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Theory of quantum optical control of a single spin in a quantum dot
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We present a theory of quantum optical control of an electron spin in a single semiconductor quantum dot
via spin-flip Raman transitions. We show how an arbitrary spin rotation may be achieved by virtual excitation
of discrete or continuum trion states. The basic physics issues of the appropriate adiabatic optical pulses in a
static magnetic field to perform the single-qubit operation are addressed.
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I. INTRODUCTION

Spin-flip Raman spectroscopy has been widely applied
the study of the properties of donors and acceptors
semiconductors.1 It was first used2 for bound donors in CdS
and coherent phenomena such as Raman spin echo
subsequently observed.3,4 Coherent spectroscopic techniqu
have attracted new interest due to their potential utilizat
in the control and manipulation of simple quantum
mechanical systems. In particular, the application of cohe
Raman processes to qubit operations in quantum informa
processing has been suggested for a variety of syste
for example, an electron spin in a semiconductor quan
dot,5 trapped ions,6,7 molecules,8 and rare-earth impurities in
crystals.9 The optical rotation of electron spins has be
demonstrated in semiconductor quantum wells.10,11

In this paper we show how spin-flip Raman optical tra
sitions can lead to the full quantum control of a single el
tron spin in a semiconductor quantum dot. This involves
tically connecting the two electron spin ground states
trions as the intermediate excited states. A trion is a bo
state of an exciton with the electron in the dot. The role
using one or more discrete states in the dot and continu
states in the host is analyzed. The constraints in the desig
the optical pulses to preserve the adiabaticity necessary
high fidelity of the control are discussed. There are two p
sible advantages of optical control compared with other c
trol schemes, in the femtosecond time scale of the ultra
laser pulses and the efficiency and flexibility of pulse sh
ing techniques12,13 for quantum operations.

The extant experimental situation provides a sound fo
dation towards implementation of our theory. A semicond
tor quantum dot charged with one electron presents a st
analogy to a single bound donor. However, the spin-flip R
man experiments in semiconductors mentioned above
volve ensemble measurements, whereas quantum co
would require experiment on a single dot. The quantum c
trol of a single exciton in a single dot by coherent optic
techniques is affirmed by the experimental demonstration
the Rabi oscillations.14–16Magnetoluminescence of trion lev
els from a single dot reported recently17 forms the basis to-
ward quantum control.
0163-1829/2004/69~7!/075320~8!/$22.50 69 0753
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The spin of an electron in a quantum dot has been p
posed as a qubit for the implementation of quantu
computers.18 It has the advantage of an extremely long sp
flip decoherence time,19 making it possible to perform a larg
number of quantum operations. We provide here a full the
for the quantum control of single qubit operations using o
tical pulses. When combined with the proposal to cou
spins in neighboring quantum dots by optically induc
RKKY interaction,20 one has a complete scheme to build
scalable quantum computer based on spins in quantum
via optical control. Although in principle the optically con
trolled RKKY interaction alone is sufficient for universa
computation,21 the requirement of at least three physical q
bits to form a single qubit makes the route of using a co
plete set of single qubit operations plus a two-qubit con
tional operation perhaps less difficult for the purpose o
minimalist physical demonstration of two-qubit ‘‘computa
tion.’’ The idea of using Raman schemes to realize sin
qubit operation was mentioned by Imamogluet al.5 and Pazy
et al.22 Here we expand this suggestion, providing a f
theory of single-spin rotation by means of optical pulses w
an explicit formulation.

The paper is organized as follows: In Sec. II we discu
the selection rules and the effects of an external static m
netic field in optical transitions involving trions in quantu
dots~QD!. While we focus on QD’s generated by monolay
fluctuations in narrow quantum wells23 as an example, the
theory is applicable to other kinds of dots, such as s
assembled dots. We introduce one particular configuratio
light polarization and magnetic-field orientation that realiz
a l system. Section III explains how to perform adiaba
Raman transitions in thisl system via one trion state. Th
link between the parameters of the optical pulses and
angle and the axis of the spin rotation is given in the m
general case. The dependence of the spin rotation on
orientation of the magnetic field is presented. The supp
sion of decoherence in the adiabatic regime is shown b
numerical solution of the dissipative dynamics based on
Liouville equation and explained by a qualitative discussio
Section IV examines the effects of the adiabatic Raman tr
sitions via multiple discrete or continuum trion states. S
tion V summarizes the key results.
©2004 The American Physical Society20-1
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II. TRION STATES IN A CHARGED DOT

We consider a system of electrons and holes confined
quantum dot described by the Hamiltonian

Heh5H01HCoul1HB
e1HB

h1HC~ t !, ~1!

whereH0 represents the part of the noninteracting elect
and hole states andHCoul is the Coulomb interaction be
tween them. The effects of the external magnetic field on
electrons and holes are given by

HB
e5

1

2
mB (

n jab
gj

eena
† sab

j enb

and HB
h5

1

2
mB (

m jab
gj

hBjhma
† sab

j hmb , ~2!

where\ is set to unity,sab
j denotes theabth element of the

Pauli matrix in the Cartesian directionj (5x,y,z), andena
(hna) represents the annihilation operator of an elect
~hole! in the dot at thenth level and spin~pseudospin! s up
or down. Note that the hole levels include the doubly deg
erate heavy and light hole states. Although in some II
compounds such as GaAs the electrong-tensor,ge, is ap-
proximately isotropic,17 we allow here for the anisotropi
case with the principal axes along the Cartesian axes wz
being in the growth direction of the semiconductor hete
structure. In the dipole and rotating wave approximation
light-matter interaction is

HC~ t !5(
is

V is~ t !e2 ivsteis
† his

† 1H.c., ~3!

where V is denotes a time-dependent complex Rabi f
al

b
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quency following the envelope of the optical pulse cente
at the frequencyvs , propagating in the growth direction
with circular polarizations ~left handeds521 and right
handeds511). For simplicity, in the heavy-hole excito
associated with polarizations, the conduction electron spin
component is taken to be dominated byen,2s ~spin
2s1/2) and the valence holehms ~spin s3/2). For thes
light-hole exciton, the components areen,s and hms ~spin
s1/2). Correction of this simplification is straightforward i
computation24 but will unnecessarily complicate the expos
tion of the optical processes below. The interactionHC(t)
represents the control Hamiltonian to be designed for
manipulation of the spins. The semiclassical approximat
is appropriate since the intensity of the laser field involved
strong enough to render the photon fluctuation effects ne
gible. The combined effects of the spin-orbit interaction a
the dot confinement depress the light-hole levels by tens
meV in these nanostructures, allowing us to restrict mos
our discussions only to topmost~one or two! heavy-hole lev-
els. See Secs. III A and IV.

Consider first the minimal model in which there is on
one electron level and one hole level in the quantum d
This is a reasonable assumption since the corresponding
citon is well isolated from the higher states. In a dot charg
with one electron, there are two ground statese2

† uG& and
e1

† uG&, which represent the spin-up and spin-down states
the doped electron with respect to thez direction. uG& de-
notes the ground state of the quantum dot in the absenc
the electron. There are two trion statese2

† e1
† h1

† uG& and
e1

† e2
† h2

† uG&. In the basis ofe2
† uG&,e1

† uG&,e2
† e1

† h1
† uG&,

and e1
† e2

† h2
† uG& the Hamiltonian including the effect o

external magnetic field and light-matter interaction h
the form
H5F vBgz
ecosu vBgx

esinu V1* eiv1t 0

vBgx
esinu 2vBgz

ecosu 0 V2* eiv2t

V1e2 iv1t 0 ET1vBgz
hcosu vBgx

hsinu

0 V2e2 iv2t vBgx
hsinu ET2vBgz

hcosu

G , ~4!
ra-
m
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-
g

where vB5 1
2 mBuBW u and u is the angle between extern

magnetic field andz axis. ET is the excitation energy of the
trion state at zero magnetic field. The Hamiltonian can
used to calculate the linear absorption spectra of trions
various magnetic-field configurations. For the heavy hole,gx

h

is negligible if the heavy-hole–light-hole mixing and thek3

terms in the Luttinger Hamiltonian are neglected. T
Hamiltonian in Eq.~4! is the same as one used by Tisch
et al.17 to deduce the g tensors from the magneto
photoluminescence measurements.

It is clear from Eq.~4! that the two spin ground states a
not coupled by the applied oscillating electric field unle
there is a mixing magnetic field tilted away from thez axis.
e
in

r

s

We shall present first the simple case of the Voigt configu
tion u5p/2 in which the magnetic field is in the quantu
well plane with its direction designated as thex axis. Gener-
alization to arbitrary field direction~see Sec. III B! is
straightforward. The Voigt case is worth special attention
cause it is the simplest case for experimental implementa
and it gives the simplest illustration of the underlying phy
ics for the control of the single qubit operation. In the ca
where onlys1 polarized light is used and settinggx

h50, the
trion statee1

† e2
† h2

† uG& is decoupled from the rest. The mag
netic field in thex direction produces a Zeeman splittin
between the statese6x

† uG&5(1/A2)(e2
† 6e1

† )uG&. The states
e1x

† uG&, e2x
† uG& ande2

† e1
† h1

† uG&5e2x
† e1x

† h1
† uG& identify a
0-2
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three level system. Consider now two phase-lockeds1 po-
larized lasers pulses which give rise to an off-diagonal m
trix element of the interaction Hamiltonian in Eq.~4! of the
form

V1~ t !5V1~ t !ei (v12v1)t2 ia1V2~ t !ei (v12v2)t, ~5!

where a is the relative phase between the two real R
energiesV1(t),V2(t). This form of the pulses can be ob
e-

le
.

b
n
n
it
rin
o

vi

n
tu

fo

-
l.
t o

07532
-

i

tained with pulse-shaping techniques. The frequenc
v1 , v2 are chosen to satisfy the Raman conditions,

v11vBgx
e5v22vBgx

e5v1[ET2D, ~6!

whereD is the common Raman detuning@see Fig. 1~a!#. In

the rotating frame defined bye7 ivBgx
ete6x

† uG& and
e2 i (ET2D)te2x

† e1x
† h1

† uG&, the Hamiltonian becomes
H5
1

A2F 0 0 V1~ t !eia1V2~ t !e2igx
evBt

0 0 V1~ t !e22igx
evBt1 ia1V2~ t !

V1~ t !e2 ia1V2~ t !e22igx
evBt V1~ t !e2igx

evBt2 ia1V2~ t ! A2D
G . ~7!
f
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When uV j (t)u!gx
evB , the fast oscillating terms can be n

glected. Then the Hamiltonian takes the form

Hr5F 0 0 eiaV↑~ t !

0 0 V↓~ t !

e2 iaV↑~ t ! V↓~ t ! D
G , ~8!

where V↑5V1 /A2,V↓5V2 /A2. This constitutes a single
L system as shown in Fig. 1~a!. For typical Zeeman split-
tings of 1 meV and simple Gaussian pulses, frequency se
tivity requires a pulse temporal width much longer than 0
ps (5\/1 meV).

III. CONTROL OF SPIN DYNAMICS IN A CHARGED DOT

Stimulated Raman adiabatic passage~STIRAP! ~Ref. 25!
has been extensively used to perform population transfer
tween quantum states.26 It has also been used to create e
tangled states.27 In contrast to the typical STIRAP populatio
transfer scheme, we do not make assumptions on the in
state of the system. The transformation we are conside
are general rotations, independent of the initial orientation
the spin. A procedure to perform general spin rotation
STIRAP was proposed recently.28 However, an extra auxil-
iary ground state was required in addition to the two grou
states. It is unsuited to the case of a single charged quan
dot. This STIRAP method can be used in coupled QD’s
single qubit operations and quantum gates.29,30In the follow-
ing we will first show how to perform an arbitrary spin ro
tation in a singleL system without using any auxiliary leve
We will discuss then the adiabatic condition and the effec
the decaying intermediate trion state.

A. General single-spin rotation

The Hamiltonian of the singleL system in Eq.~8! may be
diagonalized analytically by the substitutions,

V↑5J sin~2f!cosb,
c-
6

e-
-

ial
g
f

a

d
m

r

f

V↓5J sin~2f!sinb,

D52J cos~2f!. ~9!

J(t) is the grand Rabi frequency,

J5AV↑
21V↓

21S D

2 D 2

. ~10!

The anglef(t) may be called roughly the tipping angle o
the pseudomagnetic field if the three states are regarde
pseudospin states. To make clear the physical meaningb
below, it is convenient to make the two pulses,V↑(t) and
V↓(t), with the same envelope shape. Then the angleb
5arctan(V↓ /V↑) is independent of time. In general, the pul
shape identity may be relaxed to the extent that the t
independence ofb becomes a slowly varying one to satis

FIG. 1. L systems in a QD. Onlys1 polarized light is used in
the Voigt configuration.~a! Single trion model.~b! Multiple trion-
level model. At low temperatures, the main decoherence mecha
is the spontaneous radiative decay of the trion state indicated bg
in ~a!. V↑5V1 /A2, andV↓5V2 /A2 are defined in Eq.~5! satis-
fying the Raman condition in Eq.~6!.
0-3
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the adiabatic condition to be considered next. The matrix
three columns of eigen vectors,

W~ t !5F 2eiasinb 2eiacosbcosf eiacosb sinf

cosb 2sinbcosf sinb sinf

0 sinf cosf
G ,

~11!

leads to the diagonal form of the Hamiltonian at timet,
W†(t)Hr(t)W(t), with the eigenvalues along the matrix d
agonal, respectively,

l1~ t !50, ~12a!

l2~ t !522J~ t !sin2f~ t !, ~12b!

l3~ t !52J~ t !cos2f~ t !. ~12c!

The time-dependent eigenstates are used to form
adiabatic basis set. The effective Hamiltonian in this rep
sentation for the time-dependent Schro¨dinger equation is
given by

Had5W†HW2 iW†
dW

dt
. ~13!

If the second term on the right is negligible, the transform
Hamiltonian is diagonal, leading to a diagonal evolution o
erationUad(t,t8) with the termse2 iL j , j 51,2,3, whereL i

5* t8
t dt9l i(t9). SinceL150, the first eigenstate is time in

dependent and completely decoupled from the other
states. The motion governed by the instantaneous eigen
gies is known as adiabatic. The condition for the adiaba
approximation is the slow time variation ofW which, from
Eq. ~11!, depends on the rate of change of the tipping an
ḟ(t) in comparing with the rate of the adiabatic motio
given by the grand Rabi frequency which sets the mag
tudes of the instantaneous eigenenergies,

uḟ~ t !u!2J~ t !. ~14!

For the qubit operation, att52` the state of the system
is a linear combination in the subspace spanned by the ei
states associated withl1 andl2(2`). The time-dependen
Hamiltonian describing the optical pulses has a cyclic beh
ior, meaning thatH(t5`)5H(t52`). The idea of the
adiabatic evolution is that, if the Hamiltonian varies slow
enough in time, the state of the system remains confine
the subspace spanned by the two eigenstates at all time
arbitrary initial state in the spin ground-state subspa
@a,b#T will acquire only a phase in thel2 component, trans-
forming to @a,e2 iL2b#T. The evolution operator in the origi
nal rotating frame is given by
07532
f
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U~1`,2`!5W~`!UadW
†~2`!

5F e2 iL2/2U2 A 0

A 0

••• ••• ••• •••

0 0 A e2 iL3

G ,

~15!

where

U25e2 i /2L2sW •nW ~16!

is our final result for the rotation in the spin 1/2 subspa
through an angleL2 about the unit vectornW in the polar
direction given by the declination and azimuthal ang
(2b,a), or

n15cosa sin~2b!,

n252sina sin~2b!, ~17!

n35cos~2b!,

where the Cartesian directions~1,2,3! are along the unit vec-
tors (ẑ,2 ŷ,x̂). The polar direction is along the magnet
field. The effect of the spin precession due to the magn
field is avoided by always working in the rotating fram
introduced by Eq.~7!.

The corrections due to the light-hole come in two form
One is the light-hole mixing in the heavy-hole and electr
singlet-pair trion state.24 The spin-up electron is connecte
by thes1 polarization to the13/2 heavy-hole trion whose
mixture with the11/2 light-hole component is connecte
by the same polarized light to the spin-down electr
state. This induces an extra rotation of the order of 1% ofL2
about an axis normal to the growth axis, which is ju
a minor correction which can be included in the effect
the transverse magnetic field. The other correction is du
the light-hole trion whose effect is small if the detunin
is less than 10 meV~Ref. 30! and can be eliminated by
pulse-shaping.12,13

B. Arbitrary magnetic-field orientation

Since the tilted magnetic field is essential to the compl
set of single-qubit operations, it is important to study t
dependence of the operation on the field orientation. T
generalization to an arbitrary direction follows the same p
cedure as in Secs. II and III A. Taking again onlys1 polar-
ized light, we need to consider only the two spin grou
states and one trion state made out of a spin-up (13/2) hole
and two electrons in a singlet. We rewrite the reduced Ham
tonian from Eq.~4! in the appearance of a Hamiltonian wit
an effectivege,
0-4
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H5F vBgecosq vBgesinq V1* ~ t !eiv1t

vBgesinq 2vBgecosq 0

V1~ t !e2 iv1t 0 ET1vBgz
hcosu

G ,

~18!

where we have setgx
h to zero and defined theu-dependent

effectivege and the effective angleq by

ge~u!5A~gz
ecosu!21~gx

esinu!2, ~19!

q~u!5arctanS gx
e

gz
e
tanu D . ~20!

By the unitary transformation

U5F cos
q

2
sin

q

2
0

sin
q

2
2cos

q

2
0

0 0 1
G , ~21!

the three basis states are transformed to the spin states
the field directionu6B&, and the invariant trionuT&. When
the two pulses are chosen as in Eq.~5!, the HamiltonianHr
in the new rotating frame is exactly of the same form as
~8!. The only changes are in the expressions for the R
energies and the detuning,

V↑5V1cos
q

2
, ~22a!

V↓5V2sin
q

2
, ~22b!

D5ET1vBgz
hcosu2v, ~22c!

The solution then follows exactly the procedure
Sec. III A. The resultant evolution yields the spin rotati
as in Eq.~16!. The Cartesian axes~1,2,3! are along the unit
vectors (2 ŷ3B̂,2 ŷ,B̂). As a check, note that if the
magnetic field is parallel to the propagation axis of the lig
thenq50 and we can realize only rotations about thez axis.
07532
ong
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On the other hand, for a finiteq we can obtain a rotation
about any axis by changing the control parametersa, V1 ,
V2, andD.

C. Suppression of trion decoherence

It is physically reasonable that the use of t
off-resonance Raman processes should avoid the s
optical decoherence time due to the rapid recombination
the exciton, since the the excited state is only virtua
excited. The coherence of the spin dynamics is then g
erned by the much longer spin dephasing time. In a m
quantitative study, we consider the eigenstates in Eq.~11!.
The first eigenstateul1& has no component in the intermed
ate trion state, and the second eigenstateul2& has only
a small component in the intermediate state as long
V(t)/D is small. As a result the intermediate state
only weakly populated during the Raman transition and
decoherence has a weak effect on the coherence of the
rotation.

To substantiate this claim, we start with the master eq
tion of the density matrixr,

dr

dt
52 i @H,r#2

1

2 (
i

~Li
†Lir1rLi

†Li22LirLi
†!,

~23!

where Li are the Lindblad31 operators. These operato
have the form of projectors and describe the effect
the spontaneous radiative recombination of the trion s
as shown in Fig. 1~a!. The density matrix in the adiabati
representation is%5W†rW ~note the slightly different
symbol % used on the left! and satisfies the transforme
equation

d%

dt
52 i @Had ,%#2

1

2 (
i

~Mi
†Mi%1%Mi

†Mi22Mi%Mi
†!,

~24!

whereMi5W†LiW. The effect of the transformation on th
Lindblad operators is considerably simplified if we assu
that the spontaneous emission rates from the trion to the
spin ground states are the same,g. By symmetry the results
are independent of the rotations associated with the rela
phase of the two pulsesa and the rotation of the spin bas
states to the magnetic-field directionb. The total relaxation
part is given by
-
of
M relax@%#52gF 0 r 1
†sinf r 1

†cosf

r 1sinf ~r 21r 2
†!sinf r 2

†cosf1r 3sinf

r 1cosf r 2cosf1r 3
† sinf ~r 31r 3

†!cosf
G1gr 0F 1 0 0

0 cos2f 2sinfcosf

0 2sinfcosf sin2f
G , ~25!

wherer j5%2,jsinf1%3,jcosf, r j
†5% j ,2sinf1%j,3cosf, and r 05r 2sinf1r3cosf , for j 51,2,3. The origin of the decoher

ence in the Raman process may be exhibited by a simpler expression ofM relax which is obtained by expansion in powers
the small quantityf(t),
0-5
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M relax@%#5gH F %33 0 2%13

0 %33 2%23

2%31 2%32 22%33

G
2F 2%232%32 %13 %12

%31 0 %2212%33

%21 %2212%33 %231%32
Gf

1O~f2!J . ~26!

At the start of a qubit operation, the density matrix has
form

%~2`!5F %11 %21 0

%21 %22 0

0 0 0
G . ~27!

If the adiabatic condition in Eq.~14! is satisfied, then
% j 3; j remain nearly zero~of first order inf) at all times. To
first order inf, M relax@%# is proportional only to% j 3 in the
subspace spanned byul1& and ul2&. Hence, the relaxation
terms in this subspace are of second order inf. This dem-
onstrates a suppression of the optical decoherence ef
within the adiabatic subspace.

A more quantitative measure of the qubit operation is
commonly used fidelity which is an overlap of the physic
operation versus the ideal. We follow the averaging over
possible initial states in the Hilbert space as was done
Refs. 12 and 13. To compute the fidelity, we have perform
a numerical simulation on the adiabatic spin rotation us
the quantum trajectory method,32 which is equivalent to solv-
ing the master equation with the relaxation terms in Eq.~25!.
We take the common shape of the pulses to be Gaus
}exp2(t/t)2. The lifetime of the trion due to spontaneou
emission~Fig. 1! is taken to be 60 ps. Other forms of depha
ing, such as that induced by the electron-phonon interact
are experimentally found to be negligible in the fluctuati
quantum dots.33 We simulate the operation of ap rotation in
the spin space. For a Rabi energyV051 meV and a detun-
ing D55 meV we find an appropriate pulse duration giv
by t58.74 ps. The resultant fidelity of this operation isF
50.991. If the detuning is increased toD510 meV, we find
that the adiabaticity condition is better satisfied and the
eration is more robust against spontaneous emission.
fidelity in this case increases toF50.995. The price is a
longer pulse duration,t516.74 ps for thep rotation. This
demonstrates numerically that the decoherence of the in
mediate trion state can be suppressed using an adiabatic
trol. Once the effect of spontaneous emission has been
duced, the spin-flip decoherence is the remaining limit
mechanism for the coherence of the qubit. This time
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been found to be of the order of hundreds of nanosecon19

and, therefore, we can afford to use rather long pulses for
control.

IV. MULTIPLE TRION LEVELS

In this section we consider~i! what happens if more than
one electron or hole levels are localized in the dot, and~ii !
how to extend the theory from discrete trion levels to a co
tinuum. In monolayer fluctuation QD’s and some cases
self-assembled dots, these continuum states are provide
delocalized excitons in the quantum well. We shall confi
ourselves to the case of higher electron-singlet heavy-h
trion levels. There are light-hole effects which can be sho
to be small as in Sec. III A. There are two-electron spin s
glets and triplets. None of them are important if the detun
from the lowest single trion is small.

A. Multiple L system

We assume that the initial state is still restricted to a lin
combination of the spin ground states,e12

† uG& ande11
† uG&.

In the presence of many electron and hole levels in the
the effect of Coulomb interaction is to renormalize the tri
energies and the oscillator strength of the optical transitio
Consider again the Voigt configuration. We have twos1

laser pulses satisfying the two photon coherence config
tion: v11vBgx

e5v22vBgx
e5ET,12D1, where ET,1 is the

lowest trion eigenstate energy including the effects of
Coulomb interaction. In this case, there are many poss
trion statesT1

(0)
•••Tk

(0) resulting from the many confined
levels, and one ends up with a multipleL system, as de-
picted in Fig. 1~b!. The general theory developed in Sec.
can be extended to treat the multipleL system.34 To illustrate
the method we consider the case where the two pulses
identical, i.e., V1(t)5V2(t), and a50. This particular
choice corresponds to a rotation about they axis. Let us

change to the rotating basis,u6&[(e2 ivBgx
ete1x

† uG&
6eivBgx

ete2x
† uG&)/A2. The trion states are in the rotatin

frame whereuTi&5e2 ivtuTi
(0)&. The Hamiltonian in the basis

u2&,u1&,uT1&, . . . ,uTk& becomes

H5F 0 0 0 0 0

0 0 V1~ t ! ••• Vk~ t !

0 V1~ t ! D1 ••• 0

A A A � A

0 Vk~ t ! 0 ••• Dk

G , ~28!

whereVk5bkV1(t)/A2, andbk is the oscillator strength o
the optical transition. The first eigenvalue is zerol1(t)50.
The second eigenvaluel2(t) can be calculated exactly
However, it often suffices to work in the second-order p
turbation theory in which the analytic expression is

l2~ t !52(
i

uV i~ t !u2

D i
. ~29!

The corresponding eigenstates are
0-6
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ul1~ t !&5u2&, ~30!

ul2~ t !&5u1&2(
i 51

k

uTi&
V i~ t !

D i
, ~31!

ul i 12~ t !&5uTi&1u1&
V i~ t !

D i
. ~32!

The adiabatic condition can be expressed
u^l i(t)ud/dtul2(t)&u!ul i(t)2l2(t)u for all i .2. The most
stringent condition is of course for the lowest trion sta
which gives

V̇1~ t !

D1
!D1 . ~33!

When this condition is fulfilled spin rotation can be achiev
via multiple intermediate trion states. The coherence of
rotation is again preserved by the virtual excitation of int
mediate states.

B. Continuum L system

STIRAP via continuum has been proposed for populat
transfer in atomic physics.26,35Several approaches have be
proposed to avoid leakage and decoherence.36 We show here
how the adiabatic manipulation of a single spin can be re
ized in principle in presence of a continuum. The key
avoiding leakage and decoherence is again an excitation
low the continuum edge. The continuum is thus only vir
ally excited and the coherence of the spin rotation is p
served. The treatment parallels that of the multipleL system
case in Sec. IV A. The eigenenergy oful1(t)&5u2& is again
l1(t)50. By means of Fano’s method37 the eigenenergy o
the other discrete statel2(t) can be determined by the inte
gral equation,

l2~ t !5E deg~e!
uV~e!u2

~l2~ t !2De!
, ~34!

where we have replaced the summation over the discretek by
the integral over the energy with the density of statesg(e).
At t52` the stateul2(2`)&5u1&. The eigenvector of the
new discrete and continuum statesule(t)& can be solved ana
lytically ~not shown here!. The adiabatic condition then ca
be expressed as

U^le~ t !u
d

ul2~ t !&U!De . ~35!

dt
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The Fano approach thus allows us to obtain an analytical
complicated expression for this condition valid to all orde
in V/D. However, a more stringent condition can be o
tained by expanding Eq.~35! to second order inV/D as is
done for the multipleL case. It can be shown that it i

sufficient to requireV̇e50(t)/D!D, whereD is the detuning
to the continuum edge to fulfill the adiabatic conditio
which is analogous to Eq.~33!. When this condition is ful-
filled it is possible to perform an adiabatic Raman transit
coherently via the continuum of intermediate states.

V. CONCLUSIONS

We have presented a theory for arbitrary rotations of
spin of a single electron in a quantum dot via Raman tran
tions in the adiabatic limit. Charged exciton states, or trio
play the role of the upper level in an effectivel system. An
arbitrary spin rotation may be performed by tailoring t
relative phase and the relative intensities of two laser pu
as well as choosing the polarization of the light and the o
entation of a static magnetic field. The explicit relations b
tween the parameters of the laser pulses and the angle
the axis of the spin rotation are given. We investigate h
the intermediate state decoherence is suppressed whe
operations are performed in the adiabatic regime. We de
the adiabatic condition inl systems where additional dis
crete levels or a continuum of states are present. We s
the calculations for a representative case~the monolayer
fluctuation quantum dots! with values of the oscillator
strengths and the characteristic energy separation taken
the experiments. We emphasize that our scheme works i
pendently of the confinement properties of the dots, as l
as the structure of the trion levels can be represented by
one in Figs. 1~a! or 1~b!. In principle, quantum dots could b
engineered to optimize the fidelity of the operations with t
particular control scheme. The theory developed here p
vides a useful blueprint for the realization of single qu
operations in spin-based quantum information processing
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