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Impact of phonons on quantum phase transitions in nanorings of coupled quantum dots
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CDW-to-CDW and CDW-to-SDW~CDW/SDW5charge-spin-density wave! quantum phase transitions have
been recently reported for finite rings described by an extended Hubbard model@I. Bâldea, H. Köppel, and L.
S. Cederbaum, Eur. Phys. J. B20, 289 ~2001!#. We present exact~Lanczos! diagonalization results which
demonstrate that these transitions survive in the presence of adynamicSu-Schrieffer-Heeger~SSH! electron-
phonon coupling. The two transitions are affected in a different way discussed in detail. By treating the SSH
electron-phonon coupling dynamically, two levels of different symmetries do cross, allowing one to define
precisely a critical point. Because the ground-state symmetry changes at the critical points, we suggest to study
the quantum phase transitions by optical methods. Molecular rings such as polyenes~annulenes! turn out to be
too far from the critical points, where the most interesting phenomena occur. However, we present an analysis
revealing that, if metallic quantum dots of the type already fabricated can be assembled in nanorings, model
parameters can be tuned and quantum phase transitions can become observable.

DOI: 10.1103/PhysRevB.69.075307 PACS number~s!: 73.40.Gk, 71.45.Lr, 73.23.2b
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I. INTRODUCTION

Extended Hubbard models,1 often supplemented by
electron-phonon couplings, provide a very popular fram
work for studying strongly correlated systems. Their groun
state can be characterized by a variety of correlations, s
as charge-density, spin-density, bond-order waves~CDW,
SDW, BOW, respectively!, or charge separation. Since the
models are not exactly solvable analytically even in the
sence of phonons, exact results obtained numerically fo
nite clusters are very desirable.

To study clusters consisting of a small number of un
(N;10), exact numerical~Lanczos! diagonalization is mos
useful because it allows one to compute eigenvectors
rectly, thus providing the richest physical information, to d
criminate~lowest! excitations, even if they possess differe
symmetries and/or are almost degenerate, and to com
frequency-dependent responses. Other numerical@e.g.,
density-matrix renormalization group~DMRG!,2 Monte
Carlo3# methods could handle larger systems in the grou
state, but difficulties arise, e.g., when dealing w
frequency-dependent responses.

While exact diagonalization approaches of infinite sol
are inherently confronted with problems of extrapolatio
they can be employed directly to nanostructures consistin
a small number of quantum dots~QD’s!. QD’s behave like
artificial atoms;4 being confined within a few nanometer
electrons occupy quantized levels analogous to atomic o
als in ordinary atoms. Advances in nanotechnologies al
one to fabricate assemblies of metallic5–7 and
semiconducting8 QD’s, or ‘‘artificial’’ molecules.9 Most elec-
trons are localized on individual QD’s. However, a sm
number of~‘‘valence’’! electrons are bound weakly enoug
to become delocalized over the whole ‘‘molecule’’ if th
overlap of their wave functions for adjacent QD’s is suf
ciently large. The salient feature of such artificial atoms a
molecules is that, unlike the natural counterparts, their pr
0163-1829/2004/69~7!/075307~13!/$22.50 69 0753
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erties can be tuned by varying the dot diameter 2R and/or
interdot spacingD. Individual QD’s can be characterized b
the on-site Coulomb repulsion energyU ~related to the QD
self-elastance! and the energy of valence electronse. QD’s
are coupled by electron tunneling~resonance integralt0) and
Coulomb interactionV ~related to the mutual elastance!. U
ande ~mainly! depend onR, whereast0 andV depend onD.
Previously, the extended Hubbard model has been used
studying transport in arrays of semiconducting QD’s~Ref.
10! and disorder effects in metallic QD arrays.11

In view of their tunable properties, assemblies of QD
can be used to study many aspects unexplored so far
interacting electron systems. For instance, they can be
tinuously driven from a weak correlation regime to stro
correlation regime. To this aim, one can monitor ionizatio
as demonstrated recently by two of us.12 An interesting prob-
lem that can be studied in view of the tunability is the pha
diagram for mesoscopic rings in the presence of strong e
tronic correlations. This has been demonstrated by our re
studies,13 revealing that finite rings possess a phase diag
richer than for infinite ones. What makes the difference fro
infinite systems is the symmetry of an exact eigenstate~e.g.,
ground-state!, which cannot be broken in finite ones. In th
latter case, thecollectiveelectronic tunneling between mu
tielectronic configurations that are classically equivalent
stores the symmetry and enriches the phase diagram.
phase diagram comprises, besides critical lines related
quantum phase transitions that are also possible in infi
systems~e.g. CDW-to-SDW transition!, new critical lines,
specific for mesoscopic systems, related to tunneling-dri
quantum phase transitions. The former critical lines sepa
states characterized by different orderings and symmet
while the latter separate states with the same ordering,
with different symmetries~e.g. CDW-to-CDW transitions!;
see Ref. 13 for details.

In the present paper, we shall extend our previo
studies13 on finite rings by incorporating adynamiccoupling
©2004 The American Physical Society07-1
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of electrons to phonons of Su-Schrieffer-Heeger~SSH!
type14 into the extended Hubbard model. From a gene
theoretical standpoint, it is interesting to address the ques
whether the tunneling-driven quantum phase transitions
Ref. 13 survive the quantum phonon fluctuations. The S
electron-phonon coupling is important in real systems;
instance, it is responsible for dimerization in cycl
polyenes15 and polyacetylene.14 SSH phonons may also b
important for nanorings of QD’s, once nanotechnologies
able to fabricate~almost! identical QD’s forming~almost!
perfect regular arrays. The interdot spacingD is a dynamical
variable, since QD’s are not rigidly fixed on the substra
Because of difficulties related to the infinite phonon Hilb
space, theoretical studies on dynamic phonons by exac
almost exact numerical methods have appeared o
recently.16–20 Except for Ref. 17, which also considered t
optical conductivity, these studies restricted themselves
the ground-state or at most to a few of the lowest excitatio

The remaining part of this paper is organized as follow
In Sec. II, we specify the model and discuss its symmetr
Then, we present a variety of general properties, with e
phasis on those specific for mesoscopic systems. They
to the ground-state~Sec. III! and lower excited states~Sec.
IV !, as well as optical absorption~Sec. V!. In Sec. III C,
results obtained by treating the dynamic electron-pho
coupling are compared to those for a classically deforma
lattice. Some discussions and conclusions make the obje
the final Sec. VI.

II. MODEL

The system under consideration is a collection of an e
numberN of sites ~QD’s! placed on a nanoring. A QD is
modeled by a single spin-1/2 ‘‘atomic’’ orbital occupied b
one electron~half-filling case!. The Hamiltonian reads

H5(
l 51

N

(
s5↑,↓ F2t01~21! l

g

AN
~b1b†!G

3~al ,s
† al 11,s1al 11,s

† al ,s!1(
l 51

N

enl1(
l 51

N

~Unl ,↑nl ,↓

1Vnlnl 11!1V~b†b11/2!. ~1!

Here,a (a†) andb (b†) denote annihilation~creation! opera-
tors for electrons and phonons, respectively,nl ,s[al ,s

† al ,s ,
nl[nl ,↑1nl ,↓ , t0 is the nearest-neighbor hopping integr
andV is the bare phonon frequency. In addition to the el
tronic HubbardU andV terms, Eq.~1! includes the coupling
of electrons to SSH phonons,14 characterized below by th
dimensionless strengthg[g/AVt0/2. We consider identica
sites and set site energiese50.

We shall consider open-shell systems because the p
diagram turned out to be richer in this case.13 Open-shell
situations correspond to periodic rings withN54k and to
antiperiodic rings withN54k12 (k is an integer!.21 The
difference between the highest occupied and the lowest
occupied single-electron levels~HOMO-LUMO gap,! van-
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ishes only in the two aforementioned cases. A vanish
HOMO-LUMO gap mimics the divergent electronic densi
of states at the Fermi level of an infinite system which
responsible, e.g., for thefinite static lattice dimerization for
arbitrarily smallg. Otherwise, although decreasing as 1/N,
this gap remains finite and the dimerization requires a m
mum value ofg;22,23,18then, it would be hard to make thi
gap much smaller than other realistic model parameter
sizes for which the exact diagonalization can be done. Th
fore, by considering below open-shell situations, we arg
that the results derived for small clusters~here, up toN
512) should also have relevance for larger systems and,
certain extent, for infinite systems.24

Similar to the case where phonons are absent,13 the sym-
metry of the Hamiltonian~1! is important for the eigenstat
classification. One can easily show that the spatial symm
group of Eq.~1! is CN,v (N5N for periodic boundaries and
N52N for antiperiodic boundaries!, comprising rotations
Tk[Tk @al ,s→al 1k,s andQ→(21)kQ] around a principal
axis CN as well as two distinct classes of reflection plan
perpendicular toCN , mv( j ) (al ,s→aN12 j 2 l ,s , Q→2Q)
and md( j ) (al ,s→aN1112 j 2 l ,s , Q→Q). Here, 0<k<N
21, 0< j <N/221, and Q is the dimerization coordinate
(bA25Q1]/]Q, b†A25Q2]/]Q). Further symmetries of
the Hamiltonian~1! are the particle-hole transformationP
@al ,s→(21)lal ,s

† , Q→Q] and the spin flip F (al ,s

→al ,2s , Q→Q). No symmetry breaking is possible in finit
rings, unlike in infinite ones. Consequently, under the afo
mentioned transformations, the nondegenerate eigens
uCa& of Eq. ~1! should be of either even (uCa&→1uCa&) or
odd (uCa&→2uCa&) parity. The corresponding eigenvalue
(61) of the operatorsT, P, F, mv(0), andmd(0) will be
denoted byT, P, F, mv , and md , respectively. Although
certain symmetries of electron-phonon models similar to
~1! relevant for infinite systems have been discussed pr
ously ~e.g., Ref. 25!, to our knowledge, a full classification
along these lines has not been given before in the literat

The results presented below have been obtained by m
of exact ~Lanczos! diagonalization. For specific details o
this method see, e.g., Refs. 17, 18, and 13, and citat
therein.

III. GROUND-STATE PROPERTIES

A. Considerations on quantum phase transitions in nanorings

As discussed previously,13 quantum phase transitions ca
occur at zero temperature (T50) in commensurate mesos
copic rings of strongly correlated electrons due to quant
fluctuations, analogous to traditional phase transitions cau
by thermal fluctuations. Quantum phase transitions can
observed by varying model parameters. Studying quan
phase transitions in this way is inconceivable in ordina
solids or molecules, but is possible in nanorings, as we s
gest below by referring to recent achievements in the fa
cation of arrays of metallic QD’s. Recently, it became po
sible to assemble narrow size distributions (;5%) of silver
QD’s with diameter (2R) of a few nanometers in hexagon
7-2
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arrays.5–7 The interdot separationD ~measured between QD
centers! has been nearly continuously varied in the ran
1.1&D/(2R)&1.8, allowing a wide tuning of various phys
cal properties.5–7 This is mainly due to the exponential be
havior found fort0@}exp(22.75D/R)#,11 as in polyenes.15

In the above range,t0 changes by a factor;50. For
D/(2R)51.2, a valuet050.5 eV has been extracted by fi
ting experimental data.27

For Ag QD’s with 2R'2.6 nm, Coulomb blockade ex
periments, using scanning tunneling microscopy, led toU
50.34 eV.7 This value agrees with the estimateU
5e2/(« rR) deduced by assuming a spheric QD (« r is dielec-
tric constant of surrounding material!.7,6,26 Obviously, the
above formula represents a crude approximation even wi
the classical spherical model; it corresponds to a meta
charged spherical grain embedded in an infinite dielec
medium. Assuming the passivating ligand surrounding
metallic dot as a spherical shell of outer radiusr, one gets an
enhanced on-site repulsion by a factorU8/U511(« r
21)R/r. From intuitive reasons, one could expect that
Coulomb repulsion between adjacent sitesV is weaker than
the on-site repulsionU. A precise formula forV is not docu-
mented. For the observability of the presently discus
quantum phase transitions@see Fig. 1~a! and the discussion
below#, large enough values ofV/U are of interest, corre-
sponding to QD’s very close to each other.

For this case, one can estimateV/U'v/u classically, as
the ratio between the mutual- and self-elastances (v and u,
respectively! of two identical spheres in a homogeneo
medium.12 Results foru andv deduced numerically by usin
classical electrostatics are presented in Fig. 1~b!.28 Along
with the aforementioned behavior oft0, theseu andv curves
suggest that, by varyingD/R, wide regions of the phas
diagram@Fig. 1~a!# can be explored.

A comment is in order at this point. Before consideri
nanorings of quantum dots, we have investigated whe
cyclic molecules may correspond to points of the phase
gram close enough to the critical lines. To this aim, we ha
examined in detail cyclic polyenes CNHN . As is well known,
the Pariser-Parr-Pople model,29 the counterpart of the ex
tended Hubbard model in the chemical area, was origin
introduced just to describep electrons of these molecule
By adjusting only four parameters (U, V, V, and g) of
model ~1! one can reproduce an impressive amount of r
able experimental andab initio data of smaller molecules —
benzene (C6H6), cyclobutadiene (C4H4), and cyclooctatet-
raene (C8H8) — as well as for polyacetylene: ground-sta
properties~e.g., dimerization amplitude!, photoionization, as
well as ~singlet and triplet! electronic and phononic
excitations.30 The related technical details will be present
elsewhere, since they heavily rely on chemical and molec
physics. Here we only note that the valueV/U50.28 found
in this way30 is too far from the critical lines of the phas
diagram@see Fig. 1~a!#. Therefore, no precursor effects of th
quantum phase transitions discussed in this paper coul
expected in polyenes.

Below, we shall first present the phase diagram of in
acting electrons in~nano!rings obtained by exact~Lanczos!
diagonalization in the absence of phonons. Then, we s
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show how the quantum phase transitions occurring in
purely electronic system are affected by the coupling of el
trons to SSH phonons.

A critical point of a quantum phase transition is defin
by the intersection of levels corresponding to the low
eigenstates with different correlations and/or symmetrie13

In Fig. 1~a!, we present the phase diagram for periodic 1
site rings andV>0 in the absence of electron-phonon co
pling, obtained by level crossing.13,31 One should note tha
below we mainly refer to the caseN512 since this is the

FIG. 1. ~a! Phase diagrams for 12-site periodic rings. T
dashed critical lines separate the parameter space into CDW ph
c andc8 with differentsymmetries. The phasesc ands separated by
the solid line differ both in orderings~CDW and SDW, respectively!
and symmetries.~b! Self- and mutual elastances (u andv, respec-
tively! obtained within classical electrostatics for two identic
spheres of radiusR whose centers are separated by a distanceD.
They are normalized to the elastance (1/R) of an isolated sphere
The ratiov/u represents the classical approximation ofV/U. The
equalityu52v holds forD/(2R)51.107.
7-3
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largest size we can study by exact diagonalization in
presence of phonons. However, it is worth emphasizing
the results for smaller rings are analogous, as one can se
comparing the present results without phonons to those
smaller sizes we reported recently.13 Similar to smaller rings
(N56,8,10!,13 the ground-state phase diagram forN512
@Fig. 1~a!# comprises two CDW regions~phasesc and c8),
where CDW correlations dominate over SDW correlatio
and one SDW region~phases), where SDW correlations
dominate over CDW ones. Both statesc and c8 represent
CDW phases, but their symmetries are different; m
precisely, they have the symmetries of the symme
and antisymmetric superpositionsuCDW1&6uCDW2&,
respectively, each term representing one of the two cla
cally equivalent CDWs in the bipolaronic limit. In occupa
tion number representation,uCDW1&5u•••0202•••& and
uCDW2&5u•••2020•••&. The states corresponds to a SDW
phase with the symmetries of the superpositionuSDW1&
1uSDW2& of the two classically equivalent SDWs in th
antiferromagnetic limit, uSDW1&5u•••↑↓↑↓•••& and
uSDW2&5u•••↓↑↓↑•••&.32 The symmetries of the statec
areT5md5mv511 ~irreducible representation1A1 of the
point group C12,v), and P5F511; for the statec8, T
5md521,mv511 ~irreducible representation1B1), P
521, andF511. The symmetries of the SDW-type states
areT5mv521, md511 ~irreducible representation1B2),
andP5F511. In Fig. 1~a!, the lines between the phasesc
andc8 correspond to a CDW-to-CDW quantum phase tra
sition, the line betweenc and s corresponds to a CDW-to
SDW quantum phase transition.

Similar to the case without phonons, one can determin
ground-state phase diagram by crossing the lowest-en
levels of a given symmetry also when phonons are pres
Doing so, we have found that both types of quantum ph
transitions~i.e., CDW-to-CDW and CDW-to-SDW! survive
a coupling of electrons to SSH phonons, but they are affec
in different ways. This will be shown below by comparin
relevant quantities computed with and without phono
CDW, SDW, and BOW orderings in the ground-state o
finite ~mesoscopic! system can be characterized by nonva
ishing 2kF correlation functionsKc,s,b , respectively.33 These
functions are defined below along with that characteriz
the correlation between the BOW and lattice dimerizat
KbQ :

Kc,s5 (
l 50

N21

~21! l^~nl ,↑6nl ,↓!~n0,↑6n0,↓!&,

Kb5 (
s; l 50

N21

~21! l^~cl ,s
† cl 11,s1H.c.!~c0,s

† c1,s1H.c.!&,

~2!

KbQ5 (
s; l 50

N21

~21! l 11^~cl ,s
† cl 11,s1H.c.!Q&.

B. Exact results for a dynamic electron-phonon coupling

To study the two quantum phase transitions, one sho
inspect how relevant quantities vary when crossing the c
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cal lines by changing the model parameters. For this,
shall examine changes in nanorings driven by varyingU
(U>0) along a fixedV line. The critical point of thec8-c
transition will be denoted byUc , that of thec-s transition,
by Us .

Let us first examine the CDW-to-CDW transition. With
out phonons,Uc /t051.698. As seen in Figs. 2~a!–2~c!, for
g50, neitherKc nor Ks is significantly affected at thec-c8
transition. The jump inKc is extremely small because th
dominant correlations are of CDW type in both phasesc and
c8; deep inside the CDW region,Ks is anyway small. How-
ever, theKb-curve exhibits a pronounced jump; as discuss
previously,13 the BOW correlation function is sensitive to th
change of symmetry atUc . Let us now discuss the impact o
phonons. The critical point of thec-c8 transition is sensitive
to the electron-phonon coupling. Forg50.434 andV/t0
50.0656, it is pushed downwards toUc /t051.331.34 In the
c8 phase, the electronic correlations are practically un
fected by the coupling to phonons. There, the main effec
interactions is to renormalize the phonon frequency, but e
trons and~dressed! phonons behave as separate systems.
adiabatic potentialW0(Q) ~i.e., the energy of the lowes
eigenstate obtained by consideringQ classically! is harmonic
around its minimum located atQ50. This holds even very
close to thec-c8 transition, as shown by the following ex
ample. For V/t051.2, V/t050.0656, and U/t051.32
(&Uc /t051.331), theW0(Q) curvature yields a dresse
phonon frequencyṼ50.7389V. Harmonic phonons with
this frequency should have a ground-state average^Q2&
50.5817 and a valuêQ4&1/2/^Q2&51.7320; these arejust
the values found by means of exact diagonalization.

Qualitatively, the effect of thec-c8 transition on the BOW
correlations with and without phonons is similar. In bo
cases,Kb curves display jumps at the corresponding critic
valueUc ; see Fig. 2~c!. The jumps of theKc,s curves atc-c8
transition are small in both cases@almost invisible in Figs.
2~a! and 2~b!#, but a change of their slopes atU5Uc can be
observed in these figures in the presence of electron-pho
coupling.

Unlike in thec8-phase, phonons affect all electronic co
relations in bothc ands phases. In thec phase, CDW corre-
lations are diminished by the electron-phonon couplin
while SDW correlations are enhanced. A reversed effect
curs in the s phase: SDW correlations are suppress
whereas CDW correlations are enhanced. The elect
phonon coupling smears out the jumps in the correlat
functions at the CDW-SDW transition: compare theKc,s,b
curves with and without phonons in the region aroundUs in
Fig. 2. This implies that the SSH electron-phonon coupl
favors thecoexistenceof CDW and SDW correlations.

Inspection of Figs. 2 shows that the ground-state latt
dimerization^Q2& attains its maximum at the critical poin
Us /t0 ~see also Sec. IV!. The enhancement of the BOW
correlations at thec-s transition has also been pointed out
the absence of phonons.31,13 The Kb curves@Fig. 2~c!# show
that this conclusion also holds when the electron-phon
coupling is switched on. The fact that the peaks in^Q2& and
Kb are located at the same point agrees with what one
7-4
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FIG. 2. CDW, SDW, BOW, and BOW-dimerization correlation functions (Kc,s,b,bQ , respectively! and mean-square dimerization^Q2&
for 12-site periodic rings witht051, V51.2, V50.0656, andg50.434 (Uc /t051.698, Us /t052.310). Solid lines: the SSH electron
phonon coupling is treated exactly~dynamically!. Dotted lines: MF approximation for phonons. Dashed lines: exact calculations, but wi
phonons.
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pects intuitively in a molecule: a shorter~longer! distance
between atoms should correspond to a double~single!
chemical bond. The shapes of theKbQ-curves @Fig. 2~d!#,
with a maximum atUs /t0, directly confirm the correlation
between the lattice dimerization and the BOW. An interest
feature visible in Figs. 2~c! and 2~d! is that both dimerization
and BOW diminish more rapidly in the CDW region (U
,Us) than in the SDW region (U.Us). The fact that the
CDW is more effective than the SDW in suppressing
dimerization and the BOW can be understood intuitive
within a mean-filled~MF! picture. Both CDW and BOW
ordering are related to one-particle potentials with a peri
icity which is twice that of the original lattice. However, th
07530
g
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minima of the former are locatedon the lattice sites, wherea
those of the latter are situatedbetweenadjacent sites; hence
the excess charge is located on sites in the case of a C
but on the bond for a BOW. Of course, the charge~summed
over spin! distribution is uniform in an SDW.

The examples presented above reveal different effect
SSH phonons on the CDW-to-CDW and CDW-to-SDW tra
sitions. The location of the critical lines is also affected in
different way. In contrast toUc , the value ofUs is quite
insensitive to phonons. For the parameter values of Fig
the energies of the statesc and s cross in the absence o
phonons atUs /t052.314; forg50.434 andV/t050.0656,
they cross atUs /t052.310.34
7-5
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C. Static dimerization versus dynamic electron-phonon
coupling

A popular approximation for model~1! is of the MF type,
i.e., to suppose astatically dimerized lattice. In this section
MF results will be compared to exact ones. Besides comp
son purposes, one could note that the MF approximation
the SSH-electron-phonon coupling in QD arrays can be
tified, in view of the large QD mass. The inspection of Fig
2 reveals that the MF approximation for phonons descri
reasonably well certain ground-state properties. A differe
between the exact and the MF results concerns the loca
of the c-c8 transition. The higher the phonon frequency, t
more is the critical valueUc shifted downwards.Uc tends to
the MF-valueUc

MF(51.462t0 in Fig. 2! in the limit V→0;
for smaller frequencies (V,t0), the numerical results indi
cate thatUc2Uc

MF}V.
The main drawback of this MF approximation is the u

physical result of a state with broken symmetry in a fin
system. The symmetry can be broken only in an infinite s
tem, but this case is less interesting here as far as pho
effects are concerned; the present model includes on
single-phonon mode, which becomes macroscopically oc
pied and can be treated classically. When correctly accou
for, the quantum fluctuations restore the original symme
and this is important, e.g., for optical absorption, as d
cussed below.

The MF treatment of phonons forV50 in smaller dimer-
ized clusters22 yielded agradual CDW-SDW transition. The
smooth MFKc,s,b,bQ curves shown in Figs. 2~a!–2~d! gen-
eralizes this conclusion to the caseVÞ0. Although around
U5Us the differences visible in Figs. 2 between th
Kc,s,b,bQ-curves corresponding to a classical deformable
tice and dynamical phonons are very small, there is an
portant difference between the physics emerging from
and exact treatments.35 In the MF case, there isno level
crossing atU5Us . The smooth changes in various averag
properties simply reflect smooth changes of an approxim
eigenstate whose symmetry is reduced with respect to
original one (CN,v , cf. Sec. II!, but is nevertheless a we
defined symmetry of the point groupCN/2,v of a dimerized
system; it doesnot change when crossing the pointU
5Us . The qualitatively new effect brought about by thedy-
namicalelectron-phonon coupling is that energy levels c
responding to lowest eigenstates of different symmetriesdo
cross atU5Us , enabling a precise definition of a critica
line U5Us(V). Quantitatively, this has only a very sma
impact on the curves of Fig. 2: there is a very small cu
~almost invisible in Fig. 2! in the exact curves atUs , al-
though the curves themselves remain continuous there
higher V than that used in Fig. 2, the cusps become m
pronounced; see Sec. IV and Figs. 4~c! and 4~d!. Further
physical implications of the change in symmetry atUs will
be discussed in Secs. V and VI. By contrast, at the crit
point Uc there exists a level crossing even within MF.

The lattice relaxation is another important effect whe
studying electronic excitations in a mesoscopic system.
less the exciting pulse is short with respect to the latt
relaxation time, the system in an electronically excited st
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will reoptimize its geometry; in general, the latter is differe
from the optimum geometry in the ground-state. This can
seen by inspecting the so-called adiabatic potentialsW0(Q)
andW1(Q), i.e., energies computed exactly at a frozen g
ometry Q corresponding to the electronic ground state a
the lowest electronic excited state which is optically activ
respectively, or by monitoring the probability distributio
Pa(Q)5u^QuCa&u2 to find a lattice with dimerizationQ in a
certain exact eigenstateuCa& of the electron-phonon system
In Fig. 3, we present an example using parameter va
deduced from reanalyzing experimental andab initio data
from small annulene molecules and polyacetylene.30 The
adiabatic potentialW0(Q) exhibits two minima located a
Q56QMF563.296. The probability distributionP0(Q) of
the exact ground-state possesses two maxima loc
~roughly! at 6QMF ; computed quantum mechanically, the
width is finite, unlike thed-shaped maxima of the classic
~MF! lattice. In contrast to the ground-state, the lowest
cited electronic state which is optically active is not dime
ized, as illustrated by theW1(Q) curve, possessing only on
minimum atQ50. Treated quantum mechanically, the la
tice is nonrigid. It can and does relax: the bonds alternat
the electronic ground-state but become uniform upon
single electron-hole excitation.

Summarizing, the MF approximation for phonons can s
isfactorily reproduce some average ground-state prope
deduced exactly. However, as discussed here and below~Sec.
V! in more detail, it is totally unable to describe realistica
dynamic properties of mesoscopic systems~and this, even at
lower phonon frequencies!, for which not only quantum fluc-
tuations but also lattice relaxation should be appropriat
considered. One should note that the lattice relaxation wh
is generally very important in small systems is also import
for mesoscopic systems and even for polymers, because
matters is not the size of a macroscopic sample but the s
conjugation length~usually several tens of units!.36

IV. LOWEST EXCITATIONS

The electronic and lattice excitations play a key role
understanding many interesting physical properties, e.g.,

FIG. 3. Results for 12-site periodic rings andt051, U51.8,
V50.5, g50.485, andV50.0656.W0,1(Q) are the adiabatic po-
tentials corresponding to the electronic ground-state and the lo
optically active electronic excitation, respectively,P0(Q) gives the
probability to find a lattice with dimerizationQ in the exact ground-
state of the electron-phonon system, ands(v) is the real part of the
optical conductivity. Notice the same energy scale in both right a
left panels.
7-6



s of the

IMPACT OF PHONONS ON QUANTUM PHASE . . . PHYSICAL REVIEW B 69, 075307 ~2004!
FIG. 4. U-dependent properties of 10-site antiperiodic rings att051, V51.2, g50.434, and—except for the panel~d!—V50.06
(Uc51.254, Us52.322). ~a! Lowest excitation energies. Solid (c0[s1 , c2[s3 , c4[s5), short-dashed (c1[s0 , c3[s2 , c5[s4), long-
dashed (c08 , c28), and dotted (c18) lines correspond to eigenstates transforming as the one-dimensional irreducible representation
symmetry group1A1 , 1A2 , 1B1, and 1B2, respectively. See the main text for details.~b! Adiabatic potentialW0 and the energies of the
lowest exact eigenstatesc0–c5 ~horizontal lines! for U51.92. ~The energy difference between the statesc1 andc0 is too small to be visible
within the drawing accuracy.! Mean-square lattice displacement^Q2& for ~c! the first six lowest-energy eigenstates of panel~a!, and~d! the
two lowest eigenstates atV/t050.06, 0.12, 0.18~values corresponding to decreasing ordinates atU5Us).
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optical absorption. In Fig. 4~a!, we present results for th
lowest excitation energies for 10-site antiperiodic rings37

The physical picture emerging from the discussion of Sec
on the ground-state is fully confirmed by the analysis of F
4~a!.

In Fig. 4~a!, one can easily assign curvesc08 , c18 , andc28
as corresponding to the states of thec8 phase with zero, one
and two harmonic vibrational quanta, respectively. Th
curves are equidistant and horizontal forU,Uc , where the
ground-state is ac8 phase. AboveUc they are no more hori-
zontal, because the ground-state is now ofc-type, but the
07530
II
.

e

energy differences remain practicallyU independent. This
agrees with the conclusion of Sec. III: thec8 phase consists
of two ~practically! decoupled subsystems~electrons and
harmonic phonons!.

The curvesc0 and s0 correspond to the lowest-energ
states with the symmetry of thec ands phases, respectively
The former is the ground-state forUc,U,Us and the latter
for U.Us . Being of different symmetries, these two leve
can and do cross atU5Us ~no avoiding crossing!. The c0
level extends within the regionU.Us as the lowest excita-
tion s1 in the s phase. A similar behavior is encountered f
7-7
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excited states: theck level (kth excitation in thec phase!
crosses atU5Us with the sk level (kth excitation in thes
phase!. Thesk11 level represents the smooth continuation
the ck-level with the same symmetry into thes phase (U
.Us); for U,Us , one should interchange the level labe
(s
c) in the above statement. Within an adiaba
description,17,18 one would assign, e.g., thes0 level as the
ground-state for both electrons and lattice in thes region,
while the sk state would be the product of the electron
ground state and thekth lattice excitation.

Figure 4~a! also reveals that, close to the pointUs and far
apart from it, the excitations have adifferentphysical mean-
ing on either side of the transition. Sufficiently far away fro
Us , the energy spacing between adjacent excitations (ck11
andck for Uc,U!Us or sk11 andsk for U@Us) is nearly
constant. There, these excitations can be ascribed to nor
nearly harmonic phonons of a weakly dimerized system@cf.
Figs. 2~d! and 4~a!#. On the contrary, in the dimerized regim
(U'Us), the excitations can be ordered in pairs, each p
consisting of two almost degenerate tunnel partners of dif
ent symmetry, see Fig. 4~a!.

We shall present below a number of arguments confirm
this interpretation in terms of a tunnel effect in a symmet
double well potentialW0(1Q)5W0(2Q). The lowest-
energy of a classic object in this potential corresponds to
statesQ51QMF andQ52QMF which are equivalent. In-
stead of a twofold degenerate ground-state, the two low
energy eigenstates of a quantum oscillator moving in
potential W0(Q) can be~approximately! expressed as th
symmetric and antisymmetric superpositions of two wa
packets centered on1QMF and2QMF . Unlike in the clas-
sical case, they are no more degenerate. The small differ
« of their energies is the result of the quantum tunnel
across an energy barrierEB5W0(0)2W0(QMF) over a dis-
tance;2u0;\QMF /ANMV @cf. Figs. 3 and 4~b!#. If the
barrier is sufficiently high, one can estimate the tunnel sp
ting energy« semiclassically; it decreases exponentially w
the quantityu0AEBm/\}zAm/M , wherem is the oscillator
mass andz[DMFAEB /t0/(gV). In Fig. 5~a!, we have plot-
ted the quantityz against the lowest excitation energy«
5uE(c0)2E(s0)u computed exactly. To get the curves
Fig. 5~a!, U has been varied in the ranges where« is small,
and this both in the CDW and in the SDW region@1.6
&U/t0&2.2 and 2.5&U/t0&4, cf. Fig. 4~a!#. In both re-
gions we found that the curves log« versusz are linear@cf.
Fig. 5~a!# to a very good approximation; furthermore, for
given sizeN, one cannot distinguish the curve correspond
to U values in the CDW region from that corresponding toU
values in the SDW region. So, the exact quantity« behaves
just as one expects for a tunnel splitting energy.

This is a strong evidence for the tunnel effect, but this
not the whole issue. As seen in Fig. 5~a!, the curves forz are
linear, but they do depend onN. In view of the above con-
siderations, one should immediately rule out a one-part
origin of the tunneling: if the tunnel effect were of singl
particle origin,m would beN independent and thez curves
would beN independent. By contrast, the curves forzAN are
~almost! N independent. The fact that not thez curves, but
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the zAN curves areN independent impliesm}N, i.e., acol-
lective tunneling occurs. Concerning theN dependence, a
comment is still in order. Above, we have discussed the
pendence of« on N indirectly, by means of the barrie
EB(N). In an extended solid one expectsDMF5const and
EB(N)}N, because the former is an intensive quantity~the
gap parameter! while the latter an extensive one~energy gain
due to dimerization!. Accordingly,« should fall off exponen-

FIG. 5. ~a! Curves forz[DMFAEB /t0/(gV) and zAN plotted
vs. the exact lowest excitation energy« for several sizesN. TheN
values are indicated on thez-curves, but are omitted for thezAN
curves, because the latter are practicallyN independent@EB

[W0(0)2W0(QMF)#. ~b! The size dependence of the lowest ex
tation energy«. The lines have been deduced by fitting the poin
~exact numerical results! allowing for logarithmic corrections to the
energy barrier~see main text!. Solid, long-dashed, short-dashe
and dotted lines correspond to (U,g)5(5.0,0.434),~4.2, 0.434!,
~5.0, 0.560!, and ~4.2, 0.560!, respectively. The other paramete
values aret051, V52, andV50.25.
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IMPACT OF PHONONS ON QUANTUM PHASE . . . PHYSICAL REVIEW B 69, 075307 ~2004!
tially at sufficiently large sizes. However, at the sizes
which the numerical diagonalization can be done, this ex
nential decrease can be seen only in parameter ranges w
the dimerization is very favorable, i.e., for sufficiently stro
electron-phonon coupling and close enough to the poinU
5Us ; otherwise, at small sizes logarithmic corrections to
energy barrier become important. This is illustrated in F
5~b!.

Trivially, in the two degenerate states of a classical latt
(V→0) the mean-square lattice displacement is the sa
(1QMF)25(2QMF)2. Except for the critical pointU
5Us , the two lowest-energy eigenstates—(c0 , c1) or (s0 ,
s1)—are characterized by different^Q2& ~as well as other
average properties such asKbQ). These differences are th
larger, the farther one moves from the critical pointU5Us
and/or the larger is the frequencyV. This behavior is illus-
trated by the Figs. 4~c! and 4~d!, respectively. Notice that the
higher the phonon frequency, the more shifted in oppo
directions the curves appear corresponding to these
states. In the ground-state the largest values of^Q2& andKbQ
correspond toU5Us , but their maxima for the statec0 (s0)
are reached atU*Us (U&Us).

Above, we have provided arguments on a~collective! tun-
nel effect by only referring to the two lowest eigenstates. T
inspection of higher excitations gives further support for tu
neling. In accord with the idea of the tunneling in a doub
well potential @Fig. 4~b!#, the energy splitting of the tunne
partners (c0 , c1), (c2 , c3), (c4 , c5), . . . for U&Us , and
(s0 , s1), (s2 , s3), (s4 , s5), . . . for U*Us becomes larger
for higher excitations. This is clearly visible in Fig. 4~a!:
«(c1)2«(c0),«(c3)2«(c2),«(c5)2«(c4) and «(s1)
2«(s0),«(s3)2«(s2),«(s5)2«(s4) at, say, U/t051.8
andU/t052.5, respectively. Also, average properties such
^Q2& are more different for tunnel partner states of high
energy; see Fig. 4~c!.

The above results can be rephrased more physicall
the language of molecular physics. In the coupled el
tron-phonon system, a coherent tunneling occurs
tween two states that are classically equivale
•••XuXvXuXv••• and •••XvXuXvXu•••.
Here, XvX (XuX) means a double~single! bond, i.e., a
shorter ~longer! interatomic distanceand almost two ~no!
electrons between adjacent atomsX in the ring. This is a
collective tunneling to whichall electrons as well as phonon
contribute. These results generalize earlier findings for s
tems where either electron-electron or electron-phonon in
action is absent.18,13 In view of the role played by the tunne
effect it is also clear why, from the present standpoint, m
soscopic systems are more interesting than macrosc
ones. According to the physics underlying Figs. 5~a! and
5~b!, the energy separation of the statesc0 ands0 becomes
vanishingly small in infinite systems. Instead of a we
definedc-s critical line separating two distinctc ands phases
of a mesoscopic system, a macroscopic system is chara
ized by a twofold degenerate ground-state and there is
quantum phase transition.

For later purposes, it is worth noting that, in all phas
(c8, c, s), every second excitation has the same symme
e.g., the states$s2k%k>0 have the same symmetry, which di
07530
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fers from the unique symmetry of the set$s2k11%k>0. The
symmetries ofsk andck61 are identical.

V. OPTICAL ABSORPTION

The smooth changes of the correlation functionsKc,s,b,bQ
and lattice dimerization̂Q2& aroundU5Us'2V discussed
in Sec. III might suggest that a critical point of the CDW
SDW transition can by defined only by some arbitrary co
vention. However, the contrary is true. As illustrated in t
example of Sec. IV, our exact numerical results show t
levels corresponding to the lowest energies with differ
symmetries transforming according to the one-dimensio
irreducible representations of the symmetry groupCN,v do
cross at a definite pointU5Us&2V for given t0 andV, i.e.,
the ground-state symmetry does change there. To dem
strate that this fact is also of practical interest, one sho
consider properties sensitive to symmetry changes. The
tical absorption is quite suitable for this purpose, as revea
below by the results on the real part of the optical cond
tivity s(v).

We present results fors(v) at twoU values, one slightly
smaller@Fig. 6~a!# and the other slightly greater@Fig. 6~b!#
than Us . Spectral lines corresponding to optical absorpti
both in the ground-state and in the lowest excited state~solid
and dashed lines, respectively! are shown there. By compar
ing the spectral lines related to optical transitions from
ground-state to those from the first excited state of Figs. 6~a!
and 6~b!, one can see that their ordering becomes rever
when crossing the critical pointU5Us . To understand this
one should remember the fact that levels cross atU5Us .
Close enough toUs @cf. Sec. IV and Fig. 4~a!#,38 the ground
~first excited! states0 (s1) for U.Us has the same symme
try as the first excited state~ground-state! c1 (c0) for U
,Us .39 In view of their different symmetries, transition
allowed optically from the statec0 ~or s1) become forbidden
from the statec1 ~or s0) and vice versa. Possible implica
tions of this behavior will be discussed in Sec. VI.

To discuss the physical origin of the absorption lines
Fig. 6, we shall return to Fig. 3. In arigid dimerized lattice,
characterized byd-shaped probability distributionsP(Q),
the lowest electronic excitation increases the energy of
system byvmax5W1(QMF)2W0(QMF).40 This process, in-
dicated in Fig. 3 by the vertical dotted line, gives rise to
single spectral line in the optical absorption at the freque
v5vmax. By contrast, the absorption spectrum compu
quantum mechanicallys(v) consists of several~almost!
equidistant spectral lines. In the right panel of Fig. 3, t
solid lines represent the absorption spectrum in the grou
states0, whereas the dashed ones correspond to absorp
processes in the lowest excited states1. Although the maxi-
mum of the two absorption spectra is roughly located at
MF frequencyvmax, the exact spectra exhibit a rich stru
ture ~of phononic origin, see below! which is completely
absent in the MF picture. One can get physical insight i
the optical absorption by comparing the right and left pan
of Fig. 3. Because of quantum fluctuations, phonon wa
packets have a finite extension@P(Q)’s are notd functions#
and an absorption process can bring the system from
7-9
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IOAN BÂLDEA, HORST KÖPPEL, AND LORENZ S. CEDERBAUM PHYSICAL REVIEW B69, 075307 ~2004!
minimum energyW0(QMF) to an energyW1(Q) with a cer-
tain Q-dependent probability.

In Fig. 3, the first spectral line, which belongs to the o
tical spectrum in the ground-states0, has a frequencyv th
50.54360, extremely close to the lowest possible ene
difference v th

cl[minQW1(Q)2W0(QMF)5W1(0)2W0(QMF)
50.543 55.41 The next lines of theground-statespectrum
~solid lines in Fig. 3! are practically equidistant; the separ
tion is dv50.1112. This is related to the fact that the ha
monic approximation with a phonon frequencyV150.0556
yields a curve indistinguishable from theW1(Q)-curve
within the drawing accuracy of Fig. 3; notice thatV1
5dv/2 and remember that, for a harmonic oscillator, ev

FIG. 6. The real part of the optical conductivitys(v) computed
in the electron-phonon ground-state and its tunneling partner~solid
and dashed lines, respectively! for 12-site periodic rings witht0

51, V51.2, V50.0656, g50.434 and ~a! U52.28 (,Us

52.310) and~b! U52.36 (.Us52.310). Note the reversed role
of the solid and dashed lines aroundUs .
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second eigenstate possesses the same parity, while ever
successive eigenstates are of opposite parity. The op
spectrum of the ground-states0 comprises contributions o
even-order overtones~see also Sec. IV!; because of symme
try, odd-order overtones are suppressed. But just for the s
reasons, odd-order overtones contribute to the spectrum
the lowest excited states1, whereas those of even order a
suppressed. Accordingly, the inspection of the right pane
Fig. 3 reveals that a spectral line belonging to thes0 spec-
trum is located symmetrically between two adjacent lines
the s1 spectrum and vice versa. The tunnel splitting ene
E(s1)2E(s0)52.531025 t0 is too small to play a role
within the drawing accuracy of Fig. 3.

In the above analysis of the optical absorption of Fig.
we have focused our attention on the CDW-SDW transit
to illustrate that, although certain properties vary smoot
~cf. Sec. III!, there also exist physical quantities exhibitin
jumps at the corresponding critical point. For a similar re
son, quantities related to optical absorption also disp
jumps at the CDW-to-CDW transition, as demonstrated p
viously even without phonons.13

VI. SUMMARY AND OUTLOOK

The results reported in this paper demonstrate that
tems with mesoscopic sizes described by an exten
Hubbard-SSH model exhibit properties which are even m
interesting than those of infinite ones. The main differen
are related to the fact that the symmetry of the ground-s
can change when crossing certain critical lines in the sp
of model parameters. As demonstrated previously in the
sence of phonons,13 for V.0, the phase diagram of meso
copic systems comprises~i! CDW-SDW and~ii ! CDW-CDW
critical lines. They define quantum phase transitions betw
states characterized by~i! different types of correlations an
symmetries and~ii ! states possessing the same type of co
lations but different symmetries, respectively. We ha
shown here that these two kinds of quantum phase transit
survive if electrons are coupled to SSH phonons, but they
affected in different ways. The location of the CDW-CDW
critical point exhibits a significant dependence on bo
electron-phonon coupling and phonon frequency, while t
of the CDW-SDW critical point is little affected by SSH
phonons. Discontinuities in the values and/or the slopes
relevant correlation functions characterize the CDW-
CDW transition both with and without SSH electron-phon
coupling. In contrast to this, the SSH-electron-phonon c
pling smears out the jumps present in the absence of pho
at the CDW-SDW transition; it makes a CDW-SDW coexis
ence possible.

Our calculations confirm and generalize a number of p
vious findings related to the CDW-SDW transition obtain
in previous exact numerical diagonalization studies in
absence of phonons,22,31,13or by treating the lattice as a clas
sical deformable object:22 for example, the enhancement o
the BOW correlations and lattice dimerization. Since we
mainly interested in finite systems, we only note below s
eral aspects brought about by the electron-phonon coup
which are relevant for infinite systems as well.
7-10
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IMPACT OF PHONONS ON QUANTUM PHASE . . . PHYSICAL REVIEW B 69, 075307 ~2004!
The electron-electron interaction can substantially mod
the dimerization and the CDW, SDW, and BOW correlati
functions. In Fig. 2~d!, we present a situation where, suf
ciently close to~farther from! the pointU5Us , the dimer-
ization is larger~smaller! than that forU5V50.42 This is
the case if the electron-phonon coupling is weak enough.
stronger electron-phonon coupling,g.gcr , ^Q2&uU5V50 be-
comes larger than̂Q2& for all U-values. ForN512, V/t0
51.2, andV/t051, we foundgcr50.880; its MF counter-
part ~i.e., QMF

2 uU5V50&QMF
2 for any U) is g.gcr

MF50.867.
The question whether the dimerization is enhanced or no
Hubbard-type interactions represents a subject of inter
Earlier studies on infinite systems agreed about the follow
qualitative behavior: asU increases from zero, the dimeriza
tion first increases, attains a maximum and then decrea
see, e.g., the discussion in Ref. 22. Extrapolations of
results deduced by exact numerical diagonalization fo
classical lattice have been employed to investigate the in
ence ofU on the dimerization in infinite systems forV50.22

They gave support for the aforementioned behavior only
sufficiently weak electron-phonon coupling. Although w
shall not consider this issue, we mention that an argum
invoked to this aim in Ref. 22 was that the curves43 of the
dimensionless MF dimerizationxMF(U) for different N val-
ues pass through anN-independent pointU0. By treating the
electron-phonon couplingdynamically, we found that this is
no longer true. Therefore, the problem should merit rec
sideration, particularly at higher phonon frequencies, wh
this effect turned out to be more pronounced.

The optical conductivity examined here in conjuncti
with symmetry changes at critical lines also served to rev
the important part played by lattice relaxation. As shown
Fig. 3 and previously in the absence of electron-elect
interaction,17 the tail of theexactabsorption curve, penetra
ing into the MF optical gap, is directly related to lattice r
laxation. Recent studies on optical properties investiga
larger one-dimensional systems within DMRG,44 accounting
~almost! exactly for strong electronic correlations but cons
ering a frozen lattice~eventually at optimized ground-sta
geometry!, i.e., making use of the approximation usua
called ‘‘adiabatic.’’45 The present results fors(v) demon-
strate that this approximation is unable to describe the op
smearing in finite systems. To treat appropriately this p
nomenon in larger systems, the DMRG calculations sho
include dynamic electron-phonon couplings rather than c
sical frozen lattices.

The issues noted above indicate several significant eff
of quantum phonon fluctuations, but other effects are e
more interesting. There is an important difference betw
the exact and MF treatments: the ground-state symm

*Permanent address: National Institute for Lasers, Plasmas an
diation Physics, ISS, RO-76900 Bucharest-Ma˘gurele, Romania.
Email address: ioan@pci.uni-heidelberg.de

1The Hubbard Model, edited by D. Baeriswyl, D. K. Campbell
and J. M. P. Carmel~Plenum Press, New York, 1995!.

2Density-Matrix Renormalization—A New Numerical Method
Physics, edited by I. Peschel, X. Wang, M. Kaulke, and K. Ha
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does change in the former case, while in the latter there isno
level crossing atU5Us ~cf. Sec. III C!. To demonstrate tha
a critical phenomenon really occurs atU5Us , one can
monitor a physical property sensitive to symmetry chang
such as optical absorption. To exemplify, we have shown
jump in the lowest absorption frequency in the ground st
when crossing the critical pointU5Us ~cf. Fig. 6!. If the
temperature is sufficiently low (T;0.01 K for the param-
eters of Fig. 3!, only the ground-state is populated. Then,
varying model parameters in a controlled way, one can cr
the critical pointUs , and this will result in a jump in the
absorption onset. For the values employed in Fig. 6, the lo
est absorption frequency in the ground-state will be sudde
redshifted byDv/t050.0567 atU5Us by increasingU. An-
other possibility would be to prepare a system, e.g., withU
&Us : at sufficiently low temperatures@kBT,E(c1)
2E(c0)#, only optical transitions from the ground statec0
can occur, while at higher temperatures@kBT.E(c1)
2E(c0)#, the statec1 becomes also populated and the tra
sitions from this state will shift the absorption spectrum
ward the red; for illustration, compare the position of the fi
dashed and solid lines in Fig. 6.

We have found30 that the extended Hubbard-SSH model
able to describe quantitatively a variety of properties
smaller ring-shaped CNHN molecules ~benzene, cyclo-
octatetraene, cyclobutadiene!; moreover, extrapolations to
larger sizes of these exact results reasonably agree with
in polyacetylene. However, these systems turned out to
too far from the critical points. We could not find more su
able candidates among existing molecular rings closer to
points U5Uc,s where the most interesting phenomena d
cussed above occur. Nanorings of QD’s are much m
promising. Advances in nanotechnologies allow to tu
model parameters, and hence, to explore extended regio
the phase diagram comprising critical lines. ForD/(2R)
51.107, the classical approximation predictsu/v52 @Fig.
1~b!#, a situation close to the CDW-SDW critical line. Whil
this is only a crude estimate,46 the interesting results found
here could encourage experimental efforts for searchin
CDW-SDW transition in nanorings of QD’s sufficiently clos
to each other. For the state-of-the-art of nanosciences, aper-
fectly regular array ofidentical QD’s represents a too idea
ized picture. Therefore, the inclusion of disorder in the th
oretical model remains a desirable step.
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