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Electronic states and quantum transport in double-wall carbon nanotubes
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The electronic states and transport properties of double-wall carbon nanotubes without impurities are studied
in a systematic manner. It is revealed that scattering in the bulk is negligible and the number of channels
determines the average conductance. In the case of general incommensurate tubes, separation of degenerated
energy levels due to intertube transfer is suppressed in the energy region higher than the Fermi energy but not
in the energy region lower than that. Accordingly, in the former case, there are few effects of intertube transfer
on the conductance, while in the latter case, separation of degenerated energy levels leads to large reduction of
the conductance. It is also found that in some cases antiresonance with edge states in inner tubes causes an
anomalous conductance quantizationG5e2/p\, near the Fermi energy.
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I. INTRODUCTION
Carbon nanotubes~CN’s! are cylindrical honeycomb lat

tices consisting of carbon atoms.1 They are often synthesize
as complexes such as concentric multitube systems ca
multiwall carbon nanotubes~MWCN’s! and bundles consist
ing of single-wall carbon nanotubes~SWCN’s!. In com-
plexes of CN’s, the lattice structures of tubes are not con
ered to correlate with each other because of the w
interactions between the tubes. However, electrons tran
from one tube to another with a low probability. Althoug
these complex CN’s have often been used in experime
the effects of the intertube transfer of electrons are not w
understood. In this paper we study double-wall carbon na
tubes ~DWCN’s!, which are coaxial two-tube systems an
the simplest MWCN, in order to clarify the effects of th
intertube transfer on electronic states and transport prope
of MWCN’s.

Two characteristics of the structure of DWCN’s a
known. One is that, as mentioned above, the lattice struct
of inner and outer tubes are not correlated with each ot
This means that DWCN’s generally have no translatio
symmetry; i.e., one tube is incommensurate with the ot
one.2,3 The other is that the difference between the radius
the inner tube and that of the outer one is aboutDR'3.6 Å
independent of the circumference of the DWCN.4 Synthesis
of DWCN’s can be selectively performed.5,6 However, few
measurements of electrical transport in DWCN’s have b
carried out so far.2

On the other hand, numerous experiments on trans
properties of SWCN’s, MWCN’s, and carbon-nanotu
bundles have been performed.7–12A few experiments showed
conductance quantization in SWCN’s~Ref. 13! or MWCN’s
~Refs. 14,15!, indicating the possibility of ballistic transpor
in the bulk of CN’s and the realization of negligibly sma
contact resistance. In one of the experiments us
MWCN’s, anomalous conductance quantization such asG
5e2/p\ and 3e2/p\ was reported14 but the origin is not yet
well understood.

A representative experimental setup is that in wh
source and drain electrodes are placed on or beneath CN
has been reported that in the setup using MWCN’s, e
trodes are in contact with only one or two of the outerm
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tubes.16 In another setup, one end of a CN is attached to
tip of a microscope and the other end is immersed into liq
metal.2,14

Theoretically, energy bands for commensurate DWCN
and/or MWCN’s have been calculated and energy-level se
ration due to the intertube transfer17–20 and resulting reduc-
tions of the conductance have been reported.20,21 For some
incommensurate DWCN’s, the density of states was ca
lated and a weak effect of the intertube transfer near
Fermi energy has been reported.22 A study of the level sta-
tistics in incommensurate DWCN’s showed energy spac
distributions that depend on the energy windows.23 It was
suggested that the intertube transfer in long incommensu
MWCN’s becomes negligibly small24 and the effect of inter-
tube transfer on the transport property is weak for an inco
mensurate DWCN and MWCN.25 Although theoretical stud-
ies of MWCN’s, including DWCN’s, are proceeding a
described above, overall features, particularly those on tra
port properties of incommensurate MWCN’s, are not y
well understood.

It is a characteristic property of graphite that for the Fer
energy, there exist localized states at the edges.26,27 There-
fore, states can also localize at open edges of CN’s. I
expected that in the cases of MWCN’s these edge state
inner tubes affect current-carrying channels when the cur
in outer tubes passes near the edges.

Although there is generally no translational symmetry
DWCN’s, we can still use the concept of channels beca
the intertube transfer is sufficiently weak to be treated a
perturbation. Then, it is considered that the electrical tra
port in DWCN’s without impurities is governed by two fac
tors. One is the number of channels determined by ene
bands in the absence of intertube transfer and the separ
of degenerated energy levels due to it. The other is scatte
from the intertube transfer due to incommensurability b
tween the lattices of the two tubes. The purpose of this pa
is to clarify the overall electronic states and transport pr
erties of MWCN’s without impurities by studying DWCN’s
from this point of view.

The paper is organized as follows. The model and met
are described in Sec. II. We show calculated results for e
tronic states in Sec. III and those for transport properties
Sec. IV. The results are discussed in Sec. V. The summa
given in Sec. VI.
©2004 The American Physical Society02-1
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FIG. 1. Schematic of~a! and
~c! 2D graphite sheets and~b! CN.
In ~a! A andB sites in thei th unit
cell of the graphite sheet ar
shown by (A,i ) and (B,i ), re-
spectively. The origin of thex8y8
coordinate system is chosen at a
A site. In ~c! calculated CN’s are
shown by solid circles for metallic
tubes and open circles for sem
conducting tubes.
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II. MODEL AND METHOD

A CN is considered as a two-dimensional~2D! graphite
sheet with the periodic boundary condition for sites co
nected by a chiral vectorL that determines the circumfer
ence. Figure 1~a! shows a schematic of the 2D graphite she
A CN can be specified by chiral vectorL5naa1nbb with
a5a(1,0) andb5a(21/2,A3/2) being the lattice vectors,a
the lattice constant, andna andnb integers.

A CN is usually identified by a set of two integers defin
as (na2nb ,nb). When (na2nb)2nb is an integer multiple
of three, the tube is metallic; otherwise, the tube
semiconducting.28–30 Almost all tubes are chiral; howeve
only the (n,n) tube and (0,n) tube wheren is an integer are
achiral. The former is an armchair tube and the latter a z
zag tube.

In the following, we denote the coordinate system on
2D graphite sheet as (x8,y8). The A and B sites in thei th
unit cell of the 2D graphite sheet are chosen as shown in
1~a! and are denoted as (A,i ) and (B,i ), respectively, for
text andAi andBi, respectively, for subscripts. For CN’s w
denote the circumference direction as thex direction and the
tube axis as they direction @see Figs. 1~a! and 1~b!#.

All tubes can be specified by chiral vectors in a one-th
area of the 2D graphite sheet as shown in Fig. 1~c!. Let us
equally divide this area into four regions with three straig
boundaries 1, 2, and 3 passing through the origin and
name the four regions I, II, III, and IV as shown in the figur
Boundaries 1 and 3 are the directions of the chiral vectors
armchair tubes and boundary 2 is that for zigzag tubes.

Consider the four tubes specified by chiral vecto
L , L* , L̄ , and L̄* . An example is shown in Fig. 1~c!. The
vectorsL* andL̄* are mirror symmetric toL andL̄ , respec-
tively, with respect to boundary 2—i.e., the direction for zi
zag tubes. The vectorL̄ (L̄* ) is mirror symmetric toL (L* )
with respect to boundary 1~3!—i.e., the direction for arm-
chair tubes. The lattice structures of these tubes are m
symmetric to each other. In fact, the lattice structures of
tubes forL* and L̄* are the same as those forL and L̄ ,
respectively, with inversion of the circumference directi
x→2x, and the lattice structures of the tubes forL̄ and L̄*
are the same as those forL andL* , respectively, with inver-
sion of the axis directiony→2y. Therefore, the tubes fo
07540
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L̄* and L̄ are essentially the same as those forL and L* ,
respectively. Once the properties of a tube are known, th
of tubes mirror symmetric to it are also easily determined

In the case of DWCN’s, however, the situation chang
For a fixed inner tube, the lattice structure of the DWC
with the outer tube forL̄* (L̄ ) is no longer the same as tha
with the outer tube forL (L* ). Therefore, we must surve
tubes for all regions I–IV. In order to systematically inves
gate all DWCN’s with approximately the same circumfe
ence, we first take various combinations of inner and ou
tubes in region II. Then, fixing inner tubes to those in regi
II, we compare the results with those of other DWCN’s wi
outer tubes in regions I, III, and IV that are mirror symmet
to or the same as one of the former outer tubes. We will
in Sec. IV D that the grouping of CN’s into these four r
gions simplifies the investigation of DWCN’s.

We use the one-particle tight-binding model including t
p orbital in which no impurity potentials are considered. T
nearest-neighbor intratube transfers are taken into acco
while the intertube transfers from one site to not only
nearest-neighbor sites but also other sites within hopp
range are taken into account.

The intertube transfer integral between the (S1 ,i ) site in
one tube and the (S2 , j ) site in the other tube, whereS1 ,S2
5 A or B, is chosen as31

VS1i ,S2 j5ag1expS 2
d2c/2

d D S p1•d

d D S p2•d

d D
2g0expS 2

d2a0

d D @~p1•e!~p2•e!

1~p1•f!~p2•f!#. ~1!

In Eq. ~1!, 2g0 andg1 are parameters of the effective mod
of graphite32,33 where2g0 is the transfer integral betwee
nearest-neighbor sites for the same layer andg1 is that for
neighboring layers. Parametera compensates the deviatio
of the transfer fromg1 due to summation over sites in th
hopping range. Parametera0 /a51/A3 is the length of C-C
bonds,c/a52.72 the lattice constant along thec axis of
graphite, andd the decay rate of thep orbital. Vectorsp1
andp2 are the unit vectors directed to thep orbital at (S1 ,i )
2-2
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ELECTRONIC STATES AND QUANTUM TRANSPORT IN . . . PHYSICAL REVIEW B69, 075402 ~2004!
and (S2 , j ) sites, respectively,d the vector connecting the
two sites, ande andf the unit vectors perpendicular tod and
to each other.

In calculations of transport coefficients, we use the tw
terminal system shown in Fig. 2. The inner tube is finite w
length A and armchair and/or zigzag open edges. The
equately long outer tube is connected to reservoirs and p
the role of ideal leads in the region without the inner tub
This corresponds to the case where electrodes are attach
only outer tubes. Scattering (S) matrices are calculated b
the recursive Green’s function method,34 and we calculate
the conductance using the Landauer-Bu¨ttiker formula.35,36

In the following calculations, we use the parameters
Eq. ~1!: g1 /g050.119,37 d/a50.185,22 and a51.4. The
value of a is chosen by fitting the energy dispersion
graphite in thec-axis direction calculated from Eq.~1! to
those in the effective model.32,33

Numerical calculations are performed for the followin
DWCN’s. Among CN’s in region II in Fig. 1~c!, metallic
~4,16!, ~0,18!, ~8,14!, and ~10,10! tubes are chosen as out
tubes and metallic~3,6!, ~1,7!, ~5,5!, ~0,9!, ~2,8!, and ~4,7!
tubes and semiconducting~0,8!, ~0,10!, ~1,8!, ~2,7!, ~3,7!,
~4,6!, and ~5,6! tubes are chosen as inner tubes. Then,
radii of the outer tubes are about 2.9a and those of the inne
tubes about 1.4a. Among all possible combinations of th
above tubes, we perform calculations for DWCN’s in whi
the difference between the two radii satisfies 1.3&DR/a
&1.6, in line with the experiment.4 Calculated results for
these DWCN’s are given in Secs. III and IV A–IV C.

We perform calculations for three more outer tub
~16,4!, (24,20!, and (216,20! tubes, which correspond t
tubes of chiral vectorsL̄ , L* , and L̄* , respectively, where
the chiral vector of the~4,16! tube is chosen asL , as shown
in Fig. 1~c!. These calculations are presented in Sec. IV

III. ELECTRONIC STATES

In this section, we study the electronic states of inco
mensurate DWCN’s. The lowest-order effect of the intertu
transfer on the energy levels is the separation of degener
energy levels that leads to a reduction of the number of ch
nels in the DWCN region.

First, consider the two 2D graphite sheets stacked inc

FIG. 2. Schematic of a two-terminal DWCN system. The inn
tube is finite with lengthA and open edges and the outer tube
adequately long and connected to reservoirs and plays the ro
ideal leads.
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mensurately. We call them layers 1 and 2. The two sheets
parallel to thex8y8 plane and perpendicular to thez8 axis.
Without loss of generality, we can obtain two incommens
rately stacked sheets in the following way. First, prepare t
commensurately stacked sheets in which the lattice point
layer 1 are located at the same positions as those of lay
with respect to thex8y8 coordinate, but thez8 coordinate is
different. The origin is chosen at anA site of layer 1—i.e.,
the (A,0! site. Thex8y8 coordinate system, which is used
the following, is defined as shown in Fig. 1~a! at this stage.
Next, rotate layer 2 around thez8 axis by an angleu. We
shall calculate the separation width of degenerated ene
levels in this system.

Because the interlayer transfer is a weak effect and ca
treated as a perturbation, states are specified by eigensta
a single 2D graphite sheet. In the nearest-neighbor tig
binding model, the Schro¨dinger equation for the 2D graphit
sheet is

2g0@11ei (2kx82A3ky8)a/21ei (kx82A3ky8)a/2#CBi5ECAi ,
~2!

2g0@11ei (2kx81A3ky8)a/21ei (kx81A3ky8)a/2#CAi5ECBi ,
~3!

where we useRBi2RAi5RB05(0,a/A3) with RAi andRBi
being the coordinates of (A,i ) and (B,i ) sites, respectively,
@see Fig. 1~a!#, CAi andCBi are the wave functions, andE is
the eigenenergy. The Bloch theorem is used with the w
vectork. The Fermi energy of intrinsic CN’s is chosen as t
energy origin throughout this paper. The energy dispersio
given by

E656g0F114cosS kx8a

2 D cosSA3ky8a

2 D 14cos2S kx8a

2 D G1/2

.

~4!

Energy bands consist of the conduction band for 0<E/g0
<3 and the valence band for23<E/g0<0. The conduc-
tion and valence bands are the maximum and minimum,
spectively, atk50. They are mirror symmetric to each oth
with respect toE50 and have six-fold rotational symmetr
aboutk50. The wave functions are given by

CAi5CA0eik•RAi, ~5!

CBi5CB0eik•RAi. ~6!

The wave functions at (A,0! and (B,0! sites are related to
each other by the following:

CB052
g0

E F112cosS kx8a

2 DeiA3ky8a/2GCA0 . ~7!

Therefore, forka!1—i.e., uEu/g0;3—we have

CB0'2sgn~E!CA0eik•RB0, ~8!

where sgn(E) denotes the sign ofE.
Next, consider the matrix element of the interlayer tran

fer. Using Eqs.~5! and ~6! the matrix element of transition

r

of
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SEIJI URYU PHYSICAL REVIEW B 69, 075402 ~2004!
from a state withk̄2 at energyE2 in layer 2 to a state withk1
at energyE1 in layer 1 is given by

^k1uV̂uk̄2&5(
S2 j

(
S1i

CS1i* VS1i ,S2 jDS2 j

5(
j

(
i

~CA0* VAi,A j1CB0* VBi,A j!

3e2 ik1•(RAi2R̄A j)DA0ei ( k̄22k1)•R̄A j

1(
j

(
i

~CA0* VAi,B j1CB0* VBi,B j!

3e2 ik1•(RAi2R̄B j)DB0ei ( k̄22k1)•R̄B j2 i k̄2•R̄B0,

~9!

whereV̂ is the operator of the interlayer transfer,CS1i @DS2 j #

denotes the wave function of layer 1@2# at the (S1 ,i ) site
@(S2 , j ) site#, andR and R̄ are positions of sites in layers
and 2, respectively.

Let us consider the case ofk1a!1 and k2a!1—i.e.,
uE1u/g0;uE2u/g0;3. Then, the range of the interlayer tran
fer is much smaller than the wavelength. Therefore,
phase factors exp@2ik1•(RAi2R̄A j)# and exp@2ik1•(RAi

2R̄B j)# in Eq. ~9! can be set to zero. Then, the effecti
interlayer transfer integral from the (S2 , j ) site of layer 2 to
S1 sites of layer 1 can be considered to be( iVS1i ,S2 j . Simi-

larly, that from the (S1 ,i ) site of layer 1 toS2 sites of layer
2 can be considered to be( jVS1i ,S2 j* .

Figure 3 shows( iVS1i ,A j for the ~10,12!-~6,24! DWCN

which is the effective transfer integral from the (A, j ) site of
the inner~10,12! tube toS1 sites of the outer~6,24! tube. The
horizontal axis is they coordinateR̄A jy of the (A, j ) site of

FIG. 3. Position dependence of the effective intertube tran
integral in the case of the~10,12!-~6,24! DWCN. The horizontal
axis is they coordinate of sites from which electrons transfer to t
other tube. Results for the transfers fromA sites of one tube toA
sites~open circles! andB sites~crosses! of the other tube are plot
ted. The results for sites whose azimuthal angles are between 0
p/3 are shown for simplicity.
07540
e

the inner tube, where they direction is parallel to the tube
axis. The effective transfer integral from the (A,i ) site of the
outer tube toS2 sites of the inner tube,( jVAi,S2 j* , is also

similarly plotted. The results for the transfer fromB sites are
similar to those for the transfer fromA sites and are no
shown in the figure. The intervals between dotted lines in
cate the length of the unit cell for the outer tube and tho
between dashed lines that for the inner tube.

The result shows that the effective intertube transfer in
gral negligibly depends on the position and is conside
approximately constant. This is because electrons can tr
fer to not only the nearest-neighbor site but also other site
the hopping range. Therefore, the intertube transfer can
considered to conserve the momentum. There is no perio
ity, as expected. The effective transfer integral from the ou
tube to the inner tube is smaller and fluctuates more t
those from the inner tube to the outer tube. This is beca
the diameter of the inner tube is smaller than that of the ou
tube. When the circumference of the DWCN is increased,
difference of the effective transfer integral between the t
cases becomes smaller.

Therefore, in the case ofk1a!1 andk2a!1, the impor-
tant matrix elements in Eq.~9! are those fork15 k̄25k—i.e.,

^kuV̂uk&'(
i j

@VAi,A j2sgn~E1!VBi,A j2sgn~E2!VAi,B j

1sgn~E1E2!VBi,B j#CA0* DA0 , ~10!

where Eq.~8! is used. It should be noted that the eigenene
E1 of state withk in layer 1 is not generally equal to that i
layer 2,E2, because the lattice of layer 2 is rotated. Since
lattice of layer 1 does not correlate with that of layer 2, w
may make the following assumption for incommensur
cases:

(
i j

VAi,A j5(
i j

VBi,A j5(
i j

VAi,B j5(
i j

VBi,B j . ~11!

Finally the matrix element is given as

^kuV̂uk&'H 4(
i j

VAi,A jCA0* DA0 for E1,0, E2,0,

0 otherwise.
~12!

We are particularly interested in the separation width
degenerated energy levels that is approximately given
2u^kuV̂uk&u for k’s satisfyingE15E25E. From the energy
dispersion relation, Eq.~4!, this is realized fork’s given by

~kx8 ,ky8!5XkcosS u

2
1

np

3 D ,ksinS u

2
1

np

3 D C, ~13!

or

~kx8 ,ky8!5X2ksinS u

2
1

np

3 D ,kcosS u

2
1

np

3 D C, ~14!

wheren is an integer.
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ELECTRONIC STATES AND QUANTUM TRANSPORT IN . . . PHYSICAL REVIEW B69, 075402 ~2004!
From Eq.~12!, at degenerated energy levels in the co
duction band whereE.0, the matrix element vanishes an
separation of degenerated energy levels is negligible
cases for the valence band whereE,0, the separation width
is given by twice the first line of Eq.~12!. In spite of sym-
metric energy bands of each graphite sheet with respec
E50, eigenenergy levels of incommensurately stack
graphite sheets are not symmetric due to the interlayer tr
fer which destroys the symmetry of the bipartite lattice.

As k goes away from the case ofka!1, the matrix ele-
ment increases in the conduction band and decreases i
valence band, because the phase factors exp@2ik1•(RAi

2R̄A j)# and exp@2ik1•(RAi2R̄B j)# in Eq. ~9! break the
cancellation in the conduction band and reduce the sum
the intertube transfer integral over sites in each hopp
range in the valence band.

Figure 4 shows matrix elementu^kuV̂uk&u, calculated us-
ing Eq.~9! and the interlayer transfer integral, Eq.~1!, for k’s
given by Eq.~13!. In the conduction bandE.0, the matrix
element is negligible not only forE/g0;3 but also for other

FIG. 4. Absolute value of the interlayer transfer matrix elem
for two incommensurate graphite sheets foru5p/6 andp/18. The
distance between two layers isc/251.36a.
07540
-

In

to
d
s-

the

of
g

energy ranges. This indicates the validity of Eq.~11!. In the
valence bandE,0, the matrix element is maximum a
E/g0523 and decreases with increasing energy.

This result can be applied to incommensurate DWCN
As an example, the density of statesD for the ~5,6!-~4,16!
DWCN is shown by solid lines in Fig. 5~a! for E.0 and Fig.
5~b! for E,0. The sum of the density of states for the~5,6!
tube and that for the~4,16! tube is also shown as dotted line
for reference. ForE.0, the density of states for the DWCN
approximately follows the dotted line. ForE,0, the density
of states for the DWCN deviates from the dotted line a
additional van Hove singularities due to the separation
degenerated energy levels appear for21&E/g0&0. The de-
viation from the dotted line becomes greater with decreas
energy, and the bottom is pushed down belowE/g0523.
These features are in good agreement with the results for
incommensurately stacked 2D graphite sheets, as expec

IV. TRANSPORT PROPERTIES

A. Incommensurate DWCN’s

In this subsection, the calculated conductance of inco
mensurate DWCN’s is presented. As a typical result, Fig
shows the energy dependence of the conductance for
~5,6!-~4,16! DWCN. The solid line is the conductance of th
DWCN and the dotted line the conductance in the absenc
intertube transfer—that is, that of the outer tube. In the c
of E,0, the conductance of the DWCN is reduced as co
pared to that of the outer tube due to the effects of the in
tube transfer. On the other hand, forE.0 the conductance o
the DWCN is very close to that of the outer tube, suggest
that the effect of the intertube transfer is weak. These f
tures hold not only foruEu/g0;3 but also for other energy
regions. Some deviations between the solid and dotted l
are seen atE/g0;1 but they are much smaller compared
those atE/g0;21, the energy symmetric toE/g0;1.

This is in good agreement with the result in the previo
section that separation of degenerated energy levels is
pressed forE.0 but not forE,0, because the separatio
leads to a disappearance of the channels, and electrons

t

FIG. 5. Density of states of the~5,6!-~4,16! DWCN ~solid line! and sum of the density of states for the~5,6! tube and that for the~4,16!
tube ~dotted line! for ~a! E.0 and~b! E,0.
2-5
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SEIJI URYU PHYSICAL REVIEW B 69, 075402 ~2004!
ing through the corresponding channels in a lead are c
pletely reflected at the interface between the lead and DW
region.

The length dependence of the conductance clearly sh
the above scattering mechanism, and that for the same~5,6!-
~4,16! DWCN at E/g050, 60.87, and62.79 is presented
in Fig. 7. At E/g0562.79—i.e.,uEu/g0;3—there are five
channels in the outer tube. The conductance forE/g05
22.79 rapidly falls from 5e2/p\ to about 4e2/p\ nearA
50 and weakly fluctuates around 4e2/p\ thereafter. This is
the behavior expected for the separation of degenerated
ergy levels. ForE/g052.79, the conductance is abo
5e2/p\. This is consistent with the suppression of sepa
tion of degenerated energy levels forE.0.

Also in the case ofE/g0560.87, which is far from
uEu/g053, the result is similar. There are 12 channels in
outer tube in this case. The conductance atE/g0520.87
rapidly falls from 12e2/p\ to about 7e2/p\ in a short-
length regime and shows small fluctuation around it there

FIG. 6. Energy dependence of the conductance for the~5,6!-
~4,16! DWCN. The length is taken to beA/a5809—i.e.,A5200
nm. Solid line shows the conductance of the DWCN and dotted
that of outer~4,16! tube.

FIG. 7. Length dependence of the conductance for the~5,6!-
~4,16! DWCN. The numbers of channels in the outer tube are 2,
and 5 forEL/2pg50, 60.87, and62.79, respectively.
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ter. On the other hand, the conductance atE/g050.87 shows
a rapid and slight fall from 12e2/p\ to about 11e2/p\ and
fluctuates weakly there. This one-channel reduction atE/g0
50.87.0 is considered to arise from the fact that the ene
is far from E/g053, but it is much smaller than the five
channel reduction atE/g0520.87. The conductance atE
50 is about 2e2/p\ and almost independent of the leng
due to the absence of degenerated energy levels.

Apart from A;0, the conductance exhibits almost n
length dependence except for small fluctuations. Therefor
is considered that scattering from the intertube transfe
bulk is weak. This is consistent with the result in Fig. 3 a
suggests that momentum conservation is satisfied not
for uEu/g0;3 but also for the other region. Because the m
mentum conservation in the intertube transfer prohibits ba
scattering from a channel of one tube to another of the sa
tube in bulk and only the current carrying through the ou
tubes is measured in our case. Thus, it can be said tha
average conductance is determined by the number
channels—that is, scattering at the interfaces between
leads and DWCN regions.

Figure 8 shows examples of the energy dependence o
conductance for various DWCN’s around the Fermi ener
Energy is measured in units of the bottom of the first exci
subband 2pg/L with L being the circumference of the oute
tube andg5A3g0a/2. Figure 8~b! is an enlargement of Fig
6 in the range of20.9&E/g0&0.9. The following common
features are revealed. First, large reductions of the cond
tance occur forE,0, rarely forE.0, and not in the energy
region with two channels,21&EL/2pg&1. Second, in the
energy region with two channels, the transmission is nea
perfect—i.e.,G'2e2/p\—and as the number of channels
increased, the conductance begins to fluctuate. Third, sca
ing becomes stronger as the difference between radii of in
and outer tubesDR becomes smaller.

The first feature is due to the previous result that sepa
tion of degenerated levels is suppressed inE.0 but not in
E,0 and that degeneracy of energy levels rarely occur
energy close to the Fermi energy. The third feature is att
uted to the simple fact that asDR becomes smaller, the in
tertube transfer integral becomes larger, as shown in Eq.~1!.

The second feature is the conductance fluctuation. I
possible that weak scatterings causing such fluctuation o
as follows. Energy levels in a DWCN region are differe
from the corresponding levels of the leads even for a c
without separation of degenerated levels because hig
order terms of the intertube transfer integral exist. This le
to similar scattering at the interfaces between leads
DWCN regions. It is also possible that intertube trans
causes weak backscattering. In both cases, it is consid
that an increase of the number of channels leads to an
crease of backscattering because the number of final s
going backward is increased. This is a possible cause of
dependence of the conductance fluctuation on the numbe
channels.

The result of nearly perfect transmission around the Fe
energy is consistent with those of previous studies.24,25 A
study of the level statistics of DWCN’s showed that the m
ing between states of outer and inner tubes is negligible n

e

,
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FIG. 8. Conductance of incommensurate DWCN’s as a function of energy. The length is taken asA/a;800—i.e.,A;200 nm. Dotted
lines indicate the number of channels of the outer tubes timese2/p\ and dashed lines those of the inner tubes timese2/p\. In ~a!, the inner
tube is metallic and in~c! and ~b! semiconducting. Among~a!, ~b!, and~c!, DR is smallest in~a! and largest in~c!.
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the Fermi energy and becomes stronger with an increas
decrease of energy.23 This is partly consistent with our resu
that reductions of the conductance occur not near the Fe
energy but in the energy region lower than that. Howev
apparent asymmetric features with respect toE50 cannot be
seen in their results though their calculated density of st
is asymmetric. It is possible that averaging over energy w
dows smears the asymmetry.

B. Armchair-armchair DWCN’s

The conductance of commensurate DWCN’s depends
the structures and possibly on the circumference. In the c
of armchair-armchair DWCN’s, however, there appears
characteristic common feature of conductance oscillatio
Figure 9 shows the conductance of the~5,5!-~10,10! DWCN.
It can be seen that the conductance oscillates betw
2e2/p\ and e2/p\ for 21&EL/2pg&1 and between
6e2/p\ and 5e2/p\ for 22&EL/2pg&21 and 1
&EL/2pg&2.

This is attributed to antiresonance of an incoming chan
with beating standing waves in the DWCN region. Consid
the energy region with two channels. In commensur
metal-metal DWCN’s linear bands of inner tubes are deg

FIG. 9. Conductance of the~5,5!-~10,10! DWCN. Inverted tri-
angles indicate energy levels at which two beating waves bec
standing waves in the inner tube. The inset shows the energy
persion of the~5,5!-~10,10! DWCN near theK point.
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erated to those of outer tubes in the absence of the inter
transfer. The inset of Fig. 9 shows the energy dispersion
the ~5,5!-~10,10! DWCN near theK point. In this case, leve
splitting of one of two linear bands is small (k3 andk4) but
that of the other is large (k1 andk2). Therefore, one incom-
ing channel of the outer tube is not coupled to a state of
inner tube and is perfectly transmitted. The other channe
coupled to a state of the inner tube and changes into
propagating modes withk1 and k2 which are extended to
both tubes. When these two modes are localized in
DWCN region as standing waves, the conductance beco
minimum atG5e2/p\ due to antiresonance of the incomin
channel with these standing waves.

The energy levels for the conductance minima are giv
under the condition that two beating waves withk1 andk2 be
localized in the DWCN region—i.e., (k22k1)A/25p/2
1np, wheren is an integer. Such energy levels are plott
by inverted triangles in Fig. 9 and are in good agreem
with the conductance minima.

Absolute values of transmission and reflection coefficie
are plotted in Fig. 10, in which the two channels are nam
K andK8 for convenience. It can be seen that channelK is
completely transmitted intoK, while for channelK8, perfect

e
is-

FIG. 10. Energy dependence ofS-matrix elements of the~5,5!-
~10,10! DWCN in a part of the energy region with two channelsK
andK8. The dashed line is the transmission amplitude fromK to K,
solid line that fromK8 to K8, and dotted line reflection amplitud
from K8 to K.
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transmission intoK8 alternates with perfect reflection intoK.
This selection rule for channels is due to the symmetry
armchair CN’s.38,39 This result is consistent with the abov
interpretation.

C. Antiresonance with edge states

There can exist edge states at open edges of inner tu
as mentioned in Sec. I. In this subsection, we show that
antiresonance of channels in outer tubes with edge state
inner tubes leads to the conductance quantizationG
5e2/p\.

Figure 11 shows the conductance nearE50 as a solid
line and the phase of the determinant of theSmatrix fS as a
dashed line in the case of the~1,8!-~4,16! DWCN. The con-
ductance curve has a dip structure nearEL/2pg'0.007 with
minimum G'e2/p\. When the intertube transfer is turne
off in the region within about 5% of the length from bo
edges, the dip of the conductance disappears, as shown
dotted line. This clearly shows that the effect arises fr
states localized at the edges of the inner tube.

When there are two channels interacting with an ed
state, there always exists a linear combination of the
channels for which coupling with the edge state vanish
Although edge states are definitely degenerated in our
tems, the degeneracy is lifted because of interaction w
each other by way of the channels. Looking at Fig. 11 ca
fully, it can be seen that the dip consists of four resonan
and the phase proceeds by 432p, indicating the existence
of four edge states.40,41 In fact, there are four edge states
the inner~1,8! tube.

Figure 12 shows the transmission and reflection am
tudes for the incoming channelK. The result shows that th
conductance valueG'e2/p\ is realized by a nontrivial
combination of two channels because channelK is partly
transmitted and partly reflected in a complex manner. T
result agrees well with the above interpretation.

This antiresonance does not occur for every DWCN. T
necessary conditions are that edge states exist in inner t

FIG. 11. Conductance of the~1,8!-~4,16! DWCN near E50
~solid line! and the phase of the determinant of theSmatrix ~dashed
line!. The dotted line is the conductance when the intertube tran
is turned off in the region within about 5% of the length from bo
edges of the inner tube.
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and that they have finite overlap with channels in outer tub
The width of dip of conductance is determined by the co
pling strength between channels and edge states.

D. Cases of mirror-symmetric outer tubes

In this subsection we consider three outer tubes,~16,4!,
(24,20!, and (216,20! tubes, which are mirror symmetri
to or the same as the~4,16! tube. Figure 13~a! shows the
calculated conductance for an energy range inE,0 where
the inner tube is the~5,6! tube corresponding to Fig. 6. Re
ductions of the conductance are seen and those for (216,20!
and~4,16! outer tubes or those for (24,20! and~16,4! outer
tubes are very similar to each other. These results are co
tent with the result that the conductance reduction is due
degenerated-level separation, because the angle betwee
chiral vectors for (216,20! and~4,16! tubes or for (24,20!
and ~16,4! tubes isp/3 @see Fig. 1~c!# and the energy levels
in these two cases are the same due to the six fold rotati
symmetry of energy bands of the 2D graphite sheet.

Figure 13~b! shows cases of antiresonance with ed
states nearE50 where the inner tube is the~1,8! tube cor-
responding to Fig. 11. Antiresonance occurs in all cases. T
is attributed to the fact that in the four cases, the interacti
between edge states of the inner tubes and channels o
outer tubes are similar to each other, because among the
cases, the differences between radii of the inner and o
tubes and the momenta of the channels in the circumfere
and tube-axis directions are the same and only the rela
lattice configurations between the inner and outer tubes
different from each other.

Therefore, the definition of CN’s using regions I–IV i
Fig. 1~c! makes the investigation of the structure depende
of the average conductance in DWCN’s considerably simp
That is to say, the average conductance is determined es
tially by only DWCN’s with inner tubes in region II and
outer tubes in regions I and II, for example. For antires
nance with edge states, it is sufficient to investigate DWC
with inner and outer tubes in one region.

er

FIG. 12. Energy dependence ofS-matrix elements for an incom
ing channelK in the ~1,8!-~4,16! DWCN. The solid line is the
transmission amplitude toK, dot-dashed line that toK8, dotted line
reflection amplitude toK, and dashed line that toK8.
2-8



r

ELECTRONIC STATES AND QUANTUM TRANSPORT IN . . . PHYSICAL REVIEW B69, 075402 ~2004!
FIG. 13. Conductance for
DWCN’s in which outer tubes are
~16,4!, ~4,16!, (24,20!, and
(216,20! tubes and inner tubes
are the~a! ~5,6! tube and~b! ~1,8!
tube. In ~a! the origin of the per-
pendicular axis is shifted by 15 fo
the ~4,16! tube, 30 for the
(24,20! tube, and 45 for the
(216,20! tube. In~b! it is shifted
by 3 for the~4,16! tube, 6 for the
(24,20! tube, and 9 for the
(216,20! tube. Dotted lines indi-
cate each origin.
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V. DISCUSSION

All of our results can be applied to MWCN’s straightfo
wardly. Therefore, we shall discuss the observation of
suppression of degenerated-level separation and antir
nance of channels with edge states in MWCN’s. So far, th
does not seem to be any clear experimental evidence
those phenomena. This is mainly because highly develo
technology is required to prepare systems with negligi
small contact resistance and without disorder. Although s
tems in which the conductance is quantized near the Fe
energy are necessary for the observation, there are only a
experiments on such systems.14,15 We believe, however, tha
the observation of our findings is highly possible in su
systems in the following ways. Since it is not clear ho
disorder in tubes affects our results, we do not consider
effects here. That remains as an issue for future studies

We consider two representative experimental setups.
first setup is that source and drain electrodes are locate
or beneath tubes and a gate electrode, which controls
chemical potential of electrons in the tubes, is equipped.
second one is that one end of the tubes is attached to th
of a microscope and the other end is immersed in liq
metal.

First, suppression of degenerated-level separation ca
observed in the first setup as an asymmetric gate-vol
dependence of the conductance or in both the setups a
asymmetric source-drain-voltage dependence of the con
tance. In the former case, the conductance for the pos
gate-voltage region is reduced as compared to that for
negative gate-voltage region. In the latter case, since the
ductance at a finite source-drain voltage is given by the
tegral of the zero-bias conductance over the correspon
energy width, it also becomes asymmetric as a function
the source-drain voltage, with respect to the origin.

However, the asymmetric source-drain-voltage dep
dence of the conductance was not obtained in the sec
setup used by Kociaket al.2 It is possible that this was be
cause the scanning range of the voltage was not sufficie
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wide. Note that although some groups reported an interes
effect of the intertube transfer of electrons at huge sour
drain voltage,42,43it is beyond the scope of this work becau
the phenomenon is related to electrical breakdown.

Next, the observation of antiresonance with edge state
discussed. This can be observed in both the first and sec
setups under the following conditions. One is that source
drain electrodes are connected to the outer tubes. The oth
that there exist edge states in the inner tubes and the e
are located between the two electrodes.

We must make give some comments on the edge ge
etry of CN’s. As is well known, caps often terminate CN’
However, MWCN’s with open edges are also realistic sin
MWCN’s with open edges have actually been observe44

and it is suggested that CN’s with open edges can be stab45

In the case of MWCN’s with caps, the following is expecte
Some previous studies revealed the existence of states l
ized at caps around the Fermi energy.46–49Therefore, similar
antiresonance with such localized states may lead to the
ductance quantizationG5e2/p\. There are still some issue
to be clarified—for example, the cap-structure dependenc
the eigenenergy levels of localized states and that of the c
pling strength between channels and localized states. Fu
studies are necessary.

Finally note the following. Conductance quantization w
observed in a recent experiment in which the second se
with a MWCN was used and the conductance was meas
as a function of the immersion depth.14 The experiment
showed that the conductance is quantized not only
2ne2/p\ with n being integers but also anomalously
e2/p\ and 3e2/p\. This anomalous quantization seems
be similar to the antiresonance with edge states in our res
However, as it is considered that the inner tubes w
capped, an investigation of the possibility of antiresonan
with states localized at caps is necessary. Therefore, it ca
be concluded at present that this anomalous quantizatio
due to such antiresonance. Further studies are neede
clarify this effect.
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VI. SUMMARY

The electronic states and conductance of DWCN’s in
absence of impurities have been systematically studied. S
tering in the bulk is negligible and the number of chann
determines the average conductance. In general, separ
of degenerated energy levels in incommensurate DWCN
suppressed forE.0 and, therefore, there are few effects
the intertube transfer on the conductance. ForE,0 large
conductance reductions can occur due to the separatio
degenerated energy levels. In some DWCN’s, it is poss
that antiresonance with edge states in inner tubes leads t
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