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We investigate quantum corrections to the conductivity due to the interference of electron-gleleicton-
phonon scattering and elastic electron scattering from impurities and defects in weakly disordered conductors.
The interference corrections are proportional to the Drude conductivity and have various temperature depen-
dences. The electron-electron interaction results i #n T correction in bulk conductors. In a quasi-two-
dimensional(quasi-2D conductord<Lt=uvg/T (d is the thickness, andg is the Fermi velocity, with 3D
electron spectrumpzd>1) this correction is linear in temperature and differs from that for 2D elec{it@ns
Zalaet al, Phys. Rev. B4, 214204(2001)] by a numerical factor. In quasi-one-dimensional conductors with
3D and 2D electron spectfa wire with radiusr <Lt and a strip with widthb<<L{), temperature-dependent
corrections are proportional to Th The value and sign of the corrections depend on the strength of the
electron-electron interaction in the triplet channel. The electron interaction via exchange of virtual phonons
gives theT? In T correction. In bulk semiconductors the interaction of electrons with thermal phonons via the
screened deformation potential results iT%term and via unscreened deformation potential leads T8 a
term. For a two-dimensional electron gas in heterostructures, the screened deformation potential gives rise to
aT* term and the unscreened deformation potential leadsT®la T term. At low temperatures the interfer-
ence of electron-electron and electron-impurity scattering dominates in the temperature-dependent conductiv-
ity. At higher temperatures the conductivity is determined by the electron-phonon-impurity interference, which
prevails over pure electron-phonon scattering in a wide temperature range, which extends with increasing

disorder.
DOI: 10.1103/PhysRevB.69.075310 PACS nunifer72.10-d
[. INTRODUCTION conductivity is quadratic in the electron temperature,
Int_erference of electron sca_ttering mechanisms changes Sept 2 u\3] 272B T2
drastically the transport properties of disordered conductors. =1-—=-2|— _—, (1.7
o3 16 Ut 35FpFUI

It violates the Mathiessen rule, according to which the con-
tributions to conductivity due to the random potential and 5 2 ) o
electron-electrorfelectron-phononinteractions are additive. Whereon=e“vg7v,/n is the Drude conductivity in the cor-
Additional interference terms in conductivity have various€Sponding dimensionalitp, e and pg are the Fermi en-
temperature dependences. In the diffusion Iiit<1 (ris €9y and momentumy, and u, are the longitudinal and

the elastic mean free timeAltshuler-Aronov corrections to trsnsver;e-t sou?d veIOC|St|e)8|, :S the;on;ta}tﬂt oflthet elec(:jtron
conductivity have been intensively studied in three-Pf1ONON INterac |(_)rﬁs_ee ec. Y, andv, is € electron den
. . 2 . . . sity of states. It is interesting that the longitudinal phonons
dimensional conductorsT{’“ term) and in two-dimensional ~.7 " - - - .
" give rise to a positive correction to conductivity, while trans-
(2D) structures (InT term).

Interf t eloct lectrofelect h i verse phonons result in a negative correction, which domi-
jnterierence ot electron-elec rogelectron-phonon seal- pates in the temperature-dependent conductivity due to a
tering and elastic scattering from the random potential als%tronger coupling of transverse phonons. TRisterm pro-

modifies significantly the electron transport in the quaSiba"portionaI to the Drude conductivity has been observed in a
listic limit: Tr>1 for electron-electron interactions angl  \ide temperature range, from 20 K up to 200 K, in Nb, Al,
>1 for electron-phonon interactiong{ is the momentum of  Be (Ref. 3, NbC (Ref. 4, NbN (Ref. 5, and W (Ref. 6

a thermal phonon, antl=vg7 is the electron mean free fjms.

path. In weakly disordered conductors the interference cor- The electron-phonon interaction via the piezoelectric po-
rections are always proportional to the Drude conductivitytential in weakly disordered heterostructures was considered
Electron-phonon-impurity interference in metals was theodin Ref. 7. It has been found that at low temperatures 0.5
retically studied in our papérin the quasiballistic limitT K, where the piezoelectric potential is strongly screened, the
>u/l (u is the sound velocity the interference correction to interference correction is given by
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wherehy, is the piezoelectric constant, * is the screening FIG. 1. Electron self-energy diagrams in the quasiballistic limit.

length, andp is the density. The wavy line stands for electron-electron or electron-phonon scat-
Investigation of the electron-electron interaction intering, a dotted line stands for elastic electron scattering from a

weakly disordered 2D electron systems has a long stoty.  random potential, and a straight line stands for the electron Green

After a series of improvements, all exchan@®ck and di-  function.

rect(Hartreg processes were taken into account in the frame

of the Landau Fermi-liquid theory in Ref. 11. In the quasi-tion. The dimensionality of the electron spectrum just
ballistic |Im|t, T=>1, the correction to the Conductivity is s||ght|y Changes the numerical coefficients of the interfer-
ence corrections.
T In Sec. IV we calculate the corrections to the conductivity
(1.3  due to the electron-phonon interaction. We study the interac-
tion of electrons by means of virtual phonons and the inter-
action of electrons with thermal phonons in bulk semicon-
whereFg is the Fermi-liquid parameter describing interac-ductors and low-dimensional structures. Considering
tion in the triplet channel. The results of recent measureelectron-phonon scattering, we will assume good matching
ments in GaAs/GaAsAl heterostructule$® and Si metal- between the conducting and buffer layers and limit our con-
oxide-semiconductor field-effect transistdrs (MOSFET’S sideration to three-dimensional phonons. In the Conclusions,
have shown good agreement with the thébat subkelvin  we summarize our main results, compare different terms, and
(GaAs/GaAlAs and helium (Si) temperatures. At higher discuss experimental identification of interference contribu-
temperatures, the electron-phonon interaction dominatesons to conductivity.
over electron-electron scattering. While electron-phonon pro-
cesses are also very sensitive to disorder, the deformation
electron-phonon interaction in the quasiballistic regime has

not been studied to date. _ _ The effects of the interference between scattering mecha-
We would like to stress that the interference correctionshisms on electron transport can be studied by the linear re-
due to the electron-phonon or electron-electron interactionsponse method as well as by the quantum transport equation.
always originate from thelastic partof the corresponding Both methods are based on the digrammatic technique. The
collision integral>-**' Therefore, the interference corrections jinear response method requires many diagrams to be con-
depend on the electron temperature only. Early theoreticalidered, while the transport equation deals only with electron
papers on the electron-phonon-impurity interference considself-energy diagrams but includes specific terms in the form
ered inelastic scattering from vibrating impurities and ex-of Poisson brackets’
tracted theT? correction to conductivity from the inelastic  |n this paper we investigate the interference electron pro-
part of the collision integral® However, as is shown in our cesses, which are characterized by the momentum transfer
previous work such terms cancel out and this is the reasonmuch smaller than the Fermi momentum. These processes
why the T? term is independent of the phonon temperature.can be described in the frame of the Landau Fermi-liquid
In the current paper we continue studying weakly disor-theory. The corresponding self-energy diagrams for weakly
dered conductors. We calculate various interference corregfisordered systems are shown in Fig. 1 and the diagrams of
tions not considered before. In Sec. Il we start with the basighe linear response method are presented in Fig. 2. The re-
equations describing interference phenomena in electrogults of Refs. 2, 7, and 11, which are briefly reproduced in

transport. In Sec. Il we calculate the electron-electron corthe Appendix, show that in the quasiballistic limit the correc-
rections to the conductivity in various dimensions with re-tion to conductivity may be presented as

spect to the effective interaction. The crossover to lower di-

mensionality occurs when one of the conductor dimensions

v . . edda®
becomes smaller thaq, =, whereq, is the characteristic @ 0
value of the transferred electron momentum. For the

electron-electron interaction in weakly disordered conduc-
1

1 2 3
tors, q; ' is of the order ofL=vg/T. At subkelvin and A
helium temperatured,t~1—10 um, and the transition to

4 5

the quasi-two-dimensional case happens in relatively thick

films with three-dimensional electron spectra and electron
screening. The transition to the quasi-one-dimensional case @
6 7

Oee0 ! 3Fg
1+Fg

(0] EF,

II. BASIC EQUATIONS

occurs in wires of radius~L+ and in 2D conducting chan-

nels of widthb~Ly. We will show that the interference

corrections to the conductivity are mainly determined by the FIG. 2. Diagrams of the conductivity in the linear response
sample dimensionality with respect to the effective interacmethod.
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Sino® do dq f(w) © In the next sections we use the equation derived in this
o = j 27 2m)F w? Im Y¥(q,w), (2.1  section to calculate the quantum corrections to conductivity

due to electron-electron and electron-phonon interactions in
wherek is the dimensionality of the conductor with respectweakly disordered conductors of various dimensionality with
to the interaction and is used for the dimensionality of the respect to the electron spectrum) (and with respect to the
electron spectrum. As we discussed in the Introduction, thénteraction k).

dimensionality with respect to the effective electron-electron

interr;l_crtion is determined by the characteristic length Il ELECTRON-ELECTRON INTERACTION
=Ufg .
The functionf () is given by As we discussed in the Introduction, the effective

electron-electron interaction in weakly disordered conductors

f )_i cot @ 2.2 is characterized by a momentum transfer of the order of
(w)= dw|® 2T/ | ' T/vg, which is much smaller than the Fermi moment(see
_ o also calculations below Therefore, the electron transport
The functionY (q, ) is given by can be described in the frame of the Landau Fermi-liquid
® R ® theory™ In the singlet channel the bare interaction is given
Yi'(0,0)=(0n)V(q,0)Py(q,0), (23 the sum of the Coulomb potential,
where Vﬁ(q,w) is the retarded propagator describing [ 4me?
electron-electron or electron-phonon interactions, and me 3D
®(q,w) is given by g’ ’
2 2 27e?
PN (q,w)=— ;2 7 (vee) Vo(Q) = T 2D, (3.
VET (QVe—w—i0)?/ q
q
2
| rve®? Y einzz 10
qv,:—w—iO v qV,:—w—iO v \
4 and the Fermi-liquid interaction,
2
)/V,:e
_— Ve~—Fdlv,. 3.2
+<<qVF—m—io>v> ] 24 o 2
q

_ The screened interaction in the random phase approxima-
In Eq. (2.4), v is the vertex of the electron-electron or tion, which is justified for small momentum transfers, is
electron-phonons interactioes=E/E is the unit vector in the  given by

direction of the electric field, an¢),q) stands for averaging

over the directions ofr andq. v Vo(q)—FP
. . = . R(A) o nVo q 0
For isotropic conductorsn=k), the averaging over the Vi (q,w)= RA) , (3.3
and q directions is reduced to the averaging over the angle vn—[vaVo(a) = FRIPT (g, )
gh]thlﬁigggle betweep andgq. In this case, Eq(2.4) can be wherePR®)(q, ) is the polarization operator.
P ’ In the absence of a magnetic field and spin-orbit scatter-
2 2 ing the screened propagator in the triplet channel may be
20 (q,w)=— Y +< Y > taken in the formt
(QVr— w—i0)2 QVe—w—i0/
. 3Fg
0
qVe y 2 VA (g,0) = — - : (3.9
- ‘< o (A)
< qQue qVF—w—i0>¢' (2.9 vp—FoPr (0, )

whereF{ is the Fermi-liquid constant. The above equation
assumes that the Fermi-liquid coupling is independent of
electron momenta. Restrictions of this approximation were
(1 dx discussed in Ref. 11.
f P(quex) o 3D, In Secs. Ill A and Ill B we calculate the conductivity
-t corrections in the singlet channel; the triplet-channel correc-
tions will be studied in Sec. Il C.

Note that in this form Eq(2.5) is applicable to any dimen-
sionality of the electron system,

2 d¢
(¥(ave))g= o Y(qug cos ) PP 2D, (2.6

A. Systems with a three-dimensional spectrum

1
> x:E-*-:L P(Quex), 1D, First we consider a conductor with a three-dimensional
\ - electron spectrum. For 4K w<qug<<eg, the polarization
wherex= cos(@). operator is given by
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PR(Q,w)=—v4| 1— “_ arctan dor (3.5
S w+io/]" 7
where the branch of arctany)(is chosen as
_ i 1I y+1 o1 3.6
arctanhy)——7+§ny_—1, y . (3.6

PHYSICAL REVIEW B69, 075310 (2004

3 3

UVEpV3 2pg qu a 46|:

R [

o 8 T 2
(3.12

As seen from Eq(3.12), the integral overy covers the
interval from w/vg~T/vg to 2pg, but the temperature de-
pendence arises only from the low lingj= T/v . Therefore,
the approximatiom< pg which we made for the polarization

Thus, the screened Coulomb potential may be presented a8perator[Eq. (3.5)] is justified by the logarithmic accuracy

1 q°

of the integral in Eq(3.12.
Finally, taking into account that

V3 K3 212
R _ € 27T dep
Va(ae) q° q? arctanlique /)] f dwwf(w)lnm=—TlnT, (3.13
—+ 1—F8—2) - @
K3 K3 Gue/w we find
(3) 2
wherex3=4me?v; andvg=mpg/72. In the limit of strong Ooe :C3<l> |nﬁ' (3.14
screening,x3>(, the screened potential is independent of 03 €F T
the form of the bare potentidthe unitary limij. ) )
Taking into account that for the electron-electron interac- c.=" [1-T (3.19
tion y=1 and calculating integrals in E¢R.5), we find 6 16/° ’
5 1 1 arctanliqug /) \ We would like to remind the reader that this result has
®§ )(q,w)=; (Que)? (w)2+ v been obtained in the limit of strong screening>2pg,
F) F

1 arctanliqug /o) | 2

5| 1- . (3.9
(que)

Substituting® (g, w) andVR(q, ) into Eq.(2.1), we get the

qUF/(D

correction to the conductivity in the singlet channel. For sim-

plicity we present further results in the limit;>q. Then,

2
iea—zfd—wf(“’) wradaq Y%”(%v), 3.9

o3 B 27 w? lolfvg 27
where
@) 1 1 1 arctanhy\?
Y3ty =1 1—arctantiy)/y | y2—1

3 Iy|y y
1 arctanhy 2

=== | (3.10
y y?

Note that the low limit in the integral in Eq3.9) is cho-
sen taking into account that the imaginary parfYdigv/ )
exists only aty=qug/w=1.

The functionY ;(qug/w) has the following asymptotes:

5
— =27 , y—,
1]\8 )F
Im Y§(y)= v . 1
—1.
Iny-DP2 (-1 ~
(3.11

Therefore, with logarithmic accuracy we get

where the screened potential does not depend on the bare
potential. Our calculations show that in the general case
~2pg, the leading ternT? In T is also given by Eq(3.14),
while additional terms are proportional T6.

Next we consider a quasi-two-dimensional conductor with
a 3D electron spectrum. For a film or conducting layer of
finite thicknesdd, integration over the transverse component
of the wave vectoq in Eq. (2.1 is replaced by summation
over eigenstates in the film. As seen from E(&12 and
(3.13, the characteristic value @b is of the order ofT and
the characteristic values of the momentqiis w/vg. There-
fore, a transition to the quasi-two-dimensional case occurs if
the thickness of a conducting layetk, is of the order of the
characteristic length Ly=vg/T. For a quasi-two-
dimensional conductod<<L, the electron transitions with
g, =0 should be retained,

dqg 1 d%q s
2m3 d (2m)?2 %uo

(3.1

Averaging Eq.(2.4) over the directions of the vectogsand
Vg, one should take into account that the vectpende lie

in the plane of the conductor, while the vectar has an
arbitrary direction. In this geometry we get

1 (1+x?)

4 (Quex— w—i0)? s

1 (1+x?) 1

4 queXx—w—i0 4 qQueX—w—i0 é

X 2
< QU,:X—w—iO>¢

q)f(.’:Z)(QIw): - %

: (3.17

N| -
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wherex=cos¢ and the averaging over the angheis given o 3 arctanhy|~1[2-2y? arctanhy
by Eq.(2.6). v3Yy (y):y7 1- y V-1 + y
Calculating®$?(q, ), in the limit of strong screening
we get the functiorY (qug/w) defined by Eq(2.3), N arctanh y)2 (3.29
Dy 3 L arctanhy\ Y4—2y? 5 arctanhy y
Y5 (y)= m - y v2—1 + y Then, the correction to the conductivitizg. (2.1)] is
arctanhy\? 830D 1 e f
+(y?—1) —y) (3.18 e = le "do ﬂ, (3.26
y g3 T UEYV3 0 w

Thus, the correction to the conductivifigqg. (2.1)] is where

given by
8o 1 « Ci=— fl dyyrs Im Y§P(y)~4.3. (3.27
7 =— 772dl)|2:7/3 szo dof(w), (3.19 o
Taking into account that
where
€F f(w) €
o f dw sz E , (3.28)
czz—f dyyrs Im Y@(y)~5.3. (3.20 0
' finally we get
Here the integral oveq can be extended to infinity, because @
only processes with small momentum transéer,w/vg, are S Cy | 2T 3.29
important. Taking into account that o3 _w(rpF)Z n €F @
€p EF . .
f dof(w)=—2T+e€¢ cotl'( ﬁ) (3.21 B. Two-dimensional electron spectrum
0

Next we calculate the interference correction in conduc-
we see that the temperature-dependent correction to the cotors with two-dimensional electron spectra. For 2D electron
ductivity is determined by the first term in E€B.21). From  gas the polarization operator in the quasiballistic limit is
Eqg. (3.19 we find

. (3.30

_ “ )
o +10)—(Gue)?

where v,=m/7. Using Eq.(2.5), in the limit of strong
screeningVR(q,w) = — 1/P5(q,w), we get*

Seed® C, T P3(q,0)=~ VZ( 1

o5 Ped e

(3.22

In Eqg. (3.22 we omit additional term proportional to
(T/ep)? In(ped). It originates from the interval fik<q
<2pg and it is small compared with the linear term. 1

Now we consider quasi-one-dimensional conductors, such VZY(ZZ)(y): —— + _ ,
as wires with radius, which is much smaller thahy. In 1-(y=10)"  y2J1-(y—i0)?
this case the integration over the transfer momentum in E
(2.1) is replaced by

(3.3

%nd the corresponding correction to the conductiyigg.
(2.1D] is given by

deer!? 1

d3q 1 dq
@n) w2 2m duo (323

, f "dof(w). (3.32
(0] 7TUFV2 0
In the quasi-one-dimensional case the vectpende are

parallel. Averaging Eq(2.4) over the angles off we get The integral ovemw in Eq.(3.32) is exactly the same as in the

case of a quasi-two-dimensional condudtgg. (3.21)]. Fi-
X2 nally, we get the correction to conductivity given by Eq.
—2> (1.3). As seen, in the quasiballistic limit the polarization op-

(Quex—w—i0)%/ erator [Egs. (3.5) and (3.30] and the functionF(y) [Egs.
2 1 (3.189 and (3.3)] has different forms for quasi-two-

_< : > < i > dimensional and two-dimensional conductors. Therefore, the

Quex—w—i0 & QueX—w—i0 b final results[Eqgs. (1.3 and (3.22)] differ by a numerical

(3.24) factor.
' Next we consider conductivity in the quasi-one-

In the limit of strong screening, the functiof(que/w) [Eq.  dimensional conductor, such as a narrow channel with width
(2.3)] is given by b<L;. Taking into account that in the quasi-one-

3
4(q.w)=- R

075310-5
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TABLE I. Corrections to the conductivitys /o, due to the
electron-electron interaction in the singlet chanmeis the dimen-
sionality of a conductor with respect to the electron spectris,
the dimensionality with respect to the interacti@nossover to low
dimensionality occurs at the characteristic length= vg/T); o,
is the Drude conductivity;d is the thickness of a quasi-two-

PHYSICAL REVIEW B69, 075310 (2004

Thus, in quasi-one-dimensional conductors with 3D electron
spectra Eq. (3.29] and 2D spectrdEq. (3.37)] the correc-
tions have a logarithmic temperature dependence.

The main results of Secs. Ill A and Ill B are summarized
in Table I. In these subsections we have considered the
singlet-channel interaction in the limit of strong screening

dimensional conductor, is the radius of a quasi-one-dimensional (the unitary limiy, which gives the upper bound for the

conductorb is the width of a conductor curved from 2D-lay€?;,
C,, andC; are numerical constants defined by E@27), (3.20),
and(3.15.

n/k k=3 k=2 k=1
CiT?  der C T C, 2T
n=3 —In— —— —
6'2: T Prd & m(rpg) €F
1 2T
_ T —In—
n=2 ) - Peb e
€F

dimensional case the vectogsand E are parallel and aver-
aging Eq.(2.4) over the angles of, we get

(cos ¢)?
(qug COSp—w—i0)? .

(cos ¢)?
qug COS¢p—w—i0 s

2
q)(Zl)(q!w): - ;2

X

. (3.33

1
qug cos¢>—w—i0>¢
After averaging over the angl¢, we find

q)(l)( w):E;
2 Q@)= 2 (04107 (qv)?

. (339

X{l_ V(w+i0)*—(qv)?

Therefore, in the unitary limit, the functioN (qug/w)
[Eq. (2.3)] is given by

(1) 2
v Y5(y)= I—(y=i0)?" (3.39
Calculating the correction to the conductivity in the singlet
channel,
See0 f(w)

de Im Y (y),
0
(3.36

D 1 €F
oy _Trzvzv,:bfo de o)

we get

(3.3

strength of the interelectron interaction. As follows from the
calculations above, the characteristic value of the electron
momentum transferred is of the order ®fvg. Thus, the
leading corrections to conductivity are accumulated at large
distanced r=%vg /kgT, where the electron-electron interac-
tion is strongly screened. In the unitary limit the interaction
has a universal form, which is independent of the original
interaction and its renormalization by the Fermi-liquid pa-
rameters.

C. Triplet-channel interaction

Conductivity corrections in the triplet channel are calcu-
lated in the same way as the singlet-channel corrections.
Substituting the triplet-channel propagaftBq. (3.4)] and the
function ®$® [Eq. (3.8) in Eq. (2.3)] into Eq. (2.3, we find
the functionY (y) for a bulk conductor,

(3)on 1 3Fg
YP(y)=— ——
V3 1+Fg[1—arctanky)/y]

2 [1 arctanhy)?
y y? '

1
y*-1

arctanhy
y

(3.39

Finally, integrating Eq(3.9), with logarithmic accuracy we
get

Seer™®  3FF w* Fg \@*T 2| 4ep
o3 1+Fgl" 16 1+Fg) 6les) T

(3.39

Results for the quasi-two- and quasi-one-dimensional con-
ductors with a 3D spectrum cannot be presented in analytical
form and will not be considered here.

In the case of the quasi-one-dimensional conductor carved
from the two-dimensional structufeee Sec. Il B, the func-
tion Y (y) is given by

1 3F§ 2
vy 1+FJ 1—(y—i0)?

Yi(y)=-

1
X<l_(1+FSN1—y2—F8)' (349

Finally, integrating Eq(3.36), we get

Seer™ B[FE+G(FP] 1 (ZT

1+Fg @”?)’ (3.4

g2 F

where

075310-6
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N\ = NP+ VA N term in the square brackets in E@t.4) is only taken into

account. For thermal phonomg - is much larger than,
FIG. 3. Screening of the electron-phonon vertex. The zigzag linétnd. therefore, the dynamic part®{q, ) proportional tow

stands for the Coulomb potentis(q, o). may be neglected. Therefore, in a semiconductor the interac-
tion between electrons and real phonons is described by the
S 2 |1+Fg| vertex
(Fo) 7 |1+ 2F] q Do s
( JmioFg 1 T (2pg) 2 1+ 3P
arctanh— ,  Fo<-— >
0 In a metal two constants of the deformation potenigl
V1+2Fg 1 and G are of the same order. However, due to the strong
X < arctan—c-—, —5< Fo<O, screening[ Vo(q) PR(q,w)>1], the term with the constant
0 D, in Eq. (4.4) becomes negligiblé” Thus, for a metal we
V1+2Fg - get
arctanF—U —a, Fo>0.
N 0 G q oT ’{ql) -1
(3.42 Ymet—(zpwq)m 1 i arctanfy —
Thus, the temperature dependence of the conductivity cor-
rections in the triplet channg¢Egs. (3.39 and(3.41)] is the w\? 5
same as in the singlet channel, but the value and sign depend +3 q_v —3(coso)" . (4.6

on the parametef .
In the static limitql> w7, which is applicable to the thermal

IV. ELECTRON-PHONON INTERACTION phonons, the last equation reduces to
To apply Egs.(2.1) and (2.5) to the electron-phonon in- Gq
teraction one should specify the phonon propagator and elec- Ymer=[1—(3 cosh)?] 0 4.7
tron phonon vertex. The retarded phonon Green function is (2pawyq)
given by whereG= (2/3)er (Refs. 2 and 1%
DR(q,w):(w_wq+i0)71_(w+wq+io)fll (4.1) Vertices obtained in this section will be used to calculate

interference correction to conductivity due to virtual phonons

The unscreened vertex of the electron-phonon scattering>ec- V) and thermal phonongSec. V).
due to the deformation potential is

A. Virtual phonons
:Dq—~en, (4.2) Besides the Coulomb potential, the electron-electron in-
(prq)l’2 teraction may be realized via intermediate electron-ion
interaction—i.e., via virtual phonons. #,=qu>w~T, ac-
cording to Eq.(4.1), the phonon propagat®® is real and
equal to—2/w,. Then, from Eq.(2.1) we get

wheree, is the phonon polarization vector.
In the isotropic model, for longitudinal phonons the de-
formation potential is described by two constabtg and G

(Ref. 17: PR [ do q2dg B
D=D,—3G(cosh)>. 4.3 o3 ar f 27 272 [(@eq IMP(A.0).
4.9
Screening of the bare electron-phonon vertex presented in ) ) )
Fig. 3 leads to We start with the electron-phonon interaction due to the de-
formation potential Dy) in a bulk semiconductor. In this
q [ Dy case the square of the electron-phonon vertex does not have
Vsc= an imaginary part, and the function If(qg,w) is given by
* (2pwg)*? 1-Vo(q)PR(g, ) Eq. (3.8). Integrating Eq(4.8) over g, one should take into
Vo(q)Pg(q ) acc;]olunt th(:1 characteristic intervBlu<q<2pg . Therefore,
_ 2 ' with logarithmic accuracy we get
36((0056) +1—V0(q)P(q,w)) . (4.9 ¢} y g
< g : oM o 2 DIT? u
where P(q,®) is given by Eq.(3.5), and P,(q,®) is the e—v-ph? 4 Yo n(pL 4.9
electron polarization operator with the vertex (e o3 3 pvf;u2 T/ '
In a semiconductor, the deformation potential consiznt
is much larger than the consta®t which has a strong con- In metals the deformation potential is effectively

centration dependendsee below. For this reason, the first screened, and in Inb(q,w) one should take into account
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the imaginary part of the electron-phonon vertgxy. (4.6)].
Calculating the integrals in Eq2.5 with the vertexynet
[Eq. (4.6)] we find

im D (q)=—27] = — 1] 4.1
m ®(q,0)=—2m| 5 ar (4.10
Substituting this result into Eq4.8) we get
S . oho 8 (P €2 T? u
Zecoph” _ 2D Fsz Ped . (410
o3 27\ 8 pUEU T

Note that large electron momentum is transferred via ex-
change of virtual phonons. According to Sec. lll, such pro-
cesses are important only in conductors with a 3D eleCtro@era
spectrum. In 2D structures, the electron-electron correction i

PHYSICAL REVIEW B69, 075310 (2004

At low temperaturesT<kzu, the deformation potential is
strongly screened. In this limit, the interference correction to
the conductivity is given by

8o 10a® DTS i1
o3 63 pvgu’ky’ (4.18

At higher temperature$> «3u, the deformation potential is
not screened. In this limit Eq$4.13 and(4.17 result in

em 2 212
fe_ph(f_ T DoT

o3 24 pv2u®

(4.19

For a two-dimensional electron gas in heterostructures in-
cting with three-dimensional phonons, Ej5) takes the

associated with processes of small momentum transfer;

therefore, the contribution of virtual phonons is absent.

B. Thermal phonons

2 ng2
2pwg’

2
(ay)?

q

Red(q)=— a4+ o

(4.20

For thermal phonons, the imaginary part of the phonori"’hereql\ is the wave vector component along the conducting

propagatofEq. (4.1)] is only important,
Im DX(q,0)=—i7[ 80— wy) — dw+wy)]. (4.12

Taking into account that is of the order ofT and much
smaller thamu g, we can putw=0 in the function®(q, )
[Eq.(2.5]. After integrating ovew, Eq.(2.1) takes the form

5e,ph0' _

2d
—272f 0'2773 f(ogRed(q), (4.13

03

where®(q)=®(q,0=0).

plane,k,=2mev,, v,=m/mx.
Therefore, at low temperatur@s< k,u, the correction to
conductivity is given by

em 212
ci,phO' _ 2 DO T4 (4 2:D
P 5pv,2:U5K% ' ’
and, in the opposite limit,
éiem o D2
—ph™ 0 2
=-— T In—, 4.2
P 3pvEu® Ty 422

In metals, Reb(q) is calculated with the electron- whereT;=maxux,,u/l}.

phonon vertexy,; in the static limit[Eq. (4.7)]. From Eq.
(2.5, we get

(2l (5 2
RE(D(Q)—(?—]. 2—q| §6F m (4.14)

Substituting this result into Eq4.13, we find

Seono _m?| 2m?BT? .15
o3 16/  erpru; '
where the electron-phonon interaction constant is
—(2 )2 - 4.1
Bi=|zer 2 (4.16

Note that in the isotropic model the deformation potential for

transverse phonons is(3/2)G sin(26). Taking into account
the interaction with transverse phonons, we will get @q)
obtained in Ref. 2.
For a bulk semiconductor, Eq2.5) with the verteXysem
[Eq. (4.5] results in
2 2 DSqZ
2pwg’

_a
0%+ x5

(4.17)

T 2
-

In semiconductors the constadt, is much larger thai;
therefore, in isotropic semiconductors interaction with longi-
tudinal phonons plays a key role. The interference correction
to conductivity is negativéEqgs. (4.18, (4.19, (4.21), and
(4.22] and results in resistivity increases with temperature.

The results obtained in this section have a simple physical
interpretation. In the limit of weak disordegl>1, the in-
terference can be described by an effective large-angle elec-
tron scattering process with the square of the matrix element
aé,ph/(ql), wherea,_, is the matrix element of the “pure”
electron-phonon scattering. Therefore, in the Bloch-
Gruneisen regime, the interference contribution to the con-
ductivity turns out to be §-/q)?/(ql) times larger than the
contribution of pure electron-phonon scattering. In the case
of the Debye phonon spectrum, the corresponding tempera-
ture dependence of conductivity is modified By® factor.

As follows from the interpretation above, the interference
corrections due to the electron-phonon interaction critically
depend on the dimension of the phonons and phonon spec-
trum. For example, flexural modes with dispersi&)gocq2
dominate in the electron scattering in freestanding thin films
at low temperatures. In the Bloch-Gruneisen regime, the con-
ductivity of pure film$® is proportional toT”2% then in

weakly disordered films this dependence is proportional to
T2,
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V. CONCLUSIONS TABLE II. Corrections to the conductivity, o/, due to

. . . . the interaction of electrons with thermal phonons through the de-
In this work we investigated the interference of electron-¢, mation potential.c, is the inverse screening lengtby is the

electron (electron-phonon scattering and elastic electron geformation potentialy is the sound velocity, ang is the density.
scattering from impurities and defects in weakly disordered

conductors and heterostructures. We have calculated the in- D=3 D=2
terference corrections to the conductivity and demonstratee
that even weak disorder significantly modifies its tempera- 107® D3T® 27D .
ture dependence. T<spu " 763 poZu’id - WT

In weakly disordered conductors, characteristic momen- )
tum transfers are of the order ®fvg, which is significantly n? D3T? __bo T2 In T
smaller than the Fermi momentum. Therefore, the Landad~ %! T 24 poid® 3pviu’ T

Fermi-liquid theory is applicable and all processes with large
momentum transfer are taken into account by the effective
Fermi-liquid constants. Both singlet and triplet channels of

; . o .~ term[Eq. (4.9)]. The interference corrections due to the in-
the electron-electron interaction give interference correction . : .
o eraction of electrons with thermal phonons are summarized
to the conductivity,

in Table 1. In bulk semiconductors at low temperatuiies
Seer= 85,0+ 5280. (5.1) <ksU, the qontribution of thermal phpnons intgracting wif[h
electrons via the screened deformation potential results in a

Due to the Coulomb potential divergence at small momentaT® term [Eq. (4.18]. At higher temperatures the interaction
the singlet-channel interaction corresponds to the unitaryia an unscreened deformation potential results Tt aerm
limit and corresponding corrections are independent of th¢Eq. (4.19]. In two-dimensional heterostructures the
Fermi-liquid parameter¢see Table )l The triplet-channel screened deformation potential leads toT4 term [Eq.
correctiong Egs. (3.39 and(3.41)] have the same tempera- (4.21)] and the unscreened deformation potential results in a
ture dependence as the singlet-channel corrections. Contrary |n T term[Eq. (4.18)].
to the singlet channel, the triplet-channel corrections are not The effects of the electron-electron interaction dominate
universal. Therefore, the value and sign of the total correcin the conductivity of weakly disordered conductors at low
tion depend on the Fermi-liquid parametef in the triplet  temperatures. At higher temperatures, the conductivity is de-
channel. In the weak-coupling limifFJ|<1, the singlet termined by electron-phonon-impurity interference and then
channel dominates over the triplet one and the corrections tpure electron-phonon scattering prevails over interference
conductivity are positive. Negative values 8§ may result ~mechanisms. The relative values of the interference terms
in a negative total correction, which is observed inand characteristic crossover temperatures depend on many
heterostructure¥' parameters. The effects of the electron-electron interaction

Our main results for the singlet channel are summarize@re enhanced in low-dimensional conductors. As we dis-
in Table 1. We found that in weakly disordered bulk conduc-cussed in Sec. IV, at low temperatures the contribution of
tors the electron-electron interaction results ifi‘dn Tterm  electron-phonon-impurity interference turns out to be
in the conductivity[Eq. (3.14)]. In a quasi-two-dimensional (Pr/dr)?/(gl) times larger than the contribution of pure
conductor,d<vg /T, with 3D electron spectrumpgd>1, electron-phonon scattering. Therefore, the interference con-
the electron-electron interaction results inTaterm [Eq.  tributions dominate over pure electron-phonon scattering at
(3.22)], which is the leading temperature-dependent term al <upg(pel) ~*2 It is important that all interference correc-
subkelvin temperatures. Our result differs from that for 2Dtions are proportional to the Drude conductivity, and this
electrons! by a numerical factor. In the quasiballistic case, characteristic feature may be used for their experimental
integrals of electron Green functions for quasi-two-identification, as has been done for metallic fiffns.

dimensional conductors with 3D and 2D spedtas.(3.18 Note, that theT? term has been actually widely observed
and (3.39] are significantly different and result in different in the conductivity of doped semiconductors. It was associ-
coefficients. ated with strongly anisotropic Fermi surfaces and electron-

In quasi-one-dimensional conductors with 3D and 2Delectron scatteringfor a review see Ref. 17In our opinion,
spectralwires and channelsthe interference corrections are the electron-phonon-impurity interference correction is a
proportional to InT) [Egs. (3.29 and (3.37)]. Note that at more plausible reason for such a term.
subkelvin temperatures the characteristic leryth v /T is
of the order of =10 um. Therefore, experiments with wires ACKNOWLEDGMENTS
and channels oftm sizes would allow one to observe cross-
overs to lower dimensions. Note that the logarithmic term,
has been recently observed in arrays of open quantum dots
um sizes at subkelvin temperaturésThis observation may
be relevant to the quasi-one-dimensional interference correc-
tions calculated in this paper.

We considered the electron-electron interaction via virtual The goal of this appendix is to show how the basic equa-
phonons and found that this interaction results ii%dn T tions discussed in Sec. Il are obtained in the formalism of the

This research was supported by an ONR grant. We would
Ii¥e to thank I. Aleiner, J. Bird, M. Gershenson, B. Narozhny,
nd D. Maslov for useful discussions.

APPENDIX A: QUANTUM TRANSPORT EQUATION
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quantum transport equation. This method is based on thelectric Poisson bracke{€q. (A8)], the interaction is in-
Keldysh diagrammatic technique, where the electric currentluded in components of the electron self-energy.

is expressed through the kineticeldysh component of the For weakly disordered conductor we should consider
electron Green functiorGC(p, €) in the following way: three electron self-energy diagrams shown in Fig. 1. The first
diagram does not consists of dotted lines corresponding to
dpde c the electron-impurity interaction. Electron-impurity scatter-
Je= UE_ef (2m)* vim G(p.€). (AD) ing is included only in the electron Green functiofsq.

(A2)]. Therefore, without nonlocal quantum corrections in
Without interaction effects, the expressions for electronthe form of the Poisson brackdtgq. (A8)], the first diagram
Green functions in disordered conductors are well knownresults in the Bloch-Gruneisen term. Interference effects are
The retardedR) and advanced) electron Green functions taken into account by the Poisson bracket terms. Namely,
are 5COC [Eqg. (A3)] has to be taken into consideration in all
. _ self-energy componentsA(R,C) in the first term in Eq.
Go(p.€)=[Go(p.e)]* =(e=&+if2n) %, (A2) (A9). The second term has the Poisson bracket form and,
therefore, it is directly calculated with the equilibrium distri-
bution functions. Substituting;,;C® in Eq. (A1), we get the
correction to the conductivity in the form of Eg.1) and

G§(p,e)=2i S(p,e)ImM[Gy(p,e)]+ 6GS, (A3) (2.3 with the function®(q, ) given by

and §p=(p2—p§)/2m. The kinetic component of the elec-
tron Green function is given by

in
1 @ (q,w)=—f dép((Y2(v-©’[GR(g+p, et w)]?
5G§=5{So(€).Go+ G}, (A4) ' 4ml®) P
o o XGA(p, €))v)q
where the electron distribution function is given by

¢ 7(Ve-©)° (A10)
S(pyf)_80(5)+¢(p15)1 (AS) 27-20'2: (qVF_w_IO)Z y :
q
= —tanh e/2T), A6 . . . .
Sol€) Hel2T) (A8) In the second and third diagrams the electron-impurity
ISo(€) and electron-electrofelectron-phononinteractions are di-
é(p,e)=—er(v-E) Frt (A7) rectly presented. Therefore, interference contributions of

these diagrams originate from the first term in E&Q) with-

out any Poisson bracket corrections. Calculations show that
the contribution of the second diagram is exactly the same as
the first one,

{A B}zeE(%ﬁ_ﬁ %) (A8) ®y(g,0)=D4(q,w). (A11)
' de dp de dp)’

The nonlocal correctioﬂGoC(p,e) has a form of the Poisson
brackets,

The third diagram with the vertex renormalized by elastic
The kinetic Green functio®§ [Eq. (A3)] with the distribu- ~ electron-impurity scattering gives

tion functionS(p, €) [Eq. (A5)] takes into account only elas-

tic electron scattering from impurities. Substitutigf in D3(q,0)=(K(0,0)-L(q,0))q=([M(g,0)]?)q. (A12)
Eqg.(Al), one could get the Drude conductivity. The nonlocal
correctionéGg(p,e) is required to satisfy the unitary condi-
tion for the matrix Keldysh functiof® it removes divergence
in Eq. (A1) far from the Fermi surface.

The first term in Eq(A12) corresponds to the third diagram
with the equilibrium vertex, which is given by

Assuming that the elastic electron scattering from impu-  K(q,w)= f yGA(p,€)GR(p+q, e+ w)
rities and defects dominates in the electron momentum relax- mnT)  (2m)"
ation, one can apply the iteration procedure to the Dyson i
equation. Then the many-body correction to the kinetic :__<+> ' (A13)
Green function is expressed through the electron self-energy T\QVr—0—i0/,

in the followi 2
'n the following wey and the rest of the diagram is described by the function

SnGC=21[35, —2iS Im =4, ]Im G

d
+27{Re 30 ,SoHlm GH+S Im 34,(G))2. L(g,w)= f i GA(p,e)GR(p+q,e+ )
TVLT (277)”
(A9)
.e)? i .@)?
Note that the electric field enters E@h9) through the non- X y(vz " __ |—2<M> . (A19)
equilibium distribution functiong(p,e€) [Eq. (A5)] and the v TE \QVe— 0 =10/
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The nonequilibrium vertex calculated with the distribution  As we already mentioned, Eq&.1) and(2.4) can also be
function ¢(p,€) leads to derived in the linear response formaliéit. The correspond-
ing diagrams are shown in Fig. 2. Here, diagrams 1 and 2
dp yv-e . . .
f GA(p,e)GR(p+q, e+ w)— correspond to the first diagram of the transport equation
(2m)" v method[Eq. (A10)], diagram 3 corresponds to the second
i < ¥ Ve-e > diagram[Eq. (A11)], diagrams 4 and 5 are equivalent to the
.
'

M(q,w)=

TVLT

-— (A15)  third diagram with the equilibrium vertepEgs. (A12) and
(A13)] and diagrams 6 and 7 are equivalent to the third dia-
Finally, summarizing®;(q,w) [Egs. (A10), (A1l), and 9ram with the nonequilibrium verteEqgs. (A12) and

TUg \QVp—w—i0

(A12)], we get Eq.(2.4). (A15)].
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