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Impact of phonons on quantum phase transitions in nanorings of coupled quantum dots
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CDW-to-CDW and CDW-to-SDWCDW/SDW-=charge-spin-density wayguantum phase transitions have
been recently reported for finite rings described by an extended Hubbard phaBadea, H. Kgpel, and L.
S. Cederbaum, Eur. Phys. J. 28, 289 (2001)]. We present exadiLanczo$ diagonalization results which
demonstrate that these transitions survive in the presencalfiamicSu-Schrieffer-HeegelSSH electron-
phonon coupling. The two transitions are affected in a different way discussed in detail. By treating the SSH
electron-phonon coupling dynamically, two levels of different symmetries do cross, allowing one to define
precisely a critical point. Because the ground-state symmetry changes at the critical points, we suggest to study
the quantum phase transitions by optical methods. Molecular rings such as pdlgenelenesturn out to be
too far from the critical points, where the most interesting phenomena occur. However, we present an analysis
revealing that, if metallic quantum dots of the type already fabricated can be assembled in nanorings, model
parameters can be tuned and quantum phase transitions can become observable.

DOI: 10.1103/PhysRevB.69.075307 PACS nunt®er73.40.Gk, 71.45.Lr, 73.23.b

[. INTRODUCTION erties can be tuned by varying the dot diamet& @nd/or
interdot spacind. Individual QD’s can be characterized by
Extended Hubbard models,often supplemented by the on-site Coulomb repulsion energy(related to the QD
electron-phonon couplings, provide a very popular frameself-elastanceand the energy of valence electroasQD’s
work for studying strongly correlated systems. Their ground-are coupled by electron tunneliigesonance integra}) and
state can be characterized by a variety of correlations, sucBoulomb interactiorV (related to the mutual elastancé)
as charge-density, spin-density, bond-order wa{@PW, ande (mainly) depend orR, whereag, andV depend orD.
SDW, BOW, respectively or charge separation. Since thesePreviously, the extended Hubbard model has been used for
models are not exactly solvable analytically even in the abstudying transport in arrays of semiconducting QIRef.
sence of phonons, exact results obtained numerically for fid0) and disorder effects in metallic QD arrays.
nite clusters are very desirable. In view of their tunable properties, assemblies of QD’s
To study clusters consisting of a small number of unitscan be used to study many aspects unexplored so far for
(N~10), exact numericalLanczo$ diagonalization is most interacting electron systems. For instance, they can be con-
useful because it allows one to compute eigenvectors ditinuously driven from a weak correlation regime to strong
rectly, thus providing the richest physical information, to dis-correlation regime. To this aim, one can monitor ionization,
criminate (lowesb excitations, even if they possess different as demonstrated recently by two of d#\n interesting prob-
symmetries and/or are almost degenerate, and to compukem that can be studied in view of the tunability is the phase
frequency-dependent responses. Other numeri@b., diagram for mesoscopic rings in the presence of strong elec-
density-matrix renormalization grougDMRG),> Monte tronic correlations. This has been demonstrated by our recent
Carld’] methods could handle larger systems in the groundstudies:® revealing that finite rings possess a phase diagram
state, but difficulties arise, e.g., when dealing withricher than for infinite ones. What makes the difference from
frequency-dependent responses. infinite systems is the symmetry of an exact eigens@ig.,
While exact diagonalization approaches of infinite solidsground-state which cannot be broken in finite ones. In the
are inherently confronted with problems of extrapolationslatter case, theollective electronic tunneling between mul-
they can be employed directly to nanostructures consisting dfelectronic configurations that are classically equivalent re-
a small number of quantum do(®D’s). QD’s behave like stores the symmetry and enriches the phase diagram. The
artificial atoms? being confined within a few nanometers, phase diagram comprises, besides critical lines related to
electrons occupy quantized levels analogous to atomic orbiguantum phase transitions that are also possible in infinite
als in ordinary atoms. Advances in nanotechnologies allowsystems(e.g. CDW-to-SDW transition new critical lines,
one to fabricate assemblies of metallit and specific for mesoscopic systems, related to tunneling-driven
semiconductin§QD’s, or “artificial” molecules® Most elec-  quantum phase transitions. The former critical lines separate
trons are localized on individual QD’s. However, a small states characterized by different orderings and symmetries,
number of(“valence”) electrons are bound weakly enough while the latter separate states with the same ordering, but
to become delocalized over the whole “molecule” if the with different symmetriege.g. CDW-to-CDW transitions
overlap of their wave functions for adjacent QD's is suffi- see Ref. 13 for details.
ciently large. The salient feature of such artificial atoms and In the present paper, we shall extend our previous
molecules is that, unlike the natural counterparts, their propstudies? on finite rings by incorporating dynamiccoupling
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of electrons to phonons of Su-Schrieffer-Heed&SH ishes only in the two aforementioned cases. A vanishing
type'® into the extended Hubbard model. From a generaHOMO-LUMO gap mimics the divergent electronic density
theoretical standpoint, it is interesting to address the questioof states at the Fermi level of an infinite system which is
whether the tunneling-driven quantum phase transitions ofesponsible, e.g., for thinite static lattice dimerization for
Ref. 13 survive the quantum phonon fluctuations. The SSHrbitrarily small y. Otherwise, although decreasing adl 1/
electron-phonon coupling is important in real systems; forthis gap remains finite and the dimerization requires a mini-
instance, it is responsible for dimerization in cyclic mum value ofy;?>#%8then, it would be hard to make this
polyenes$® and polyacetylen& SSH phonons may also be gap much smaller than other realistic model parameters at
important for nanorings of QD’s, once nanotechnologies araizes for which the exact diagonalization can be done. There-
able to fabricate(almos} identical QD’s forming(almos)  fore, by considering below open-shell situations, we argue
perfect regular arrays. The interdot spacihgs a dynamical that the results derived for small clustefisere, up toN
variable, since QD’s are not rigidly fixed on the substrate.=12) should also have relevance for larger systems and, to a
Because of difficulties related to the infinite phonon Hilbertcertain extent, for infinite systens.
space, theoretical studies on dynamic phonons by exact or Similar to the case where phonons are abSétite sym-
almost exact numerical methods have appeared onlynetry of the Hamiltoniar(1) is important for the eigenstate
recently:®=2° Except for Ref. 17, which also considered the classification. One can easily show that the spatial symmetry
optical conductivity, these studies restricted themselves tgroup of Eq.(1) is Cy., (N=N for periodic boundaries and
the ground-state or at most to a few of the lowest excitations\/=2N for antiperiodic boundari¢és comprising rotations
The remaining part of this paper is organized as followsT, =T [a, ,—a,,\, andQ— (—1)*Q] around a principal
In Sec. II, we specify the model and discuss its symmetriesaxis Cy as well as two distinct classes of reflection planes
Then, we present a variety of general properties, with emperpendicular toCy, m,(j) (&, ,—an+2j-1,0. Q——Q)
phasis on those specific for mesoscopic systems. They refghd mg(j) (&, —an+1+2j-1,0» Q—Q). Here, O<ksN
to the ground-statéSec. Il) and lower excited stateSec. -1, 0<j<A/2—1, andQ is the dimerization coordinate
IV), as well as optical absorptiofSec. V). In Sec. IIC,  (p\2=Q+4/4Q, b'y2=0Q— 4/9Q). Further symmetries of

results obtained by treating the dynamic electron-phonofhe Hamiltonian(1) are the particle-hole transformatid®
coupling are compared to those for a classically deformablﬁal —(-1)a’,, Q—Q] and the spin fipF (a
lattice. Some discussions and conclusions make the object (j)éT - Q_)Q'ST_ No symmetry breaking is possible in f'ilrr1ite

the final Sec. VI. rings, unlike in infinite ones. Consequently, under the afore-
mentioned transformations, the nondegenerate eigenstates
|¥,) of Eq. (1) should be of either eved¥ ,)— +|¥,)) or
Il. MODEL odd (¥ ,)— —|W¥,)) parity. The corresponding eigenvalues
rqi 1) of the operatorg, P, F, m,(0), andmgy(0) will be
denoted by7, P, F, m,, andmy, respectively. Although
certain symmetries of electron-phonon models similar to Eq.
(1) relevant for infinite systems have been discussed previ-
ously (e.g., Ref. 25, to our knowledge, a full classification
along these lines has not been given before in the literature.
H= Z 2 —tg+(—1) i(bJr b") The results presepted bglow have been obt_ained py means
=1 0=1,] N of exact(Lanczos diagonalization. For specific details on
this method see, e.g., Refs. 17, 18, and 13, and citations
therein.

The system under consideration is a collection of an eve
numberN of sites (QD’s) placed on a nanoring. A QD is
modeled by a single spin-1/2 “atomic” orbital occupied by
one electronhalf-filling casg. The Hamiltonian reads

N N
T t
><(a|,ga|+1,a+a|+1,oa|,a)+|21 €n|+|21 (Unn;

+Vnin; 1)+ Q(b'b+1/2). (1)
Ill. GROUND-STATE PROPERTIES

Here,a (a") andb (b") denote annihilatioricreation opera-
tors for electrons and phonons, respectively(,Ea,T’UaLU,
n=n;;+n; |, to is the nearest-neighbor hopping integral, As discussed previously,quantum phase transitions can
and(} is the bare phonon frequency. In addition to the elec-occur at zero temperaturd£0) in commensurate mesos-
tronic HubbardJ andV terms, Eq(1) includes the coupling copic rings of strongly correlated electrons due to quantum
of electrons to SSH phononé characterized below by the fluctuations, analogous to traditional phase transitions caused
dimensionless strength=g/yQt/2. We consider identical by thermal fluctuations. Quantum phase transitions can be
sites and set site energies-0. observed by varying model parameters. Studying quantum

We shall consider open-shell systems because the phapbase transitions in this way is inconceivable in ordinary
diagram turned out to be richer in this cd3eDpen-shell solids or molecules, but is possible in nanorings, as we sug-
situations correspond to periodic rings with=4x and to  gest below by referring to recent achievements in the fabri-
antiperiodic rings withN=4«+2 (x is an integer?! The cation of arrays of metallic QD’s. Recently, it became pos-
difference between the highest occupied and the lowest ursible to assemble narrow size distributionsX%) of silver
occupied single-electron level$(lOMO-LUMO gap) van-  QD’s with diameter (R) of a few nanometers in hexagonal

A. Considerations on quantum phase transitions in nanorings
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arrays>~’ The interdot separatioB (measured between QD
center$ has been nearly continuously varied in the range
1.1=D/(2R)=<1.8, allowing a wide tuning of various physi-
cal properties=’ This is mainly due to the exponential be-
havior found forto[ <exp(—2.7D/R)],** as in polyened® 1.5 %
In the above ranget, changes by a factor-50. For LY
D/(2R)=1.2, a valuez=0.5 eV has been extracted by fit-
ting experimental dat¥. P
For Ag QD’s with 2R~2.6 nm, Coulomb blockade ex-
periments, using scanning tunneling microscopy, ledJto
=0.34 eV! This value agrees with the estimate o]
=e?/(¢,R) deduced by assuming a spheric QB (s dielec- 0.5 r
tric constant of surrounding materid®2® Obviously, the
above formula represents a crude approximation even within
the classical spherical model; it corresponds to a metallic
charged spherical grain embedded in an infinite dielectric
medium. Assuming the passivating ligand surrounding the
metallic dot as a spherical shell of outer radiyune gets an (@
enhanced on-site repulsion by a facttt’'/U=1+ (g, e
—1)R/p. From intuitive reasons, one could expect that the 1.2 +
Coulomb repulsion between adjacent siteéss weaker than
the on-site repulsiokd. A precise formula fol is not docu- h
mented. For the observability of the presently discussed
guantum phase transitiofisee Fig. 1a) and the discussion 5
below], large enough values of/U are of interest, corre- \
sponding to QD’s very close to each other. 0.8
For this case, one can estimatéU~uv/u classically, as
the ratio between the mutual- and self-elastanecear{d u, ‘
respectively of two identical spheres in a homogeneous
medium?? Results foru andv deduced numerically by using oy
classical electrostatics are presented in Figp).4® Along v

V/t,
=
o

with the aforementioned behavior g, theseu andv curves 0.4r
suggest that, by varyin@/R, wide regions of the phase
diagram[Fig. 1(a)] can be explored. I R AU W
A comment is in order at this point. Before considering 10 1072 1
nanorings of quantum dots, we have investigated whether (b) D/(2R)-1

cyclic molecules may correspond to points of the phase dia-
gram close enough to the critical lines. To this aim, we have FIG. 1. (a) Phase diagrams for 12-site periodic rings. The
examined in detail cyclic polyenes@y . As is well known,  dashed critical lines separate the parameter space into CDW phases
the Pariser-Parr-Pople mod@lthe counterpart of the ex- candc’ with differentsymmetriesThe phases ands separated by
tended Hubbard model in the chemical area, was originallyhe solid line differ both in ordering€CDW and SDW, respectively
introduced just to describe electrons of these molecules. and symmetries(b) Self- and mutual elastances @ndv, respec-
By adjusting only four parametersJ( V, Q, and y) of tively) obtained within classical electrostatics for two identical
model (1) one can reproduce an impressive amount of reli-spheres of radiu!? whose centers are separateq by a distdhce
able experimental anab initio data of smaller molecules — They are normalized to the elastanceRjLof an isolated sphere.
benzene (gHg), cyclobutadiene (§H,), and cyclooctatet- The rgthv/u represents the classical approximationvéf). The
. equalityu=2v holds forD/(2R)=1.107.

raene (GHg) — as well as for polyacetylene: ground-state
properties(e.g., dimerization amplitudephotoionization, as
well as (singlet and triplet electronic and phononic
excitations>® The related technical details will be presentedshow how the quantum phase transitions occurring in the
elsewhere, since they heavily rely on chemical and moleculgpurely electronic system are affected by the coupling of elec-
physics. Here we only note that the valMéU =0.28 found trons to SSH phonons.
in this way” is too far from the critical lines of the phase A critical point of a quantum phase transition is defined
diagram[see Fig. 1a)]. Therefore, no precursor effects of the by the intersection of levels corresponding to the lowest
quantum phase transitions discussed in this paper could sgenstates with different correlations and/or symmetries.
expected in polyenes. In Fig. 1(a), we present the phase diagram for periodic 12-

Below, we shall first present the phase diagram of intersite rings andv=0 in the absence of electron-phonon cou-
acting electrons irfnangrings obtained by exadlLanczo$  pling, obtained by level crossing:2* One should note that
diagonalization in the absence of phonons. Then, we shabelow we mainly refer to the cage¢=12 since this is the
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largest size we can study by exact diagonalization in theal lines by changing the model parameters. For this, we
presence of phonons. However, it is worth emphasizing thaghall examine changes in nanorings driven by varyihg
the results for smaller rings are analogous, as one can see py=0) along a fixedV line. The critical point of thec’-c
comparing the present results without phonons to those fagansition will be denoted by, that of thec-s transition,
smaller sizes we reported recerithSimilar to smaller rings by Us.

(N=6,8,10,"° the ground-state phase diagram fdr=12 Let us first examine the CDW-to-CDW transition. With-
[Fig. 1(a)] comprises two CDW regionfphasesc andc’), oyt phononslJ, /t,=1.698. As seen in Figs.(@—2(c), for
where CDW correlz_itlons dominate over SDW correlgtlons,y:o, neitherK . nor K. is significantly affected at the-c’

and one SDW regioriphases), where SDW correlations o ngjtion. The jump irk, is extremely small because the

dominate over CDW ones. Both statesand ¢’ represent dominant correlations are of CDW type in both phasesd

CDW phases, but their symmetries are different; more_, . L . . )
precisely, they have the symmetries of the symmetricC ; deep inside the CDW regioi is anyway small. How

and antisymmetric  superpositiong CDW, ) + | CDW,), ever, theK-curve exhibits a pronounced jump; as discussed

respectively, each term representing one of the two Classpreviously?3the BOW correlation function is sensitive to the
cally equivalent CDWs in the bipolaronic limit. In occupa- change of symmetry ... Let us now discuss the impact of

tion number representatioCDW,)=|---0202---) and phonons. The critical point of the-c’ transition is sensitive
|CDW,)=|---2020---). The states corresponds to a SDW to the ele'ct.ron—phonon coupling. For=0.434 a\;gr;dﬂ/to
phase with the symmetries of the superpositi@DW;) =/0.0656, it is pushed downwards th, /to=1.331"" In the
+|SDW,) of the two classically equivalent SDWs in the © phase, the electronic correlations are practically unaf-
antiferromagnetic  limit, |[SDWy)=|---1|1]---) and fected by the coupling to phonons. There, the main effect of
|SDWy)=|--- [ 111 - _>_éz The symmetries of the staie  INteractions is to renormalize the phonon frequency, but elec-

trons anddressefiphonons behave as separate systems. The
adiabatic potentiaW,(Q) (i.e., the energy of the lowest
eigenstate obtained by consideri@glassically is harmonic
around its minimum located &=0. This holds even very
close to thec-c’ transition, as shown by the following ex-

are 7=my=m, = +1 (irreducible representatiohA; of the
point group Cy,,), and P=F=+1, for the statec’, 7
=mg=—1m,=+1 (irreducible representation'B;), P
=—1, andF= +1. The symmetries of the SDW-type state
are7=m,=—1, my=+1 (irreducible representatiohB,),
andP=F=+1. In Fig. 1a), the lines between the phases ample. ForV/t,=1.2, 1/t;=0.0656, andU/t;=1.32
andc’ correspond to a CDW-to-CDW quantum phase tran{=Yc/to=1.331), theWy(Q) curvature yields a dressed
sition, the line betweert and s corresponds to a CDW-to- phonon frequency)=0.7384). Harmonic phonons with
SDW quantum phase transition. this frequency should have a ground-state averéé)
Similar to the case without phonons, one can determine & 0.5817 and a valuéQ*)¥%(Q?)=1.7320; these arpist
ground-state phase diagram by crossing the lowest-energhe values found by means of exact diagonalization.
levels of a given symmetry also when phonons are present. Qualitatively, the effect of the-c’ transition on the BOW
Doing so, we have found that both types of quantum phaseorrelations with and without phonons is similar. In both
transitions(i.e., CDW-to-CDW and CDW-to-SDWsurvive  casesK,, curves display jumps at the corresponding critical
a coupling of electrons to SSH phonons, but they are affectedalueU, ; see Fig. 2). The jumps of th& ¢ curves at-c’
in different ways. This will be shown below by comparing transition are small in both casgalmost invisible in Figs.
relevant quantities computed with and without phonons2(a) and 2b)], but a change of their slopesldt=U, can be
CDW, SDW, and BOW orderings in the ground-state of aobserved in these figures in the presence of electron-phonon
finite (mesoscopicsystem can be characterized by nonvan-coupling.
ishing g correlation functionX s ,, respectively’® These Unlike in thec’-phase, phonons affect all electronic cor-
functions are defined below along with that characterizingelations in bothc ands phases. In the phase, CDW corre-
the correlation between the BOW and lattice dimerizationlations are diminished by the electron-phonon coupling,
Kbo: while SDW correlations are enhanced. A reversed effect oc-
N-1 curs in thes phase: SDW correlations are suppressed,
Keam= S (=DM %0 ) (Ngs =g, whereas CDW correlations are enhanced. The electron-
¢S & L1="hANe =10/ /s phonon coupling smears out the jumps in the correlation
functions at the CDW-SDW transition: compare tkg g,
curves with and without phonons in the region arolthdin
Kp= E (=DN(c] jei 10+ H.C)(C) 01,4 HoC)), Fig. 2. This implies that the SSH electron-phonon coupling
o1=0 favors thecoexistencef CDW and SDW correlations.

N—-1

@ Inspection of Figs. 2 shows that the ground-state lattice
N-1 dimerization(Q?) attains its maximum at the critical point
Kpo= 1210 (—1)'*1((C|*]Uc|+lvg+ H.c)Q). Us/ty (see also Sec. IV The enhancement of the BOW

correlations at the-s transition has also been pointed out in
_ _ the absence of phonofs®® The K, curves[Fig. 2(c)] show
B. Exact results for a dynamic electron-phonon coupling that this conclusion also holds when the electron-phonon
To study the two quantum phase transitions, one shoulgoupling is switched on. The fact that the peak¢Q@f) and
inspect how relevant quantities vary when crossing the critiK, are located at the same point agrees with what one ex-
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/

FIG. 2. CDW, SDW, BOW, and BOW-dimerization correlation functioh&, ¢ no. respectively and mean-square dimerizati¢@?)
for 12-site periodic rings withy=1, V=1.2, 1=0.0656, andy=0.434 U./t;=1.698, Us/t;=2.310). Solid lines: the SSH electron-
phonon coupling is treated exactigynamically. Dotted lines: MF approximation for phonons. Dashed lines: exact calculations, but without
phonons.

pects intuitively in a molecule: a shortélongep distance minima of the former are locatezh the lattice sites, whereas
between atoms should correspond to a doudagle those of the latter are situatéetweeradjacent sites; hence,
chemical bond. The shapes of thgo-curves[Fig. 2d)],  the excess charge is located on sites in the case of a CDW,
with a maximum atUg/t,, directly confirm the correlation but on the bond for a BOW. Of course, the chatgemmed
between the lattice dimerization and the BOW. An interestingover spin distribution is uniform in an SDW.

feature visible in Figs. @) and Zd) is that both dimerization The examples presented above reveal different effects of
and BOW diminish more rapidly in the CDW regiotJ( SSH phonons on the CDW-to-CDW and CDW-to-SDW tran-
<U,) than in the SDW regionY>U,). The fact that the sitions. The location of the critical lines is also affected in a
CDW is more effective than the SDW in suppressing thedifferent way. In contrast tdJ., the value ofUg is quite
dimerization and the BOW can be understood intuitivelyinsensitive to phonons. For the parameter values of Fig. 2,
within a mean-filled(MF) picture. Both CDW and BOW the energies of the state&sand s cross in the absence of
ordering are related to one-particle potentials with a periodphonons alg/ty=2.314; for y=0.434 and()/t;=0.0656,

icity which is twice that of the original lattice. However, the they cross atl¢/t,=2.3103*
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C. Static dimerization versus dynamic electron-phonon w(Q)
coupling 1 1

[
|

f
i
I
|
. . . v
A popular approximation for modél) is of the MF type, A
i.e., to suppose atatically dimerized lattice. In this section, i
I
!
!
i
I
I
!
i
I
!
!
i

=
T

T e

MF results will be compared to exact ones. Besides compari-
son purposes, one could note that the MF approximation of
the SSH-electron-phonon coupling in QD arrays can be jus-
tified, in view of the large QD mass. The inspection of Figs.
2 reveals that the MF approximation for phonons describes R IR ANSAVVAN AN o
reasonably well certain ground-state properties. A difference -6-30 3 Q o(w)
between the exact and the MF results concerns the location
of the c-¢’ transition. The higher the phonon frequency, the
more is the critical valu&) shifted downwardsU tends to ; i :

tentials corresponding to the electronic ground-state and the lowest

MF/ _ P ; P .
the MF-valueU, (__1'4620 in Fig. 2) in the lirmit QH_O’ . optically active electronic excitation, respectiveBp(Q) gives the
for smaller freq’\lAJFenC|esQ<t0), the numerical results indi- probability to find a lattice with dimerizatio® in the exact ground-
cate thatUc_— Ug =Q. _ S state of the electron-phonon system, ar{@) is the real part of the
The main drawback of this MF approximation is the un- gptical conductivity. Notice the same energy scale in both right and
physical result of a state with broken symmetry in a finite|eft panels.

system. The symmetry can be broken only in an infinite sys- L ) o

effects are concerned; the present model includes only from the _optlmum geometry in the g_round—state. This can be

single-phonon mode, which becomes macroscopically occl8€€N by inspecting the so-called adiabatic poten#4jeQ)

pied and can be treated classically. When correctly accounted’d W1(Q), i.e., energies computed exactly at a frozen ge-

for, the quantum fluctuations restore the original symmetryOMetry Q corresponding to the electronic ground state and
the lowest electronic excited state which is optically active,

and this is important, e.g., for optical absorption, as dis- . o . v
cussed below. respectively, or by monitoring the probability distribution

. . P.(Q)=[{Q|¥,)|? to find a lattice with dimerizatio® in a
: Ehel MtF rt%ge"".“”?;”(; of ph;nﬂrés[;\?tv—s%\l/r\l/ fmallir dqu_ehr- certain exact eigenstaf@ ,) of the electron-phonon system.
Iz€d clusters yielded agradua ) ransition. The Fig. 3, we present an example using parameter values

smooth MFK¢ s p,nq Curves shown in Figs.(@-2(d) gen-  gequced from reanalyzing experimental aadl initio data
eralizes this conclusion to the case0. Although around  fom small annulene molecules and polyacetyi@h@he
U=Us the differences visible in Figs. 2 between the adiabatic potentialW,(Q) exhibits two minima located at
Ke,s.b,bg-CUrves corresponding to a classical deformable latQ =+ Q,,-= +3.296. The probability distributioRo(Q) of

tice and dynamical phonons are very small, there is an imthe exact ground-state possesses two maxima located
portant difference between the physics emerging from MHKroughly) at + Qyr; computed quantum mechanically, their
and exact treatmentS.In the MF case, there iso level  width is finite, unlike thes-shaped maxima of the classical
crossing aty=Ug. The smooth changes in various averaged(MF) lattice. In contrast to the ground-state, the lowest ex-
properties simply reflect smooth changes of an approximateited electronic state which is optically active is not dimer-
eigenstate whose symmetry is reduced with respect to thiged, as illustrated by the/;(Q) curve, possessing only one
original one Cy,, cf. Sec. I), but is nevertheless a well minimum atQ=0. Treated quantum mechanically, the lat-
defined symmetry of the point group,s,, of a dimerized tice is nonrigid. It can and does relax: the bonds alternate in
system; it doesnot change when crossing the poitt  the electronic ground-state but become uniform upon a
=U,. The qualitatively new effect brought about by e Single electron-hole excitation.

namical electron-phonon coupling is that energy levels cor- Summarizing, the MF approximation for phonons can sat-
responding to lowest eigenstates of different symmeties isfactorily reproduce some average ground-state properties
cross atU=Uy, enabling a precise definition of a critical deduced exactly. However, as discussed here and li€lew

line U=U(V). Quantitatively, this has only a very small V) in more deta|!, it is totally unaple to descrlbg realistically
impact on the curves of Fig. 2: there is a very small cusgflynamic properties of mesoscopic syste(asd this, even at
(almost invisible in Fig. 2in the exactcurves atUs, al- lower phonon frequencigsfor which not only quantum fluc-

though the curves themselves remain continuous there. Apations but also lattice relaxation should be appropriately
higher Q than that used in Fig. 2, the cusps become moré:onsmered. One should note that the lattice relaxation which

pronounced; see Sec. IV and Figgciand 4d). Further 1S generally very important in small systems is also important
physical implications of the change in symmetrylag will for mesoscopic syst.ems and even for polymers, because what
be discussed in Secs. V and VI. By contrast, at the criticafnatters is not the size of a macroscopic sample but the short

i ; 6
point U, there exists a level crossing even within MF. conjugation lengthusually several tens of unjts
Thg lattice rela}xatlon |s_ano§her important .effect when IV. LOWEST EXCITATIONS
studying electronic excitations in a mesoscopic system. Un-
less the exciting pulse is short with respect to the lattice The electronic and lattice excitations play a key role in
relaxation time, the system in an electronically excited stateinderstanding many interesting physical properties, e.g., the

0.5 4 0.5 -

FIG. 3. Results for 12-site periodic rings atg=1, U=1.8,
V=0.5, y=0.485, and()=0.0656.W,,(Q) are the adiabatic po-
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FIG. 4. U-dependent properties of 10-site antiperiodic ringggatl, V=1.2, y=0.434, and—except for the pan@)—=0.06
(U,=1.254,U,=2.322). (a) Lowest excitation energies. Solitf=s;, c,=S3, C4,=Ss), short-dashedd;=s,, c3=s,, cs=s,), long-
dashed €;, c;), and dotted €;) lines correspond to eigenstates transforming as the one-dimensional irreducible representations of the
symmetry group'A;, 1A,, B;, and 1B,, respectively. See the main text for details) Adiabatic potentiaMW, and the energies of the
lowest exact eigenstateg—cs (horizontal line$ for U=1.92. (The energy difference between the stateandcy is too small to be visible
within the drawing accuracdyMean-square lattice displacemé®@?) for (c) the first six lowest-energy eigenstates of paiagl and(d) the
two lowest eigenstates &t/t;=0.06, 0.12, 0.1&values corresponding to decreasing ordinated atJ).

optical absorption. In Fig. (&), we present results for the energy differences remain practically independent. This
lowest excitation energies for 10-site antiperiodic rifgs. agrees with the conclusion of Sec. lil: thé phase consists
The physical picture emerging from the discussion of Sec. lllof two (practically) decoupled subsystemelectrons and
on the ground-state is fully confirmed by the analysis of Fig.harmonic phonons
4(a). The curvescy and s, correspond to the lowest-energy
In Fig. 4@), one can easily assign curve§, c;, andc,  states with the symmetry of treands phases, respectively.
as corresponding to the states of tHephase with zero, one, The former is the ground-state for,<U <Ug and the latter
and two harmonic vibrational quanta, respectively. Thesdor U>Ug. Being of different symmetries, these two levels
curves are equidistant and horizontal forx<U., where the can and do cross &l =Ug (no avoiding crossing The ¢,
ground-state is @’ phase. AbovéJ they are no more hori- level extends within the regiobd>Ug as the lowest excita-
zontal, because the ground-state is nowcdfpe, but the tion s; in the s phase. A similar behavior is encountered for
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excited states: they level (kth excitation in thec phase
crosses aty=Ug with the s, level (kth excitation in thes
phase. Thes,, ; level represents the smooth continuation of
the ¢y -level with the same symmetry into trephase U
>U,); for U<Ug, one should interchange the level labels
(s=c) in the above statement. Within an adiabatic
descriptiont’*® one would assign, e.g., th& level as the
ground-state for both electrons and lattice in theegion,
while the s, state would be the product of the electronic
ground state and thieth lattice excitation.

Figure 4a) also reveals that, close to the poihf and far 9
apart from it, the excitations haveditferentphysical mean-
ing on either side of the transition. Sufficiently far away from
Ug, the energy spacing between adjacent excitatians 4( 1
andc, for U.<U<Ug or s, andsy for U>U,) is nearly
constant. There, these excitations can be ascribed to normal,
nearly harmonic phonons of a weakly dimerized sysfem

Figs. 4d) and 4a)]. On the contrary, in the dimerized regime (@
(U=~U,), the excitations can be ordered in pairs, each pair
consisting of two almost degenerate tunnel partners of differ- €
ent symmetry, see Fig.(&).

We shall present below a number of arguments confirming -2 4

this interpretation in terms of a tunnel effect in a symmetric
double well potentialWy(+Q)=Wy(—Q). The lowest-
energy of a classic object in this potential corresponds to two 107° 1
statesQ=+ Qyr and Q= —Qur Which are equivalent. In-

stead of a twofold degenerate ground-state, the two lowest

energy eigenstates of a quantum oscillator moving in the 10
potential Wy(Q) can be(approximately expressed as the ]
symmetric and antisymmetric superpositions of two wave 5 |
packets centered ot Qg and — Qe . Unlike in the clas- E
sical case, they are no more degenerate. The small difference ]
e of their energies is the result of the quantum tunneling 10 4
across an energy barri&g=Wy(0)—Wy(Que) over a dis-

tance ~2up~%Que/VNMQ [cf. Figs. 3 and &)]. If the

barrier is sufficiently high, one can estimate the tunnel split- 10
ting energye semiclassically; it decreases exponentially with )
the quantityuyyEgm/#e<cz\m/M, wherem is the oscillator

mass and=AyrVEg/to/(yQ). In Fig. 5a), we have plot- FIG. 5. (@) Curves forz=AyeVEg/to/(y2) andzJN plotted
ted the quantityz against the lowest excitation energy VS- the exact lowest excitation energyfor several sizet. The N
=|E(c0)—E(SO)| computed exactly. To get the curves of values are indicated on thecurves, but are omitted for theyN
Fig. 5a), U has been varied in the ranges wherés small, curves, because the latter are practicaly independent[ Eg .
and thisboth in the CDW and in the SDW regionl.6 = Wo(0)=Wo(Qug)]. (b) The size dependence of the lowest exci-
<U/ty=<2.2 and 2.5U/ty=<4, cf. Fig. 4a)]. In both re- tation energye. The lines have been deduced by fitting the points

gions we found that the curves loyersusz are linear[cf (exact numerical resultallowing for logarithmic corrections to the

Ei t d imation: furth f energy barrier(see main text Solid, long-dashed, short-dashed,
ig. S@)] to a very good approximation; furthermore, for a and dotted lines correspond tdJ (y)=(5.0,0.434),(4.2, 0.434,

given sizeN,. one cannotdisyinguish the curve corres_ponding(S_O, 0.560, and (4.2, 0.560, respectively. The other parameter
to U values in the CDW region from that correspondindXo 1 es ardy=1, V=2, andQ=0.25.

values in the SDW region. So, the exact quantitbehaves
just as one expects for a tunnel splitting energy.

This is a strong evidence for the tunnel effect, but this isthe zyN curves areN independent implies=N, i.e., acol-
not the whole issue. As seen in Figah the curves foz are  lective tunneling occurs. Concerning the dependence, a
linear, but they do depend dx. In view of the above con- comment is still in order. Above, we have discussed the de-
siderations, one should immediately rule out a one-particlgpendence ofe on N indirectly, by means of the barrier
origin of the tunneling: if the tunnel effect were of single- Eg(N). In an extended solid one expeds,r=const and
particle origin,m would beN independent and thecurves  Eg(N)xN, because the former is an intensive quantihe
would beN independent. By contrast, the curves1qiN are  gap parametémhile the latter an extensive orfenergy gain
(almos}) N independent. The fact that not tzecurves, but  due to dimerization Accordingly,e should fall off exponen-
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tially at sufficiently large sizes. However, at the sizes forfers from the unique symmetry of the St 1}k=0.- The
which the numerical diagonalization can be done, this exposymmetries ofs, andc,. ; are identical.
nential decrease can be seen only in parameter ranges where
the dimerization is very favorable, i.e., for sufficiently strong
electron-phonon coupling and close enough to the podint
=Uy,; otherwise, at small sizes logarithmic corrections to the  The smooth changes of the correlation functiéns , no
energy barrier become important. This is illustrated in Fig.and lattice dimerizatiodQ?) aroundU =U¢~2V discussed
5(b). in Sec. lll might suggest that a critical point of the CDW-
Trivially, in the two degenerate states of a classical latticesSDW transition can by defined only by some arbitrary con-
(2—0) the mean-square lattice displacement is the samerention. However, the contrary is true. As illustrated in the
(+Qur)?=(—Qur)% Except for the critical pointU example of Sec. IV, our exact numerical results show that
=Uq, the two lowest-energy eigenstateseg( cq) or (Sp, levels corresponding to the lowest energies with different
s;)—are characterized by differeQ?) (as well as other symmetries transforming according to the one-dimensional
average properties such Ksq). These differences are the irreducible representations of the symmetry grdlip, do
larger, the farther one moves from the critical poi=U,  cross at a definite poin =U =<2V for givent, andV, i.e.,
and/or the larger is the frequen€y. This behavior is illus- the ground-state symmetry does change there. To demon-
trated by the Figs. @) and 4d), respectively. Notice that the strate that this fact is also of practical interest, one should
higher the phonon frequency, the more shifted in opposit€onsider properties sensitive to symmetry changes. The op-
directions the curves appear corresponding to these twtical absorption is quite suitable for this purpose, as revealed
states. In the ground-state the largest valug€Xh andK,,  below by the results on the real part of the optical conduc-
correspond tdJ =Uy, but their maxima for the statg, (s,)  tivity o(w).
are reached dd=U, (U=<Uy). We present results far(w) at two U values, one slightly
Above, we have provided arguments ofcallective) tun- ~ smaller[Fig. 6@] and the other slightly great¢Fig. 6(b)]
nel effect by only referring to the two lowest eigenstates. ThéhanU,. Spectral lines corresponding to optical absorption
inspection of higher excitations gives further support for tun-both in the ground-state and in the lowest excited gtéd
neling. In accord with the idea of the tunneling in a double-and dashed lines, respectivebre shown there. By compar-
well potential[Fig. 4(b)], the energy splitting of the tunnel ing the spectral lines related to optical transitions from the
partners €, C;), (Cy, C3), (C4, C5), ... forUsUg, and  ground-state to those from the first excited state of Fi¢®. 6
(So, S1), (Sz, S3), (S4, S5), ... forU=Ug becomes larger and Gb), one can see that their ordering becomes reversed
for higher excitations. This is clearly visible in Fig(a  when crossing the critical poird =Us. To understand this,
e(cy)—e(co)<e(cs)—e(cy)<e(cs)—e(c,) and e(s;)  one should remember the fact that levels cross) atUs.
—e(Sy)<e(Ss)—e(S,)<e(ss)—e(s,) at, say, U/t,=1.8  Close enough t&J [cf. Sec. IV and Fig. @)],%® the ground
andU/t,=2.5, respectively. Also, average properties such agfirst excited states, (s;) for U>U has the same symme-
(Q?) are more different for tunnel partner states of highertry as the first excited statgground-state ¢, (co) for U
energy; see Fig. (4). <U¢.*° In view of their different symmetries, transitions
The above results can be rephrased more physically iallowed optically from the state, (or s;) become forbidden
the language of molecular physics. In the coupled elecfrom the statec; (or Sp) and vice versa. Possible implica-
tron-phonon system, a coherent tunneling occurs betions of this behavior will be discussed in Sec. VI.
tween two states that are classically equivalent, To discuss the physical origin of the absorption lines of
o X—X=X—X=--- and - -X=X—X=X—---. Fig. 6, we shall return to Fig. 3. In@gid dimerized lattice,
Here, X=X (X—X) means a doublésingle bond, i.e., a characterized bys-shaped probability distribution®(Q),
shorter (longep interatomic distanceand almost two(no)  the lowest electronic excitation increases the energy of the
electrons between adjacent atoidsin the ring. This is a system by max= W1 (Qume) — Wo(Que) . *° This process, in-
collective tunneling to whiclall electrons as well as phonons dicated in Fig. 3 by the vertical dotted line, gives rise to a
contribute. These results generalize earlier findings for syssingle spectral line in the optical absorption at the frequency
tems where either electron-electron or electron-phonon interw = w,.x. By contrast, the absorption spectrum computed
action is absert®*3In view of the role played by the tunnel quantum mechanicallyr(w) consists of severalalmosj
effect it is also clear why, from the present standpoint, meequidistant spectral lines. In the right panel of Fig. 3, the
soscopic systems are more interesting than macroscop#olid lines represent the absorption spectrum in the ground-
ones. According to the physics underlying Figga)5and  states,, whereas the dashed ones correspond to absorption
5(b), the energy separation of the statgsands, becomes processes in the lowest excited stafe Although the maxi-
vanishingly small in infinite systems. Instead of a well- mum of the two absorption spectra is roughly located at the
definedc-s critical line separating two distinctands phases MF frequencyw,ax, the exact spectra exhibit a rich struc-
of a mesoscopic system, a macroscopic system is charactdwe (of phononic origin, see belgwwhich is completely
ized by a twofold degenerate ground-state and there is nabsent in the MF picture. One can get physical insight into
guantum phase transition. the optical absorption by comparing the right and left panels
For later purposes, it is worth noting that, in all phasesof Fig. 3. Because of quantum fluctuations, phonon wave
(c', c, s), every second excitation has the same symmetrypackets have a finite extensipR(Q)’s are notés functiong
e.g., the statebs,}=o have the same symmetry, which dif- and an absorption process can bring the system from the

V. OPTICAL ABSORPTION
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second eigenstate possesses the same parity, while every two

o(w) U=2.36 successive eigenstates are of opposite parity. The optical
’ spectrum of the ground-stay comprises contributions of
12 1 even-order overtongsee also Sec. |\ because of symme-

try, odd-order overtones are suppressed. But just for the same
reasons, odd-order overtones contribute to the spectrum in
the lowest excited state;, whereas those of even order are
suppressed. Accordingly, the inspection of the right panel of
Fig. 3 reveals that a spectral line belonging to thespec-
trum is located symmetrically between two adjacent lines of
6 1 the s; spectrum and vice versa. The tunnel splitting energy
E(sy) —E(Sq)=2.5X10 °t, is too small to play a role
within the drawing accuracy of Fig. 3.

In the above analysis of the optical absorption of Fig. 6,
we have focused our attention on the CDW-SDW transition
to illustrate that, although certain properties vary smoothly

0 +—+—+—t-bl i (cf. Sec. Il), there also exist physical quantities exhibiting
0.4 0.6 0.8 w jumps at the corresponding critical point. For a similar rea-
@ son, quantities related to optical absorption also display
jumps at the CDW-to-CDW transition, as demonstrated pre-
viously even without phonon's.

U=2.28
VI. SUMMARY AND OUTLOOK

The results reported in this paper demonstrate that sys-
] tems with mesoscopic sizes described by an extended
9 - Hubbard-SSH model exhibit properties which are even more
interesting than those of infinite ones. The main differences
are related to the fact that the symmetry of the ground-state
can change when crossing certain critical lines in the space
of model parameters. As demonstrated previously in the ab-
sence of phonons for V>0, the phase diagram of mesos-
] copic systems comprisé CDW-SDW and(ii) CDW-CDW
37 critical lines. They define quantum phase transitions between
) states characterized lfy) different types of correlations and
5 symmetries andii) states possessing the same type of corre-
]

0 by ‘ S lations but different symmetries, respectively. We have
0.4 0.6 0.8 w shown here that these two kinds of quantum phase transitions
®) survive if electrons are coupled to SSH phonons, but they are

FIG. 6. The real part of the optical conductivit{w) computed ~ &if€cted in different ways. The location of the CDW-CDW

in the electron-phonon ground-state and its tunneling patswid ~ Critical point exhibits a significant dependence on both
and dashed lines, respectivelior 12-site periodic rings witt,  €lectron-phonon coupling and phonon frequency, while that
=1, V=12, 0=0.0656, y=0.434 and(a) U=2.28 (<U, Of the CDW-SDW critical point is little affected by SSH
=2.310) and(b) U=2.36 (>U.=2.310). Note the reversed roles phonons. Discontinuities in the values and/or the slopes of
of the solid and dashed lines aroudd. relevant correlation functions characterize the CDW-to-
CDW transition both with and without SSH electron-phonon
minimum energWy(Qur) to an energyV,(Q) with a cer-  coupling. In contrast to this, the SSH-electron-phonon cou-
tain Q-dependent probability. pling smears out the jumps present in the absence of phonons
In Fig. 3, the first spectral line, which belongs to the op-at the CDW-SDW transition; it makes a CDW-SDW coexist-
tical spectrum in the ground-statg, has a frequency,, ence possible.
=0.54360, extremely close to the lowest possible energy Our calculations confirm and generalize a number of pre-
difference wfr']Emianl(Q)—WO(QMF)=W1(O)—W0(QMF) vious findings related to the CDW-SDW transition obtained
=0.54355% The next lines of theground-statespectrum in previous exact numerical diagonalization studies in the
(solid lines in Fig. 3 are practically equidistant; the separa- absence of phonorté3>*%or by treating the lattice as a clas-
tion is Sw=0.1112. This is related to the fact that the har-sical deformable objeé for example, the enhancement of
monic approximation with a phonon frequenf;=0.0556 the BOW correlations and lattice dimerization. Since we are
yields a curve indistinguishable from th&/;(Q)-curve  mainly interested in finite systems, we only note below sev-
within the drawing accuracy of Fig. 3; notice th&l, eral aspects brought about by the electron-phonon coupling
= dw/2 and remember that, for a harmonic oscillator, everywhich are relevant for infinite systems as well.
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The electron-electron interaction can substantially modifydoes change in the former case, while in the latter thene is
the dimerization and the CDW, SDW, and BOW correlationlevel crossing atJ=Ug (cf. Sec. Il Q. To demonstrate that
functions. In Fig. 2d), we present a situation where, suffi- a critical phenomenon really occurs Bt=Ug, one can
ciently close to(farther from the pointU=U,, the dimer- monitor a physical property sensitive to symmetry changes,
ization is larger(smalle) than that forU=V=0.2 This is  such as optical absorption. To exemplify, we have shown the
the case if the electron-phonon coupling is weak enough. Fd#mMp in the lowest absorption frequency in the ground state
Stronger e|ectr0n_phonon Coup”ng? Yer » <Q2>|U:V:0 be- When CrOSS”’]-g the -Clj|tlca| pOIH]‘JZUS (Cf F|g 6) If the
comes larger thagQ?) for all U-values. ForN=12, V/t,  emperature is sufficiently lowT(~0.01 K for the param-

=1.2, andQ/t,=1, we foundy,,=0.880; its MF counter- eters of Fig. 3 only the gro_und—state is populated. Then, by
part (i.e., Q | >Qz for acrr1yu) is y>yMF=0.867 varying model parameters in a controlled way, one can cross
e MFIU=V=0 MF cr — VY- .

The question whether the dimerization is enhanced or not bthe critical pointUs, and this will result in a jump in the

Hubbard-type interactions represents a subject of interes -gfg{,fé?nt%rﬁsﬁg Fuoerrfgei\r/]af[lﬁss fornﬁliggténwlzilllgbg’sﬂ]; dlgr\:\ll_
Earlier studies on infinite systems agreed about the followin P q y 9 y

qualitative behavior: abl increases from zero, the dimeriza- edshifted byA w/to=0.0567 al) = U by increasingJ. An-

tion first increases, attains a maximum and then decrease%ther possibility would be to prepare a system, e.g., With

see, e.g., the discussion in Ref. 22. Extrapolations of the Us: at sufficiently low temperaturesikgT<E(Cy)

results deduced by exact numerical diagonalization for a_ E(Co)], only o_pt|cal tra_nsmons from the ground statg
an occur, while at higher temperatur¢&zT>E(c,)

classical lattice have been employed to investigate the influS
ence ofU on the dimerization in infinite systems for=0.22  _E(Co)], the statec, becomes also populated and the tran-
They gave support for the aforementioned behavior only fopitions from this state W_'” shift the absorphon_spectrum to-
sufficiently weak electron-phonon coupling. Although WeWard the red; for illustration, compare the position of the first
shall not consider this issue, we mention that an argumer{;zas‘hed and solid lines in Fig. 6. .
invoked to this aim in Ref. 22 was that the cuftfesf the We have fOl.JnEP that the gxtended Hgbbard—SSH quel IS
dimensionless MF dimerizatioxy,£(U) for differentN val- able to d_escrlbe guantitatively a variety of properties of
ues pass through aindependent point)o. By treating the smaller ring-shaped '\(*H!\‘ molecules (benzene, .cyclo—
electron-phonon couplindynamically we found that this is octatetrgene, cyclobutadignemoreover, extrapolauons. to
no longer true. Therefore, the problem should merit recor][arger sizes of these exact results reasonably agree with data
sideration, particularly at higher phonon frequencies, wher polyacetylene. ﬂowevgr, these systems tgrned out tq be
this effect turned out to be more pronounced. oo far from the critical points. We could not find more suit-
able candidates among existing molecular rings closer to the

The optical conductivity examined here in conjunction . sU=U h th Cint " h di
with symmetry changes at critical lines also served to revedfO'Ns ¥ ="Ycs Where the most interesting phenomena dis-

the important part played by lattice relaxation. As shown inCUSS'?d_ above occur. _Nanorlngs of QD.’S are much more
Fig. 3 and previously in the absence of electron-electrorf"0MISING. Advances in nanotechnologies allow to tune
interaction'’ the tail of theexactabsorption curve, penetrat- model param_eters, and hen_c<_a, to ex_plore_extended regions of
ing into the MF optical gap, is directly related to lattice re- the phase dlagrar_n comprising c_r|t|cal Im_es. HD:‘(ZR)
laxation. Recent studies on optical properties investigated 1.107, .the .classmal approximation pred!qtls) :.2 [F|g._
larger one-dimensional systems within DMR&accounting 1(.b)].’ a situation close tp the CDW'SDW _crmcal line. While
(almos} exactly for strong electronic correlations but consid—thls is only a crude esUmafé,'the interesting results found
ering a frozen lattic6eventually at optimized ground-state here could encourage expen.mental efff)rts fc.)r. searching a
geometry, i.e., making use of the approximation usually CDW-SDW transition in nanorings onDssufflc[entIy close
called “adiabatic.*® The present results for(w) demon- to each other. For the stat_e-of-tht::t-art of nanosciencpsr-a
strate that this approximation is unable to describe the optica{PCtly r.egular array oidenuoa} QDS. represents a too ideal-
smearing in finite systems. To treat appropriately this phelzed, picture. Therefqre, the mclusmn of disorder in the the-
nomenon in larger systems, the DMRG calculations shoultﬁ)ret'Cal model remains a desirable step.

include dynamic electron-phonon couplings rather than clas-
sical frozen lattices.

The issues noted above indicate several significant effects 1.B. wishes to thank for the financial support of this work
of quantum phonon fluctuations, but other effects are eveprovided by the Sonderforschungsbereich Grant No. 195 at
more interesting. There is an important difference betweetthe Universita Karlsruhe and the Fonds der Chemischen
the exact and MF treatments: the ground-state symmetrindustrie.
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