make use of the fact that we aim for a result ~ ~2 N
IcnorEr((alcnzt(lto second order i and evaluate them using the 20= 12,54 5, - 19
(0)
eigenstates of the free/mean-field system. 1-31-9)y z Gq (@)
A self-consistent SOPT on the other hand can be obtained
in the same manner as suggested by Bulk and Jélitothe ~ This is certainly an improvement of E(L2) and contains the
Hubbard model. Within this procedure the unperturbed parprevious result if expanded up to ordir
is altered in each iteration cycle by the memory matrix of the  Even though we called it perturbation theory, it is how-

previous cycle: ever not correct for the next order & The exactl® contri-
bution to the self-energy can actually be shown to be

HgN“’=HgN)+kZ MM™n,, . (11) ,

o ~ 1 S
(3)_733 - (0) _= (0) 2

It turns out that this procedure is equivalent to a replacement 2= ZS[ N % Gq (@) N % [Gq (@]

of the Green'’s functions at the right-hand side of Ed) by (15

the full propagators as obtained in the previous iteration

cycle. In Eq.(11) we use the additional approximation that As a matter of fact, the second sum in E&f) is a diverging

the memory matnx |S Summed karand hence on|y a |oca| contribution. This all’eady becomes apparent if one looks at

self-energy is considered. its imaginary part, rewrites thie sum as an integral over the
free DOS, separates a Lorentzian, and considers the fact that
P
Il AN EXACT SOLUTION 07 is infinitesimally small. We were able to show that after a

summation over all orders id the diverging terms cancel.
The model can be restricted to the limit of a ferromagneti-Nevertheless, Eq15) demonstrates that for treef model a
cally saturated semiconductor. This limit is characterized bystrict perturbation theory is only possible up to second order
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in J. The different orders of an expansion of the continued  [= 1. step (conv.)

fraction within the POM apparently do not have this limita- ) . . ;: ::gﬁi‘?w

tion. W=10eV 2. step (HF) = exact
The result(14) can be further improved, if a perturbation rI=06eV

theory relative to HF is chosen. Without going into the de- | 5=1/2

tails we just provide the result as

DOS (E)
T

2S

% GM)(w)

Z| -

S ,=—32,5+ 68,32 (16)
1

05—

1-3= 2 6" (w)
aq

Z| -

This expression is actually identical to the result of an exact
calculation, where the Liouville operator has not been re- FIG. 1. C ,  the-ODOS for diff i o
duced or altered. Within the POM we were able to perform - 1. Comparison of the-Q or different self-energies in

the derivation of the memory matri®) using the complete the limit n=0 and(S*)=S. The dotted and dashed lines are the
y o 9 P . results of SOPT12), conventional and relative to HF, respectively.
operatorL= Lo+ L. However, it is not necessary to give

; ) . The dashed-dotted and the solid lines give the corresponding results
the lengthy calculations here since its restif) has already  (14) and(16) for the next step of the POM.

been verified by other methods:*°
The self-energy16) corresponds to an exact eigenstate of IV. GENERALIZATION TO ARBITRARY
the Hamiltonian(1). For the spin-down electrons this eigen- CONFIGURATIONS

which is the groun r antiferromagneti - . . .
state, ch is the ground stdltdor antiferromagnetic cou After these considerations on the magnetic polaron we

pling (3=<0), is called magnetic polarofi.Its interesting return to the discussion of the SOPT given in form(i).

and nonirivial dynamical features, which give rise to a scating argued before, the limit of a ferromagnetically saturated

tering part and a quasiparticle peak in theggdensny Of Stategemiconductor can be used to check the quality of this result.
have been discussed in detail by Noltiegal™ Apparently, | s jimit the SOPT result12) turns out to be only a poor

it is possible to retrieve these features within the projectionnnroximation of the exact solution as demonstrated in Fig.
operator formalism. The reason why already an approxima; = sjnce the magnetic polaron is indeed an important feature

tion yields the correct result is the fact that the resultingof thes-f model, ways of improving Eq$8) and(10) should
two-dimensional Liouville subspace is sufficient to com-pe considered.

pIete_Iy describe the physics of a ferromagnetically saturated |n the preceding section we explained how an improve-

semiconductor. ment can be achieved within this particular limit. A proper
Now we have obtained several approximate forms of theapplication of an additional step within the projection opera-

electronic self-energy. Formuld?2) provides an expression tor method finally leads to the expressidid) and(16). We

for the first and second order in the coupling constanifhe  generalize the analytical structure of these results to the fol-

(diverging third order is given in Eq(15). An improvement  lowing ansatzfor arbitrary band occupations:

of the SOPT is given in Eq14) in a conventional way and a (E)

in Eq_. (16 relatiye to HF: One can compare _these self- EKU(E):_BZU<SZ>+32%' (17)

energies by looking at their quasiparticle densities of states ko YkolE)

(QDOS3. Obviously, the spirt- spectrum is always a mean- Ajthough obtained in a completely different manner, this is
field-shifted free DOS. Hence, we can limit ourselves to theexacﬂy the kind of a MPTRef. 31) which has turned out to
spin-| spectrum, which is shown in Fig. 1. be the most promising analytical approach to the Hubbard
In this figure a relatively largé =23 has been chosen to model®®
reveal the differences more clearly. If one compares the DOS For thes-f model it has two advantages: First, it does not
of the conventional SOPT and the SOPT relative to HF withdestroy the correctness of the second-order term proportional
that of the exact solution, one gets the impression that theo J2, but gives the freedom to fit the parametags andb,,
first one is the better approximation. However, if one com-such that further criteria are fulfilled. Second, since the
pares these two approaches for the second step of the POROPT result for the self-enerd$) automatically reproduces
(equivalent to a larger relevant Liouville subsppgités clear  the first three moments of the corresponding Green’s func-
that the version relative to HF has to be preferred, since onl§ion correctly, the choicey,= 1 will ensure the same for the
this one gives the exact result. Nevertheless, redul is ansatz(17).
already a satisfactory approximation. As mentioned above a It remains to determine the parametgy,. The most
self-consistent calculation is redundant for the discussegtraightforward choice merely ensures the correctness of the
limit. ferromagnetically saturated semiconductobka(=3/28).
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However, the resulting densities of states have unphysicaideration of the zero-bandwidth limit yields the following
features. Furthermore, we have learned from the Hubbardxpression for the self-energy:

modef® that a fit to the spectral moments of the Green's

function yields more promising resultb,,, which is deter-

mined by S, =—Jz,(S)+3%Y
] :jZ(QCClal»CIQECL)—(QECMEoIQECL) [S(S+1)—2(S)—(S)?] —
v (Qeef,lQce], 3 E-To* 925
~ 1
(18 1-J = —~+
ensures that the third coefficient of the high-energy expan- E-To+Jz_ (S
sion of Eq.(18) is identical to the one of the exact self- (22)

energy. As explained in more detail in Appendix A this fit is
correct for the first four moments of the Green’s function. . L .
. B . Apart f th t t Y th th
In a MPT which is based on a conventional SOPT the part from the correction termx and 'S 1S again the

Liowvil £ oinEq. (18 i d d d exact result(20). However, both terms are proportional to
iouville operatorL, in Eq.(18) is understood to correspond o, essions, which vanish in the paramagnetic regime.

to the free part of the Hamiltonia(,. Then only theJ®  Therefore, they also vanish for the zero-bandwidth limit for
contribution in the numerator dfy,, remains to be evaluated which the assumption of any finite magnetization does not

and one obtains lead to consistent resufts.
In the discussion so far we have tested our MPT ansatz
b _~[S(S+ 1)—z,(SH—(SH?](z,(SH+1)+q, (17) in the limit n—0. One can repeat the same transforma-
o~ [S(S+1)—2z,(SH)—(SH)%+2p, ]2 ' tions for the opposite case—2. By doing this one will

(19) notice that the same formulas are obtained. The only differ-
ence is the change of the sign®@fand ofb,, . This is due to

where p, and g, are sets of further correlation functions, particle-hole symmetry in the system. Therefore, in the same
which are given in Appendix B, but have the property tosense as fon=0, our MPT ansatz17) fulfills the limit of
vanish in the limitn—0. It is instructive to study this limit the magnetic polaron and the zero-bandwidth limit for
in more detail. On the one hand it can be combined with the=2,
additional constraint of ferromagnetic saturati@®f)=S. If
the obtained, is placed into the MPT ansati7), then the
self-energy becomes identical to the one given in @4). V. SELF-CONSISTENT RESULTS
On the other hand, one can consider the zero-bandwidth situ-
ation g =T, within the limit n—0. For a dispersionless
Green’s function all summations in expressid®) for vy,
can readily be performed, and in this limit the self-energy
becomes

Using the MPT approach of the preceding section we
have the possibility to generalize the improvement to the
POM for the limit of a ferromagnetically saturated semicon-
ductor to arbitrary parameter regimes. In Sec. Il we argued
that a self-consistent calculation is redundant in this limit.
1 This does not hold for the generalized version. Hgge, as
[S(S+1)—z(SH)—(S)2]— given in Eq.(10), does not vanish for spih-electrons and
E-To consists of propagators for both kinds of spin directions.
~ Consequently, we have performed a self-consistent numeri-
1-3(z,(S)+1) E——TO cal iteration of the self-energy. This was carried out along the
(200  lines sketched at the end of Sec. II. Additionally, the MPT
parameter,, has to be adjusted such tha{, in Eq. (21
Comparing this form of,, to the result of an exact calcula- describes the full self-energy and not only its mean-field part.
tion available for the zero-bandwidth limit° reveals that the The details of this procedure are discussed in Sec. VI. If
expression is correct. properly performed it is an “upgrading” of the perturbation
For a SOPT relative to HF the expression &y in Eq.  theory relative to HF in the sense that its properties are main-
(18) contains an additional term according to the mean-fieldained. In particular, the evaluation for the ferromagnetically
contribution3, ,= —Jz,(S?) in Eq. (9). This yields a correc- saturated semiconductor yields the previous and exact results
tion of the magnetic polaron. Additionally, the atomic limit is
fulfiled for the empty and completely filled conduction
S (SHH—(SH2]+3_,[(ST7S") +272,(SHn_,] band,dagd trr]we particle—holehsymmetry of the systen:j ishconiI
= - 72 > served by the ansatz. In other regimes it is ensured that a
[S(S+1)=2,(S)~(S)"+2p,] 1) results are correct at least to ord#r However, because of
the self-consistency the method incorporates more correla-
to the former resul{19). We will focus again on the limit tions and scattering effects than a straightforward second-
n—0. If combined with the additional constraint of ferro- order perturbation theory description does. For all these rea-
magnetic saturation, the exact requl6) is obtained. A con- sons we believe that the self-consistent MPT is not only

S, =Tz (H)+ T

ob

o
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consequences for the QDOS. The clear dependence on the
filling of the conduction band points out strong correlation

effects, induced by the coupliny Forn=0 the structure of
7 the QDOS is closely related to the ferromagnetically satu-
rated semiconductor. In particular, the spirspectrum has
the shape of the freesimple cubi¢ DOS and the scattering
part of the spin spectrum can clearly be seen. Only the
polaron subband shows a deformation, due to finite-lifetime
effects. Excited spirj- electrons can enter the energy region
. of the polaron, flip their spin, and absorb a magnon since we
are not close to saturation.

If the chemical potentialand accordingly the band occu-
2 ! . . | . pation is increased, the spectral weight is redistributed be-
-0.5 0 05 1

B tween both subbands. For the chosen set of parameters the

FIG. 2. Dependence on band occupatiofor a self-consistent changes withn are most noticegblf-:- in the S_an_'QDOS'
MPT. For free electrons a simple-cubic DOS with bandwidtis ~ Where the upper subband steadily increases in importance at
chosen. The parameters are as given. The vertical lines indicate ti8€ expense of the lower subband. A sharp jump in the

positions of the Fermi energy to allow for the different values of theQDOS close to the pseudogap remains a striking feature for
band occupation. all values ofn. It is also interesting to note that the lower

band edge is shifted by some 0.1 eV in the spi@DOS,
correct in the weak-coupling regime, but also for moderatdVhereas it remains at almost the same position for the spin-
values ofj 1 QI_DOS. This behavior is very muc_h dlffere_nt in a MPT
' relative to HF (Ref. 42, and is a hint that in the self-
%onsistent MPT mainly the majority-spin electrons experi-
0<]3nce strong correlations.
As the band occupation approaches half filling=1),

J=06cV
| W=10eV
(§9=03
7

Ty
42T
iy
el
R
. I
s N
R !
A
| o
. (]
ERTER--N-]

mooo0S
Sk

1-QDOS

1-Qpos
7

to our ansatz the QDOS is correct for=0,(S*)=S, how-
ever its variation with a change of these parameters is

Er?srtm:l?z;rr:g:geﬁ'thelzzjgeurgnﬁeﬂl%wosnt'?hee ?ﬁge;‘gﬁ;c? on tht%e point-symmetric form of the QDOS nicely represents the

P : PE oo gnet ém'." particle-hole symmetry of the system. The character of the

nected to temperature via a Brillouin functjois given in : ; . .
upper spin{ subband becomes identical to the lower spin-

Fig. 3. In both cases a medium value has been chosen for tr%ubband, since the latter is the polaron bandrfer2. For

fixed parameter. It goes without saying that our caIcuIation%he same reason we skip the plots for1, they can be

are also thermodynamically self-consistent. The iteration N\ tained from the band occupations.
sures that the values of the correlation functions are consis- ) P ) o )
tent with the obtained one-particle Green’s function. Addi- _ A higher value for the coupling strengthis chosen in

tionally, the chemical potential is adjusted to the desiredri9- 3. Therefore, the scattering and the polaron subband are
particle number. Its position is indicated by vertical lines inWell separated already for a nearly saturated system. The gap
the figures. remains present for all temperature employed in the calcula-

In particular, the change ai in Fig. 2 has remarkable tions. There are only small changes of the position of the
bands as a function of the magnetization. Nevertheless, the
edge of the lower spin-subband shifts to lower energies if
the temperature is lowered frofm= T ((S*)=0) to smaller
valuesT—0 (maximum(S?)). For semiconductors such an

2 . : . : . T . T

—_ (§H=00
- $H=0.1

(89=02 effect is known as the redshift of the optical absorption edge.

g Rl I In metals, since the lower spin-subband is shifted in the
& ——= (5)=045 opposite direction, it leads to a polarization of the conduction
electrons of over 60%. The existence of energy regions well
. below the Fermi edge occupied entirely by majority-spin
electrons is a remarkable result. Similar effects have also

Iy =10eV been reported in other approximatiéhahen studying half-
g W= 10eV metallic ferromagnets. However, the continuous shift of the
gy S=1 - chemical potential with magnetization prevents 100% polar-
e n=04 ization of the conduction electrons in our calculations. The

FIG. 3. Change of the QDOS with the magnetizat{&?) for a

E[eV]

dependence on the chemical potential is such that the effect
disappears completely for smaller values+0), where the
1-QDOS and the|-QDOS occupy the same energy region
(see Fig. 2

The situation at the lower edge of the upper subband in

self-consistent MPT. The position of the Fermi energy for the high-Fig. 3 is less systematic. An extra peak in the spi@DOS
est and lowestS”) is marked by vertical lines.

obtains its maximum fo{S?)~0.3 and then vanishes again.
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The physical interpretation of this feature is not yet clear. In 2 ; . ; . ; . ; .

this context we also have to mention that the choice of the g — (sH=00

parameteb,, with its explicit dependence on the self-energy | s - g‘i:g;

in Eg. (21) substantially increases the numerical effort. Inthe | q F e y=04| |

energy region just mentioned it is particularly difficult to é """"""" (Sh=04

obtain convergence. < oo Sh=os
The distribution of the spectral weight, on the other hand,

is indisputable. It shows the transition from the ferromagneti- o

cally saturated configuratiofdashed lines which even for

n=0.4 clearly displays the features of the exact solution in 2 J=10eV

Sect. Ill, to the paramagnetic regin@olid lineg, which has & W=10ev

to be symmetric with respect to theaxis. Again the more = '[ S=% 7

profound changes are observed for the majority-spin elec- n=04

trons. The increasing spectral weight of the upper $pin-

subband can be explained with higher magnon numbers ir , . ! . ! . ! . !
this regime. B RTRY
An artifact of our method is the fact that for both spin

directions two subbands are always obtained. With other
approached? one sometimes observes a third band. This i e
explained by atomic-limit calculations, where for finite band St€'S aré chosen as in Fig. 3.
occupations always three out of four subbands have nonva-
nishing spectral weight. It needs further modifications of our
method to retain these features. At the present stage t
atomic limit is only correct fom=0 andn=2.

FIG. 4. Change of the QDOS with the magnetizat{&). The
PT calculations are based on a SOPT relative to HF. The param-

permits the conclusion that the iteration of the self-energy
jelds shapes of the QDOS which are broader and smoother.
is can be understood analytically and is closely related to
the fact that the self-energy becomes complex by iteration.
These findings make the self-consistent version more reli-
VI. THE PROPER METHOD able.
) ) However, there are several possibilities to incorporate
The last point brings us to an assessment of our selfgg|tconsistency into the MPT. An ambiguous point is the
consistent approach. Apart from the above-mentioned catgsyqer of the applied steps. In contrast to the calculations of
log of analytical properties, a comparison with other con-ihe preceding section one could start with the expression of
ceivable weak-coupling approaches is desirable. the MPT as obtained in an approach relative to HF and con-
A comparison with a MPT which useg,, obtained by  tinye by dressing all included propagators as full Green’s
conventional SOPT is straightforward. From the analyticak nctions, Hence, the parametdss, are fixed, which is still
considerations in Sec. !V we can conclude that even a MPEqrect for a fit to the high-energy expansion up to order
based on a SOPT relative to HF should be preferred as cong-2 The consequences for the densities of states are shown
pared to one based on a conventional SOPT. This is becauge Fig. 5. They look reasonable for values (&) close to
the former correctly incorporates the important limiting casegatration. However, the single, broad, elliptic band which
of the ferromagnetically saturated semiconductor, Whereaémerges close the paramagnetic regime is a surprising fea-

the latter does only reproduce, in this limit, the less accuratgre Not only is this result inconsistent with other approxi-
expression(14). The discussion of the atomic limit does not

provide an argument in favor of one of the approaches, since .
at the end both yield physical expressions of the same qual E———r
ity. In these limits our self-consistent approach has the sam¢ |i -~~~ |
properties as the MPT relative to HF. .

Our comparison with a MPT relative to HF is based on g 'I"
numerical results with this method. For the same parameter?
as in Fig. 3 we obtain the set of QDOS given in Fig. 4. Even |
though its main features look sound again, there are a set c
minor aspects which make this approach questionable. Thi
most obvious drawback is prominent and unexplainable
peaks close to the Fermi energy. The functional dependenc$
is not smooth and dominated by the free DOS. Also for mag-3 1
netizations below saturation a gap in the spin-down QDOS is
expected from other theori@s? but this does not exist in
this approach. Additionally it is noteworthy that the onset of
the spin-up QDOS starts for smaller energies as compared t >r s o s 1 s
that for the spin-down QDOS. Bl

In the self-consistent MPT of the preceding section most FIG. 5. Dependence on magnetizati@f) for a MPT based on
of these peculiarities are not present. A comparison with Figa self-consistenBOPT. The parameters are as in Fig. 3.
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I T
—— SOPT-HF
+ s¢ SOPT [

|5,6,8,34
1

mations of thes-f mode moreover it is incorrect in
the zero-bandwidth limit. This is because the same structure
remains in the limitW—0/n— 0, where two narrow bands

arounddS and J(S+1) are expected as indicated by exact
calculations'® The shortcoming can already be seen analyti-
cally when looking at Egs(20) or (22). If the propagators
are dressed without a changelmf, then an equality is not
possible with the exact solution:

S(S+1)

; S(S+1) ==

E_TO_E ~o 0
1 #J o =3. (23
CVE-To-3 CVE-T,

This conflict can be resolved if the order of arguments is
changed. Now the starting point is a self-consistent SOPT
and only afterwards the result is fitted to the high-energy
expansion. The consequence is not a higher accuracy in pow-
ers of E~1 but an additionally dressed fitting parameler.
According to the correction given in E(R1) it now contains
the full self-energy and not only its mean-field contribution.
This leads to the correct result for the zero-bandwidth limit
atn=0:

FIG. 6. Comparison of different MPT approaches for parameters
close to the atomic limittbandwidthW=0.5 eV, J=0.6 eV, S

Stl)—+—< S+1
~> S )E—TO—E _~ZS( )E—To =3/2, (§=0.0). (a) Dashed line, the MPT is based on a SOPT
J B 1 =J 1 . (24 relative to HF; dotted line, only the SOPT input is treated self-
1-(J-2) E-T.—3S 1—JE T consistently and the parametey is not altered; and solid line, the
—lo™ —lo

self-consistency has also consequencesjfar For the latter there

Additionally, it has serious consequences for all other pa2r€ WO Versions to treat the correlation functieB$) in b, : either

rameter regions. We compare numerical results for the threself-conssten(b) or mean-field-like(c). The vertical lines indicate
) fhe energy positions of the maxima of the subbands.

different approaches mentioned above in Fig) 6The set of

?ﬁramﬁt?rs’\/jbiissthgsen to be close to the a'rf](?mli_c |_imi|tf- function contribution to Eq(25), we are forced to perform a
e choicen= =0 ensures exactness in this limit. , , - i e
. : . mean-field decoupling{S’n_,)=(S*)(n_,). This is still
the input y,, to the MPT (17) is the result of the SOPT _ seoup 9 ."> .~< X _‘I> :

compatible with the expansion thandE™". It is therefore

relative to HF(dashed ling then two nearly free subbands at X : ) .
the correct positions are obtained. There seems to be a thiﬁiralghtforward to treat tho;e correlation functions for which
flat band between them. To dress only the propagators ar{&latlons such as Eq25) exist as accurate as poss.|ble, and
not the fitting parametel,, (dotted ling is definitely wrong. perform approximations for the remaining correlation func-

However, one can convince oneself that an inclusion of thé'or_l_sh' £ thi thodol for th tomi
full self-energy in the calculation db, (solid line) really € consequences ot this methodology for the atomic

yields a considerable improvement fo=0. Here one again limit are shown in Fig. &). The QDOS looks sound far

observes the two narrow subbands, the excitation energieTg]o'O’ but shows a broad nonquasiparticle structure between

. : . ~ . the subbands fon>0. Its spectral weight increases with
for an electron that aligns its spin parallet {S) or antipar- 5,4 occupation at the latter’s expense. This dependence is

allel [J(S+1)] to the localized spin. qualitatively different compared to that of a third, intermedi-
Nevertheless, there remains an uncertainty in the determyte band in the QDOS for the SOPT relative to HF, which
nation ofb,, as far as the correlation functign, in Eqs.(19)  remains small for all values af. Here, already for a band
and(21) is concerned. Its definition is chosen such that it canpccupation ofn=0.4 the gap is completely filled. It is diffi-
be calculated with the help of the one-particle Green’s funceult to find a physical explanation for such a behavior. Small
tion Gy, : satellite peaks between the subbands were also reported for
other approximation methotsand were attributed to un-
trapped electrons which experience the global magnetization
(S%) as an effective quantization axis. A shift of the spectral
weight within the intermediate structure as a function of the
This form of the spectral theorem has the handicap to be onlyiet magnetization has also been observed in our calculations.
applicable for determining a sum of correlation functionsHowever, the missing symmetry in the paramagnetic regime
(B1). Whenever being confronted with a single correlationand the strong dependence on the band occupation does not

poim S [ €y

mhIN K

|mGk(,.
efF+1

dE. (25
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fit into this picture. The accompanying shift of the two sub-J. Nevertheless, our improvements are nonperturbative in the
bands is also surprising. For these reasons we believe thagnse that no Taylor expansion is provided. On the one hand
these features are an artifact of the approximations used daiis is for technical reasons, since the absence of a Wick’s
we know that the atomic limit is only correctly included for theorem for spin operators significantly complicates the cal-
n=0. culation of Feynman diagrams. On the other hand already
In contrast to the methodology to determipg as accu-  Shastry and Matt argued that a perturbation theory Jn
rately as possible, it has apparently a much higher priority tavould fail because of the discontinuities in the physical
treat all included correlation functions on an equal footing.properties of the model aschanges sign. Additionally, we
Figure 6c) shows results for the QDOS with the same set ofhave pointed out that th&® contribution to the exact self-
parameters as in Fig.(®. The only modification in the energy in the limit of a ferromagnetically saturated semicon-
theory is a mean-field decoupling of all correlation functionsductor diverges although the sum over all orders yields a
in b, . The effects on the QDOS is dramatic, as the intermefinite result.
diate structure completely vanishes now. Additionally, the The qualitative properties of the densities of states pre-
shift of the two subbands happens in a comprehensible wagented here are very similar to the findings of other
Due to the particle-hole symmetry we expect for2 two  approache$.Since the former results were based on decou-
subbands at positions J(S+1) and +JS. Since our ap- Pling schemes for Green’s functions the approximations in-
proach apparently only allows for a single band gap, thecorporated into these calculations are difficult to control in
change from am=0 to ann=2 configuration can only be their quality. With our results we can confire posteriori
implemented by the system if the two peaks move continu@nd justify these findings. This includes a complete set of

ously to their new positions. Accordingly their positions at Strong correlation effects discussed there. _
half filling (n=1) have to beE.. = +J(2S+1)/2, as seen in However, in its present state the documented method is

: P - only an approach to the electronic part of thd model.
the figure. Also the _redlstrlbutlon of the spectral weight takeiNhyeneverpEorrelation functions that Earry a dependence on
place along these lines.

Based on our experience with the MPT we draw the l‘ol—:]hed [:roper?es of Iocahzeg magnetic mt(_)mentli emerged twg
lowing conclusion. The most promising weak-coupling ap- a h'o ?er orhm some clru € apgroxylg'lodns. ('js connﬁcc €
proach to the periodis-d(f) exchange model is the self- to this fact that we only considered kaindependent seff-
consistent MPT. Expression(10) dressed with full energy by taking the average over the whole Brillouin zone.

propagatorsG,, should be used as the input from second-ln this direction there is certainly room for further improve-
order perturbation theory. Only afterwards the parameter@ents'

ay, andb,, in the MPT ansat£17) should be determined

such that the high-energy expansion is fulfilled to power ACKNOWLEDGMENTS
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VII. SUMMARY AND OUTLOOK APPENDIX A: HIGH-ENERGY EXPANSION

Within the presented work we have demonstrated how the The high-energy expansion of the Green’s function can be
projection-operator method can be exploited to find an ana@btained from its representation as a resolu@itt
lytical approach to the periodis-d(f) exchange model and
that it is indeed a valuable tool in this context. Nevertheless,
we argued that the second-order perturbation is insufficient Gka:zo °
and suggested an improvement in the form of a MPT. The
principal structure of thi_s ansatz results from_ a study of ther,o coefficientsmf('(), are called spectral moments and are
limit of the ferromagnetlcglly saturated semiconductor. Weyetermined by an-fold commutator with the Hamiltonian
showed that the calculations have to be performed seIfH

. v, | furth larificati f th . Apart from the mean-field contribution to the frequency
frzgfﬁ;enr;tg% tﬁeafittlijrztg ?ararsatlfr?e';rc \?v::\écitel?:z;s)arty eAfrtcr)]zermatrix (5), the self-energy is identical to the memory matrix
o - (7). Hence, its high-energy expansidi, == oCl™/ 0™
end we were able to make an informed statement, which o(f ). Hence, its high-energy expansiaik, =m-oCio/ @

[

| T I ~T
m(kt)r _ (Ck0'|£ |Ck0')
+1 & PR

(A1)

all possible approaches is the most reliable one. On the on'g given by

hand it is satisfactory that a certain approach was able to - + n t
produce considerably better results than other attempts. On . _ 3, (4 S (QLey,|(QLQ)M QL)

the other hand, the high sensitivity of the QDOS to the meth- ke 7 m=0 o™t '
odology used to treat the correlation functions includes the (A2)

danger of arbitrariness.
All of the suggested approaches have in common thabue to the properties d, the coefficientsC(kT,‘) can be ex-
they are correct up to second order in the coupling parametgressed in terms of spectral moments:
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Clt)= i@~ (L’ »3)

cl=m@-2mZm+(mBP. ()
However, in our second-order perturbation theory the Liou-
ville operator.L is replaced by a patf:
3(570=~T2,(8) + TPy,

% 1 m T
_ gy s (QECkU|(Q£r:?l) |Q£Cko').

m=0 w

(A5)

If this result is used for the MPTL7), the high-energy ex-
pansion of the self-energy is given by

2(I('Zl'PT): _jZU<SZ> +32ak07ka+jzakabko’[ 7ko’]2+ T
(A6)

A comparison with the exact expressigh2) shows thaty,,,
is correct to ordew 1. To ensure correctness to the same
order forX, (k"(ﬂPT) the parametea,, has to be chosen as 1. To

order w2 the self-energy (MP" has the coefficient

T T 1 T T2
(Qﬁcko|£o|Q£Cko)+j—2bk(r(Q£Cko|Q£Cka) . (A7)

In order to ensure that also this coefficient is exact, it has to
be equal to

C&)=(Qcel,lclQcey,). (A8)

Equality can be obtained b, is chosen as suggested in Eq.
(18) above. As can be seen from E&4) in the high energy
this order expansion implies the correctness of the four mo-
mentsm(?, ... m) of the Green’s function.

APPENDIX B: ABBREVIATIONS

For the sake of brevity we have introduced some short-
hand notations in this papers. The full expressions are given
here.

Equation(19):

PHYSICAL REVIEW B 69, 085110(2004

Pe=2,(S_,)—(S"clc_,),
Ur=4Z,S)Ps—2(Xs—Py),
X,=S(S+1)(n,)—z,(SN,)+22,(S"n,n_,)
+{((SHAN_,—N,))—2,(S"Sc c,+H.c)

—(s7c" c,+H.c).

We have evaluater, by making use of the equivalence

; T (<$UC|T—UCJ'0>_<SUC]T7¢TC|U>)

==J(X,—S(S+1)(n_,)—p,).

and arguing that the left-hand side vanishes for almost all
parameter configurations and, in particular, if mean-field de-
coupling is applied.

Equation(14):

57 (89 —(s")?
S(S+1)—2z,(SH)—(SH)?
A ZASNE) -2 1
US(S+1)—z,(S)—(SH)2 E—To—Jz,(S?)
(895 —(s9)?
S(S+1)—2z,(SH)—(S%?

2
+2322,(S%)

yeg () (s)?

1-7

1 L)
E-Ty—Jz,(S9) }

1 1
Z= _ ~ - .
E—To+dz(S) E—To+3z_(S)

(S%) vanishes in the paramagnetic regime. HeiZckecomes
zero, which implies the same fot=Y=0.
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