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Orbital magnetic properties of quantum dots: The role of electron-electron interactions
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We study the magnetic orbital response of a systeiM ioteracting electrons confined in a two-dimensional
geometry and subjected to a perpendicular magnetic field in the finite-temperature Hartree-Fock approxima-
tion. The electron-electron interaction is modeled by a short-range Yukawa-type potential. We calculate the
ground-state energy, magnetization, and magnetic susceptibility as a function of the temperature, potential
range, and magnetic field. We show that the amplitude and period of oscillations in the magnetic susceptibility
are strongly affected by the electron-electron interaction as evidenced in experimental results. The zero-field
susceptibility displays both paramagnetic and diamagnetic phases as a function of temperature and the number
of confined electrons.
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[. INTRODUCTION was convincingly showti that such a kind of disorder has
little influence on the semiclassical results derived for per-
Much effort is currently devoted to the study of electron-fectly clean systems. A more far reaching and fundamental
electron interaction effects on the ground-state and transpoguestion is the role of electron-electron interactions. In a
properties of mesoscopic and nanostructured deviceBhe  sophisticated semiclassical approximation to the many-body
theoretical analysis of small quantum dots, Witk 8 elec-  problem, Ullmo and collaboratdfsshowed that interactions
trons, customarily employs sophisticated numerical tbols.make x(B,T) scale askgL for integrable systems and
These become computationally prohibitive for larger dotskgL/In(keL) for chaotic ones. They also show that, even
which call for a more schematic approach, such as mearthoughyo(T) decays exponentially for higher temperatures,
field and/or semiclassical approximations. In this paper wen interaction-induced diamagnetic minimum appears. There
address the specific question of how the electron-electroare two key approximations that allow for a full analytical
interactions change the magnetic susceptibility of quantuntreatment presented in Ref. 14. One approximation is to con-
dots containing few tens of electrons using the self-sider a zero-range residual interaction that beclouds the ex-

consistent Hartree-Fock approximation. change interaction, and the other is to give up self-
Our motivation stems mainly from the intriguing experi- consistency.
mental data collected in the early 1990s byvyeand Further motivation stems from a more recent experiment

collaborators, who measured the orbital magnetic suscepti-on the orbital magnetization of quantum-dot arfaythat
bility of an array of mesoscopic squares lithographically in-found a magnetization value two orders of magnitude larger
scribed in a GaAs/AlGaAs heterostructure. The authorghan that predicted by the noninteracting single-particle pic-
found a surprisingly large paramagnetic susceptibility and dure. Existing theoretical predictions based on the direct nu-
power-law dependence of the zero-field susceptibilitymerical diagonalization of the Hamiltonian for a few
Yo(T)=x(B=0,T) with temperature. The first result is un- electrons®=*° and on a mean-field approximation of the
derstood by means of a semiclassical single-particle analysisjany-body problef?~??indicated that the electron-electron
showing that the magnetic susceptibility in ballistic devicesinteraction plays dominant role in the magnetic properties of
is determined by the enclosed area and the stability of thquantum dots as clearly observed in the experinient.
shortest classical periodic orbits of the caVity? More spe- In this work, we resume the discussion on the influence of
cifically, the cavity geometry determines the classical peri-electron-electron interactions by studying the orbital mag-
odic orbits relevant fory(B,T), providedB is weak. For netic response of aN-electron interacting system in a self-
generic integrable systems such orbits come in families andonsistent Hartree-Fock(SCHF  approximation. The
the magnitudey(B,T) scales akgL, wherekg is the wave screened Coulomb electron-electron interaction is modeled
number at the Fermi energy ahds the typical length scale by the short-range Yukawa potentM(r) =Vqe™ “'/r. Exact

of the cavity. In contrast, periodic orbits of chaotic systemsresults are only known for thd=2 case’®'°The mean-field
are isolated ang/(B,T)o(keL)2 The semiclassical theo- approximation allows us to study systems up\te 40 inter-
retical analysis also predicts an exponential decay§oi), acting electrons. Although the typical experimental dots in
which conflicts with the experimental data that display aRefs. 5 and 15 have a much larger number of electrons, our
much weaker temperature dependence. The experimentaiudy provides a qualitative understanding of the interaction
results raised natural and important questions, concerningeffects in the magnetic properties of the system.

the role of disorder and interactions. These issues triggered We calculate the ground-state eneigy, magnetization,
interesting advances in the semiclassical approach. The disnd magnetic susceptibility as a function of the relevant pa-
order in the devices we are interested in is weak and longameters of the system, namely, the temperaiuneotential
ranged, and hence dominated by small-angle scattering. tangex, and magnetic field. Our results show discontinui-
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ties in E4(B) at T=0, as previously reported. These fea- 2 e K-l
tures are smoothed out for finite temperature. v(r,r')=
We show that the magnetic response of a two-dimensional

electronic cavity depends strongly on the electron-electrofynere « gives the effective interaction range aedis the
interaction and the magnetic susceptibility shows an OSCi”abackground dielectric constant. Fer0 there is no screen-
tory behavior similar to de Haas—von Alphen oscillations i”ing and the bare Coulomb interaction is recovered. Even
metals. Previous theoretical works had found that such a b?houghv(r,r’) in Eq. (3) is different from the screened

. . . '25
havior occurs for noninteracting systems as Weft®*We  g|ociron-glectron interaction in the 2DEG when effects of the
show that both the amplitude and the period of such oscillaginite |ayer thickness and image charges are taken into
tions are modified by the electron-electron interaction.  50counf® the Yukawa potential captures the main features of
We discriminate the kinetic, direct, and exchange contri-y mqre realistic interaction and has the advantage of being

butions to the total magnetic susceptibility. The direct andcomputationally easier to handieWe recall that the semi-

exchange contributions also oscillate but with a different.|ssical approach is forced to use zero-range residual inter-

phase compared to the kinetic contribution. We also find thakq(ion in order to make the calculations feasible. By doing
the susceptibility dependence on temperature and interactiafy one |oses a handle on the exchange interaction.
strength displays nonuniversal featyres which are strongly For a square dot of side the potential energy scales with
dependent on the parameters. A slight enhancement of thg, \hile the kinetic energy scales withL. Hence, a4 is

zero-field susceptibility is seen as the number of electrong,reaqed, the potential energy becomes increasingly more
increases. The interaction-induced magnetic susceptlblhtymportant_ It is then useful to introdu@ean “effective

shows paramagnetic and diamagnetic phases both as a fu%‘ﬁength“ parametelL/a% , where a%=#%(4mepe,)/m* €2

. . N ) r

tion of temperature and Interaction strength. A rather UNEXis the effective Bohr radius. The standard dimensionless

pgctgd resultis the be.hawor of the exchange mterac'uon CorE:iarameter that quantifies the ratio between electronic poten-

tribution to x(B), which becomes larger than the direct ;1 04 inetic energies igg, which in 2D readsr?

contribution as the interaction strength increases. 12 e s
=Al[Nm(ag)“]. Hence,L/ag and rg are related agg

The paper is organized as follows. In Sec. Il we present N )
the model system considered in this study and the mean-field (L/@s)/V7N. We consider here a range of parameters

solution in the SCHF approximation. The main results aresuch that L5rs<2, within the typical values of s in the
shown in Sec. Ill. Section IV brings the final remarks andexperiments: _

conclusions. We also include an appendix where we present We calculate the ground-state energy in the SCHF ap-
some specific details of the SCHF numerical implementatiofProximation for finite temperatures. The SCHF equations
in the presence of discrete symmetries. read a8

()

Ameger |r—r'|

Il. THE MODEL h(r)gi(r)+> njfdr,(br(r,)v(r’r,)(bj(r,)}¢i(r)
]

We consider the problem dfl two-dimensional2D) in-
teracting electrons in a confining potential subjected to an _2
external magnetic fiel® perpendicular to the electron sys- j
tem. Since we study the orbital contribution to the magneti-

njf dr’qﬁj*(r’)v(r.r')fﬁj(r)(ﬁi(r')}

_ HF
zation, we are allowed to simplify the problem and treat the =i ¢i(r), 4
electrons as spinless. The model Hamiltonian reads as  \yhere the sums run over all HF orbitals. Herg
N N = (exf (e — u)/kgT]+1) ! is the Fermi occupation num-
H=> h(r)+ > o(rn, ), (1) ber of theith HF (arpbital with corresponding wave funqtion
n=1 n<n’ ¢i(r) and energy;" . As standard, the chemical potential

is determined by requiring thati=2>;n;. We truncate the
number of orbitals and take only thé~2N lowest-energy
states into account.

The SCHF ground-state energy is given by

where r,, indicates the position of thath electron. The
single-particle Hamiltoniat is given by

2
+u(r), 2

h(r)=

e
P p+ AN EfF=TH 4+ Vi - VEF
wherem* is the electron effective mass. The vector potential _ 2 ni{ ilh| b))
A is chosen in the symmetric gauge, namel} SRR
=(—By/2Bx/2,0). The magnetic field is expressed in units 1
of ®/d,, where®=BA is the magnetic flux through the +Z nn ({ & b AN s
system aread and®,=hc/e is the unit quantum flux. We 2 ,EJ: inj((didjlvl i) —(didilv| b)),
choose the confining potentia(r) as the 2D square well of 5)
sideL that closely models the experiment.

To account for screening effects the electron-electron inwhere the| ¢;) are the HF orbitals, self-consistent solutions
teractionv is modeled by’ of Eq. (4) andTHF, VP andVHF are the kinetic, direct, and
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FIG. 1. Single-particle Hartree-Fock energy
levels /' as a function of the magnetic flux
®/d, for (@) T=0 and (b) kgT=A. Here N
=10 andr =1.22.
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exchange contributions to the ground-state energy, respeother values oN as well and are related to sudden anticross-
tively. Actually, it is numerically less expensive to compute ings at Fermi energy, i.e., involving the level§ ande! ;.
Ey" as For T=0 the mean field selects th¢lowest states. Hence,
by parametrically moving through a level crossing, the char-
e 1 HE acter of the last occupied state is suddenly changed, and so is
By =3 Z ni(ei” +(ilh|&i)). ) the mean field. Narrow crossings, with a gap<A, that
lead to sudden and very strong changes in the last occupied
The calculations of the matrix elements were done numerimean-field state are responsible for the jumps.
cally, with no further approximations other than setting the ~The jumps disappear already for very low temperatures of
numerical precision. The number of elements growd/ds  the order okgT~de<A, as illustrated in Fig. (b). For this
whereM is the basis size. For a typical calculation where wereason, they are of very limited relevance for the experiments
take M~50, a numerical evaluation of about 1@our-  We are interested in, whekgT>A. However, Fermi energy
dimensional integrals is required, a task far from trivial. Toanticrossings explain similar features reported in the study of
reduce that number, we have used an appropriate symm@round-state properties of quantum dots in the Coulomb
trized basis on which the HF potential takes a block-diagonablockade regime, which remained so far not undersfdod.
form. Furthermore, we use properties of the Yukawa-&ke Albeit also blurred by temperature, the latter case deals with
interaction to reduce the four-dimensional integrals to a setransport where the ground-state many-body wave function
ries of one-dimensional integrals on the relative polar anglematters and thus the Anderson orthogonality catastrophe can
These steps are described in Ref. 19. Details on the HF ng&ome into play::*?

merical implementation in the presence of discrete symme- It is worth mentioning that, in the absence of magnetic
tries are found in the Appendix. field, for all values ofr ¢ investigated, namely, 1.0-2.5, the

single-particle levels never show a clear nearest-neighbor re-
pulsion. This is an additional validation for using an inte-
grable dynamics to describe such systénts.

The HF single-particle spectral properties play a major
role in determining the system magnetization and magnetic IV. GROUND-STATE PROPERTIES
susceptibility. In this section we present a general discussion o ] o
of the model Hamiltonian single-particle spectrum that |he magnetizatiom(B) and the magnetic susceptibility
serves as a guide to interpret the magnetic results that follow(B) of an electronic cavity are obtained from

Figure 1 shows the single-particle HF spectrum as a func-
tion of the magnetic fluxd/d, for N=10 electrons with
r«=1.22 for T=0 (left) and kgT=A (right). Here and
throughout the papen is the single-particle mean level
spacing. Energy is given in units éf/(m*L?). In turn, the grand canonical potentialis directly computed

A very interesting feature displayed in Fig. 1 is the jumpsfrom the ground-state HF energy @:ESF—TS— Nuw,
in siHF(B) for the T=0 case. These discontinuities appear forwhereSis the entropy angk is the chemical potential, both

Ill. SINGLE-PARTICLE PROPERTIES

B Q) g 5y 1 5%Q .
m( )__578 and  x( )__PE' (7)
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FIG. 2. Top panel: zero-field susceptibilifyp as a function of B
the particle numbeN for the noninteractindthick solid line with . o . .
filled circles andr,=1.5 (open circley cases akgT=A/2 andx FIG. 3. Zero-field susceptibilityy, (circles as a function of
=0. Middle panel: the same for the kinetic teffmpen squares interacting strength./ag for Coulomb interaction antl=20 elec-
Bottom panel: the same for the exchange contributigmen tri-  trons with kgT=A/2. Kinetic (squaref direct interaction(filled
angle$ to the magnetic susceptibility. triangles, and exchange interactiqempty triangles contributions

to x, are shown for comparison.

functions ofB. The derivatives in Eq(7) were calculated by The exchange contribution to the susceptibility increases
a standard three-point numerical derivation. ~ yjith the interaction strength/aZ and is already of the order

In the remainder of the paper, magnetization is given insf the kinetic contribution for ~1.5. This is illustrated in
units of the effective Bohr magnetqeg =efi/2m*c and the  Fig. 3, where we chose a maximum of the noninteracting
magnetic susceptibility is expressed in units of the Landay{°""(N), namely,N=20 and vanlL/aj . For low values of
susceptibility, namelyx | =e?/(12mm* c?). For simplicity,  |/a%, the paramagnetic kinetic tergh" (filled squares
the noninteracting case is referred to d9dg =0.” dominates and stays almost constant while the total suscep-
tibility decreases. This behavior of the total susceptibility is
dictated by the exchange tergf, which is initially of the
order of the direct contribution. As the interaction strength
Following Eqg.(5), one can distinguish different contribu- increases, both absolute values of the direct and exchange

A. Exchange contribution

tions to the magnetic susceptibility, namely, terms increase. It is interesting to notice th&tovercomes
x4 for L/ag~5 (rs~0.63) and is of the same order as the
x= XN 94 ¥ (8)  kinetic term forL/ag~10 (rs~1.26).

This is a somewhat unexpected result, since the direct

arising from the kinetic, direct, and exchange-interactioncontributionVg" to the ground-state energy is three to four
terms of the HF ground-state enerﬁgF(B). As shown be- timeslarger than the exchange contributiM’)[": in this range
low, it is instructive to compare the latter with the suscepti-of I's. It turns out, however, that the" is more sensitive to
bility computed for noninteracting electrons in a square cavvariations of the magnetic field thafG'F, giving rise to the
ity, x"onnt large exchange contribution g,.

The zero-field susceptibilityyo(T)=x(B=0,T) is ob- Many-body correlations, absent in mean-field approxima-
tained for differentN up to N=20 atkgT=A/2. The results tions, screen the two-body residual interaction. The conse-
are shown in Fig. 2. The noninteracting susceptibiify™™  quent lack of screening of the exchange term in the HF
(filled circles oscillates with increasing amplitude &sis  scheme is well known to be one of its main drawbacks.
varied (or equivalently, as a function dfcL). This is in  Hence, one might ask if the large exchange contribution we
agreement with the previous semiclassical calculatfols. report survives when screening is properly accounted for. It
As we include the electron-electron interaction, keepigg is necessary to go beyond the HF level to answer this ques-
~1.5 for all N, the interacting susceptibilityopen circles  tion, which is not within the scope of this work. However,
sensibly deviates from the noninteracting case. We find thatne can also interpret#0 as a mimic of screening due to
such deviations are mainly caused by the exchange contrib@lectron-electron correlations. With this picture in mind, we
tion to the susceptibility. While the kinetic contribution can provide a partial answer to the raised question, since we
(squarep resembles the noninteracting situation, the ex-also observe large exchange contributionsyt) even for
change term(triangles exhibits rather large fluctuations, ajf>«"1 (not explicitly shown. We conclude that signifi-
which are mainly responsible for the deviations in the totalcant exchange contributions jg, are not an artifact of the
interacting susceptibility. pure Coulomb interaction.
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FIG. 4. Magnetizationm(B) as a function ofB=®/L? for FIG. 6. Magnetic susceptibility/ x, (thick solid line as a func-

L/at =0 (circles, 2 (diamonds, 5 (filled triangleg, and 8 (open tion of ®/d for N=10 atkgT=A/2 andL/a} =5.0. The symbols

triangles. Here N=10 andkgT=A. Inset: N=20 for L/a}=0 correspond to the kineticircles, direct (filled triangleg, and ex-

(circles, 3 (diamondy, 5 (filled triangles, and 10(open triangles ~ change contributionéopen trianglels

atkgT=A/2. _ _ _
phase appears. When the interaction between the electrons is

B. Magnetic-field effects included, the magnetization curves 8= 10 andN=20 are

. . . ) *
The electron-electron interaction also induces some nonqUIte different(see Fig. 4. In particular, forL/ag =10, the

trivial effects in the magnetic-field dependence of both the?"Pital magnetizat!on is about four times larger fdr=20
magnetization and the magnetic susceptibility. The results fof@n forN=10. This suggests that large systems can display
m(B) and y(B) in the Coulomb {=0) case are shown in strong orbital magnetization effects, in line with the experi-

5
Figs. 4 and 5 for differenN andL/ag . In this section we mental results:

take kgT of the order ofA to wash out effects due to level ForN=5, a clear oscillatory behavior is seen g(B)

crossings, while preserving the quantum effects due to Ionéﬁee. ttop oft_F|g. }ta Thetha_mplltudes f?jreboftr(])rt(:ﬁzy,_I anl_c:, gs d
energy-range spectral correlations. e interaction strength is increased, bo e amplitude an

In the noninteracting case, the magnetization curves fOE;e frequency also increase. This behavior is similar to the de
differentN values are very similar. For low fields, small os- ass—von Alphen effect observed in metals. In that case,

cillations arise and, a® increases, a positive magnetization both the amp“tUde and the frequency )_@GB) oscillations
are proportional to the chemical potential of the system. In

1 i : i : i : the single-particle effective potential approximation, an in-
crease in the interaction strength is equivalent to an increase
in the effective chemical potential of the HF levels, which
corroborates the analogy.

The oscillations are modified with increasing number of
particles, see bottom panel of Fig. 5. For larger values of
L/ag, x(B) displays fluctuations neab/®,=10 due to
crossings between the Hartree-Fock single-particle states at

4 T A T the Fermi level, as discussed in Sec. Ill. Notice that although
[ the level crossing jumps in the single-particle spectrum seem
§l 2 ] to have already disappearedkafT=A, see Fig. 1, they are
= o greatly enhanced iy(B), due the second derivative in Eq.
R ) ‘ffjs,q«-a:* (7).

AUy

We observe that the exchange part plays an important role

L . 1 in the computation of thé8 dependence on the magnetic
0 5 10 15 susceptibility y. In Fig. 6 all contributions are shown as a
dyd)o function of ®/®, for a lower temperature, namelkgT

=A/2 and rg=0.9. The pronounced paramagnetic peak

FIG. 5. Magnetic susceptibility/| x, | as a function of the mag- around®/®,~10 (also observed at the bottom panel of Fig.
netic flux for N=5 (top) and N=10 (botton) with L/a}=0 5) is mainly due to the exchange contributigh Notice that
(circles, 2 (diamonds, 4.7 (filled triangles, and 8(open triangles  frequently x® and x* give contributions of opposite signs as
The temperature ikgT=A. O/D is varied.
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0.0 0.8 16 2.4
k. T/

FIG. 8. Temperature dependence of the zero-field susceptibility
Xo(T) for N=10 andL/a% =0 (diamond$, 2 (squarel and 5(tri-
angles. In the inset, the same is shown fdr=5 with an additional
curve forL/af =8 (circles.

FIG. 7. Magnetic susceptibility(B) for different interaction ) ] ) ) ) )
ranges[Coulomb (circles and x~*=L/10 (triangleg] for N=5  xo With T is consistent with previous theoretical wofk?
(top) andN=10 (bottom). but at odds with the experiméntin both casefN>1). To

) o the best of our knowledge, the only mechanism that gives
It is worth mentioning that these results are somewhatise o a slow susceptibility decdy,namely T~ Y2, requires
different from those obtained by the exact diagonalization fokne thermal length to be smaller than the sample kizen-

the two-electron cas¥,where the electron spin plays an im- fortunately, the experimental parametetsmrdly meet this
portant role on the orbital properties of the system. In thaﬁarge-temperature regime. This problem persists

situation, singlet-triplet transitions give Tise to .IOW We deal with quantum dots with less thar?Iectrons,
temperature peaks of about@| of magnitude in the orbital o
- : A where it is standard to reach temperatures of the order of the
susceptibility but no oscillatory behavior is found (B). : ) . .
mean level spacing. This regime allows for a better experi-

Also, magnetizatioom(B) in the exactN=2 case is always . ) .
negative, even in the large field regime. _mgntal study ofy((T), and, hence, a more detailed dls_cussmn
{s in order. In the intermediate range kafT~A, nonuniver-

In Fig. 7, we compare the susceptibilities in the case o ) ; )
Coulomb and short-range potentials. In order to get a quali$@l features arise. As an example, the inset of Fig. 8 shows

tative comparison, we consider the strong-screening regim@Ur result for a dot wittN=5 electrons:xo(T) is negative
using x~1=L/10. (except for T~0) and has pronounced minima &gT

In this short-range limit, the interaction between the elec~~0.5A, even in the noninteracting case. Ror=10, xo(T)
trons is exponentially suppressed for distances larger than tifisplays both positive(for kgT<0.4A and kgT>A) and
screening lengthk ~! and the overall magnetic response, negative values (0M4<kgT<<A), indicating a diamagnetic-
which is averaged over the whole dot, is then similar to theparamagnetic transition. In both cases, the interaction-
noninteracting case. This can be clearly seen in Fig. 7, wheri@aduced susceptibilityy— x""", is positive, indicating a
the curves fork '=L/10 are quite similar to those for paramagnetic contribution due to the electron-electron inter-
L/a% =0 depicted in Fig. 5, showing that the shielding of the action.
electron-electron interaction is quite effective and a noninter- A diamagnetic-paramagnetic transition for increashig
acting picture is a good approximation for the thermody-was also reported in previous theoretical results. IRer2,
namic properties of the system. exact diagonalization resutfsshow thaty,(T) is diamag-

For such low screening lengths, the Fermi wavelengtthetic for a temperature range up toALOOnN the other hand,
Ne~ 7L/ N is larger thanc—* by one order of magnitude. Semiclassical analysi§*® suggests a paramagnetig(T)
In the regime\e>« 1, the 2D screened interaction can be for N~100. Therefore, a diamagnetic-paramagnetic transi-
well approximated by @-type contact interactiotf: Our re-  tion is expected in the intermediate-particle-number regime.
sults show that the noninteracting picture captures the main
features of such approximation in the Hartree-Fock scheme.

V. CONCLUDING REMARKS

C. Temperature dependence We have considered the ground-state properties of a sys-

The zero-field susceptibility decays with temperature, agem ofN interacting electrons confined in a 2D geometry and
expected. The decay rate is rather fast, being well approxisubjected to a perpendicular magnetic field in the finite-
mated by an exponential for temperatures larger than theemperature SCHF approximation. The magnetic susceptibil-
highest occupied orbital—-lowest unoccupied orbital gap. Foity was calculated as a function of the relevant parameters of
instance, wherkgT/A=3, x, is already negligible as com- the systemimagnetic field, number of electrons, temperature,
pared to thel =0 value(see Fig. 8 An exponential decay of and strength and range of the particle interagtiofihe
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ground-state energy was obtained for both the Coulomb inlows: given the single-particle symmetry class of the states
teraction and the short-range Yukawa potential. ,r/,Za, 8, Y%, and ,r/,fsa’ the matrix element,,.z; will be

Our results show that the electron-electron interaction ingpy nonzero it°
troduces nontrivial effects in the magnetic properties of the
system. The magnetic susceptibility shows de Haas—von
Alphen-like oscillations which are enhanced as the interac-
tion strength increases. The magnetization increases wherherefore, only states with the same two-particle symmetry
more electrons are added in the dot, which indicates that alass are coupled by the interaction potential.
strong orbital magnetization should be expected for larger Let us now express the HF equations in terms of the two-
systems. For a higher number of electrons, new featurelsody residual interaction integrals The HF orbital wave
arise, including strong diamagnetic fluctuations as a functiorfiunctions read
of the magnetic field.

The zero-field susceptibility,(T) shows both paramag- M
netic and diamagnetic phases as a function of the tempera- i(r)= 2 Cia‘ﬁ:f(r)- (A4)
ture. We found thako(T)— 0 asT increases and the suscep- a=1

tibility induced by interaction is positive, yielding a \ye typically truncate the basis set taking at least Khe

paramagnetic contribution g, irrespective of the value of _ g jowest square billiard energy states. The Roman labels
N. However, nonuniversaN-dependent features appear in yofer to the HF orbitalsp, whereas the Greek ones to the

the intermediate-temperature rangekgir ~A. basis sety. The resulting matrix form of Eq4) is

C,®Cp=C,R®Cs. (A3)
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via= [ ar [ drperuE ey, ee)

with the density matrixp given by

APPENDIX A: HARTREE-FOCK EQUATIONS IN MATRIX
FORM

We solve the HF self-consistent equatigds iteratively
by diagonalization. The eigenfunctions of the square billiard M
of side lengthL, namely, p(r,r)=2 mai(n)ér(r'), (A7)
i=1

wheren; is the Fermi occupation number of theén HF or-
@, (X,y)= Esin(TX%m(”_Wy), (A1) bital. Notice that since does not distingu_ish between d_if-
L L L ferent symmetry classes, the HF mean field can effectively
mix them. Hence, the HF potential reads
wherea=(m,n), separated into the square four-point sym-
metry classes, form the basis det,}. The latter are also M M
eigenbasis of the operatB,,, that rotates the coordinates by vg;:viﬁ_vfw: E 2 Dys(luyps—layop): (AB)
/4. The eigenvalue® ,, namely,c,=+1,—1,+i, and y=126=1
—1, label the square billiard symmetry classes. More detail
can be found in Ref. 19.
The bottleneck for the HF method is the calculation of the
two-body electron interaction integrals, namely,

Swhere, by introducing

M
D,;= 2, niC{,Cis, (A9)
s * o s, we eliminate one sum over the single-particle orbitals. The
'avﬁéEJ drf dr'y s (g > (1o (r,r )y Ar)g(r). computation of Eq.(A8) is speeded up by exploring the
(A2)  sparse nature df,,sz.
Notice that the HF potential matrix elements will be, in
Here the advantage of separating the basis into symmetiyie general case, complex numbers since the basis itself is
classes comes into play. Many of the matrix elemépts,; ~ complex. The remaining of the numerical implementation is
are zero, depending on the single-particle symmetry classesry standard. The convergence of the ground-state energies
involved. The “selection rule” can be summarized as fol- is obtained at iteratiom if |[ES", —EFF|/ENF<1075.
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