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Effects of electron-electron and electron-phonon interactions in weakly disordered conductors
and heterostructures
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We investigate quantum corrections to the conductivity due to the interference of electron-electron~electron-
phonon! scattering and elastic electron scattering from impurities and defects in weakly disordered conductors.
The interference corrections are proportional to the Drude conductivity and have various temperature depen-
dences. The electron-electron interaction results in aT2 ln T correction in bulk conductors. In a quasi-two-
dimensional~quasi-2D! conductor,d,LT5vF /T (d is the thickness, andvF is the Fermi velocity!, with 3D
electron spectrum (pFd.1) this correction is linear in temperature and differs from that for 2D electrons@G.
Zalaet al., Phys. Rev. B64, 214204~2001!# by a numerical factor. In quasi-one-dimensional conductors with
3D and 2D electron spectra~a wire with radiusr ,LT and a strip with widthb,LT), temperature-dependent
corrections are proportional to lnT. The value and sign of the corrections depend on the strength of the
electron-electron interaction in the triplet channel. The electron interaction via exchange of virtual phonons
gives theT2 ln T correction. In bulk semiconductors the interaction of electrons with thermal phonons via the
screened deformation potential results in aT6 term and via unscreened deformation potential leads to aT2

term. For a two-dimensional electron gas in heterostructures, the screened deformation potential gives rise to
a T4 term and the unscreened deformation potential leads to aT2 ln T term. At low temperatures the interfer-
ence of electron-electron and electron-impurity scattering dominates in the temperature-dependent conductiv-
ity. At higher temperatures the conductivity is determined by the electron-phonon-impurity interference, which
prevails over pure electron-phonon scattering in a wide temperature range, which extends with increasing
disorder.

DOI: 10.1103/PhysRevB.69.075310 PACS number~s!: 72.10.2d
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I. INTRODUCTION

Interference of electron scattering mechanisms chan
drastically the transport properties of disordered conduct
It violates the Mathiessen rule, according to which the c
tributions to conductivity due to the random potential a
electron-electron~electron-phonon! interactions are additive
Additional interference terms in conductivity have vario
temperature dependences. In the diffusion limitTt!1 (t is
the elastic mean free time!, Altshuler-Aronov corrections to
conductivity have been intensively studied in thre
dimensional conductors (T1/2 term! and in two-dimensiona
~2D! structures (lnT term!.1

Interference of electron-electron~electron-phonon! scat-
tering and elastic scattering from the random potential a
modifies significantly the electron transport in the quasib
listic limit: Tt@1 for electron-electron interactions andqTl
@1 for electron-phonon interactions (qT is the momentum of
a thermal phonon, andl 5vFt is the electron mean fre
path!. In weakly disordered conductors the interference c
rections are always proportional to the Drude conductiv
Electron-phonon-impurity interference in metals was th
retically studied in our paper.2 In the quasiballistic limitT
.u/ l (u is the sound velocity!, the interference correction t
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conductivity is quadratic in the electron temperature,

dephs

s3
5F12

p2

16
22S ul

ut
D 3G 2p2b lT

2

3eFpFul
, ~1.1!

wheresn5e2vF
2tnn /n is the Drude conductivity in the cor

responding dimensionalityn, eF and pF are the Fermi en-
ergy and momentum,ul and ut are the longitudinal and
transverse sound velocities,b l is the constant of the electron
phonon interaction~see Sec. IV!, andnn is the electron den-
sity of states. It is interesting that the longitudinal phono
give rise to a positive correction to conductivity, while tran
verse phonons result in a negative correction, which do
nates in the temperature-dependent conductivity due t
stronger coupling of transverse phonons. ThisT2-term pro-
portional to the Drude conductivity has been observed i
wide temperature range, from 20 K up to 200 K, in Nb, A
Be ~Ref. 3!, NbC ~Ref. 4!, NbN ~Ref. 5!, and W ~Ref. 6!
films.

The electron-phonon interaction via the piezoelectric p
tential in weakly disordered heterostructures was conside
in Ref. 7. It has been found that at low temperaturesT< 0.5
K, where the piezoelectric potential is strongly screened,
interference correction is given by
©2004 The American Physical Society10-1
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dpzs

s2
.2

~eh14!
2

4ru3

T2

~k2vF!2 , ~1.2!

whereh14 is the piezoelectric constant,k2
21 is the screening

length, andr is the density.
Investigation of the electron-electron interaction

weakly disordered 2D electron systems has a long story.7–11

After a series of improvements, all exchange~Fock! and di-
rect ~Hartree! processes were taken into account in the fra
of the Landau Fermi-liquid theory in Ref. 11. In the qua
ballistic limit, Tt.1, the correction to the conductivity is

dees

s2
5S 11

3F0
s

11F0
sD T

eF
, ~1.3!

whereF0
s is the Fermi-liquid parameter describing intera

tion in the triplet channel. The results of recent measu
ments in GaAs/GaAsAl heterostructures12,13 and Si metal-
oxide-semiconductor field-effect transistors14,15~MOSFET’s!
have shown good agreement with the theory11 at subkelvin
~GaAs/GaAlAs! and helium ~Si! temperatures. At highe
temperatures, the electron-phonon interaction domin
over electron-electron scattering. While electron-phonon p
cesses are also very sensitive to disorder, the deforma
electron-phonon interaction in the quasiballistic regime
not been studied to date.

We would like to stress that the interference correctio
due to the electron-phonon or electron-electron interacti
always originate from theelastic partof the corresponding
collision integral.1,2,11Therefore, the interference correction
depend on the electron temperature only. Early theoret
papers on the electron-phonon-impurity interference con
ered inelastic scattering from vibrating impurities and e
tracted theT2 correction to conductivity from the inelasti
part of the collision integral.16 However, as is shown in ou
previous work,2 such terms cancel out and this is the reas
why theT2 term is independent of the phonon temperatu

In the current paper we continue studying weakly dis
dered conductors. We calculate various interference cor
tions not considered before. In Sec. II we start with the ba
equations describing interference phenomena in elec
transport. In Sec. III we calculate the electron-electron c
rections to the conductivity in various dimensions with r
spect to the effective interaction. The crossover to lower
mensionality occurs when one of the conductor dimensi
becomes smaller thanqc

21 , where qc is the characteristic
value of the transferred electron momentum. For
electron-electron interaction in weakly disordered cond
tors, qc

21 is of the order ofLT5vF /T. At subkelvin and
helium temperatures,LT;1210 mm, and the transition to
the quasi-two-dimensional case happens in relatively th
films with three-dimensional electron spectra and elect
screening. The transition to the quasi-one-dimensional c
occurs in wires of radiusr;LT and in 2D conducting chan
nels of width b;LT . We will show that the interference
corrections to the conductivity are mainly determined by
sample dimensionality with respect to the effective inter
07531
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tion. The dimensionality of the electron spectrum ju
slightly changes the numerical coefficients of the interf
ence corrections.

In Sec. IV we calculate the corrections to the conductiv
due to the electron-phonon interaction. We study the inter
tion of electrons by means of virtual phonons and the int
action of electrons with thermal phonons in bulk semico
ductors and low-dimensional structures. Consider
electron-phonon scattering, we will assume good match
between the conducting and buffer layers and limit our c
sideration to three-dimensional phonons. In the Conclusio
we summarize our main results, compare different terms,
discuss experimental identification of interference contrib
tions to conductivity.

II. BASIC EQUATIONS

The effects of the interference between scattering mec
nisms on electron transport can be studied by the linear
sponse method as well as by the quantum transport equa
Both methods are based on the digrammatic technique.
linear response method requires many diagrams to be
sidered, while the transport equation deals only with elect
self-energy diagrams but includes specific terms in the fo
of Poisson brackets.2,7

In this paper we investigate the interference electron p
cesses, which are characterized by the momentum tran
much smaller than the Fermi momentum. These proce
can be described in the frame of the Landau Fermi-liq
theory. The corresponding self-energy diagrams for wea
disordered systems are shown in Fig. 1 and the diagram
the linear response method are presented in Fig. 2. The
sults of Refs. 2, 7, and 11, which are briefly reproduced
the Appendix, show that in the quasiballistic limit the corre
tion to conductivity may be presented as

FIG. 1. Electron self-energy diagrams in the quasiballistic lim
The wavy line stands for electron-electron or electron-phonon s
tering, a dotted line stands for elastic electron scattering from
random potential, and a straight line stands for the electron Gr
function.

FIG. 2. Diagrams of the conductivity in the linear respon
method.
0-2
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d ints
(k)

sn
52E dv

2p

dkq

~2p!k

f ~v!

v2 Im Yn
(k)~q,v!, ~2.1!

wherek is the dimensionality of the conductor with respe
to the interaction andn is used for the dimensionality of th
electron spectrum. As we discussed in the Introduction,
dimensionality with respect to the effective electron-elect
interaction is determined by the characteristic lengthLT
5vF /T.

The functionf (v) is given by

f ~v!5
]

]v Fv cothS v

2TD G . ~2.2!

The functionY(q,v) is given by

Yn
(k)~q,v!5~vt!2Vn

R~q,v!Fn
(k)~q,v!, ~2.3!

where Vn
R(q,v) is the retarded propagator describin

electron-electron or electron-phonon interactions, a
F(q,v) is given by

Fn
(k)~q,v!52

n

vF
2t2 F K K g2~vFe!2

~qvF2v2 i0!2L
v
L

q

2K K g~vFe!2

qvF2v2 i0L
v
L

q

K g

qvF2v2 i0L
v

1K K gvFe

qvF2v2 i0L
v

2L
q
G . ~2.4!

In Eq. ~2.4!, g is the vertex of the electron-electron o
electron-phonons interaction,e5E/E is the unit vector in the
direction of the electric field, and̂&v(q) stands for averaging
over the directions ofvF andq.

For isotropic conductors (n5k), the averaging over thep
and q directions is reduced to the averaging over the an
f, the angle betweenp andq. In this case, Eq.~2.4! can be
simplified,

t2Fn
(n)~q,v!52K g2

~qvF2v2 i0!2L
f

1 K g

qvF2v2 i0L
f

2

2 K qvF

qvF

g

qvF2v2 i0L
f

2

. ~2.5!

Note that in this form Eq.~2.5! is applicable to any dimen
sionality of the electron system,

^c~qvF!&f55
E

21

1

c~qvFx!
dx

2
, 3D,

E
0

2p

c~qvF cosf!
df

2p
, 2D,

1

2 (
x561

c~qvFx!, 1D,

~2.6!

wherex5cos(f).
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In the next sections we use the equation derived in
section to calculate the quantum corrections to conducti
due to electron-electron and electron-phonon interaction
weakly disordered conductors of various dimensionality w
respect to the electron spectrum (n) and with respect to the
interaction (k).

III. ELECTRON-ELECTRON INTERACTION

As we discussed in the Introduction, the effecti
electron-electron interaction in weakly disordered conduct
is characterized by a momentum transfer of the order
T/vF , which is much smaller than the Fermi momentum~see
also calculations below!. Therefore, the electron transpo
can be described in the frame of the Landau Fermi-liq
theory.11 In the singlet channel the bare interaction is giv
the sum of the Coulomb potential,

V0~q!55
4pe2

q2 , 3D,

2pe2

uqu
, 2D,

e2 ln
1

q2r 2 , 1D,

~3.1!

and the Fermi-liquid interaction,

VF'2F0
p/nn . ~3.2!

The screened interaction in the random phase approxi
tion, which is justified for small momentum transfers,
given by

Vn
R(A)~q,v!5

nnV0~q!2F0
p

nn2@nnV0~q!2F0
p#Pn

R(A)~q,v!
, ~3.3!

wherePR(A)(q,v) is the polarization operator.
In the absence of a magnetic field and spin-orbit scat

ing the screened propagator in the triplet channel may
taken in the form11

Vn
R(A)~q,v!52

3F0
s

nn2F0
sPn

R(A)~q,v!
, ~3.4!

whereF0
s is the Fermi-liquid constant. The above equati

assumes that the Fermi-liquid coupling is independent
electron momenta. Restrictions of this approximation w
discussed in Ref. 11.

In Secs. III A and III B we calculate the conductivit
corrections in the singlet channel; the triplet-channel corr
tions will be studied in Sec. III C.

A. Systems with a three-dimensional spectrum

First we consider a conductor with a three-dimensio
electron spectrum. For 1/t!v&qvF!eF , the polarization
operator is given by
0-3
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P3
R~q,v!52n3F12

v

qvF
arctanhS qvF

v1 i0D G , ~3.5!

where the branch of arctanh(y) is chosen as

arctanh~y!52
p i

2
1

1

2
ln

y11

y21
, y.1. ~3.6!

Thus, the screened Coulomb potential may be presented

V3
R~q,v!5

1

n3
S 12F0

p
q2

k3
2D

q2

k3
2 1S 12F0

p
q2

k3
2D F12

arctanh~qvF /v!

qvF /v G .

~3.7!

wherek3
254pe2n3 andn35mpF /p2. In the limit of strong

screening,k3@q, the screened potential is independent
the form of the bare potential~the unitary limit!.

Taking into account that for the electron-electron inter
tion g51 and calculating integrals in Eq.~2.5!, we find

F3
(3)~q,v!5

1

t2 F 1

~qvF!22~v!2 1S arctanh~qvF /v!

qvF
D 2

2
1

~qvF!2 S 12
arctanh~qvF /v!

qvF /v
D 2G . ~3.8!

SubstitutingF(q,v) andVR(q,v) into Eq.~2.1!, we get the
correction to the conductivity in the singlet channel. For si
plicity we present further results in the limitk3@q. Then,

dee
s s

s3
52E dv

2p

f ~v!

v2 E
uvu/vF

2pF q2 dq

2p2 Im Y3
(3)S qv

v D , ~3.9!

where

Y3
(3)~y!5

1

n3

1

12arctanh~y!/y F 1

y221
1S arctanh y

y D 2

2S 1

y
2

arctanh y

y2 D 2G . ~3.10!

Note that the low limit in the integral in Eq.~3.9! is cho-
sen taking into account that the imaginary part ofY(qv/v)
exists only aty5qvF /v>1.

The functionY3(qvF /v) has the following asymptotes:

Im Y3
(3)~y!5

1

n3H S p3

8
22p D 1

y3 , y→`,

2p

@ ln~y21!#2

1

~y21!
, y→1.

~3.11!

Therefore, with logarithmic accuracy we get
07531
s
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vF
3n3

v3 E
uvu/vF

2pF
dq q2 Im Y3

(3)S qvF

v D5S p3

8
22p D ln

4eF

uvu
.

~3.12!

As seen from Eq.~3.12!, the integral overq covers the
interval from v/vF;T/vF to 2pF , but the temperature de
pendence arises only from the low limitq5T/vF . Therefore,
the approximationq!pF which we made for the polarization
operator@Eq. ~3.5!# is justified by the logarithmic accurac
of the integral in Eq.~3.12!.

Finally, taking into account that

E dvv f ~v!ln
eF

uvu
52

2p2T2

3
ln

4eF

T
, ~3.13!

we find

dee
s s (3)

s3
5C3S T

eF
D 2

ln
4eF

T
, ~3.14!

C35
p2

6 S 12
p2

16D . ~3.15!

We would like to remind the reader that this result h
been obtained in the limit of strong screening,k3@2pF ,
where the screened potential does not depend on the
potential. Our calculations show that in the general casek3
;2pF , the leading termT2 ln T is also given by Eq.~3.14!,
while additional terms are proportional toT2.

Next we consider a quasi-two-dimensional conductor w
a 3D electron spectrum. For a film or conducting layer
finite thicknessd, integration over the transverse compone
of the wave vectorq in Eq. ~2.1! is replaced by summation
over eigenstates in the film. As seen from Eqs.~3.12! and
~3.13!, the characteristic value ofv is of the order ofT and
the characteristic values of the momentumq is v/vF . There-
fore, a transition to the quasi-two-dimensional case occur
the thickness of a conducting layer,d, is of the order of the
characteristic length LT5vF /T. For a quasi-two-
dimensional conductor,d!LT , the electron transitions with
q'50 should be retained,

d3q

~2p!3 → 1

d

d2q

~2p!2 dq' ,0 . ~3.16!

Averaging Eq.~2.4! over the directions of the vectorsq and
vF , one should take into account that the vectorsq ande lie
in the plane of the conductor, while the vectorvF has an
arbitrary direction. In this geometry we get

F3
(2)~q,v!52

3

t2 F1

4 K ~11x2!

~qvFx2v2 i0!2L
f

2
1

4 K ~11x2!

qvFx2v2 i0L
f
K 1

qvFx2v2 i0L
f

1
1

2 K x

qvFx2v2 i0L
f

2 G , ~3.17!
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wherex5cosf and the averaging over the anglef is given
by Eq. ~2.6!.

CalculatingF3
(2)(q,v), in the limit of strong screening

we get the functionY(qvF /v) defined by Eq.~2.3!,

n3Y3
(2)~y!5

3

4y2 S 12
arctanh y

y D 21F422y2

y221
1

5 arctanh y

y

1~y221!S arctanh y

y D 2G . ~3.18!

Thus, the correction to the conductivity@Eq. ~2.1!# is
given by

dee
s s (2)

s3
52

1

p2dvF
2n3

C2E
0

eF
dv f ~v!, ~3.19!

where

C252E
1

`

dyyn3 Im Y3
(2)~y!'5.3. ~3.20!

Here the integral overq can be extended to infinity, becaus
only processes with small momentum transfer,q;v/vF , are
important. Taking into account that

E
0

eF
dv f ~v!522T1eF cothS eF

2TD , ~3.21!

we see that the temperature-dependent correction to the
ductivity is determined by the first term in Eq.~3.21!. From
Eq. ~3.19! we find

dee
s s (2)

s3
5

C2

pFd

T

eF
. ~3.22!

In Eq. ~3.22! we omit additional term proportional to
(T/eF)2 ln(pFd). It originates from the interval 1/d!q
<2pF and it is small compared with the linear term.

Now we consider quasi-one-dimensional conductors, s
as wires with radiusr, which is much smaller thanLT . In
this case the integration over the transfer momentum in
~2.1! is replaced by

d3q

~2p!3 → 1

pr 2

dq

2p
dq',0 . ~3.23!

In the quasi-one-dimensional case the vectorsq ande are
parallel. Averaging Eq.~2.4! over the angles ofq we get

F3
(1)~q,v!52

3

t2 F K x2

~qvFx2v2 i0!2L
f

2 K x2

qvFx2v2 i0L
f
K 1

qvFx2v2 i0L
f
G .

~3.24!

In the limit of strong screening, the functionY(qvF /v) @Eq.
~2.3!# is given by
07531
on-

h

q.

n3Y3
(1)~y!5

3

y2 S 12
arctanh y

y D 21F222y2

y221
1

arctanh y

y

1S arctanh y

y D 2G . ~3.25!

Then, the correction to the conductivity@Eq. ~2.1!# is

dee
s s (1)

s3
52

1

p3r 2vFn3
C1E

0

eF
dv

f ~v!

v
, ~3.26!

where

C152E
1

`

dyyn3 Im Y3
(1)~y!'4.3. ~3.27!

Taking into account that

E
0

eF
dv

f ~v!

v
5 lnS eF

2TD , ~3.28!

finally we get

dee
s s (1)

s3
5

C1

p~rpF!2 lnS 2T

eF
D . ~3.29!

B. Two-dimensional electron spectrum

Next we calculate the interference correction in cond
tors with two-dimensional electron spectra. For 2D electr
gas the polarization operator in the quasiballistic limit is

P2
R~q,v!52n2S 12

v

A~v1 i0!22~qvF!2D , ~3.30!

where n25m/p. Using Eq. ~2.5!, in the limit of strong
screening,VR(q,v)521/P2

R(q,v), we get11

n2Y2
(2)~y!5

1

12~y2 i0!2 1
1

y2A12~y2 i0!2
, ~3.31!

and the corresponding correction to the conductivity@Eq.
~2.1!# is given by

dee
s s (2)

s2
52

1

pvF
2n2

E
0

eF
dv f ~v!. ~3.32!

The integral overv in Eq. ~3.32! is exactly the same as in th
case of a quasi-two-dimensional conductor@Eq. ~3.21!#. Fi-
nally, we get the correction to conductivity given by E
~1.3!. As seen, in the quasiballistic limit the polarization o
erator @Eqs. ~3.5! and ~3.30!# and the functionF(y) @Eqs.
~3.18! and ~3.31!# has different forms for quasi-two
dimensional and two-dimensional conductors. Therefore,
final results@Eqs. ~1.3! and ~3.22!# differ by a numerical
factor.

Next we consider conductivity in the quasi-on
dimensional conductor, such as a narrow channel with wi
b,LT . Taking into account that in the quasi-on
0-5
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dimensional case the vectorsq andE are parallel and aver
aging Eq.~2.4! over the angles ofq, we get

F2
(1)~q,v!52

2

t2 F K ~cosf!2

~qvF cosf2v2 i0!2L
f

2 K ~cosf!2

qvF cosf2v2 i0L
f

3 K 1

qvF cosf2v2 i0L
f
G . ~3.33!

After averaging over the anglef, we find

F2
(1)~q,v!5

2

t2

1

~v1 i0!22~qv !2

3F12
v

A~v1 i0!22~qv !2G . ~3.34!

Therefore, in the unitary limit, the functionY(qvF /v)
@Eq. ~2.3!# is given by

n2Y2
(1)~y!5

2

12~y2 i0!2 . ~3.35!

Calculating the correction to the conductivity in the sing
channel,

dee
s s (1)

s2
5

1

p2n2vFbE0

eF
dv

f ~v!

v E
0

`

dy Im Y2
(1)~y!,

~3.36!

we get

dee
s s (1)

s2
5

1

pFb
lnS 2T

eF
D . ~3.37!

TABLE I. Corrections to the conductivitydee
s sk/sn due to the

electron-electron interaction in the singlet channel.n is the dimen-
sionality of a conductor with respect to the electron spectrum,k is
the dimensionality with respect to the interaction~crossover to low
dimensionality occurs at the characteristic lengthLT 5 vF/T!; sn

is the Drude conductivity;d is the thickness of a quasi-two
dimensional conductor,r is the radius of a quasi-one-dimension
conductor,b is the width of a conductor curved from 2D-layer;C1,
C2, andC3 are numerical constants defined by Eqs.~3.27!, ~3.20!,
and ~3.15!.

n/k k53 k52 k51

n53
C3T

2

eF
2 ln

4eF

T

C2

pFd

T

eF

C1

p~rpF!2 ln
2T

eF

n52 -
T

eF

1

pFb
ln

2T

eF
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Thus, in quasi-one-dimensional conductors with 3D elect
spectra@Eq. ~3.29!# and 2D spectra@Eq. ~3.37!# the correc-
tions have a logarithmic temperature dependence.

The main results of Secs. III A and III B are summariz
in Table I. In these subsections we have considered
singlet-channel interaction in the limit of strong screeni
~the unitary limit!, which gives the upper bound for th
strength of the interelectron interaction. As follows from t
calculations above, the characteristic value of the elect
momentum transferred is of the order ofT/vF . Thus, the
leading corrections to conductivity are accumulated at la
distancesLT.\vF /kBT, where the electron-electron intera
tion is strongly screened. In the unitary limit the interacti
has a universal form, which is independent of the origin
interaction and its renormalization by the Fermi-liquid p
rameters.

C. Triplet-channel interaction

Conductivity corrections in the triplet channel are calc
lated in the same way as the singlet-channel correctio
Substituting the triplet-channel propagator@Eq. ~3.4!# and the
function F3

(3) @Eq. ~3.8! in Eq. ~2.3!# into Eq. ~2.3!, we find
the functionY(y) for a bulk conductor,

Y3
(3)~y!5

1

n3

3F0
s

11F0
s@12arctanh~y!/y#

F 1

y221

1S arctanh y

y D 2

2S 1

y
2

arctanh y

y2 D 2G .

~3.38!

Finally, integrating Eq.~3.9!, with logarithmic accuracy we
get

dee
t s (3)

s3
5

3F0
s

11F0
s S 12

p2

16

F0
s

11F0
sDp2

6 S T

eF
D 2

ln
4eF

T
.

~3.39!

Results for the quasi-two- and quasi-one-dimensional c
ductors with a 3D spectrum cannot be presented in analy
form and will not be considered here.

In the case of the quasi-one-dimensional conductor car
from the two-dimensional structure~see Sec. III B!, the func-
tion Y(y) is given by

Y2
(1)~y!52

1

n2

3F0
s

11F0
s

2

12~y2 i0!2

3S 12
1

~11F0
s!A12y22F0

sD . ~3.40!

Finally, integrating Eq.~3.36!, we get

dee
t s (1)

s2
5

3@F0
s1G~F0

s!#

11F0
s

1

pFb
lnS 2T

eF
D , ~3.41!

where
0-6
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G~F0
s!511

2

p

u11F0
su

Au112F0
su

35
arctanh

A2122F0
s

F0
s , F0

s,2
1

2
,

arctan
A112F0

s

F0
s , 2

1

2
,F0

s,0,

arctan
A112F0

s

F0
s 2p, F0

s.0.

~3.42!

Thus, the temperature dependence of the conductivity
rections in the triplet channel@Eqs.~3.39! and ~3.41!# is the
same as in the singlet channel, but the value and sign de
on the parameterF0

s .

IV. ELECTRON-PHONON INTERACTION

To apply Eqs.~2.1! and ~2.5! to the electron-phonon in
teraction one should specify the phonon propagator and e
tron phonon vertex. The retarded phonon Green functio
given by

DR~q,v!5~v2vq1 i0!212~v1vq1 i0!21. ~4.1!

The unscreened vertex of the electron-phonon scatte
due to the deformation potential is

g5
Dq•en

~2rvq!1/2
, ~4.2!

whereen is the phonon polarization vector.
In the isotropic model, for longitudinal phonons the d

formation potential is described by two constantsD0 andG
~Ref. 17!:

D5D023G~cosu!2. ~4.3!

Screening of the bare electron-phonon vertex presente
Fig. 3 leads to

gsc5
q

~2rvq!1/2F D0

12V0~q!PR~q,v!

23GS ~cosu!21
V0~q!P2

R~q,v!

12V0~q!P~q,v!
D G , ~4.4!

where P(q,v) is given by Eq.~3.5!, and P2(q,v) is the
electron polarization operator with the vertex (cosu)2.

In a semiconductor, the deformation potential constantD0
is much larger than the constantG, which has a strong con
centration dependence~see below!. For this reason, the firs

FIG. 3. Screening of the electron-phonon vertex. The zigzag
stands for the Coulomb potentialV(q,v).
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term in the square brackets in Eq.~4.4! is only taken into
account. For thermal phononsqvF is much larger thanv,
and, therefore, the dynamic part ofP(q,v) proportional tov
may be neglected. Therefore, in a semiconductor the inte
tion between electrons and real phonons is described by
vertex

gsem5
q

~2rvq!1/2

D0

11k3
2/q2 . ~4.5!

In a metal two constants of the deformation potentialD0
and G are of the same order. However, due to the stro
screening@V0(q)PR(q,v)@1#, the term with the constan
D0 in Eq. ~4.4! becomes negligible.17 Thus, for a metal we
get

gmet5
G q

~2rvq!1/2H F12
vt

ql
arctanhS ql

vt D G21

13S v

qv D 2

23~cosu!2J . ~4.6!

In the static limitql@vt, which is applicable to the therma
phonons, the last equation reduces to

gmet5@12~3 cosu!2#
Gq

~2rvq!1/2
, ~4.7!

whereG5(2/3)eF ~Refs. 2 and 17!.
Vertices obtained in this section will be used to calcula

interference correction to conductivity due to virtual phono
~Sec. V! and thermal phonons~Sec. VI!.

A. Virtual phonons

Besides the Coulomb potential, the electron-electron
teraction may be realized via intermediate electron-
interaction—i.e., via virtual phonons. Ifvq5qu@v;T, ac-
cording to Eq.~4.1!, the phonon propagatorDR is real and
equal to22/vq . Then, from Eq.~2.1! we get

de2v•phs

s3
524t2E dv

2p

q2dq

2p2 f ~v!vq
21 Im F~q,v!.

~4.8!

We start with the electron-phonon interaction due to the
formation potential (D0) in a bulk semiconductor. In this
case the square of the electron-phonon vertex does not
an imaginary part, and the function ImF(q,v) is given by
Eq. ~3.8!. Integrating Eq.~4.8! over q, one should take into
account the characteristic intervalT/u,q,2pF . Therefore,
with logarithmic accuracy we get

de2v•ph
sem s

s3
52

2

3

D0
2T2

rvF
3u2 lnS pFu

T D . ~4.9!

In metals the deformation potential is effective
screened, and in ImF(q,v) one should take into accoun

e

0-7
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the imaginary part of the electron-phonon vertex@Eq. ~4.6!#.
Calculating the integrals in Eq.~2.5! with the vertexgmet
@Eq. ~4.6!# we find

Im F~q,v!522pS p2

8
21Dvt

ql
. ~4.10!

Substituting this result into Eq.~4.8! we get

de2v•ph
met s

s3
5

8

27S p2

8
21D eF

2 T2

rvF
3u2 lnS pFu

T D . ~4.11!

Note that large electron momentum is transferred via
change of virtual phonons. According to Sec. III, such p
cesses are important only in conductors with a 3D elect
spectrum. In 2D structures, the electron-electron correctio
associated with processes of small momentum trans
therefore, the contribution of virtual phonons is absent.

B. Thermal phonons

For thermal phonons, the imaginary part of the phon
propagator@Eq. ~4.1!# is only important,

Im DR~q,v!52 ip@d~v2vq!2d~v1vq!#. ~4.12!

Taking into account thatv is of the order ofT and much
smaller thanqvF , we can putv50 in the functionF(q,v)
@Eq. ~2.5!#. After integrating overv, Eq.~2.1! takes the form

de2phs

s3
522t2E q2dq

2p2 f ~vq!Re F~q!, ~4.13!

whereF(q)5F(q,v50).
In metals, ReF(q) is calculated with the electron

phonon vertexgmet in the static limit@Eq. ~4.7!#. From Eq.
~2.5!, we get

Re F~q!5S 16

p2 21D S p

2ql D
2S 2

3
eFD 2 q2

2rvq
. ~4.14!

Substituting this result into Eq.~4.13!, we find

de2ph
met s

s3
5S 12

p2

16D 2p2b lT
2

eFpFul
, ~4.15!

where the electron-phonon interaction constant is

b l5S 2

3
eFD 2 n

2rul
2 . ~4.16!

Note that in the isotropic model the deformation potential
transverse phonons is2(3/2)G sin(2u). Taking into account
the interaction with transverse phonons, we will get Eq.~1.1!
obtained in Ref. 2.

For a bulk semiconductor, Eq.~2.5! with the vertexgsem
@Eq. ~4.5!# results in

Re F~q!52S p

2ql D
2S q2

q21k3
2D 2 D0

2q2

2rvq
. ~4.17!
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At low temperaturesT,k3u, the deformation potential is
strongly screened. In this limit, the interference correction
the conductivity is given by

de2ph
sem s

s3
52

10p6

63

D0
2T6

rvF
2u7k3

4 . ~4.18!

At higher temperaturesT.k3u, the deformation potential is
not screened. In this limit Eqs.~4.13! and ~4.17! result in

de2ph
sem s

s3
52

p2

24

D0
2T2

rvF
2u3 . ~4.19!

For a two-dimensional electron gas in heterostructures
teracting with three-dimensional phonons, Eq.~2.5! takes the
form

Re F~q!52
2

~qil !
2 S qi

qi1k2
D 2 D0

2q2

2rvq
, ~4.20!

whereqi is the wave vector component along the conduct
plane,k252pe2n2 , n25m/p.

Therefore, at low temperaturesT,k2u, the correction to
conductivity is given by

de2ph
sem s

s2
52

2p2D0
2

5rvF
2u5k2

2 T4, ~4.21!

and, in the opposite limit,

de2ph
sem s

s2
52

D0
2

3rvF
2u3 T2 ln

T

T1
, ~4.22!

whereT15max$uk2,u/l%.
In semiconductors the constantD0 is much larger thanG;

therefore, in isotropic semiconductors interaction with lon
tudinal phonons plays a key role. The interference correc
to conductivity is negative@Eqs. ~4.18!, ~4.19!, ~4.21!, and
~4.22!# and results in resistivity increases with temperatur

The results obtained in this section have a simple phys
interpretation. In the limit of weak disorder,ql.1, the in-
terference can be described by an effective large-angle e
tron scattering process with the square of the matrix elem
ae2ph

2 /(ql), whereae2ph is the matrix element of the ‘‘pure’’
electron-phonon scattering. Therefore, in the Bloc
Gruneisen regime, the interference contribution to the c
ductivity turns out to be (pF /q)2/(ql) times larger than the
contribution of pure electron-phonon scattering. In the c
of the Debye phonon spectrum, the corresponding temp
ture dependence of conductivity is modified byT23 factor.

As follows from the interpretation above, the interferen
corrections due to the electron-phonon interaction critica
depend on the dimension of the phonons and phonon s
trum. For example, flexural modes with dispersionvq}q2

dominate in the electron scattering in freestanding thin fil
at low temperatures. In the Bloch-Gruneisen regime, the c
ductivity of pure films18 is proportional toT7/2; then in
weakly disordered films this dependence is proportiona
T2.
0-8
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V. CONCLUSIONS

In this work we investigated the interference of electro
electron ~electron-phonon! scattering and elastic electro
scattering from impurities and defects in weakly disorde
conductors and heterostructures. We have calculated th
terference corrections to the conductivity and demonstra
that even weak disorder significantly modifies its tempe
ture dependence.

In weakly disordered conductors, characteristic mom
tum transfers are of the order ofT/vF , which is significantly
smaller than the Fermi momentum. Therefore, the Lan
Fermi-liquid theory is applicable and all processes with la
momentum transfer are taken into account by the effec
Fermi-liquid constants. Both singlet and triplet channels
the electron-electron interaction give interference correcti
to the conductivity,

dees5dee
s s1dee

t s. ~5.1!

Due to the Coulomb potential divergence at small mome
the singlet-channel interaction corresponds to the uni
limit and corresponding corrections are independent of
Fermi-liquid parameters~see Table I!. The triplet-channel
corrections@Eqs.~3.39! and ~3.41!# have the same tempera
ture dependence as the singlet-channel corrections. Con
to the singlet channel, the triplet-channel corrections are
universal. Therefore, the value and sign of the total corr
tion depend on the Fermi-liquid parameterF0

s in the triplet
channel. In the weak-coupling limituF0

su!1, the singlet
channel dominates over the triplet one and the correction
conductivity are positive. Negative values ofF0

s may result
in a negative total correction, which is observed
heterostructures.14

Our main results for the singlet channel are summari
in Table I. We found that in weakly disordered bulk condu
tors the electron-electron interaction results in aT2 ln T term
in the conductivity@Eq. ~3.14!#. In a quasi-two-dimensiona
conductor,d,vF /T, with 3D electron spectrum,pFd@1,
the electron-electron interaction results in aT term @Eq.
~3.22!#, which is the leading temperature-dependent term
subkelvin temperatures. Our result differs from that for 2
electrons11 by a numerical factor. In the quasiballistic cas
integrals of electron Green functions for quasi-tw
dimensional conductors with 3D and 2D spectra@Eqs.~3.18!
and ~3.35!# are significantly different and result in differen
coefficients.

In quasi-one-dimensional conductors with 3D and
spectra~wires and channels!, the interference corrections ar
proportional to ln(T) @Eqs. ~3.29! and ~3.37!#. Note that at
subkelvin temperatures the characteristic lengthdc5vF /T is
of the order of 1210 mm. Therefore, experiments with wire
and channels ofmm sizes would allow one to observe cros
overs to lower dimensions. Note that the logarithmic te
has been recently observed in arrays of open quantum do
mm sizes at subkelvin temperatures.19 This observation may
be relevant to the quasi-one-dimensional interference cor
tions calculated in this paper.

We considered the electron-electron interaction via virt
phonons and found that this interaction results in aT2 ln T
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term @Eq. ~4.9!#. The interference corrections due to the i
teraction of electrons with thermal phonons are summari
in Table II. In bulk semiconductors at low temperaturesT
,k3u, the contribution of thermal phonons interacting wi
electrons via the screened deformation potential results
T6 term @Eq. ~4.18!#. At higher temperatures the interactio
via an unscreened deformation potential results in aT2 term
@Eq. ~4.19!#. In two-dimensional heterostructures th
screened deformation potential leads to aT4 term @Eq.
~4.21!# and the unscreened deformation potential results
T2 ln T term @Eq. ~4.18!#.

The effects of the electron-electron interaction domin
in the conductivity of weakly disordered conductors at lo
temperatures. At higher temperatures, the conductivity is
termined by electron-phonon-impurity interference and th
pure electron-phonon scattering prevails over interfere
mechanisms. The relative values of the interference te
and characteristic crossover temperatures depend on m
parameters. The effects of the electron-electron interac
are enhanced in low-dimensional conductors. As we d
cussed in Sec. IV, at low temperatures the contribution
electron-phonon-impurity interference turns out to
(pF /qT)2/(qTl ) times larger than the contribution of pur
electron-phonon scattering. Therefore, the interference c
tributions dominate over pure electron-phonon scattering
T<upF(pFl )21/3. It is important that all interference correc
tions are proportional to the Drude conductivity, and th
characteristic feature may be used for their experime
identification, as has been done for metallic films.3

Note, that theT2 term has been actually widely observe
in the conductivity of doped semiconductors. It was asso
ated with strongly anisotropic Fermi surfaces and electr
electron scattering~for a review see Ref. 17!. In our opinion,
the electron-phonon-impurity interference correction is
more plausible reason for such a term.
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APPENDIX A: QUANTUM TRANSPORT EQUATION

The goal of this appendix is to show how the basic eq
tions discussed in Sec. II are obtained in the formalism of

TABLE II. Corrections to the conductivityde2phs/sn due to
the interaction of electrons with thermal phonons through the
formation potential.kn is the inverse screening length,D0 is the
deformation potential,u is the sound velocity, andr is the density.

D53 D52

T,knu 2
10p6

63

D0
2T6

rvF
2u7k3

4 2
2p2D0

2

5rvF
2u5k2

2 T4

T.knu 2
p2

24

D0
2T2

rvF
2u3

2
D0

2

3rvF
2u3 T2 ln

T

T1
0-9
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quantum transport equation. This method is based on
Keldysh diagrammatic technique, where the electric curr
is expressed through the kinetic~Keldysh! component of the
electron Green function,GC(p,e) in the following way:

Je5sE5eE dpde

~2p!4
v Im GC~p,e!. ~A1!

Without interaction effects, the expressions for electr
Green functions in disordered conductors are well know
The retarded (R) and advanced (A) electron Green functions
are

G0
R~p,e!5@G0

A~p,e!#* 5~e2jp1 i /2t!21, ~A2!

and jp5(p22pF
2)/2m. The kinetic component of the elec

tron Green function is given by

G0
C~p,e!52i S~p,e!Im@G0

A~p,e!#1dG0
C , ~A3!

dG0
C5

1

2
$S0~e!,G0

A1G0
R%, ~A4!

where the electron distribution function is given by

S~p,e!5S0~e!1f~p,e!, ~A5!

S0~e!52tanh~e/2T!, ~A6!

f~p,e!52et~v•E!
]S0~e!

]e
. ~A7!

The nonlocal correctiondG0
C(p,e) has a form of the Poisso

brackets,

$A,B%5eES ]A

]e

]B

]p
2

]B

]e

]A

]p D . ~A8!

The kinetic Green functionG0
C @Eq. ~A3!# with the distribu-

tion functionS(p,e) @Eq. ~A5!# takes into account only elas
tic electron scattering from impurities. SubstitutingG0

C in
Eq. ~A1!, one could get the Drude conductivity. The nonloc
correctiondG0

C(p,e) is required to satisfy the unitary cond
tion for the matrix Keldysh function;20 it removes divergence
in Eq. ~A1! far from the Fermi surface.

Assuming that the elastic electron scattering from imp
rities and defects dominates in the electron momentum re
ation, one can apply the iteration procedure to the Dy
equation. Then the many-body correction to the kine
Green function is expressed through the electron self-en
in the following way:21

d intG
C52t@S int

C 22iS Im S int
A #Im G0

A

12t$Re S int
A ,S0%Im G0

A1S Im S int
A ~G0

A!2.

~A9!

Note that the electric field enters Eq.~A9! through the non-
equilibium distribution functionf(p,e) @Eq. ~A5!# and the
07531
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electric Poisson brackets@Eq. ~A8!#, the interaction is in-
cluded in components of the electron self-energy.

For weakly disordered conductor we should consid
three electron self-energy diagrams shown in Fig. 1. The
diagram does not consists of dotted lines corresponding
the electron-impurity interaction. Electron-impurity scatte
ing is included only in the electron Green functions@Eq.
~A2!#. Therefore, without nonlocal quantum corrections
the form of the Poisson brackets@Eq. ~A8!#, the first diagram
results in the Bloch-Gruneisen term. Interference effects
taken into account by the Poisson bracket terms. Nam
dC0

C @Eq. ~A3!# has to be taken into consideration in a
self-energy components (A,R,C) in the first term in Eq.
~A9!. The second term has the Poisson bracket form a
therefore, it is directly calculated with the equilibrium distr
bution functions. Substitutingd intC

C in Eq. ~A1!, we get the
correction to the conductivity in the form of Eqs.~2.1! and
~2.3! with the functionF(q,v) given by

F1~q,v!5
i n

4p l 2E djp^^g
2~v•e!2@GR~q1p,e1v!#2

3GA~p,e!&v&q

52
1

2t2vF
2 K K g2~vF•e!2

~qvF2v2 i0!2L
v
L

q

. ~A10!

In the second and third diagrams the electron-impu
and electron-electron~electron-phonon! interactions are di-
rectly presented. Therefore, interference contributions
these diagrams originate from the first term in Eq.~A9! with-
out any Poisson bracket corrections. Calculations show
the contribution of the second diagram is exactly the sam
the first one,

F2~q,v!5F1~q,v!. ~A11!

The third diagram with the vertexg renormalized by elastic
electron-impurity scattering gives

F3~q,v!5^K~q,v!•L~q,v!&q2^@M ~q,v!#2&q . ~A12!

The first term in Eq.~A12! corresponds to the third diagram
with the equilibrium vertex, which is given by

K~q,v!5
1

pnntE dp

~2p!n
gGA~p,e!GR~p1q,e1v!

52
i

t K g

qvF2v2 i0L
v

, ~A13!

and the rest of the diagram is described by the function

L~q,v!5
1

pnntE dp

~2p!n
GA~p,e!GR~p1q,e1v!

3
g~v•e!2

v2
52

i

tvF
2 K g~vF•e!2

qvF2v2 i0L
v

. ~A14!
0-10
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The nonequilibrium vertex calculated with the distributio
function f(p,e) leads to

M ~q,v!5
1

pnntE dp

~2p!n
GA~p,e!GR~p1q,e1v!

gv•e

v

52
i

tvF
K g vF•e

qvF2v2 i0L
v

. ~A15!

Finally, summarizingF i(q,v) @Eqs. ~A10!, ~A11!, and
~A12!#, we get Eq.~2.4!.
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