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Shot noise of spin-polarized electrons
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The shot noise of spin polarized electrons is shown to be generically dependent upon spin–flip processes.
Such a situation represents perhaps the simplest instance where the two-particle character of current fluctua-
tions out of equilibrium is explicit, leading to trinomial statistics of charge transfer in a single channel model.
We calculate the effect of spin–orbit coupling, magnetic impurities, and precession in an external magnetic
field on the noise in the experimentally relevant cases of diffusive wires and lateral semiconductor dots, finding
dramatic enhancements of the Fano factor. The possibility of using the shot noise to measure the spin-
relaxation time in an open mesoscopic system is raised.
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Quantum statistical fluctuations of current and voltage
mesoscopic conductors encode information beyond that
tainable from averaged measurements. The second mo
of current contains two-particle correlations as subtle in p
ciple as the one-particle signatures of phase coheren
weak localization, universal conductance fluctuations, and
on—revealed by conductance measurements. The full co
ing statistics~FCS!1,2—the probability distribution of charge
transfer through a conductor—similarly depends on the m
tiparticle correlations of a many electron system. From
theoretical standpoint the simplest conductor is a scattere
a one-dimensional channel of noninteracting fermions. H
the FCS are binomial with a number of attemptseVt/h,
whereV is the voltage bias andt the observation time, and
success probability for charge transferT, the transmission
coefficient of the scatterer. Thus, although the existence
finite attempt frequency is a signature of the correlations
posed by the exclusion principle, the ‘‘elementary even
are still described by one-particle probabilities.

It is the purpose of this paper to describe the simp
situation in which multiparticle effects enter in a more ess
tial way, leading to particular signatures in the second m
ment and to a noveltrinomial statistics of charge transfer. W
will first describe the physics in an idealized conductor, b
fore moving on to the more realistic cases of diffusive wir
and semiconductor quantum dots.

We will be concerned with the injection of spin-polarize
currents into a scatterer where spin–flip processes may
cur. The basic phenomenon was identified in a recent Le3

for a particular scattering geometry and spin–orbit inter
tion. In fact, the shot noise of spin-polarized electrons
generically dependent on spin–flip processes, as these d
mine the triplet to singlet scattering amplitude involved
scattering electrons from two different channels into
same channel. We predict dramatic enhancements of
noise-to-current ratio~Fano factor! as the injected spin re
laxes, raising the possibility of using the noise to meas
spin-relaxation rates. It is remarkable that a charge trans
measurement generically contains information on the
namics of spin. The effect of spin–flips on shot noise
particular spin-valve geometries was also discussed in
recent preprints.4,5
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Consider first the two-particle scattering problem illu
trated in Fig. 1. Spin polarized electrons enter a o
dimensional channel of lengthL from left and right. The
Hamiltonian is given by Ĥ5(\2k2/2m* )1(eZ/2)b̂•s,
where the unit vectorb̂ gives the direction of the externa
magnetic field, andeZ is the Zeeman splitting. In the chann
at distance, from one end is a potential scatterer wi
S-matrix

Sscat5S r t 8

t r 8
D

LR

^ 1s ,

with 1s indicating the identity in the spin sector. The overa
S-matrix of the structure, linearizing the dispersion near
fermi energy, is thus

S5S rU ~2, ! t8U~L !

tU~L ! r 8U~2~L2, !!
D

LR

,

U~x!5expS 2 i
eZx

2vF
b̂•sD ,

wherevF is the Fermi velocity. The angle of precession
determined by the length of time the electrons spend in
channel. There are three final outcomes for the location

FIG. 1. One-dimensional model illustrating the effect of sp
precession on two-particle scattering. Spin up electrons enter f
left and right, scattering from a potential scatterer while precess
in an external magnetic field.
©2004 The American Physical Society01-1
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the two electrons: both leave to the left, both to the right,
one in each direction. Accounting for fermi statistics, a
assuming that the electrons have the same energy, t
probabilities are

Both to left or right: TRuU↓↑~L22, !u2

One in each direction: T21R212TRuU↑↑~L22, !u2,
~1!

where T5utu25ut8u2, R512T. We see that only through
the spin rotation are both electrons allowed to leave to
same contact. They must form a singlet:TRuU↓↑(L22,)u2
is the probability for this event. If the scatterer lies precis
in the middle of the channel (L52,), reflected and trans
mitted electrons precess through the same angle, so the p
ability to form a singlet is zero. Note that assuming th
electrons entering the channel are polarized in a given di
tion is equivalent to having an inhomogenous magnetic fie
vanishing outside the channel. A uniform field conserves
tal spin so that there is no triplet to singlet amplitude. Sc
tering due to band distortions in the inhomogenous field
be neglected if we assume the scale of variation is m
longer than the Fermi wavelength.

The implication of this consideration for the statistics
transmitted charge is the following. Evidently no charge
transmitted on average, but foruU↓↑(L22,)u2Þ0, there will
be uncertainty in the amount of charge that has pas
through the system, as there is a nonzero probability to tra
port two charges in either direction. To make this connect
more formal, let us compute the FCS for this problem. W
obtain the generating functionx(l,t)5(nP(n,t)eiln of the
probabilitiesP(n,t) to passn charges in timet using the
result1

ln@x~l,t!#5
t

2p\E dE tr ln~11n̂~E!~S 2l
21Sl21!!

Sl5S eil/2 0

0 e2 il/2D
LR

SS e2 il/2 0

0 eil/2D
LR

,

where n̂(E)5diag(nL ↑ ,nL ↓ ,nR ↑ ,nR ↓) is the distribution
function of the incoming electrons. The injection of an e
cess of spin up electrons into both ends of the channel
responds tonL,R ↑,↓(E)5u(m↑,↓2E) at zero temperature
with Dm[m↑2m↓.0. We find

x~l,t!5~T21R212TRuU↑↑~L22, !u2

12TRuU↓↑~L22, !u2 cos 2l!Dmt/h.

This is the generating function of a trinomial distributio
with number of attemptsDmt/h and probabilities to transfe
62 and 0 charges given by Eq.~1!. The corresponding nois
is6

S[ lim
t→`

e2^Dn2&/t5
8e2

h
DmTRuU↓↑~L22, !u2,

which displays a dependence on the spin flip probabi
uU↓↑u2 that mirrors the result of Ref. 3 in a different geom
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etry, where the spin rotation was due to spin–orbit coupli
Generally, a nontrivial dependence of the noise on para
eters governing spin–flip scattering may be expected w
there are two or more channels of incoming spin polariz
electrons, for the noise will contain a contribution corr
sponding to two electrons in a triplet state and different
coming channels passing to a singlet in the same outgo
channel. Spin–flips may be caused by magnetic impurit
spin–orbit scatterers, or precession in an external magn
field if contributing trajectories are of different lengths, as
the above example. In the remainder of this paper we w
discuss the implications of this observation for noise in d
fusive wires and semiconductor quantum dots, where
corresponding measurements in the unpolarized case
been made.7,8

In such mesoscopic scatterers, an average over scatt
matrices is called for. Note that Lesovik’s9 formula S
5(e2/h)Dm(nTn(12Tn), expressing the noise in terms o
the eigenvaluesTn of the transmission matrixt†t, does not
apply in the present situation: the density matrix is nontriv
in the incoming channels, so that a rotation to the blo
diagonal S-matrix is not possible. Thus one route to the c
culation of the averaged noise—averaging over the distri
tion of Tn ~Ref. 10!—is not available.

Diffusive wires: We consider the geometry depicted in th
inset to Fig. 2, a diffusive wire of lengthL and cross-
sectional areaA, with diffusion constantD. A microscopic
calculation of the shot noise of a diffusive wire was pr
sented in Ref. 11. Here we pursue a formally equivalent
proach based on Nazarov’s circuit theory.12 Current correla-
tors may be obtained from the Keldysh Green’s functi
satisfying

S i ] t2Ĥ2t3

l

2L
ĴxD Ĝl~r ,r 8t,t8!5d~r2r 8!d~ t2t8!,

where t i denote the Pauli matrices in Keldysh space, a
Ĵx52 ie(]W x2]Q x)/2m is thex-component of the one-particl
current density operator. With this definition we can write t
generating function1,12

FIG. 2. Fano factor~defined byS5FeI) for a diffusive wire
passing a spin-polarized current, as a function of spin-relaxa
lengthLs . Inset: experimental geometry.
1-2
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x~l,t!5K TK expS il

2LE0

t

dtE drĈ†t3ĴxĈ D L
5expS 2

1

2E0

l

dl8tr$t3ĴxĜl8% D ,

where the trace is understood to be over the Keldysh
spin spaces, as well as space and time indices.TK denotes
time ordering along the Keldysh contour. In the above
depart slightly from the usual formulation in that we take t
‘‘counting field’’ l to be constant throughout the conduct
instead of defining a surface at which we measure the
rent. This does not affect the result as the zero-freque
correlator^I (x)I (x8)& is independent ofx andx8 by current
conservation. Using standard quasiclassical methods in
diffusion approximation we arrive at the following formula
tion of the disorder averaged problem~after Keldysh
rotation!:13

^tr$t3ĴxĜl%&dis→2
ienDt

2 E dE tr8$t1ĝlE]xĝlE%

D¹̃~ ĝlE¹̃ĝlE!2 i eZ/2@ b̂•s,ĝlE#2
1

2ts
@s i ĝlEs i ,ĝlE#50,

~2!

whereD is the diffusion constant,n is the density of states a
the Fermi energy,ĝ(r )5 iĜ(r ,r )/pn is the quasiclassica

Green’s function, and¹̃5¹2 il/2L@t3 , . . . #. tr8 denotes a
trace over the Keldysh and spin spaces only. We have in
duced the total spin relaxation rate 1/ts due to spin–orbit and
magnetic impurities. To find the noise we require a solut
of Eq. ~2! to first order inl only. The zeroth order solution
has the usual form

ĝE
(0)~r !5S 1 2FE~r !

0 21 D ,

whereFE is a 232 matrix in spin space, related to the di
tribution functionNE by FE[122NE . We chose the sim-
plest model for spin injection from the left: a half-metall
ferromagnet connected to the wire through a perfect in
face, providing a reservoir of spin up electrons only
chemical potentialm↑ . At the right we have a normal rese
voir with no spin polarization and chemical potentialmN .
Since we will derive a general expression for the noise
terms of FE , extending the calculations to more realis
injection scenarios involving incomplete polarization and
terface resistances is a matter of kinetics. With the decom
sition FE5FE 011FE•s, the corresponding boundary con
ditions are

FE 0~2L/2!51/2@Feqm~E2m↑!1Feqm~E2mN!#,

FE0~L/2!5Feqm~E2mN!,

FE~2L/2!51/2@Feqm~E2m↑!2Feqm~E2mN!# ŝ,

FE~L/2!50, ~3!
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whereFeqm(E)5tanh(E/2kT) corresponds to the Fermi dis
tribution. The singlet and triplet parts of the distributio
function satisfy

D¹2FE050,

D¹2FE2eZb̂3FE2
2

ts
FE50.

The solution is simplest when the Zeeman term is absen

FE0~x!5~1/22x/L !FE0~2L/2!1~1/21x/L !FE0~L/2!,

FE~x!5
FE~2L/2!

12e22L/Ls
~e2(x1L/2)/Ls2e(x23L/2)/Ls!,

where Ls5ADts/2. The zeroth order result is thu
tr8$t1ĝE]xĝE%(0)54FE08 , and involves only the singlet part
the average current is unaffected by spin polarization. S
stituting into Eq.~2! gives the first order correction

tr8$t1ĝE]xĝE%(1)54il~FE0
2 1FE

221!. ~4!

The constant of integration in Eq.~4! is fixed by the
fluctuation-dissipation theorem in equilibrium. We thus o
tain ln@x(l)#/t5ilI2l2S/21•••, where I 5GDm/2e is the
average current (G52e2nDA/L is the conductance includ
ing spin degeneracy! and the noise is

S5
G

2LE2L/2

L/2

dxE dE@12FE0
2 ~x!2FE

2~x!#. ~5!

Performing thex andE integrals in Eq.~5! gives

S5GS 1

3 F4kT1Dm cothS Dm

2kTD G
1

~Ls /L !~12e24L/Ls!24e22L/Ls

2~12e22L/Ls!2

3FkT2~Dm/2!cothS Dm

2kTD G D .

One may verify that this result satisfies the following limit
As Dm[m↑2mN→0, the second term vanishes~originating
from the triplet part! and we are left withS52GkT, as re-
quired by the fluctuation-dissipation theorem. AsLs→` and
at T50, the noise isS5(1/3)eI. This is the familiar result
for unpolarized electrons,10 indicating that without spin re-
laxation there is no signature of spin polarization in t
noise. As Ls decreases from infinity to zero, the Fan
factor—defined byS5FeI—changes from 1/3 to 2/3~see
Fig. 2!. Note that although we used a microscopic quant
mechanical approach, the appearance in Eq.~5! of only
quantities from kinetic theory indicates that phase cohere
is not necessary to observe these effects.14

Quantum dots: Spin-dependent transport phenomena ha
recently been the subject of intense investigation in late
semiconductor quantum dots.15–18 Again, relaxation of in-
1-3
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jected spin-polarized current may be due to spin–orbit c
pling or precession in an external field. As in the case of
diffusive wire, we will consider the shot noise in a two te
minal set-up where a spin-polarized current is driven throu
one of the terminals. In the spin degenerate case, we hav
well-known resultF5NLNR /N2, valid when N[NL1NR
@1, whereNL andNR are the number of fully open channe
in the left and right leads.8,19,20Working in the limit of large
channel number allows us to ignore the effects of weak
calization and mesoscopic fluctuations.

We will find the noise in this case by a direct average
the expression21,22

S5
e2

4hE dE tr$~S †LS2L!~11FE!~S †LS2L!~12FE!%,

~6!

L5(NLPL2NRPR)/N2, wherePL/R are projectors onto the
channels in the two terminals. The trace is over the orb
channels in the leads, as well as spin. An average of Eq~6!
in the N@1 limit using standard techniques yields22

S5
Gd

4 (
ab,M

E dE~D•~11FEa!!M~D•~12FEb!!M

1
e2

4hE dE tr$L~11FE!L~12FE!%.

This is the analog of the result~5! for the diffusive wire.
Gd5(2e2/h)NLNR /N is the conductance of the dot. Gree
letters index channels in the leads.DLM is the zero-
dimensional diffuson given byD005^tr@SabS ba

† #&, DLM

5^tr@sLSabsMS ba
† #&L,M51,2,3, where the trace is ove

the spin indices. The matrices16F are understood to be
resolved into the singlet–triplet basis as before prior to m
tiplication by the diffuson. We will consider two cases: th
effect of an external magnetic field only~no spin–orbit cou-
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pling!, and the effect of spin–orbit coupling only. Followin
the notation of Ref. 15, the two cases correspond to

D (1)5@N1 i eZS•b̂#21,

D (2)5@N1e i
SO~S1

21S2
2!1e'

SOS3
2#21.

In the above (SK)LM52 i eKLM are spin-1 operators.e'
SO is

the rate of spin relaxation in thex–y plane, wherease i
SO

governs the relaxation of thez-component~both these andeZ
now expressed in units ofD/2p\, whereD is the single-
particle level-spacing of the closed dot!. Straightforward cal-
culation using the distribution function~3! gives theT50
Fano factor

F (1)5
NLNR

N2
1

1

2
NL

2F 1

N2
2

1

N21eZ
2Gsin2 u,

in the first case, whereu is the angle betweenŝ and b̂. For
the second case, we have

F (2)5
NLNR

N2
1

1

2
NL

2F 1

N2
2cos2 uz

1

~N12e i
SO!2

2sin2 uz

1

~N1e i
SO1e'

SO!2G ,

where uz is the angle to thez-axis. A feature of this two-
dimensional system is that, sincee'

SO*e i
SO the deviation of

the Fano factor fromNLNR /N2 depends on the direction o
polarization. In all cases the Fano factor of a symmetrical
(NL5NR) increases from 1/4 to a maximum value of 3
with increasing spin–flip rate.
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