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The Hubbard model is investigated in the framework of lattice density functional tHeé®¥T). The
single-particle density matriy;; with respect to the lattice sites is considered as the basic variable of the
many-body problem. A new approximation to the interaction-energy functidfigl] is proposed which is
based on its scaling properties and which recovers exactly the limit of strong electron correlations at half-band
filling. In this way, a more accurate description\Wfis obtained throughout the domain of representability of
vij » including the crossover from weak to strong correlations. As examples of applications results are given for
the ground-state energy, charge-excitation gap, and charge susceptibility of the Hubbard model in one-, two-,
and three-dimensional lattices. The performance of the method is demonstrated by comparison with available
exact solutions, with numerical calculations, and with LDFT using a simpler dimer ansat¥. {Goals and
limitations of the different approximations are discussed.
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[. INTRODUCTION ing from various perspectives. On the one side, a detailed
Density functional theory(DFT) provides a rigorous understanding of the electronic properties in the strongly cor-
framework for studying the physics of the many-bodyrelated limit constitutes an important theoretical challenge.
problem!~* The fundamental concept behind DFT is to re- Exact results are rare or numerically very demanding and a
place the conventional dynamical variables that completelyariety of elaborate many-body techniques are specifically
define a many-particle stat@.g., the wave function in a developed for their study. Therefore, a density functional ap-
quantum mechanical problem, or the particle positions an@roach with an appropriate ansatz féfshould be a useful
momenta in a classical systgfy considering the particle- alternative tool for investigating at least some aspects of this
density distributionp(r) as the basic variable. For this pur- CO”;p'ﬁx prOb'e”} O”I_theb_?theff%i?r’ one WOU:d like t|° ex
pose the energi of the system is expressed as a functionaltehn the ranglgko tﬁpp Icabl ':.y 0 f ch to strogg y.coC:re ate f
of p(r) separating the various energy terms in two mainP'€NoMena, like the separation of charge and spin degrees o
groups. The first one contains the contributions that depengeedom or the correlation induced localization, where con-
explicitly on the problem under study, which result from thevent|onal local density approximations or generalized gradi-

! . ent approximations are known to fail systematically. More-
coupling betweerp(r) and the external field¥e,(r). The  ;yer “the development of DFT on a lattice constitutes an

second one concerns the intrinsic energy of the many-particlg,yjnsjcally inhomogeneous approach, which provides a true
system, namely, the kinetic energyand the interaction en- ajternative to methods relying on the homogeneous electron
ergy W of the particles. These terms are universal functional@as. In this context, investigations on many-body models
of p(r) in the sense that they are independent of the problemhould open new insights into the properties of the
under study. While the general functional dependence ointeraction-energy functional that could also be useful for
T[p] andW[ p] is not known explicitly, they can be formally future extensions to more realistic Hamiltonians and first
expressed as the result of integrating out the microscopiprinciples calculations.
degrees of freedom. In the case of ground-state electronic In past years, a number of density functional studies of
properties, this is achieved by imposing tiap] andW[ p] lattice models have been performed concerning in particular
correspond to the minimum possible value of W for a  the determination of band gaps in semiconductdtbg role
given p(r).3~° These basic notions have general validity andof off-diagonal elements of the density matrix and the non-
are therefore relevant to a wide variety of situations whichinteracting v representability in strongly correlated
may have very different physical origins. systems; or the development of energy functionals of the
In the present paper the concepts of DFT are applied tdensity matrix with applications to Hubbard and Anderson
investigate the physics of strongly correlated electrons in anodels'® In previous papers we have formulated a lattice
narrow energy band. The theoretical description of these systensity functional theoryLDFT) of many-body models by
tems is usually based on lattice Hamiltonians such agonsidering the density matriy; with respect to the lattice
Andersorf Hubbard! Pariser—Parr—Poplé®PB.2 and re- sitesi andj as the fundamental variabte-'8The interaction
lated models which focus on the most relevant electron dyenergyW of the Hubbard model has been calculated exactly
namics at low energies* The study of many-body lattice as a function ofy;; for various periodic lattices having;;
models in the framework of DFT seems particularly interest-= y,, for nearest neighboré\NNs) i andj. On this basis, a
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simple general approximation ¥/(vy;,) has been proposed the density-matrix functional theory proposed by Gilbert for

which derives from exact dimer results, the scaling properthe study of nonlocal pseudopotentiflssince the hoppings

ties of W, and known limits. Using this ansatz, several are nonlocal in the sites. A formulation of DFT on a lattice in

ground-state properties of one-dimensioiD) and two- terms of the diagonal;; alone is possible only if one re-

dimensional2D) systems have been obtained in good agreestricts oneself to models with constant for i#j. In this

ment with available exact solutions and accurate numericatase the functionalV[ y;; ] depends on the values of for

calculationst’ In addition, applications to dimerized chains i+ and in particular oru/t.*3

provided us with systematic results for the ground-state en- The ground-state energyys and density-matrixy{® are

ergy and charge excitation gap of the 1D Hubbard model agetermined by minimizing the energy functional

a function of hopping alternation and Coulomb repulsion,

including the crossover from weak to strong correlatiths. E[ y]=Ex[y]+W[v] 2

LDFT therefore appears as an efficient method of determin- ) ] _ )

ing the electronic properties of many-body lattice modelsWith respect toy;; . E[y] is defined for all density matrices
The main purpose of this paper is to present a new ap-

proximation to 'the !nteractlon—energy.functlor\ﬂ[ ‘yJ of the yijzz ')’ija:E (chfacwhlf), 3)

Hubbard Hamiltonian and to apply it to determine several - -

electronic properties of this model in the framework of ) ] )

LDFT. In Sec. Il the basic formulation of LDFT is briefly Where|¥) is anN-particle state. Suchy;; are said to be

reviewed. Different approximations to the interaction-energyPure-statéN-representable. An extension of the definition do-

functional are presented and discussed in Sec. Ill. First, wg'ain of E to ensemble-representable density matricgsis

analyze the properties of a previously proposed dimestraightforward following the work by Valord:*! The first

ansat?’ and discuss its goals and limitations by comparisorf€™m in Eq.(2) is the kinetic energy associated with the elec-

with known exact results. Some shortcomings of this funcironic motion in the lattice. It is given by

tional in the limit of strong correlations at half-band filling

are pointed out. In order to overcome them, we propose a _ o

new approximation based on the scaling propertiea\bf Exl7] ; i i @

which recovers the correct behavior in the limit of strong . ) ) ) o

interactions. In this way a more accurate description of thdéhus including all single-particle contributions. The second

dependence oy; in different dimensions and lattice struc- t€rm is the interaction-energy functional giverrby

tures is obtained. The following sections are mainly con-

cerned with applications to 1D, 2D, and 3D Hubbard models. — oo

Results for the ground-state energy, charge-excitation gap, W] \Ir,nlrl UZ (eIl [T | ®

and charge susceptibility are presented in Secs. IV, V, and VI,

respectively. Comparison is made with the simpler dimer anwhere the minimization runs over alN-particle states

satz and with exact analytical or numerical solutions, when{W[y]) that satisfy

ever available, in order to quantify the accuracy of the dif-

ferent approximations. Finally, Sec. VIl summarizes the

conclusions and points out some perspectives of future de- <\P[7]|§ CiToCJa [WlyD)= Yij (6)
velopments.
for all i andj. W[ y] represents the minimum value of the
Il. DENSITY-FUNCTIONAL THEORY OF LATTICE interaction energy compatible with a given density matrix
MODELS vij - It is a universal functional of;; in the sense that it is

independent of;; , i.e., of the system under study. However,
In order to be explicit we focus on the Hubbard modelwy depends on the number of electrdds, on the structure
which is expected to capture the main physics of lattice ferof the many-body Hilbert space, as given bl and the
mions in a narrow energy band. The Hamiltorfian number of orbitals or sitel,, and on the form of the model
interactions’?

At on ~oa E is minimized by expressin
HZ(% tijCiT(er(r—’_UEi niiniT, (1) [Y] y P 9
includes nearest neighb@N) hoppingst;; , and on-site in- Yij :; ViJUZKEU uikoﬂkouj*ko (7)

teractions given by (n;,=c/ c;,). The hopping integrals

t;; are defined by the lattice structure and by the range of thén terms of the eigenvalues,, (occupation numbejsand
single-particle hybridizationgtypically, tj;=—t<0 for NN  eigenvectorsi;, (natural orbital of v;;,,. Lagrange multi-
ij). They specify the system under study and thus play theliers u and\y, (ex,=MNk,/ 7x,) are introduced in order to
role given in conventional DFT to the external potentialimpose the constraints,, 7c,= N, and Siluiko|?=1. De-
Vexlr). Consequently, the basic variable in LDFT is theriving with respect touj*kg and 7, (0<n,<1), one ob-
single-particle density matriy; . The situation is similar to  tains the eigenvalue equatiohs’
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oW and (6) to NN vy;; also implies thatW loses its universal

it m Uiko = EkoUjke» (8) character, since the NN map and the resulting dependence of
W on vy,, are in principle different for different lattice struc-

with the subsidiary conditions,,<u if 7 =1, gy,=p if tures.
0<m,<1, andey,>u if 7,=0. Self-consistency is im-  The difficulties introduced by the lack of universality can
plied by the dependence 6W/ 3y, on 7y, anduy,,. This  be overcome by taking advantage of the scaling properties
formulation is analogous to density-matrix functional theoryw(y,,). Recent numerical studishave in fact shown that
in the continuum?® However, it differs from KS-like ap- W is nearly independent of system siklg, band filling n
proaches which assume noninteractingepresentability and  =N,_/N,, and lattice structure, ¥V is measured in units of
where only integer occupations are allowéd? In the  the Hartree—Fock energi,w=Un%4 and if y,, is scaled
present case, the fractional occupations of natural orbitalgithin the relevant domain of representabiliﬁyyfz,yfz].
play a central role. One may in fact show that in general Oyere, 19, stands for the largest possible value of the NN
<7y,<1 for all ko. Exceptions are found in very special pong ordery,, for a givenN,, n, and lattice structure. It
situations like the uncorrelated limit{=0) or the fully po-  represents the maximum degree of electron delocalization
larized ferromagnetic state in the Hubbard mod&, (' and corresponds to the uncorrelated limit. On the other side,
=miniNe, 2N, —Ng}/2).  This can be understood from .= refers to the strongly correlated limit ofy, i.e., to the

perturbation-theory arguments —none of thg, is a good 5565t NN bond order that can be obtained under the con-
quantum number fod -+ 0—and is explicitly verified by ex-  gyaint of vanishingw. For half-band fillingy%,=0, while
act solutions of the Hubbard Hamiltonian on finite systemsfor N1 y'f2>0.24 Physically, the possibility of scaling the

e ) et b Jeraction inergy means nat e eae changelssso-
satisfies clated with a given change in the degree of electron delocal-
ization g1,=(y1o— ¥12)/ (12— ¥7,) can be regarded as

9 nearly independent of the system under study. This pseudo-
it rzaijﬂ. 9 universal behavior ofM/Er as a function ofg,, can be

Yijo exploited to obtain good general approximationsNGy;,)
Notice the importance of the dependenceVfon the off- by applying such a scaling to the functional dependence de-
diagonal density-matrix elementg; which measure the de- rived from a simple reference system or from known limits.
gree of electron localization. Approximations bf in terms In a previous paper we proposed an approximation to the
of the diagonaly;; alone are not applicable in this framework interaction energyV of the Hubbard model by extracting the
(t;#0 for NN ij). Equation(9) provides a self-consistent fqnctional'depenQence from the exact result for the Hubbard
scheme to obtain the ground-staf according to the varia-  dimer, which is given by
tional principle. In Sec. Ill we present and discuss simple
explicit approximations toMN[ y] that are intended to de- W(Z)ZEHF(l—\/l——Qﬁz)- (10)
scribe the electronic properties of the Hubbard model in dif-

Iﬁ:zgt interaction regimes, band-fillings, and lattice Struc'This very simple expression satisfies several general proper-

ties of the exacW(y,,).

(i) For y1,=¥%,, W=E, since the underlying elec-
tronic state‘lf[ycl’z] is a single Slater determinant. Moreover,
one observes thaiW(®)/gy,;,=» for y,=y%,. This is a

The general functionaW[ y], valid for all lattice struc- necessary condition in order tha§3< y?, already for arbi-
tures and for all types of hybridizations, can be simplified attrary smallU/t+0, as expected from perturbation theory.
the expense of universality if the hopping integrals are short (i) W®)(y;,) decreases monotonously with decreasing
ranged. For example, if only NN hoppings are consideredy,, reaching its lowest possible valu&/=0, for vy,
the kinetic energyEy is independent of the density-matrix = y7,. In other words, a reduction of the interaction energy
elements between sites that are not NNs. Therefore, the cois obtained at the expense of electron delocalization.
strained search in Eq5) may be restricted to theV[ y]) (iii) In the strongly correlated limit ¥;,< y22) one ob-
that satisfy Eq(6) only fori=j and for NNij. This reduces serves thatV(?«y2,. Therefore, forU/t>1, y9%t/U and
significantly the number of variables W[ y] and renders g t?/U, a well-known result in the Heisenberg limit of the
the determination and interpretation of the functional depennalf-filled Hubbard modei.
dence far simpler. In particular for periodic lattices the A correct description of these basic properties and of the
ground-stateyigjS is translational invariant. Therefore, in order dependence oV/E ong;, are at the origin of the remark-
to determineE g andyﬁs, one may sef;; =n=N./N, for all able performance of this simple dimer ansatz in the descrip-
sitesi, and y;; =y, for all NN pairsij. In this case the tion of several ground-state properties of the Hubbard
interaction energy can be regarded as a simple functiomodel®’

W(y,,) of the density-matrix element between NNs. This is  In order to discuss the strongly correlated limit of ELQ)
certainly a great practical advantage. However, it should bén more detail we expantlV® to lowest order iny;,. At
noted that restricting the minimization constraints in E§s.  half-band filling one obtains

t

>

t

IIl. INTERACTION-ENERGY FUNCTIONAL
IN THE HUBBARD MODEL
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W@ =(1/8) a,U y§2+ O( 7‘112) (12) approaches are therefore consistent. The dimer ansatz can be
regarded as the simplest polynomial-based approximation of

with a,=(73,) 2. The exact interaction-energ/,, is also W, as given by Eq(12), that satisfies the obvious limits.
proportional toUy?2, in the limit of small y;,. Therefore, The fourth-order approximationW*) introduces the
W,, can be expanded in the same form as @d) but with ~ aimed additional flexibility that can be exploited to repro-
a somewhat different coefficient,,. Notice that in the case duce the strongly correlated limit af/ exactly. Expanding
of the Hubbard dimer, we havg),=1 anda3™=1, which  Eq.(12) to second order iry;, one observes that at half-band
coincides of course with the exact result. Considering foffilling this is achieved whenag=1, a=— aed¥3,)?
example the 1D chain, the 2D square lattice, and the three= — aey/ a,, anda,= —(ag+a,). Thus, the fourth-order ap-
dimensional3D) simple-cubic lattice one finds that the lead- proximation toW is given by
ing coefficients resulting from Eq(10) are a3°=(7/2)? , .
=2.47,a5P=6.09, anda3P=9.30. These can be compared WH=Epe(1- V1- kg7t (k—1)g7), (13

with the corresponding exact result derived from the Bethe- . .
ansatz solutioE of tghe 1D Hubbard ch&h,or with where k= arex/ a,>0 is the ratio between the smaf, ex-

. . . X (2) _
perturbation-theory calculations for the square and simplepanSIOH coefficients ofv™ and W' The value of« de

) o og . 1D N >p | pends on the lattice structure or system dimensions. At half-
c_ub|c Iattlce§,3Dth|ch are given bywe, =2/In 2=2.89, gy band filling it can be determined by applying perturbation
=6.91, andag, =10.94. One observes that EQO) repro-  theory 1o the Heisenberg limit of the Hubbard mo#feFor

duces correctly the trends im with increasing dimensions. jnstance, for the 1D chain, 2D square lattice, and 3D simple-
However, there is also a systematic underestimation of thg pic Jattice one obtains respectively, p=8/(2 In 2)

interaction energy of the order of 12%-15%. These quanti—1 19 kop=1.135, andksp=1.176. Notice thatx de-

tative discrepancies have direct consequences on the prgands rather weakly on the lattice structure and that it is not
dlcte.d properties, since the behawoerfor small y;, de- very far from the dimer valuec=1, for which Eq.(13)
termines the ground-state density matyié and energyEqs  reduces to Eq(10). Therefore, the fourth-order term appears
in the strongly correlated limit. In fact, approximatiVgas a5 a relatively small correction to the second-order approxi-
in Eq. (11), writing the kinetic energy By =zty;,, wherez  mation. Higher-order polynomial approximationswécould
is the coordination number, and using E§), one obtains  pe derived in an analogous way, provided that reliable infor-
y§5=(42/a)(t/VU) andEgs=—(22%/ @)(t*/V). Thus, anin-  mation is available on the following terms of the smgj-
accuracy inx results in a similar relative error inf5 andEgs  expansion ofW®*. This gives the possibility of further im-
for U/t>1. proving the accuracy of the results by incorporating a more
To overcome these shortcomings more flexible approxidetailed description of the strongly correlated limit.
mations to the interaction-energy functional are needed, In Fig. 1 the approximate interaction energl&$?) and
which allow one to go beyond E¢10). Therefore, we pro- W of the half-filled 1D Hubbard chain are compared with

pose a general ansatz of the form the corresponding exact resulv®™, as derived from the
Bethe-ansatz solutioftAs already observet!,even the sim-
WM =E ([ 1-JPy(919)], (12)  plest dimer ansatxV(® follows W®{(y;,) quite closely all

) , " 0 along the crossover from weak to strong correlations. In this
where Pn(gip) is a function of gi,=(y12~7129/(7v12  case the interaction energy is always underestimated, and the
— v12), thus incorporating the scaling propertieswfwith-  apsolute value of the relative errar=|W—We{/We* in-
out loss of generality?,(g;,) is approximated by an-order  creases monotonously as, decreases, reaching about 15%
polynomial Py(912) = S§_oagt,. This is justified by the for y,,/v%,<0.4. The fourth-order approximation provides a
fact that (W—Ey¢)? is in general a well-behaved function of sjgnificant advance, not only for,,/4%,<1 but in the com-

912, even in the uncorrelated limit whedV/dy,, diverges  pjete domain of representability. Fai®) the relative erroe
(g1o=1). The _coefﬁClent_sik are to be determined from s redquced to less than 1% fqr12/y22<0.4 (e—0 for yy,
known pro_pgrtles oM. F!rst (.)f aII,_one.observes that fat —0). The largest discrepancies are found fxp[zly?z
half-band filling, and for bipartite lattices in general, the S|gn20_8_o_9’ wheree reaches only 3%. An appreciable im-

of 712 Ca? be _changed w:’;hou_t alierln%dT;usbI?,fglz)oKs provement in the accuracy of the derived properties can be
an even function 081, anda,=0 for oddk (v12 == 712 therefore expected. In the following sections, EAs) and
andy;, ==y, ). In nonbipartite lattices away from half- (13) are applied in the framework of LDFT to determine

band filling one may also set for simplicig =0 for oddk,  several electronic properties of the Hubbard model in 1D,
since the dependence on, is very similar for positive and  2p, and 3D periodic lattices.

negativey,,, once the different domains of representability
are scaled®?*

The uncorrelated and fully correlated limits &% (W
=Eyg for g;o=1, andW=0 for g;,=0) impose two simple In Fig. 2 the ground-state ener@, of the half-filled 1D
conditions on thea,, namely,P,(1)=Z2,a,=0 andP,(0)  Hubbard model is given as a function of the Coulomb repul-
=ag=1. This defines the second-order approximatWdf?)  sion strengthU/t. Comparison between LDFT and the
completely. In this case?,(g19) = 1—g§2, which coincides Bethe-ansatz exact solution shows that the fourth-order ap-
with the above-discussed dimer ansfEzn. (10)]. The two  proximation improves significantly the already good results

IV. GROUND STATE ENERGY
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FIG. 1. Interaction energW(y,,) of the one-dimensiondllD) FIG. 2. Ground-state enerdy, of the half-filled 1D Hubbard

Hubbard model at half-band fillingn&1) as a function of the model as a function of the Coulomb repulsion strength. The
density-matrix element or bond ordes, between nearest neigh- dashed curves refer to lattice density-functional theg@fyFT) us-

bors. 7(1’2 refers to the ground-state bond order in the uncorrelatedng the dimer approximation t&/[Eq. (10)] and the solid curves to
limit (U=0). Results are given for the dimer approximatf?) the fourth-order approximatiditq. (13) with x= k;,=1.169]. The

[Eq. (10), dashed] the fourth-order approximatiow*) [Eq. (13) crosses are the exact results derived from the Bethe-ansatz solution
with k= x,p=1.169, solid, and the exacW® [Eq. (5), crosses  (Ref. 23. The corresponding relative errors are given in the inset.
which is derived from the Bethe ansatz solutig®ef. 23. In the

inset the corresponding relative errors are shown. . . . . . .
P 9 notonous behavior, first increasing with/t in the weakly

correlated regime and then decreasing as the strongly corre-
derived using the dimer ansatzThis concerns not only the lated limit is approached. These trends are well reproduced
strongly correlated limit where, as expect&t{*) recovers by both second- and fourth-order approximations. However,
the exact result, but the complete rangeldt. The largest one finds that it is in general more difficult to accurately
guantitative discrepancies between exact and fourth-order relescribeE- as compared t&y . The second-orddfg) un-
sults are in fact very small. They amount to less than 3% anderestimates(overestimates EZ* appreciably for 2<U/t
are found for intermediate interaction strengthBt(=4). In <5 (U/t>5). The fourth-order correction provides a clear
contrast, the relative error in the dimer ansatz increases m@mprovement over the dimer ansatz, by increadingn one
notonously withU/t reaching about 17% fo/t=x (see case (J/t<5) and reducing it in the othetd/t=10). As for
the inset of Fig. 2 It is interesting to note that in both cases Eg. the remaining differences with the exact results are
no artificial symmetry breaking is required in order to de-quite small and correspond to intermediat&. Summariz-
scribe correctly the electron localization induced by correlaing, one may observe that the accuracy of the calculBgd
tions and the resulting dependencesgf on U/t, as is often s not the result of a strong compensation of errors, since a
the case in other mean-field approaches. very good performance is achieved for the kinetic and Cou-

The higher performance obtained with the fourth-orderiomb energies separately.
correction originates in an improved accuracy of both kinetic | Fig. 4 results are given fdE s Of the 2D square lattice
and Coulomb contributions to the ground-state energy. Asnd 3D simple cubic lattice at half-band filling. Fort<3
shown in Fig. 3, the kinetic enerdy <0 increases monoto- the second-order and fourth-order results are almost indistin-
nously with increasingJ/t, first rather slowly up toU/t  guishable, while folu/t>4 the fourth-order approximation
=4, and then more rapidly when electron localization startsjiel|ds somewhat higher vaIuesEgi)< EW<0). These
; ; ; (2) L 9s | .

to set in. ForU/t<4, the values oEy obtained usingV trends are very similar to those observed in the 1D chain.
and W™ are very close to the exact res@ypically [E?)  The LDFT calculations for 2D and 3D systems compare well
—E/EZ<2.6% and E{)—EZ{/EZ<2.0%). ForU/t>4  with far more demanding quantum Monte Caf@MC)
the dimer ansatz shows some limitations while the fourthstudie$®?’ (see Fig. 4 Furthermore, the reliability of the
order approximation remains very accurét example, for  LDFT results is confirmed by comparison with exact Lanc-
U/t=12,|[EQ-EZ/EF=13% and |E{’-EZ{/EE zos diagonalizations on small clusters, for example, on a
<2.4%). The Coulomb energc shows the usual nonmo- Ny=3X4 cluster of the square lattice with periodic bound-
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FIG. 3. (a) Kinetic energyEx and(b) Coulomb energ¥ of the
half-filled 1D Hubbard model as a function &f/t. The dashed
curves correspond to the dimer approximatiéa. (10)], the solid
curves to the fourth-order approximati¢gq. (13) with «=«k;p
=1.169], and the crosses to the Bethe-ansatz exact sol(Rieh
23.

1.0

ary conditions. In this case, like in 1D, the overall perfor-

mance is very good, with the largest quantitative discrepan-

cies being observed for intermediate valuesWft. For
instance, for U/t=4 one obtains|E(—ESd/|ESy=4.2
X102, and forU/t=16 |E{)—ESJ/|ESI =38.2x10"2. In

conclusion, LDFT using Eq13) for the interaction energy

PHYSICAL REVIEW B69, 085101 (2004

0.0 B T I T I L] I L] I L] -.

osfp 2D Y=

« [ n=1 Z ]

E o8k / -

&5 F ]

w ., — —:

- (@) 1

1.6% 1 | 1 | 1 | 1 | 1 ]

0 0 : L] I T I T I T I L] :

sk 3D1 =

© L = a

— x n 7 ]

=, -10F -

(@) N o

L - .

15F -

: ) °

_2-0 z 1 I 1 I 1 I 1 I 1 ]

0 02 04 06 08 1
U/(U+4t)

FIG. 4. Ground-state energiys of the half-filled Hubbard
model as a function of the Coulomb repulsiat: (a) two-
dimensional (2D) square lattice andb) three-dimensional3D)
simple cubic lattice. The dashed curves correspond to the dimer
approximation[Eqg. (10)] and the solid curves to the fourth-order
approximation[Eqg. (13) with () k= k,p=1.135 and(b) = k3p
=1.176]. The crosses with error bars refer to quantum Monte Carlo
(QMC) calculations(Refs. 26 and 27

tinuum. ThereforeAE. appears as a particularly interesting
property to investigate with the present lattice density-
functional formalism.

In the half-filled Hubbard model on bipartite latticest.

W yields an accurate description of the ground-state energincreases with increasingd/t (AE.=0 for U/t=0) and ap-

of the Hubbard model in different dimensioffs.

V. CHARGE EXCITATION GAP

The charge excitation or band gap

AE=Eg{Ne+1)+Eg(Ne—1)—2E,(Ne) (14

is a property of considerable interest, which measures th : JTTVEVE 4
mhoted that in the 1D case the gap is significantly overesti-

low-energy excitations associated with changes in the nu
ber of electrondN., and which is very sensitive to the degree

of electronic correlations. It can be related to the discontinu

ity in the derivative of the ground-state kinetic eneigy

and correlation energi,,= Ec— Eye With respect to band-

filling n. ForN,— andn=1, it is given by
AE.=(deldn)|,+—(delan)|,-, (15)

wheree=(Ex+E.o)/N,. The determination oAE, is in

proaches the limiAE.— (U —wy,) for U/t—o, wherew,, is

the width of the single-particle bandvf=4t, 8t, and 12

for the 1D, 2D square, and 3D simple-cubic lattices, respec-
tively). Figure 5 presents LDFT results farE, in 1D, 2D,
and 3D Hubbard modelsi& 1). Comparison with the exact
Bethe-ansatz solution for the 1D ch&irand with available
QMC calculations for the squéand simple cubfc lattices
shows a good overall agreement. However, it should be

mated forU/t<1. Here we obtailAE < (U/t)?, while in

the exact solutiol E. increases much more slowly, namely,

exponentially in—t/U. This discrepancy concerns both the
second-order and the fourth-order approximations, which are
nearly indistinguishable folJ/t<2-4. Consequently, it is
possible that the results for 2D and 3D lattices shown in Fig.
5 also overestimate the gap for smdlit. In any case, the
accuracy of LDFT improves rapidly with increasitlyt, as
electron localization starts to set in, and the errorAig,

general a more difficult task than the calculation of ground-tends to zero for largel/t. Therefore, the development of a

state properties lik&y, Ex, andEc. In fact, the band gap

Mott insulator in the strongly correlated limit is correctly

in semiconductors has been an important problem which madescribed.

tivated numerous works in the context of DFT in the con-

It is important to remark, in the context of metal-insulator
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0.0 the case at a metal-insulator transition, where a discontinu-
= 9 ous decrease dh;;n;|) occurs. Finally, let us point out that
5 the results derived from Eq$10) and (13) for large U/t

'o 20 (U>U,) are consistent with previous studies. This concerns
"'é 50 not only the presence of a finite ga&yE., but also the fact
~— that the number of double occupations does not vanish on the

40 insulating side of the transitiot:*?

00 T T T Comparing second- and fourth-order approximations for
= 0 [ (b) ] U/t>2-4 one observes that the charge gap is always some-
=) i . what smaller in the latter case. For the 1D chain, the reduc-

"o 40 2D < — tion of AE. due to the fourth-order correction improves the
'-'é B e . agreement with the exact solution apprecia(ﬂ)g.,lAEf:“)
— oo N —AE¥|=|AE®— AE®{/2 for U/t>10). In the considered
gob—1L o 1 o 1 . 1 2D and 3D lattices, the differences between second- and

00 1 1T r 17 fourth-order results are similar to those observed in the 1D
= - (C) . chain. Comparison with QMC calculatjon_s shpws a good
5 40 - — overall agreement although some quantitative differences can
'o L 3D N - be noted. For example, as shown in Fig. 5, our values for
'-'é 80} \\\ — AE. are somewhat smaller than the QMC ones for the 2D
-~ B e A (3D) lattice withU/t=4 (U/t=8) and somewhat larger for

PO I I R B U/t=8 (U/t=12). In summary, the ensemble of 1D, 2D,
0.0 0.2 0.4 06 08 1.0 and 3D results shows that LDFT provides a very simple and
U/(U+4t) efficient method of calculating the charge excitation energies

of the Hubbard model in different dimensions and interaction
FIG. 5. Charge excitation gapE, of the Hubbard model at regimes. However, the proposed approximationdiaare
half-band filling as a function of)/t: (a) 1D chain,(b) 2D square  still not quite satisfactory in the weakly correlated limit and
lattice, and(c) 3D simple cubic lattice. The dashed curves corre-deserve to be improved.
spond to the dimer approximati¢gqg. (10)] and the solid curves to

the fourth-order approximatioNEq. (13)] with (@) xk=xp VI. CHARGE SUSCEPTIBILITY

=1.169, (b) k= k,p=1.135, and(c) k= k3p=1.176. The crosses

refer to exact results in the 1D chaiRef. 23 and to QMC calcu- The charge susceptibility.. is defined by

lations in 2D(Ref. 26 and 3D latticedRef. 27.

transitions in three dimensions, that our calculations on the Xczg—n, (16)
SC lattice yield a finite gapA\E.>0 for n=1 and allU/t K

>0. This is consistent with previous results on 3D bipartite\yheren= N./N, is the number of electrons per site apd
lattices, which are expected to be antiferromagn@i€) in-  the chemical potential. It represents the many-body density
sulators for allu/t>0."**The functionalsW!® and W*) ¢ glectronic states at the Fermi energyand thus provides
correctly reproduce this behavior, as well as the formation of{ery useful information on the low-energy charge-excitation
local moments(32>=3(1—2<niTnil))/4, without involving  spectrum as a function of band filling. In Figs. 6x8 is

a spin-density-wave symmetry breaking. This can be undemiven as a function of: for 1D, 2D, and 3D Hubbard models
stood by recalling that they are based on the exact functionan bipartite lattices for representative valuesbft. The

of the Hubbard dimer which, being a bipartite cluster, incor-LDFT calculations reported in these figures were performed
porates AF correlationsn(=1). However, the properties using the dimer ansatz fol given by Eq.(10). As will be
change qualitatively if frustrations become importéng., in  discussed in the following, the fourth-order approximation
nonbipartite lattices or if second NN hoppings are signifi-[Eq. (13)] yields very similar results. In the case of the 1D
cantly large. In this case it has been shown that the half-chain comparison is made with the exagi{ ), which is
filled Hubbard model is a metal withE.=0 for smallU obtained from the Bethe ansatz solutfdrkor the 2D square
>0 and that a metal-insulator transition takes place at a finitéattice, we also show ground-state QMC res§itor U/t
interaction strengttJ ., which is of the order of the single- =4. Notice that in bipartite lattices, as those considered
particle band widttw, .** This behavior is not reproduced by here, electron—hole symmetry implies thatis the same for
the functionalsw(®) and W¥), even if they are applied to band fillingsn andn’=2—n, and thereforey.(u) = x(u’
compact latticege.g., the face-centered cubic latliceince =U—pu).

they are free from any singularities throughout the domain of In the absence of interactiong, coincides with the
representabilityexcept forg;,=1) and since the resulting single-particle density of states of the corresponding lattices
yﬂs are smooth functions dfi/t. Notice that the exact func- (U=0). These are gapless and show the usual van Hove
tional W,, may show a far more complex behavior, particu- singularities at the band edggs= =w,/2 and at some points
larly if the nature of the statgP[ y]) yielding the minimum  within the bands of the square and simple-cubic lattices. For
of Eq. (5) changes as a function of. This is expected to be finite U a gapAE.=u(n=1")—u(n=1") opens at half-
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FIG. 6. Charge susceptibility, of the 1D Hubbard model as a FIG. 7. Charge susceptibility, of the Hubbard model on a 2D
function of the chemical potentigt for different Coulomb repul- square lattice as a function of the chemical poteniidbr different
sionsU/t. The solid curves refer to LDFT in the dimer approxima- Coulomb repulsion§)/t. The solid curves are obtained using LDFT
tion [Eqg. (10)] and the dashed curves with crosses to the exacand the dimer approximation to the interaction-energy functional
Bethe ansatz solutio(Ref. 23. For U/t=64 only the lower Hub- [Eq. (10)]. The crosses fou/t=4 refer to ground-state QMC cal-
bard band is shown. culations(Ref. 26. For U/t=64 only the lower Hubbard band is

shown.
band filling which increases monotonously with as dis-
cussed in Sec. V. Thus, the two so-called lower and uppewhich we fail to reproduce. For small and moderdité, for
Hubbard bands start to be distinguished, which correspond texampleU/t=1 or 4, we obtain a nearly constagt for
hole and electron doping, respectively. The separation of the— u(n=17), while the exact result ig.— + (see Fig.
bands becomes particularly clear far~w,, when AE. 6). Notice, however, that the increase and divergencgdf
reaches values of the order of single-particle band widih  are sharply localized in a narrow rangeof particularly for
(see Figs. 6-B At the same time the width of the lower and small U/t. The divergence of. for n—1 could be repro-
upper bands increases with from w,/2 for U=0", tow, duced by considering broken symmetry solutions of the
for U= +o0. These qualitative features are common to biparLDFT equations, like in the AF Hartree—Fock approxima-
tite lattices in all dimensions and are correctly described byion. Even so, it would be more interesting to describe this
LDFT. effect without involving a symmetry breaking, which is

In the 1D case, where a detailed comparison with theknown to be artificial, and which could affect the results on
exact solution is possible, we observe that our results arthe kinetic, Coulomb, and total energies, particularly in the
very accurate except close to half-band filling and for smallcase of finite systenfS.As we approach the strongly corre-
or moderate values df}/t (see Fig. 6 The nature of the lated limit the LDFT results fo. develop peaks at the gap
discrepancies close to=1 is basically twofold. First, we edges, which height increases with't, thus approaching
find again the overestimation of the band gelp., which is  asymptotically the exact result. Stily. always remains fi-
relatively important for smalU/t (see also Sec. M Conse- nite for all finite U/t (see Fig. 6 fold/t=16 and 64). The
quently, the band edges(n=1") and u(n=1") are not very good performance for lardg/t can be understood by
precisely reproduced in this limit, even if the absolute errorrecalling that forU/t= 4+, the LDFT results correspond to
e=|u—u®| always remains reasonably small. The largesthe fully polarized or Nagaoka stat®which is the exact
inaccuracies are found fo”/t=3 and amount toe/w,  ground state in 1D for alh (U/t=+).2% In higher dimen-
=8.1x 10"2. Nevertheless, this problem disappearsUds  sions it is possible that our calculations yield a finite-height
increases, since tends rapidly to zero in the strongly corre- peak forn—1, where a true divergence of, could be
lated limit (e.g.,e/w,=1.2x10* for U/t=16). The second present. This seems to be the case in the 2D square lattice
limitation concerns the shape gf close to half-band filling. where we observe narrow peaksyp at the band edges. In
The exact solution of the 1D chain shows sharp divergencefact ground-state QMC calculations on the square lattice
in x. at the gap edgea(n=1") andu(n=1") for U>0, with U/t=4 predict a divergenj, at half-band filling(see
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L e ] function of n. Exploring the functional dependence \fin

--Ui=0

= 020 3D Ut frustrated structures, particularly closerie=1 andg,,~1,

L should provide very useful clues in view of developing prac-

-CC, 010 . tical approximations toV capable of describing these re-
0.00 markable effects in the framework of LDFT.

-6 3 0 3 6 Let us finally point out that we have also determingd
usingW® as approximate interaction energq. (13)] and
found that the results are very similar to those obtained using
W) and shown in Figs. 6-8. In both cases the results are
extremely good away from half-band filling, nearly indistin-
guishable from the 1D exact solution. Closerte 1, the
fourth-order calculations yield small&E_. and thus perform
slightly better forU/t<4. However, the divergences gf at
the gap edges are not reproduced. Therefore, the fourth-order
corrections do not provide a significant improvement over
the dimer ansatz concerning, of the 1D chain. This is
probably related to the simple form considered %
which uses a coefficient that is independent af [see Eq.
(13)]. While this approximation seems satisfactory for appli-
cations that concern a fixed band filling, it appears as a limi-
[ ] tation for properties lik\E. or ., where a precise descrip-
v Ve tion of the dependence & on n is crucial. For 2D_and 3D
LL—U/2 lattices the fourth-order results fat. are also very similar to
those shown in Figs. 7 and 8.

FIG. 8. Charge susceptibility. of the Hubbard model on a 3D
simple cubic lattice as a function of the chemical potentiator
different Coulomb repulsionsl/t. The results are obtained using A new approximation to the interaction-energy functional
the dimer approximation to the interaction-energy functidra. W[ y] of the Hubbard model has been proposed in the frame-
(10)]. For U/t=64 only the lower Hubbard band is shown. work of lattice density functional theory, which exactly re-

covers the limit of strong electron correlations at half-band
Fig. 7). In contrast, no such peaks are found in our calculafilling. The simpler ansatz which was derived from the func-
tions of y. for the 3D simple-cubic latticésee Fig. 8. tional dependence ofV in the Hubbard diméf is thereby

As already discussed in Sec. V, it is important to remarkextended and improved. A more accurate descriptiow ds
that the results presented in Fig. 8 are representative of bachieved throughout the domain of representabilityygf
partite lattices which at the half-band filling show an AF including the crossover from weak to strong correlations.
insulating behavior for alU/t>0. In this case of our results Several properties have been determined by applying this
are in good qualitative agreement with previous studies. Théunctional to one-, two-, and three-dimensional lattices.
obtained simple Hubbard-approximation-like structure ofGround state energies, as well as kinetic and Coulomb ener-
X<, With a lower and upper Hubbard bands, also applies t@ies, were successfully determined in all dimensions and in-
frustrated lattices or to paramagnetic phases provided th&eraction regimes. Very good results are also obtained con-
U/t is sufficiently large to bring the system on the insulatingcerning the charge-excitation gapE. and the charge
side of the metal-insulator transitiob) & U,).'"*>However,  susceptibility x. of bipartite lattices, except very close to
it has been shown that the presence of frustrations drives tHealf-band filling (1=1) and for small values of the Coulomb
system into an AFnetallicstate at smallU/t which contrasts repulsion strengthl{/t<4). This reveals some limitations
with the AF insulator found in the absence of frustratibhs. in the description of the band-filling dependenceVéffor
In this case the spectral density presents—in addition to a=1 andy,,= yg’z, which deserve more detailed investiga-
progressive development of lower and upper Hubbard bandsons. Further insight into the origin of this problem could be
with increasingU/t—a Kondo-like resonance at half-band obtained, for example, by analyzing the properties of the
filling (u—U/2=0). This resonance is characterized by aexactW as derived from the Bethe ansatz exact solution of
constant-height peak having a width that decreases with irthe 1D chain and from Lanczos diagonalizations in finite 2D
creasingJ/t and that vanishes &t., i.e., at the transition to clusters with periodic boundary conditions. Moreover, the
the insulating statésee Ref. 11 The functionalsw® or  functional dependence &% could be determined in the limit
W® fail to reproduce this kind of behavior, even when ap-of large y1, (i.e., y1,— ¥, corresponding to the weak corre-
plied to compact structurgg.g., fcc latticg. This limitation  lations by applying perturbation theory for smal/t. In
does not seem surprising, since E() and(13) were de-  this way, more accurate approximations/ttcould be devel-
rived from the properties of a bipartite system, and since th@ped in order to improve the results &, and y. in this
extensions presented in this paper, while achieving an accuimit, particularly concerning the differences between bipar-
rateW in the strongly correlated limit at half-band filling, do tite and nonbipartite lattices.
not aim a very precise description at sméllt and as a Besides these methodological aspects, the accuracy of the

VIl. DISCUSSION
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results and the simplicity of the calculations encourage newnovel density-functional route to the physics of strongly cor-
applications of the present approach to related problems oklated fermions is opened.

current interest like, for example, dimerized one-dimensional
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