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Interaction-energy functional for lattice density functional theory: Applications to one-, two-,
and three-dimensional Hubbard models
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The Hubbard model is investigated in the framework of lattice density functional theory~LDFT!. The
single-particle density matrixg i j with respect to the lattice sites is considered as the basic variable of the
many-body problem. A new approximation to the interaction-energy functionalW@g# is proposed which is
based on its scaling properties and which recovers exactly the limit of strong electron correlations at half-band
filling. In this way, a more accurate description ofW is obtained throughout the domain of representability of
g i j , including the crossover from weak to strong correlations. As examples of applications results are given for
the ground-state energy, charge-excitation gap, and charge susceptibility of the Hubbard model in one-, two-,
and three-dimensional lattices. The performance of the method is demonstrated by comparison with available
exact solutions, with numerical calculations, and with LDFT using a simpler dimer ansatz forW. Goals and
limitations of the different approximations are discussed.
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I. INTRODUCTION

Density functional theory~DFT! provides a rigorous
framework for studying the physics of the many-bo
problem.1–4 The fundamental concept behind DFT is to r
place the conventional dynamical variables that comple
define a many-particle state~e.g., the wave function in a
quantum mechanical problem, or the particle positions
momenta in a classical system! by considering the particle
density distributionr(r ) as the basic variable. For this pu
pose the energyE of the system is expressed as a functio
of r(r ) separating the various energy terms in two m
groups. The first one contains the contributions that dep
explicitly on the problem under study, which result from t
coupling betweenr(r ) and the external fieldsVext(r ). The
second one concerns the intrinsic energy of the many-par
system, namely, the kinetic energyT and the interaction en
ergyW of the particles. These terms are universal function
of r(r ) in the sense that they are independent of the prob
under study. While the general functional dependence
T@r# andW@r# is not known explicitly, they can be formally
expressed as the result of integrating out the microsco
degrees of freedom. In the case of ground-state electr
properties, this is achieved by imposing thatT@r# andW@r#
correspond to the minimum possible value ofT1W for a
givenr(r ).3–5 These basic notions have general validity a
are therefore relevant to a wide variety of situations wh
may have very different physical origins.

In the present paper the concepts of DFT are applied
investigate the physics of strongly correlated electrons i
narrow energy band. The theoretical description of these
tems is usually based on lattice Hamiltonians such
Anderson,6 Hubbard,7 Pariser–Parr–Pople~PPP!,8 and re-
lated models which focus on the most relevant electron
namics at low energies.9–12 The study of many-body lattice
models in the framework of DFT seems particularly intere
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ing from various perspectives. On the one side, a deta
understanding of the electronic properties in the strongly c
related limit constitutes an important theoretical challen
Exact results are rare or numerically very demanding an
variety of elaborate many-body techniques are specific
developed for their study. Therefore, a density functional
proach with an appropriate ansatz forW should be a usefu
alternative tool for investigating at least some aspects of
complex problem. On the other side, one would like to e
tend the range of applicability of DFT to strongly correlat
phenomena, like the separation of charge and spin degre
freedom or the correlation induced localization, where co
ventional local density approximations or generalized gra
ent approximations are known to fail systematically. Mor
over, the development of DFT on a lattice constitutes
intrinsically inhomogeneous approach, which provides a t
alternative to methods relying on the homogeneous elec
gas. In this context, investigations on many-body mod
should open new insights into the properties of t
interaction-energy functional that could also be useful
future extensions to more realistic Hamiltonians and fi
principles calculations.

In past years, a number of density functional studies
lattice models have been performed concerning in partic
the determination of band gaps in semiconductors,13 the role
of off-diagonal elements of the density matrix and the no
interacting v representability in strongly correlate
systems,14 or the development of energy functionals of th
density matrix with applications to Hubbard and Anders
models.15 In previous papers we have formulated a latti
density functional theory~LDFT! of many-body models by
considering the density matrixg i j with respect to the lattice
sitesi andj as the fundamental variable.16–18The interaction
energyW of the Hubbard model has been calculated exac
as a function ofg i j for various periodic lattices havingg i j
5g12 for nearest neighbors~NNs! i and j. On this basis, a
©2004 The American Physical Society01-1
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simple general approximation toW(g12) has been propose
which derives from exact dimer results, the scaling prop
ties of W, and known limits. Using this ansatz, sever
ground-state properties of one-dimensional~1D! and two-
dimensional~2D! systems have been obtained in good agr
ment with available exact solutions and accurate numer
calculations.17 In addition, applications to dimerized chain
provided us with systematic results for the ground-state
ergy and charge excitation gap of the 1D Hubbard mode
a function of hopping alternation and Coulomb repulsio
including the crossover from weak to strong correlations18

LDFT therefore appears as an efficient method of determ
ing the electronic properties of many-body lattice mode
thus encouraging further developments and applications

The main purpose of this paper is to present a new
proximation to the interaction-energy functionalW@g# of the
Hubbard Hamiltonian and to apply it to determine seve
electronic properties of this model in the framework
LDFT. In Sec. II the basic formulation of LDFT is briefl
reviewed. Different approximations to the interaction-ene
functional are presented and discussed in Sec. III. First,
analyze the properties of a previously proposed dim
ansatz17 and discuss its goals and limitations by comparis
with known exact results. Some shortcomings of this fu
tional in the limit of strong correlations at half-band fillin
are pointed out. In order to overcome them, we propos
new approximation based on the scaling properties ofW,
which recovers the correct behavior in the limit of stro
interactions. In this way a more accurate description of
dependence ong i j in different dimensions and lattice struc
tures is obtained. The following sections are mainly co
cerned with applications to 1D, 2D, and 3D Hubbard mode
Results for the ground-state energy, charge-excitation
and charge susceptibility are presented in Secs. IV, V, and
respectively. Comparison is made with the simpler dimer
satz and with exact analytical or numerical solutions, wh
ever available, in order to quantify the accuracy of the d
ferent approximations. Finally, Sec. VII summarizes t
conclusions and points out some perspectives of future
velopments.

II. DENSITY-FUNCTIONAL THEORY OF LATTICE
MODELS

In order to be explicit we focus on the Hubbard mod
which is expected to capture the main physics of lattice
mions in a narrow energy band. The Hamiltonian7

H5 (
^ i , j &s

t i j ĉis
† ĉ j s1U(

i
n̂i↓n̂i↑ , ~1!

includes nearest neighbor~NN! hoppingst i j , and on-site in-
teractions given byU (n̂is5 ĉis

† ĉis). The hopping integrals
t i j are defined by the lattice structure and by the range of
single-particle hybridizations~typically, t i j 52t,0 for NN
i j ). They specify the system under study and thus play
role given in conventional DFT to the external potent
Vext(r ). Consequently, the basic variable in LDFT is t
single-particle density matrixg i j . The situation is similar to
08510
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the density-matrix functional theory proposed by Gilbert f
the study of nonlocal pseudopotentials,19 since the hoppings
are nonlocal in the sites. A formulation of DFT on a lattice
terms of the diagonalg i i alone is possible only if one re
stricts oneself to models with constantt i j for iÞ j . In this
case the functionalW@g i i # depends on the values oft i j for
iÞ j and in particular onU/t.13

The ground-state energyEgs and density-matrixg i j
gs are

determined by minimizing the energy functional

E@g#5EK@g#1W@g# ~2!

with respect tog i j . E@g# is defined for all density matrice
that derive from a physical state, i.e., that can be written

g i j 5(
s

g i j s5(
s

^Cuĉis
† ĉ j suC&, ~3!

where uC& is an N-particle state. Suchg i j are said to be
pure-stateN-representable. An extension of the definition d
main of E to ensemble-representable density matricesG i j is
straightforward following the work by Valone.20,21 The first
term in Eq.~2! is the kinetic energy associated with the ele
tronic motion in the lattice. It is given by

EK@g#5(
i j

t i j g i j , ~4!

thus including all single-particle contributions. The seco
term is the interaction-energy functional given by5

W@g#5 min
C→g

FU(
i

^C@g#un̂i↑n̂i↓uC@g#&G , ~5!

where the minimization runs over allN-particle states
uC@g#& that satisfy

^C@g#u(
s

ĉis
† ĉ j s uC@g#&5g i j ~6!

for all i and j. W@g# represents the minimum value of th
interaction energy compatible with a given density mat
g i j . It is a universal functional ofg i j in the sense that it is
independent oft i j , i.e., of the system under study. Howeve
W depends on the number of electronsNe , on the structure
of the many-body Hilbert space, as given byNe and the
number of orbitals or sitesNa , and on the form of the mode
interactions.22

E@g# is minimized by expressing

g i j 5(
s

g i j s5(
ks

uikshksujks* ~7!

in terms of the eigenvalueshks ~occupation numbers! and
eigenvectorsuiks ~natural orbitals! of g i j s . Lagrange multi-
pliers m andlks («ks5lks /hks) are introduced in order to
impose the constraints(kshks5Ne and ( i uuiksu251. De-
riving with respect toujks* and hks (0<hks<1), one ob-
tains the eigenvalue equations17,19
1-2
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(
i

S t i j 1
]W

]g i j s
Duiks5«ksujks , ~8!

with the subsidiary conditions«ks,m if hks51, «ks5m if
0,hks,1, and«ks.m if hks50. Self-consistency is im-
plied by the dependence of]W/]g i j s on hks anduiks . This
formulation is analogous to density-matrix functional theo
in the continuum.19 However, it differs from KS-like ap-
proaches which assume noninteractingv-representability and
where only integer occupations are allowed.13,14 In the
present case, the fractional occupations of natural orb
play a central role. One may in fact show that in genera
,hks,1 for all ks. Exceptions are found in very speci
situations like the uncorrelated limit (U50) or the fully po-
larized ferromagnetic state in the Hubbard model (Sz
5min$Ne,2Na2Ne%/2). This can be understood from
perturbation-theory arguments —none of thehks is a good
quantum number forUÞ0—and is explicitly verified by ex-
act solutions of the Hubbard Hamiltonian on finite syste
or the 1D chain.23 Therefore, all«ks in Eq. ~8! must be
degenerate and consequently the ground-state density m
satisfies

t i j 1
]W

]g i j s
5d i j m. ~9!

Notice the importance of the dependence ofW on the off-
diagonal density-matrix elementsg i j which measure the de
gree of electron localization. Approximations ofW in terms
of the diagonalg i i alone are not applicable in this framewo
(t i j Þ0 for NN i j ). Equation~9! provides a self-consisten
scheme to obtain the ground-stateg i j

gs according to the varia-
tional principle. In Sec. III we present and discuss sim
explicit approximations toW@g# that are intended to de
scribe the electronic properties of the Hubbard model in
ferent interaction regimes, band-fillings, and lattice str
tures.

III. INTERACTION-ENERGY FUNCTIONAL
IN THE HUBBARD MODEL

The general functionalW@g#, valid for all lattice struc-
tures and for all types of hybridizations, can be simplified
the expense of universality if the hopping integrals are sh
ranged. For example, if only NN hoppings are consider
the kinetic energyEK is independent of the density-matr
elements between sites that are not NNs. Therefore, the
strained search in Eq.~5! may be restricted to theuC@g#&
that satisfy Eq.~6! only for i 5 j and for NNi j . This reduces
significantly the number of variables inW@g# and renders
the determination and interpretation of the functional dep
dence far simpler. In particular for periodic lattices t
ground-stateg i j

gs is translational invariant. Therefore, in ord
to determineEgs andg i j

gs, one may setg i i 5n5Ne /Na for all
sites i, and g i j 5g12 for all NN pairs i j . In this case the
interaction energy can be regarded as a simple func
W(g12) of the density-matrix element between NNs. This
certainly a great practical advantage. However, it should
noted that restricting the minimization constraints in Eqs.~5!
08510
ls
0

s

trix

e

-
-

t
rt
,

n-

-

n

e

and ~6! to NN g i j also implies thatW loses its universal
character, since the NN map and the resulting dependenc
W on g12 are in principle different for different lattice struc
tures.

The difficulties introduced by the lack of universality ca
be overcome by taking advantage of the scaling proper
W(g12). Recent numerical studies16 have in fact shown tha
W is nearly independent of system sizeNa , band filling n
5Ne /Na , and lattice structure, ifW is measured in units o
the Hartree–Fock energyEHF5Un2/4 and if g12 is scaled
within the relevant domain of representability@g12

` ,g12
0 #.

Here, g12
0 stands for the largest possible value of the N

bond orderg12 for a givenNa , n, and lattice structure. It
represents the maximum degree of electron delocaliza
and corresponds to the uncorrelated limit. On the other s
g12

` refers to the strongly correlated limit ofg12, i.e., to the
largest NN bond order that can be obtained under the c
straint of vanishingW. For half-band fillingg12

` 50, while
for nÞ1, g12

` .0.24 Physically, the possibility of scaling the
interaction energy means that the relative change inW asso-
ciated with a given change in the degree of electron delo
ization g125(g122g12

` )/(g12
0 2g12

` ) can be regarded a
nearly independent of the system under study. This pseu
universal behavior ofW/EHF as a function ofg12 can be
exploited to obtain good general approximations toW(g12)
by applying such a scaling to the functional dependence
rived from a simple reference system or from known limi

In a previous paper we proposed an approximation to
interaction energyW of the Hubbard model by extracting th
functional dependence from the exact result for the Hubb
dimer, which is given by17

W(2)5EHF~12A12g12
2 !. ~10!

This very simple expression satisfies several general pro
ties of the exactW(g12).

~i! For g125g12
0 , W(2)5EHF since the underlying elec

tronic stateC@g12
0 # is a single Slater determinant. Moreove

one observes that]W(2)/]g125` for g125g12
0 . This is a

necessary condition in order thatg12
gs,g12

0 already for arbi-
trary smallU/tÞ0, as expected from perturbation theory.

~ii ! W(2)(g12) decreases monotonously with decreas
g12 reaching its lowest possible value,W50, for g12

5g12
` . In other words, a reduction of the interaction ener

is obtained at the expense of electron delocalization.
~iii ! In the strongly correlated limit (g12!g12

0 ) one ob-
serves thatW(2)}g12

2 . Therefore, forU/t@1, ggs}t/U and
Egs}t2/U, a well-known result in the Heisenberg limit of th
half-filled Hubbard model.9

A correct description of these basic properties and of
dependence ofW/EHF on g12 are at the origin of the remark
able performance of this simple dimer ansatz in the desc
tion of several ground-state properties of the Hubb
model.17

In order to discuss the strongly correlated limit of Eq.~10!
in more detail we expandW(2) to lowest order ing12. At
half-band filling one obtains
1-3
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W(2)5~1/8!a2Ug12
2 1O~g12

4 ! ~11!

with a25(g12
0 )22. The exact interaction-energyWex is also

proportional toUg12
2 in the limit of small g12. Therefore,

Wex can be expanded in the same form as Eq.~11! but with
a somewhat different coefficientaex. Notice that in the case
of the Hubbard dimer, we haveg12

0 51 anda2
dim51, which

coincides of course with the exact result. Considering
example the 1D chain, the 2D square lattice, and the th
dimensional~3D! simple-cubic lattice one finds that the lea
ing coefficients resulting from Eq.~10! are a2

1D5(p/2)2

.2.47,a2
2D56.09, anda2

3D59.30. These can be compare
with the corresponding exact result derived from the Bet
ansatz solution of the 1D Hubbard chain,23 or with
perturbation-theory calculations for the square and sim
cubic lattices,25 which are given byaex

1D52/ln 2.2.89,aex
2D

56.91, andaex
3D510.94. One observes that Eq.~10! repro-

duces correctly the trends ina with increasing dimensions
However, there is also a systematic underestimation of
interaction energy of the order of 12% –15%. These qua
tative discrepancies have direct consequences on the
dicted properties, since the behavior ofW for small g12 de-
termines the ground-state density matrixg12

gs and energyEgs

in the strongly correlated limit. In fact, approximatingW as
in Eq. ~11!, writing the kinetic energy asEK5ztg12, wherez
is the coordination number, and using Eq.~9!, one obtains
g12

gs5(4z/a)(t/U) andEgs52(2z2/a)(t2/U). Thus, an in-
accuracy ina results in a similar relative error ing12

gs andEgs

for U/t@1.
To overcome these shortcomings more flexible appro

mations to the interaction-energy functional are need
which allow one to go beyond Eq.~10!. Therefore, we pro-
pose a general ansatz of the form

W(n)5EHF@12APn~g12!#, ~12!

where Pn(g12) is a function of g125(g122g12
` )/(g12

0

2g12
` ), thus incorporating the scaling properties ofW with-

out loss of generality.Pn(g12) is approximated by ann-order
polynomial Pn(g12)5(k50

n akg12
k . This is justified by the

fact that (W2EHF)
2 is in general a well-behaved function o

g12, even in the uncorrelated limit where]W/]g12 diverges
(g1251). The coefficientsak are to be determined from
known properties ofW. First of all, one observes that a
half-band filling, and for bipartite lattices in general, the si
of g12 can be changed without alteringW. Thus,Pn(g12) is
an even function ofg12 and ak50 for odd k (g12

0252g12
01

and g12
`252g12

`1). In nonbipartite lattices away from half
band filling one may also set for simplicityak50 for oddk,
since the dependence ong12 is very similar for positive and
negativeg12, once the different domains of representabil
are scaled.16,24

The uncorrelated and fully correlated limits ofW (W
5EHF for g1251, andW50 for g1250) impose two simple
conditions on theak , namely,Pn(1)5(kak50 andPn(0)
5a051. This defines the second-order approximationW(2)

completely. In this case,P2(g12)512g12
2 , which coincides

with the above-discussed dimer ansatz@Eq. ~10!#. The two
08510
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approaches are therefore consistent. The dimer ansatz ca
regarded as the simplest polynomial-based approximatio
W, as given by Eq.~12!, that satisfies the obvious limits.

The fourth-order approximationW(4) introduces the
aimed additional flexibility that can be exploited to repr
duce the strongly correlated limit ofW exactly. Expanding
Eq. ~12! to second order ing12 one observes that at half-ban
filling this is achieved when a051, a252aex(g12

0 )2

52aex /a2, anda452(a01a2). Thus, the fourth-order ap
proximation toW is given by

W(4)5EHF~12A12kg12
2 1~k21!g12

4 !, ~13!

wherek5aex/a2.0 is the ratio between the small-g12 ex-
pansion coefficients ofWex and W(2). The value ofk de-
pends on the lattice structure or system dimensions. At h
band filling it can be determined by applying perturbati
theory to the Heisenberg limit of the Hubbard model.25 For
instance, for the 1D chain, 2D square lattice, and 3D simp
cubic lattice one obtains, respectively,k1D58/(p2 ln 2)
51.169,k2D51.135, andk3D51.176. Notice thatk de-
pends rather weakly on the lattice structure and that it is
very far from the dimer valuek51, for which Eq. ~13!
reduces to Eq.~10!. Therefore, the fourth-order term appea
as a relatively small correction to the second-order appro
mation. Higher-order polynomial approximations toW could
be derived in an analogous way, provided that reliable inf
mation is available on the following terms of the small-g i j
expansion ofWex. This gives the possibility of further im-
proving the accuracy of the results by incorporating a m
detailed description of the strongly correlated limit.

In Fig. 1 the approximate interaction energiesW(2) and
W(4) of the half-filled 1D Hubbard chain are compared wi
the corresponding exact resultWex, as derived from the
Bethe-ansatz solution.23 As already observed,17 even the sim-
plest dimer ansatzW(2) follows Wex(g12) quite closely all
along the crossover from weak to strong correlations. In t
case the interaction energy is always underestimated, and
absolute value of the relative errore5uW2Wexu/Wex in-
creases monotonously asg12 decreases, reaching about 15
for g12/g12

0 ,0.4. The fourth-order approximation provides
significant advance, not only forg12/g12

0 !1 but in the com-
plete domain of representability. ForW(4) the relative errore
is reduced to less than 1% forg12/g12

0 ,0.4 (e→0 for g12

→0). The largest discrepancies are found forg12/g12
0

.0.8–0.9, wheree reaches only 3%. An appreciable im
provement in the accuracy of the derived properties can
therefore expected. In the following sections, Eqs.~10! and
~13! are applied in the framework of LDFT to determin
several electronic properties of the Hubbard model in 1
2D, and 3D periodic lattices.

IV. GROUND STATE ENERGY

In Fig. 2 the ground-state energyEgs of the half-filled 1D
Hubbard model is given as a function of the Coulomb rep
sion strengthU/t. Comparison between LDFT and th
Bethe-ansatz exact solution shows that the fourth-order
proximation improves significantly the already good resu
1-4
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derived using the dimer ansatz.17 This concerns not only the
strongly correlated limit where, as expected,W(4) recovers
the exact result, but the complete range ofU/t. The largest
quantitative discrepancies between exact and fourth-orde
sults are in fact very small. They amount to less than 3%
are found for intermediate interaction strengths (U/t.4). In
contrast, the relative error in the dimer ansatz increases
notonously withU/t reaching about 17% forU/t5` ~see
the inset of Fig. 2!. It is interesting to note that in both case
no artificial symmetry breaking is required in order to d
scribe correctly the electron localization induced by corre
tions and the resulting dependence ofEgs on U/t, as is often
the case in other mean-field approaches.

The higher performance obtained with the fourth-ord
correction originates in an improved accuracy of both kine
and Coulomb contributions to the ground-state energy.
shown in Fig. 3, the kinetic energyEK,0 increases monoto
nously with increasingU/t, first rather slowly up toU/t
.4, and then more rapidly when electron localization sta
to set in. ForU/t<4, the values ofEK obtained usingW(2)

and W(4) are very close to the exact result~typically uEK
(2)

2EK
exu/EK

ex<2.6% anduEK
(4)2EK

exu/EK
ex<2.0%). ForU/t.4

the dimer ansatz shows some limitations while the four
order approximation remains very accurate~for example, for
U/t512, uEK

(2)2EK
exu/EK

ex.13% and uEK
(4)2EK

exu/EK
ex

<2.4%). The Coulomb energyEC shows the usual nonmo

FIG. 1. Interaction energyW(g12) of the one-dimensional~1D!
Hubbard model at half-band filling (n51) as a function of the
density-matrix element or bond orderg12 between nearest neigh
bors.g12

0 refers to the ground-state bond order in the uncorrela
limit ( U50). Results are given for the dimer approximationW(2)

@Eq. ~10!, dashed#, the fourth-order approximationW(4) @Eq. ~13!
with k5k1D51.169, solid#, and the exactWex @Eq. ~5!, crosses#
which is derived from the Bethe ansatz solution~Ref. 23!. In the
inset the corresponding relative errors are shown.
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notonous behavior, first increasing withU/t in the weakly
correlated regime and then decreasing as the strongly co
lated limit is approached. These trends are well reprodu
by both second- and fourth-order approximations. Howev
one finds that it is in general more difficult to accurate
describeEC as compared toEK . The second-orderEC

(2) un-
derestimates~overestimates! EC

ex appreciably for 2,U/t
,5 (U/t.5). The fourth-order correction provides a cle
improvement over the dimer ansatz, by increasingEC in one
case (U/t<5) and reducing it in the other (U/t>10). As for
Egs, the remaining differences with the exact results a
quite small and correspond to intermediateU/t. Summariz-
ing, one may observe that the accuracy of the calculatedEgs
is not the result of a strong compensation of errors, sinc
very good performance is achieved for the kinetic and C
lomb energies separately.

In Fig. 4 results are given forEgs of the 2D square lattice
and 3D simple cubic lattice at half-band filling. ForU/t<3
the second-order and fourth-order results are almost indis
guishable, while forU/t.4 the fourth-order approximation
yields somewhat higher values (Egs

(2),Egs
(4),0). These

trends are very similar to those observed in the 1D cha
The LDFT calculations for 2D and 3D systems compare w
with far more demanding quantum Monte Carlo~QMC!
studies26,27 ~see Fig. 4!. Furthermore, the reliability of the
LDFT results is confirmed by comparison with exact Lan
zos diagonalizations on small clusters, for example, o
Na5334 cluster of the square lattice with periodic boun

d

FIG. 2. Ground-state energyEgs of the half-filled 1D Hubbard
model as a function of the Coulomb repulsion strengthU/t. The
dashed curves refer to lattice density-functional theory~LDFT! us-
ing the dimer approximation toW @Eq. ~10!# and the solid curves to
the fourth-order approximation@Eq. ~13! with k5k1D51.169]. The
crosses are the exact results derived from the Bethe-ansatz so
~Ref. 23!. The corresponding relative errors are given in the ins
1-5
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ary conditions. In this case, like in 1D, the overall perfo
mance is very good, with the largest quantitative discrep
cies being observed for intermediate values ofU/t. For
instance, for U/t54 one obtains uEgs

(4)2Egs
exu/uEgs

exu54.2
31022, and for U/t516 uEgs

(4)2Egs
exu/uEgs

exu53.231022. In
conclusion, LDFT using Eq.~13! for the interaction energy
W yields an accurate description of the ground-state ene
of the Hubbard model in different dimensions.28

V. CHARGE EXCITATION GAP

The charge excitation or band gap

DEc5Egs~Ne11!1Egs~Ne21!22Egs~Ne! ~14!

is a property of considerable interest, which measures
low-energy excitations associated with changes in the n
ber of electronsNe , and which is very sensitive to the degre
of electronic correlations. It can be related to the disconti
ity in the derivative of the ground-state kinetic energyEK
and correlation energyEcorr5EC2EHF with respect to band-
filling n. For Na→` andn51, it is given by

DEc5~]«/]n!u112~]«/]n!u12, ~15!

where«5(EK1Ecorr)/Na . The determination ofDEc is in
general a more difficult task than the calculation of groun
state properties likeEgs, EK , andEC . In fact, the band gap
in semiconductors has been an important problem which
tivated numerous works in the context of DFT in the co

FIG. 3. ~a! Kinetic energyEK and~b! Coulomb energyEC of the
half-filled 1D Hubbard model as a function ofU/t. The dashed
curves correspond to the dimer approximation@Eq. ~10!#, the solid
curves to the fourth-order approximation@Eq. ~13! with k5k1D

51.169], and the crosses to the Bethe-ansatz exact solution~Ref.
23!.
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tinuum. Therefore,DEc appears as a particularly interestin
property to investigate with the present lattice densi
functional formalism.

In the half-filled Hubbard model on bipartite lattices,DEc
increases with increasingU/t (DEc50 for U/t50) and ap-
proaches the limitDEc→(U2wb) for U/t→`, wherewb is
the width of the single-particle band (wb54t, 8t, and 12t
for the 1D, 2D square, and 3D simple-cubic lattices, resp
tively!. Figure 5 presents LDFT results forDEc in 1D, 2D,
and 3D Hubbard models (n51). Comparison with the exac
Bethe-ansatz solution for the 1D chain23 and with available
QMC calculations for the square26 and simple cubic27 lattices
shows a good overall agreement. However, it should
noted that in the 1D case the gap is significantly overe
mated forU/t!1. Here we obtainDEc}(U/t)2, while in
the exact solutionDEc increases much more slowly, namel
exponentially in2t/U. This discrepancy concerns both th
second-order and the fourth-order approximations, which
nearly indistinguishable forU/t,2 –4. Consequently, it is
possible that the results for 2D and 3D lattices shown in F
5 also overestimate the gap for smallU/t. In any case, the
accuracy of LDFT improves rapidly with increasingU/t, as
electron localization starts to set in, and the error inDEc
tends to zero for largeU/t. Therefore, the development of
Mott insulator in the strongly correlated limit is correct
described.

It is important to remark, in the context of metal-insulat

FIG. 4. Ground-state energyEgs of the half-filled Hubbard
model as a function of the Coulomb repulsionU/t: ~a! two-
dimensional~2D! square lattice and~b! three-dimensional~3D!
simple cubic lattice. The dashed curves correspond to the di
approximation@Eq. ~10!# and the solid curves to the fourth-orde
approximation@Eq. ~13! with ~a! k5k2D51.135 and~b! k5k3D

51.176]. The crosses with error bars refer to quantum Monte C
~QMC! calculations~Refs. 26 and 27!.
1-6
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INTERACTION-ENERGY FUNCTIONAL FOR LATTICE . . . PHYSICAL REVIEW B 69, 085101 ~2004!
transitions in three dimensions, that our calculations on
SC lattice yield a finite gapDEc.0 for n51 and allU/t
.0. This is consistent with previous results on 3D bipart
lattices, which are expected to be antiferromagnetic~AF! in-
sulators for allU/t.0.11,12 The functionalsW(2) and W(4)

correctly reproduce this behavior, as well as the formation
local momentŝ Si

2&53(122^n̂i↑n̂i↓&)/4, without involving
a spin-density-wave symmetry breaking. This can be un
stood by recalling that they are based on the exact functio
of the Hubbard dimer which, being a bipartite cluster, inc
porates AF correlations (n51). However, the propertie
change qualitatively if frustrations become important~e.g., in
nonbipartite lattices or if second NN hoppings are sign
cantly large!. In this case it has been shown that the ha
filled Hubbard model is a metal withDEc50 for small U
.0 and that a metal-insulator transition takes place at a fi
interaction strengthUc , which is of the order of the single
particle band widthwb .11 This behavior is not reproduced b
the functionalsW(2) and W(4), even if they are applied to
compact lattices~e.g., the face-centered cubic lattice!, since
they are free from any singularities throughout the domain
representability~except forg1251) and since the resulting
g i j

gs are smooth functions ofU/t. Notice that the exact func
tional Wex may show a far more complex behavior, partic
larly if the nature of the stateuC@g#& yielding the minimum
of Eq. ~5! changes as a function ofg. This is expected to be

FIG. 5. Charge excitation gapDEc of the Hubbard model a
half-band filling as a function ofU/t: ~a! 1D chain,~b! 2D square
lattice, and~c! 3D simple cubic lattice. The dashed curves cor
spond to the dimer approximation@Eq. ~10!# and the solid curves to
the fourth-order approximation@Eq. ~13!# with ~a! k5k1D

51.169, ~b! k5k2D51.135, and~c! k5k3D51.176. The crosses
refer to exact results in the 1D chain~Ref. 23! and to QMC calcu-
lations in 2D~Ref. 26! and 3D lattices~Ref. 27!.
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the case at a metal-insulator transition, where a discont
ous decrease of^n̂i↑n̂i↓& occurs. Finally, let us point out tha
the results derived from Eqs.~10! and ~13! for large U/t
(U.Uc) are consistent with previous studies. This conce
not only the presence of a finite gapDEc , but also the fact
that the number of double occupations does not vanish on
insulating side of the transition.11,12

Comparing second- and fourth-order approximations
U/t.2 –4 one observes that the charge gap is always so
what smaller in the latter case. For the 1D chain, the red
tion of DEc due to the fourth-order correction improves th
agreement with the exact solution appreciably~e.g., uDEc

(4)

2DEc
exu.uDEc

(2)2DEc
exu/2 for U/t.10). In the considered

2D and 3D lattices, the differences between second-
fourth-order results are similar to those observed in the
chain. Comparison with QMC calculations shows a go
overall agreement although some quantitative differences
be noted. For example, as shown in Fig. 5, our values
DEc are somewhat smaller than the QMC ones for the
~3D! lattice with U/t54 (U/t58) and somewhat larger fo
U/t58 (U/t512). In summary, the ensemble of 1D, 2D
and 3D results shows that LDFT provides a very simple a
efficient method of calculating the charge excitation energ
of the Hubbard model in different dimensions and interact
regimes. However, the proposed approximations toW are
still not quite satisfactory in the weakly correlated limit an
deserve to be improved.

VI. CHARGE SUSCEPTIBILITY

The charge susceptibilityxc is defined by

xc5
dn

dm
, ~16!

wheren5Ne /Na is the number of electrons per site andm
the chemical potential. It represents the many-body den
of electronic states at the Fermi energym and thus provides
very useful information on the low-energy charge-excitati
spectrum as a function of band filling. In Figs. 6–8xc is
given as a function ofm for 1D, 2D, and 3D Hubbard model
on bipartite lattices for representative values ofU/t. The
LDFT calculations reported in these figures were perform
using the dimer ansatz forW given by Eq.~10!. As will be
discussed in the following, the fourth-order approximati
@Eq. ~13!# yields very similar results. In the case of the 1
chain comparison is made with the exactxc(m), which is
obtained from the Bethe ansatz solution.23 For the 2D square
lattice, we also show ground-state QMC results26 for U/t
54. Notice that in bipartite lattices, as those conside
here, electron–hole symmetry implies thatxc is the same for
band fillingsn andn8522n, and thereforexc(m)5xc(m8
5U2m).

In the absence of interactionsxc coincides with the
single-particle density of states of the corresponding latti
(U50). These are gapless and show the usual van H
singularities at the band edgesm56wb/2 and at some points
within the bands of the square and simple-cubic lattices.
finite U a gapDEc5m(n511)2m(n512) opens at half-

-
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band filling which increases monotonously withU, as dis-
cussed in Sec. V. Thus, the two so-called lower and up
Hubbard bands start to be distinguished, which correspon
hole and electron doping, respectively. The separation of
bands becomes particularly clear forU'wb , when DEc
reaches values of the order of single-particle band widthwb
~see Figs. 6–8!. At the same time the width of the lower an
upper bands increases withU, from wb/2 for U501, to wb
for U51`. These qualitative features are common to bip
tite lattices in all dimensions and are correctly described
LDFT.

In the 1D case, where a detailed comparison with
exact solution is possible, we observe that our results
very accurate except close to half-band filling and for sm
or moderate values ofU/t ~see Fig. 6!. The nature of the
discrepancies close ton51 is basically twofold. First, we
find again the overestimation of the band gapDEc , which is
relatively important for smallU/t ~see also Sec. V!. Conse-
quently, the band edgesm(n512) and m(n511) are not
precisely reproduced in this limit, even if the absolute er
e5um2mexu always remains reasonably small. The larg
inaccuracies are found forU/t.3 and amount toe/wb
58.131022. Nevertheless, this problem disappears asU/t
increases, sincee tends rapidly to zero in the strongly corre
lated limit ~e.g.,e/wb51.231024 for U/t516). The second
limitation concerns the shape ofxc close to half-band filling.
The exact solution of the 1D chain shows sharp divergen
in xc at the gap edgesm(n512) andm(n511) for U.0,

FIG. 6. Charge susceptibilityxc of the 1D Hubbard model as
function of the chemical potentialm for different Coulomb repul-
sionsU/t. The solid curves refer to LDFT in the dimer approxim
tion @Eq. ~10!# and the dashed curves with crosses to the ex
Bethe ansatz solution~Ref. 23!. For U/t564 only the lower Hub-
bard band is shown.
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which we fail to reproduce. For small and moderateU/t, for
exampleU/t51 or 4, we obtain a nearly constantxc for
m→m(n516), while the exact result isxc→1` ~see Fig.
6!. Notice, however, that the increase and divergence ofxc

ex

are sharply localized in a narrow range ofm, particularly for
small U/t. The divergence ofxc for n→1 could be repro-
duced by considering broken symmetry solutions of
LDFT equations, like in the AF Hartree–Fock approxim
tion. Even so, it would be more interesting to describe t
effect without involving a symmetry breaking, which
known to be artificial, and which could affect the results
the kinetic, Coulomb, and total energies, particularly in t
case of finite systems.29 As we approach the strongly corre
lated limit the LDFT results forxc develop peaks at the ga
edges, which height increases withU/t, thus approaching
asymptotically the exact result. Still,xc always remains fi-
nite for all finite U/t ~see Fig. 6 forU/t516 and 64). The
very good performance for largeU/t can be understood by
recalling that forU/t51`, the LDFT results correspond t
the fully polarized or Nagaoka state,30 which is the exact
ground state in 1D for alln (U/t51`).23 In higher dimen-
sions it is possible that our calculations yield a finite-heig
peak for n→1, where a true divergence ofxc could be
present. This seems to be the case in the 2D square la
where we observe narrow peaks inxc at the band edges. In
fact ground-state QMC calculations on the square lat
with U/t54 predict a divergentxc at half-band filling~see

ct

FIG. 7. Charge susceptibilityxc of the Hubbard model on a 2D
square lattice as a function of the chemical potentialm for different
Coulomb repulsionsU/t. The solid curves are obtained using LDF
and the dimer approximation to the interaction-energy functio
@Eq. ~10!#. The crosses forU/t54 refer to ground-state QMC cal
culations~Ref. 26!. For U/t564 only the lower Hubbard band i
shown.
1-8
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INTERACTION-ENERGY FUNCTIONAL FOR LATTICE . . . PHYSICAL REVIEW B 69, 085101 ~2004!
Fig. 7!. In contrast, no such peaks are found in our calcu
tions of xc for the 3D simple-cubic lattice~see Fig. 8!.

As already discussed in Sec. V, it is important to rem
that the results presented in Fig. 8 are representative o
partite lattices which at the half-band filling show an A
insulating behavior for allU/t.0. In this case of our result
are in good qualitative agreement with previous studies.
obtained simple Hubbard-approximation-like structure
xc , with a lower and upper Hubbard bands, also applies
frustrated lattices or to paramagnetic phases provided
U/t is sufficiently large to bring the system on the insulati
side of the metal-insulator transition (U.Uc).

11,12However,
it has been shown that the presence of frustrations drives
system into an AFmetallicstate at smallU/t which contrasts
with the AF insulator found in the absence of frustrations11

In this case the spectral density presents—in addition t
progressive development of lower and upper Hubbard ba
with increasingU/t—a Kondo-like resonance at half-ban
filling ( m2U/250). This resonance is characterized by
constant-height peak having a width that decreases with
creasingU/t and that vanishes atUc , i.e., at the transition to
the insulating state~see Ref. 11!. The functionalsW(2) or
W(4) fail to reproduce this kind of behavior, even when a
plied to compact structures~e.g., fcc lattice!. This limitation
does not seem surprising, since Eqs.~10! and ~13! were de-
rived from the properties of a bipartite system, and since
extensions presented in this paper, while achieving an a
rateW in the strongly correlated limit at half-band filling, d
not aim a very precise description at smallU/t and as a

FIG. 8. Charge susceptibilityxc of the Hubbard model on a 3D
simple cubic lattice as a function of the chemical potentialm for
different Coulomb repulsionsU/t. The results are obtained usin
the dimer approximation to the interaction-energy functional@Eq.
~10!#. For U/t564 only the lower Hubbard band is shown.
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function of n. Exploring the functional dependence ofW in
frustrated structures, particularly close ton51 andg12.1,
should provide very useful clues in view of developing pra
tical approximations toW capable of describing these re
markable effects in the framework of LDFT.

Let us finally point out that we have also determinedxc
usingW(4) as approximate interaction energy@Eq. ~13!# and
found that the results are very similar to those obtained us
W(2) and shown in Figs. 6–8. In both cases the results
extremely good away from half-band filling, nearly indistin
guishable from the 1D exact solution. Close ton51, the
fourth-order calculations yield smallerDEc and thus perform
slightly better forU/t<4. However, the divergences ofxc at
the gap edges are not reproduced. Therefore, the fourth-o
corrections do not provide a significant improvement ov
the dimer ansatz concerningxc of the 1D chain. This is
probably related to the simple form considered forW(4)

which uses a coefficientk that is independent ofn @see Eq.
~13!#. While this approximation seems satisfactory for app
cations that concern a fixed band filling, it appears as a li
tation for properties likeDEc or xc , where a precise descrip
tion of the dependence ofW on n is crucial. For 2D and 3D
lattices the fourth-order results forxc are also very similar to
those shown in Figs. 7 and 8.

VII. DISCUSSION

A new approximation to the interaction-energy function
W@g# of the Hubbard model has been proposed in the fram
work of lattice density functional theory, which exactly re
covers the limit of strong electron correlations at half-ba
filling. The simpler ansatz which was derived from the fun
tional dependence ofW in the Hubbard dimer17 is thereby
extended and improved. A more accurate description ofW is
achieved throughout the domain of representability ofg i j
including the crossover from weak to strong correlatio
Several properties have been determined by applying
functional to one-, two-, and three-dimensional lattice
Ground state energies, as well as kinetic and Coulomb e
gies, were successfully determined in all dimensions and
teraction regimes. Very good results are also obtained c
cerning the charge-excitation gapDEc and the charge
susceptibility xc of bipartite lattices, except very close t
half-band filling (n51) and for small values of the Coulom
repulsion strength (U/t<4). This reveals some limitation
in the description of the band-filling dependence ofW for
n.1 andg12.g12

0 , which deserve more detailed investig
tions. Further insight into the origin of this problem could b
obtained, for example, by analyzing the properties of
exactW as derived from the Bethe ansatz exact solution
the 1D chain and from Lanczos diagonalizations in finite
clusters with periodic boundary conditions. Moreover, t
functional dependence ofW could be determined in the limi
of largeg12 ~i.e., g12→g12

0 corresponding to the weak corre
lations! by applying perturbation theory for smallU/t. In
this way, more accurate approximations toW could be devel-
oped in order to improve the results onDEc andxc in this
limit, particularly concerning the differences between bip
tite and nonbipartite lattices.

Besides these methodological aspects, the accuracy o
1-9
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results and the simplicity of the calculations encourage n
applications of the present approach to related problem
current interest like, for example, dimerized one-dimensio
chains and ladders, the 2D square lattice with competing
and second nearest-neighbor hoppings, the propertiesp
electrons in doped fullerenes and nanotubes in the fra
work of Hubbard or PPP models, or the connection with
continuum’s DFT using minimal basis sets. In this way
d
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-
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novel density-functional route to the physics of strongly c
related fermions is opened.
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