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Orbital magnetic properties of quantum dots: The role of electron-electron interactions
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We study the magnetic orbital response of a system ofN interacting electrons confined in a two-dimensional
geometry and subjected to a perpendicular magnetic field in the finite-temperature Hartree-Fock approxima-
tion. The electron-electron interaction is modeled by a short-range Yukawa-type potential. We calculate the
ground-state energy, magnetization, and magnetic susceptibility as a function of the temperature, potential
range, and magnetic field. We show that the amplitude and period of oscillations in the magnetic susceptibility
are strongly affected by the electron-electron interaction as evidenced in experimental results. The zero-field
susceptibility displays both paramagnetic and diamagnetic phases as a function of temperature and the number
of confined electrons.
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I. INTRODUCTION

Much effort is currently devoted to the study of electro
electron interaction effects on the ground-state and trans
properties of mesoscopic and nanostructured devices.1–3 The
theoretical analysis of small quantum dots, withN&8 elec-
trons, customarily employs sophisticated numerical too4

These become computationally prohibitive for larger do
which call for a more schematic approach, such as me
field and/or semiclassical approximations. In this paper
address the specific question of how the electron-elec
interactions change the magnetic susceptibility of quan
dots containing few tens of electrons using the se
consistent Hartree-Fock approximation.

Our motivation stems mainly from the intriguing expe
mental data collected in the early 1990s by Le´vy and
collaborators,5 who measured the orbital magnetic suscep
bility of an array of mesoscopic squares lithographically
scribed in a GaAs/AlGaAs heterostructure. The auth
found a surprisingly large paramagnetic susceptibility an
power-law dependence of the zero-field susceptibi
x0(T)[x(B50,T) with temperature. The first result is un
derstood by means of a semiclassical single-particle anal
showing that the magnetic susceptibility in ballistic devic
is determined by the enclosed area and the stability of
shortest classical periodic orbits of the cavity.6–12 More spe-
cifically, the cavity geometry determines the classical pe
odic orbits relevant forx(B,T), provided B is weak. For
generic integrable systems such orbits come in families
the magnitudex(B,T) scales askFL, wherekF is the wave
number at the Fermi energy andL is the typical length scale
of the cavity. In contrast, periodic orbits of chaotic syste
are isolated andx(B,T)}(kFL)1/2. The semiclassical theo
retical analysis also predicts an exponential decay forx0(T),
which conflicts with the experimental data that display
much weaker temperature dependence. The experime
results5 raised natural and important questions, concern
the role of disorder and interactions. These issues trigge
interesting advances in the semiclassical approach. The
order in the devices we are interested in is weak and l
ranged, and hence dominated by small-angle scatterin
0163-1829/2004/69~7!/075311~8!/$22.50 69 0753
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was convincingly shown13 that such a kind of disorder ha
little influence on the semiclassical results derived for p
fectly clean systems. A more far reaching and fundame
question is the role of electron-electron interactions. In
sophisticated semiclassical approximation to the many-b
problem, Ullmo and collaborators14 showed that interactions
make x(B,T) scale askFL for integrable systems an
kFL/ ln(kFL) for chaotic ones. They also show that, ev
thoughx0(T) decays exponentially for higher temperature
an interaction-induced diamagnetic minimum appears. Th
are two key approximations that allow for a full analytic
treatment presented in Ref. 14. One approximation is to c
sider a zero-range residual interaction that beclouds the
change interaction, and the other is to give up se
consistency.

Further motivation stems from a more recent experim
on the orbital magnetization of quantum-dot arrays15 that
found a magnetization value two orders of magnitude lar
than that predicted by the noninteracting single-particle p
ture. Existing theoretical predictions based on the direct
merical diagonalization of the Hamiltonian for a fe
electrons16–19 and on a mean-field approximation of th
many-body problem20–22 indicated that the electron-electro
interaction plays dominant role in the magnetic properties
quantum dots as clearly observed in the experiment.15

In this work, we resume the discussion on the influence
electron-electron interactions by studying the orbital ma
netic response of anN-electron interacting system in a sel
consistent Hartree-Fock ~SCHF! approximation. The
screened Coulomb electron-electron interaction is mode
by the short-range Yukawa potentialV(r )5V0e2kr /r . Exact
results are only known for theN52 case.18,19The mean-field
approximation allows us to study systems up toN;40 inter-
acting electrons. Although the typical experimental dots
Refs. 5 and 15 have a much larger number of electrons,
study provides a qualitative understanding of the interact
effects in the magnetic properties of the system.

We calculate the ground-state energyEg , magnetization,
and magnetic susceptibility as a function of the relevant
rameters of the system, namely, the temperatureT, potential
rangek, and magnetic fieldB. Our results show discontinui
©2004 The American Physical Society11-1
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ties in Eg(B) at T50, as previously reported.23 These fea-
tures are smoothed out for finite temperature.

We show that the magnetic response of a two-dimensio
electronic cavity depends strongly on the electron-elect
interaction and the magnetic susceptibility shows an osc
tory behavior similar to de Haas–von Alphen oscillations
metals. Previous theoretical works had found that such a
havior occurs for noninteracting systems as well.21,24,25We
show that both the amplitude and the period of such osc
tions are modified by the electron-electron interaction.

We discriminate the kinetic, direct, and exchange con
butions to the total magnetic susceptibility. The direct a
exchange contributions also oscillate but with a differe
phase compared to the kinetic contribution. We also find t
the susceptibility dependence on temperature and interac
strength displays nonuniversal features which are stron
dependent on the parameters. A slight enhancement o
zero-field susceptibility is seen as the number of electr
increases. The interaction-induced magnetic susceptib
shows paramagnetic and diamagnetic phases both as a
tion of temperature and interaction strength. A rather un
pected result is the behavior of the exchange interaction c
tribution to x(B), which becomes larger than the dire
contribution as the interaction strength increases.

The paper is organized as follows. In Sec. II we pres
the model system considered in this study and the mean-
solution in the SCHF approximation. The main results
shown in Sec. III. Section IV brings the final remarks a
conclusions. We also include an appendix where we pre
some specific details of the SCHF numerical implementa
in the presence of discrete symmetries.

II. THE MODEL

We consider the problem ofN two-dimensional~2D! in-
teracting electrons in a confining potential subjected to
external magnetic fieldB perpendicular to the electron sy
tem. Since we study the orbital contribution to the magn
zation, we are allowed to simplify the problem and treat
electrons as spinless. The model Hamiltonian reads as

H5 (
n51

N

h~rn!1 (
n,n8

N

v~rn ,rn8!, ~1!

where rn indicates the position of thenth electron. The
single-particle Hamiltonianh is given by

h~r !5
1

2m*
Fp1

e

c
A~r !G2

1u~r !, ~2!

wherem* is the electron effective mass. The vector poten
A is chosen in the symmetric gauge, namely,A
5(2By/2,Bx/2,0). The magnetic field is expressed in un
of F/F0, whereF5BA is the magnetic flux through th
system areaA and F05hc/e is the unit quantum flux. We
choose the confining potentialu(r ) as the 2D square well o
sideL that closely models the experiment.5

To account for screening effects the electron-electron
teractionv is modeled by19
07531
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v~r ,r 8!5
e2

4pe0e r

e2kur2r8u

ur2r 8u
, ~3!

wherek gives the effective interaction range ande r is the
background dielectric constant. Fork50 there is no screen
ing and the bare Coulomb interaction is recovered. Ev
though v(r ,r 8) in Eq. ~3! is different from the screened
electron-electron interaction in the 2DEG when effects of
finite layer thickness and image charges are taken
account,26 the Yukawa potential captures the main features
a more realistic interaction and has the advantage of be
computationally easier to handle.27 We recall that the semi-
classical approach is forced to use zero-range residual in
action in order to make the calculations feasible. By do
so, one loses a handle on the exchange interaction.

For a square dot of sideL, the potential energy scales wit
1/L while the kinetic energy scales with 1/L2. Hence, asL is
increased, the potential energy becomes increasingly m
important. It is then useful to introduce23 an ‘‘effective
strength’’ parameterL/aB* , where aB* 5\2(4pe0e r)/m* e2

is the effective Bohr radius. The standard dimensionl
parameter that quantifies the ratio between electronic po
tial and kinetic energies isr s , which in 2D readsr s

2

5A/@Np(aB* )2#. Hence, L/aB* and r s are related asr s

5(L/aB* )/ApN. We consider here a range of paramete
such that 1.5,r s,2, within the typical values ofr s in the
experiments.5,15

We calculate the ground-state energy in the SCHF
proximation for finite temperatures. The SCHF equatio
read as28–30

h~r !f i~r !1(
j

FnjE dr 8f j* ~r 8!v~r ,r 8!f j~r 8!Gf i~r !

2(
j

FnjE dr 8f j* ~r 8!v~r ,r 8!f j~r !f i~r 8!G
5« i

HFf i~r !, ~4!

where the sums run over all HF orbitals. Hereni

5„exp@(«i
HF2m)/kBT#11…21 is the Fermi occupation num

ber of thei th HF orbital with corresponding wave functio
f i(r ) and energy« i

HF. As standard, the chemical potentialm
is determined by requiring thatN5( ini . We truncate the
number of orbitals and take only theM'2N lowest-energy
states into account.

The SCHF ground-state energy is given by

Eg
HF[THF1Vd

HF2Vx
HF

5(
i

ni^f i uhuf i&

1
1

2 (
i , j

ninj~^f if j uvuf if j&2^f if j uvuf jf i&!,

~5!

where theuf i& are the HF orbitals, self-consistent solutio
of Eq. ~4! andTHF, Vd

HF, andVx
HF are the kinetic, direct, and
1-2
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FIG. 1. Single-particle Hartree-Fock energ
levels « i

HF as a function of the magnetic flux
F/F0 for ~a! T50 and ~b! kBT5D. Here N
510 andr s51.22.
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exchange contributions to the ground-state energy, res
tively. Actually, it is numerically less expensive to compu
Eg

HF as

Eg
HF5

1

2 (
i

ni~« i
HF1^f i uhuf i&!. ~6!

The calculations of the matrix elements were done num
cally, with no further approximations other than setting t
numerical precision. The number of elements grows asM4,
whereM is the basis size. For a typical calculation where
take M;50, a numerical evaluation of about 107 four-
dimensional integrals is required, a task far from trivial.
reduce that number, we have used an appropriate sym
trized basis on which the HF potential takes a block-diago
form. Furthermore, we use properties of the Yukawa-likee-e
interaction to reduce the four-dimensional integrals to a
ries of one-dimensional integrals on the relative polar an
These steps are described in Ref. 19. Details on the HF
merical implementation in the presence of discrete sym
tries are found in the Appendix.

III. SINGLE-PARTICLE PROPERTIES

The HF single-particle spectral properties play a ma
role in determining the system magnetization and magn
susceptibility. In this section we present a general discus
of the model Hamiltonian single-particle spectrum th
serves as a guide to interpret the magnetic results that fol

Figure 1 shows the single-particle HF spectrum as a fu
tion of the magnetic fluxF/F0 for N510 electrons with
r s51.22 for T50 ~left! and kBT5D ~right!. Here and
throughout the paperD is the single-particle mean leve
spacing. Energy is given in units of\2/(m* L2).

A very interesting feature displayed in Fig. 1 is the jum
in « i

HF(B) for theT50 case. These discontinuities appear
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other values ofN as well and are related to sudden anticro
ings at Fermi energy, i.e., involving the levels«N

HF and«N11
HF .

For T50 the mean field selects theN lowest states. Hence
by parametrically moving through a level crossing, the ch
acter of the last occupied state is suddenly changed, and
the mean field. Narrow crossings, with a gapd«!D, that
lead to sudden and very strong changes in the last occu
mean-field state are responsible for the jumps.

The jumps disappear already for very low temperatures
the order ofkBT'd«!D, as illustrated in Fig. 1~b!. For this
reason, they are of very limited relevance for the experime
we are interested in, wherekBT@D. However, Fermi energy
anticrossings explain similar features reported in the stud
ground-state properties of quantum dots in the Coulo
blockade regime, which remained so far not understoo23

Albeit also blurred by temperature, the latter case deals w
transport where the ground-state many-body wave func
matters and thus the Anderson orthogonality catastrophe
come into play.31,32

It is worth mentioning that, in the absence of magne
field, for all values ofr s investigated, namely, 1.0–2.5, th
single-particle levels never show a clear nearest-neighbo
pulsion. This is an additional validation for using an int
grable dynamics to describe such systems.7–10

IV. GROUND-STATE PROPERTIES

The magnetizationm(B) and the magnetic susceptibilit
x(B) of an electronic cavity are obtained from

m~B!52
]V

]B
and x~B!52

1

L2

]2V

]B2
. ~7!

In turn, the grand canonical potentialV is directly computed
from the ground-state HF energy byV5Eg

HF2TS2Nm,
whereS is the entropy andm is the chemical potential, both
1-3
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DIAS DA SILVA, LEWENKOPF, AND STUDART PHYSICAL REVIEW B69, 075311 ~2004!
functions ofB. The derivatives in Eq.~7! were calculated by
a standard three-point numerical derivation.

In the remainder of the paper, magnetization is given
units of the effective Bohr magnetonmB* 5e\/2m* c and the
magnetic susceptibility is expressed in units of the Land
susceptibility, namelyuxLu5e2/(12pm* c2). For simplicity,
the noninteracting case is referred to as ‘‘L/aB* 50.’’

A. Exchange contribution

Following Eq.~5!, one can distinguish different contribu
tions to the magnetic susceptibility, namely,

x5xkin1xd1xx ~8!

arising from the kinetic, direct, and exchange-interact
terms of the HF ground-state energyEg

HF(B). As shown be-
low, it is instructive to compare the latter with the suscep
bility computed for noninteracting electrons in a square c
ity, xnonint.

The zero-field susceptibilityx0(T)[x(B50,T) is ob-
tained for differentN up to N520 atkBT5D/2. The results
are shown in Fig. 2. The noninteracting susceptibilityxnonint

~filled circles! oscillates with increasing amplitude asN is
varied ~or equivalently, as a function ofkFL). This is in
agreement with the previous semiclassical calculations.7–10

As we include the electron-electron interaction, keepingr s
'1.5 for all N, the interacting susceptibility~open circles!
sensibly deviates from the noninteracting case. We find
such deviations are mainly caused by the exchange cont
tion to the susceptibility. While the kinetic contributio
~squares! resembles the noninteracting situation, the e
change term~triangles! exhibits rather large fluctuations
which are mainly responsible for the deviations in the to
interacting susceptibility.

FIG. 2. Top panel: zero-field susceptibilityx0 as a function of
the particle numberN for the noninteracting~thick solid line with
filled circles! and r s51.5 ~open circles! cases atkBT5D/2 andk
50. Middle panel: the same for the kinetic term~open squares!.
Bottom panel: the same for the exchange contribution~open tri-
angles! to the magnetic susceptibility.
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The exchange contribution to the susceptibility increa
with the interaction strengthL/aB* and is already of the orde
of the kinetic contribution forr s'1.5. This is illustrated in
Fig. 3, where we chose a maximum of the noninteract
x0

nonint(N), namely,N520 and varyL/aB* . For low values of
L/aB* , the paramagnetic kinetic termxkin ~filled squares!
dominates and stays almost constant while the total sus
tibility decreases. This behavior of the total susceptibility
dictated by the exchange termxx, which is initially of the
order of the direct contribution. As the interaction streng
increases, both absolute values of the direct and excha
terms increase. It is interesting to notice thatxx overcomes
xd for L/aB* '5 (r s'0.63) and is of the same order as th
kinetic term forL/aB* '10 (r s'1.26).

This is a somewhat unexpected result, since the di
contributionVd

HF to the ground-state energy is three to fo
timeslarger than the exchange contributionVx

HF in this range
of r s . It turns out, however, that theVx

HF is more sensitive to
variations of the magnetic field thanVd

HF, giving rise to the
large exchange contribution tox0.

Many-body correlations, absent in mean-field approxim
tions, screen the two-body residual interaction. The con
quent lack of screening of the exchange term in the
scheme is well known to be one of its main drawbac
Hence, one might ask if the large exchange contribution
report survives when screening is properly accounted fo
is necessary to go beyond the HF level to answer this qu
tion, which is not within the scope of this work. Howeve
one can also interpretkÞ0 as a mimic of screening due t
electron-electron correlations. With this picture in mind, w
can provide a partial answer to the raised question, since
also observe large exchange contributions tox0, even for
aB* .k21 ~not explicitly shown!. We conclude that signifi-
cant exchange contributions tox0 are not an artifact of the
pure Coulomb interaction.

FIG. 3. Zero-field susceptibilityx0 ~circles! as a function of
interacting strengthL/aB* for Coulomb interaction andN520 elec-
trons with kBT5D/2. Kinetic ~squares!, direct interaction~filled
triangles!, and exchange interaction~empty triangles! contributions
to x0 are shown for comparison.
1-4
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B. Magnetic-field effects

The electron-electron interaction also induces some n
trivial effects in the magnetic-field dependence of both
magnetization and the magnetic susceptibility. The results
m(B) and x(B) in the Coulomb (k50) case are shown in
Figs. 4 and 5 for differentN and L/aB* . In this section we
takekBT of the order ofD to wash out effects due to leve
crossings, while preserving the quantum effects due to l
energy-range spectral correlations.

In the noninteracting case, the magnetization curves
different N values are very similar. For low fields, small o
cillations arise and, asF increases, a positive magnetizatio

FIG. 4. Magnetizationm(B) as a function ofB5F/L2 for
L/aB* 50 ~circles!, 2 ~diamonds!, 5 ~filled triangles!, and 8 ~open
triangles!. Here N510 and kBT5D. Inset: N520 for L/aB* 50
~circles!, 3 ~diamonds!, 5 ~filled triangles!, and 10~open triangles!
at kBT5D/2.

FIG. 5. Magnetic susceptibilityx/uxLu as a function of the mag
netic flux for N55 ~top! and N510 ~bottom! with L/aB* 50
~circles!, 2 ~diamonds!, 4.7 ~filled triangles!, and 8~open triangles!.
The temperature iskBT5D.
07531
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phase appears. When the interaction between the electro
included, the magnetization curves forN510 andN520 are
quite different~see Fig. 4!. In particular, forL/aB* 510, the
orbital magnetization is about four times larger forN520
than forN510. This suggests that large systems can disp
strong orbital magnetization effects, in line with the expe
mental results.15

For N55, a clear oscillatory behavior is seen onx(B)
~see top of Fig. 5!. The amplitudes are of orderuxLu and, as
the interaction strength is increased, both the amplitude
the frequency also increase. This behavior is similar to the
Hass–von Alphen effect observed in metals. In that ca
both the amplitude and the frequency ofx(B) oscillations
are proportional to the chemical potential of the system.
the single-particle effective potential approximation, an
crease in the interaction strength is equivalent to an incre
in the effective chemical potential of the HF levels, whic
corroborates the analogy.

The oscillations are modified with increasing number
particles, see bottom panel of Fig. 5. For larger values
L/aB* , x(B) displays fluctuations nearF/F0510 due to
crossings between the Hartree-Fock single-particle state
the Fermi level, as discussed in Sec. III. Notice that althou
the level crossing jumps in the single-particle spectrum se
to have already disappeared atkBT5D, see Fig. 1, they are
greatly enhanced inx(B), due the second derivative in Eq
~7!.

We observe that the exchange part plays an important
in the computation of theB dependence on the magnet
susceptibilityx. In Fig. 6 all contributions are shown as
function of F/F0 for a lower temperature, namely,kBT
5D/2 and r s50.9. The pronounced paramagnetic pe
aroundF/F0'10 ~also observed at the bottom panel of Fi
5! is mainly due to the exchange contributionxx. Notice that
frequentlyxd andxx give contributions of opposite signs a
F/F0 is varied.

FIG. 6. Magnetic susceptibilityx/xL ~thick solid line! as a func-
tion of F/F0 for N510 atkBT5D/2 andL/aB* 55.0. The symbols
correspond to the kinetic~circles!, direct ~filled triangles!, and ex-
change contributions~open triangles!.
1-5
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It is worth mentioning that these results are somew
different from those obtained by the exact diagonalization
the two-electron case,19 where the electron spin plays an im
portant role on the orbital properties of the system. In t
situation, singlet-triplet transitions give rise to low
temperature peaks of about 3uxLu of magnitude in the orbita
susceptibility but no oscillatory behavior is found onx(B).
Also, magnetizationm(B) in the exactN52 case is always
negative, even in the large field regime.

In Fig. 7, we compare the susceptibilities in the case
Coulomb and short-range potentials. In order to get a qu
tative comparison, we consider the strong-screening reg
usingk215L/10.

In this short-range limit, the interaction between the el
trons is exponentially suppressed for distances larger than
screening lengthk21 and the overall magnetic respons
which is averaged over the whole dot, is then similar to
noninteracting case. This can be clearly seen in Fig. 7, wh
the curves fork215L/10 are quite similar to those fo
L/aB* 50 depicted in Fig. 5, showing that the shielding of t
electron-electron interaction is quite effective and a nonin
acting picture is a good approximation for the thermod
namic properties of the system.

For such low screening lengths, the Fermi wavelen
lF;pL/AN is larger thank21 by one order of magnitude
In the regimelF@k21, the 2D screened interaction can b
well approximated by ad-type contact interaction.14 Our re-
sults show that the noninteracting picture captures the m
features of such approximation in the Hartree-Fock sche

C. Temperature dependence

The zero-field susceptibility decays with temperature,
expected. The decay rate is rather fast, being well appr
mated by an exponential for temperatures larger than
highest occupied orbital–lowest unoccupied orbital gap.
instance, whenkBT/D53, x0 is already negligible as com
pared to theT50 value~see Fig. 8!. An exponential decay o

FIG. 7. Magnetic susceptibilityx(B) for different interaction
ranges@Coulomb ~circles! and k215L/10 ~triangles!# for N55
~top! andN510 ~bottom!.
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x0 with T is consistent with previous theoretical works,8,10

but at odds with the experiment5 ~in both casesN@1). To
the best of our knowledge, the only mechanism that gi
rise to a slow susceptibility decay,33 namelyT21/2, requires
the thermal length to be smaller than the sample sizeL. Un-
fortunately, the experimental parameters5 hardly meet this
large-temperature regime. This problem persists.

We deal with quantum dots with less than 102 electrons,
where it is standard to reach temperatures of the order of
mean level spacing. This regime allows for a better exp
mental study ofx(T), and, hence, a more detailed discussi
is in order. In the intermediate range ofkBT;D, nonuniver-
sal features arise. As an example, the inset of Fig. 8 sh
our result for a dot withN55 electrons:x0(T) is negative
~except for T;0) and has pronounced minima atkBT
'0.5D, even in the noninteracting case. ForN510, x0(T)
displays both positive~for kBT,0.4D and kBT.D) and
negative values (0.4D,kBT,D), indicating a diamagnetic-
paramagnetic transition. In both cases, the interacti
induced susceptibility,x2xnonint, is positive, indicating a
paramagnetic contribution due to the electron-electron in
action.

A diamagnetic-paramagnetic transition for increasingN
was also reported in previous theoretical results. ForN52,
exact diagonalization results19 show thatx0(T) is diamag-
netic for a temperature range up to 10D. On the other hand
semiclassical analysis7,8,10 suggests a paramagneticx0(T)
for N;100. Therefore, a diamagnetic-paramagnetic tran
tion is expected in the intermediate-particle-number regim

V. CONCLUDING REMARKS

We have considered the ground-state properties of a
tem ofN interacting electrons confined in a 2D geometry a
subjected to a perpendicular magnetic field in the fini
temperature SCHF approximation. The magnetic suscept
ity was calculated as a function of the relevant parameter
the system~magnetic field, number of electrons, temperatu
and strength and range of the particle interaction!. The

FIG. 8. Temperature dependence of the zero-field susceptib
x0(T) for N510 andL/aB* 50 ~diamonds!, 2 ~squares!, and 5~tri-
angles!. In the inset, the same is shown forN55 with an additional
curve forL/aB* 58 ~circles!.
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ground-state energy was obtained for both the Coulomb
teraction and the short-range Yukawa potential.

Our results show that the electron-electron interaction
troduces nontrivial effects in the magnetic properties of
system. The magnetic susceptibility shows de Haas–
Alphen-like oscillations which are enhanced as the inter
tion strength increases. The magnetization increases w
more electrons are added in the dot, which indicates th
strong orbital magnetization should be expected for lar
systems. For a higher number of electrons, new featu
arise, including strong diamagnetic fluctuations as a func
of the magnetic field.

The zero-field susceptibilityx0(T) shows both paramag
netic and diamagnetic phases as a function of the temp
ture. We found thatx0(T)→0 asT increases and the susce
tibility induced by interaction is positive, yielding
paramagnetic contribution tox0 irrespective of the value o
N. However, nonuniversalN-dependent features appear
the intermediate-temperature range ofkBT'D.
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APPENDIX A: HARTREE-FOCK EQUATIONS IN MATRIX
FORM

We solve the HF self-consistent equations~4! iteratively
by diagonalization. The eigenfunctions of the square billia
of side lengthL, namely,

wa~x,y!5
2

L
sinS mp

L
xD sinS np

L
yD , ~A1!

wherea[(m,n), separated into the square four-point sy
metry classes, form the basis set$ca%. The latter are also
eigenbasis of the operatorRp/4 that rotates the coordinates b
p/4. The eigenvaluesRp/4 , namely,ca511,21,1 i , and
2 i , label the square billiard symmetry classes. More det
can be found in Ref. 19.

The bottleneck for the HF method is the calculation of t
two-body electron interaction integrals, namely,

I agbd[E drE dr 8ca

ca* ~r !cg

cg* ~r 8!v~r ,r 8!cb
cb~r !cd

cd~r 8!.

~A2!

Here the advantage of separating the basis into symm
classes comes into play. Many of the matrix elementsI agbd
are zero, depending on the single-particle symmetry cla
involved. The ‘‘selection rule’’ can be summarized as fo
07531
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try
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lows: given the single-particle symmetry class of the sta
ca

ca , cb
cb , cg

cg , andcd
cd , the matrix elementI agbd will be

only nonzero if19

ca ^ cb5cg ^ cd . ~A3!

Therefore, only states with the same two-particle symme
class are coupled by the interaction potential.

Let us now express the HF equations in terms of the tw
body residual interaction integralsI. The HF orbital wave
functions read

f i~r !5 (
a51

M

Ciaca
ca~r !. ~A4!

We typically truncate the basis set taking at least theM
550 lowest square billiard energy states. The Roman lab
refer to the HF orbitalsf, whereas the Greek ones to th
basis setc. The resulting matrix form of Eq.~4! is

(
b

~hab1vab
HF!Cib5« i

HFCia . ~A5!

Herevab
HF5vab

d 2vab
x , which are given by

vab
d 5E drE dr 8r~r 8,r 8!ca

ca* ~r !v~r ,r 8!cb
cb~r !,

vab
x 5E drE dr 8r~r ,r 8!ca

ca* ~r !v~r ,r 8!cb
cb~r 8!, ~A6!

with the density matrixr given by

r~r ,r 8!5(
i 51

M

nif i~r !f i* ~r 8!, ~A7!

whereni is the Fermi occupation number of thei th HF or-
bital. Notice that sincer does not distinguish between di
ferent symmetry classes, the HF mean field can effectiv
mix them. Hence, the HF potential reads

vab
HF5vab

d 2vab
x 5 (

g51

M

(
d51

M

Dgd~ I agbd2I agdb!, ~A8!

where, by introducing

Dgd[(
i 51

M

niCig* Cid , ~A9!

we eliminate one sum over the single-particle orbitals. T
computation of Eq.~A8! is speeded up by exploring th
sparse nature ofI agdb .

Notice that the HF potential matrix elements will be,
the general case, complex numbers since the basis itse
complex. The remaining of the numerical implementation
very standard. The convergence of the ground-state ene
is obtained at iterationn if uEn11

HF 2En
HFu/En

HF,1025.
1-7
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5L.P. Lévy, D.H. Reich, L. Pfeiffer, and K. West, Physica B189,

204 ~1993!.
6B. Shapiro, Physica A200, 498 ~1993!.
7S.D. Prado, M.A.M. de Aguiar, J.P. Keating, and R. Egydio

Carvalho, J. Phys. A27, 6091~1994!.
8F. von Oppen, Phys. Rev. B50, 17 151~1994!.
9O. Agam, J. Phys. I4, 697 ~1994!.

10D. Ullmo, K. Richter, and R.A. Jalabert, Phys. Rev. Lett.74, 383
~1995!; K. Richter, D. Ullmo, and R.A. Jalabert, Phys. Rep.276,
1 ~1996!.

11E. Gurevich and B. Shapiro, J. Phys. I7, 807 ~1997!.
12M.O. Terra, M.L. Tiago, and M.A.M. de Aguiar, Phys. Rev. E58,

5146 ~1998!.
13K. Richter, D. Ullmo, and R.A. Jalabert, Phys. Rev. B54, R5219

~1996!; J. Math. Phys.37, 5087~1996!.
14D. Ullmo, H.U. Baranger, K. Richter, F. von Oppen, and R.

Jalabert, Phys. Rev. Lett.80, 895 ~1998!.
15M.P. Schwarz, D. Grundler, M. Wilde, Ch. Heyn, and D. He

man, J. Appl. Phys.91, 6875~2002!.
16P.A. Maksym and T. Chakraborty, Phys. Rev. B45, 1947~1992!.
17M. Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B45, 1951

~1992!.
07531
18C.E. Creffield, J.H. Jefferson, S. Sarkar, and D.L.J. Tipton, Ph
Rev. B62, 7249~2000!.

19L.G.G.V. Dias da Silva and M.A.M. de Aguiar, Phys. Rev. B66,
165309~2002!.

20M.M. Fogler, E.I. Levin, and B.I. Shklovskii, Phys. Rev. B49,
13 767~1994!.
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