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Symmetry of anisotropic exchange interactions in semiconductor nanostructures
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The symmetry of exchange interaction of charge carriers in semiconductor nanostrdgtizmesim wells
and quantum dojsis analyzed. It is shown that the exchange Hamiltonian of two particles belonging to the
same energy band can be universally expressed via pseudospin operators of the particles. The relative strength
of the anisotropic exchange interaction is shown to be independent of the binding energy and the isotropic
exchange constant.
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The reduced symmetry of semiconductor nanostructuresonductor structures, given above, demonstrates the evident
suggests that the exchange interaction of charge carriers flemand for a consistent theoretical analysis of the issue,
such structures is not necessarily described by the isotropiegased on a general approach. In this paper, we consider ex-
(Heisenbery spin Hamiltonian. In particular, the exchange change interaction of two identical charge carriers localized
interaction of electrons and holes in quantum wells andn any symmetric double-well potential in a two-dimensional
quantum dots is known to be extremely anisotropic, givingS€miconductor structure. Using the pseudospin formalism al-
rise to a fine structure of nanostructure excitbAsisotropy ~ lOws us to obtain a universal spin Hamiltonian describing
of the electron-hole exchange interaction in the exciton ighis class of systems.
known also for bulk crystals where it is defined by the unit-  Let us consider the exchange interaction of two identical
cell symmetry and the exciton wave vecfolt has been charge carrierdelectrons or holgs localized in two cen-
showr? that the exchange interaction of conduction-bandirosymmetric potential hollowKurther referred to as quan-
electrons is also anisotropic if the structure lacks inversiofum dots(QD's)*** in a quasi-two-dimensional semicon-
symmetry. The main term of the anisotropic exchangeductor structur¢quantum wellQW)]. The QD’s may be, for
Hamiltonian in this case has the Dzyaloshinskii-Moriya €xa@mple, self-organized QD'$;otherwise, they can be in-
form# The electron-electron anisotropic exchange was subduced by electrostatic potential of nanometer-sized gages
sequently widely discussed in relation to the quantum comimpurity centers® The distance between centers of the QD’s
puting problent” It has been recently detected experimen-Will further be denoted a®;,. In quasi-two-dimensional
tally via its contribution to the spin relaxation of donor- structures, the fourfold degeneracy of the valence band, typi-
bound electrons in GaAswhere it has been shown to put cal of cubic semiconductors, is lifted. The states at extremum
the upper boundary for the electron-spin lifetime at donorPoints of two-dimensional subbands in absence of magnetic
concentrations around 1%Cm73_ However, it remained so fields retain Only the Kramers twofold degeneracy. Their
far unclear whether or not the anisotropic spin Hamiltonianwave functions can be written ag(r)u,(r), where¥(r)
suggested in Ref. 3 is universal for all types of charge carri=s(2) #(p) is an envelope functiorp is the in-plane posi-
ers, e.g., for two-dimensional holes. The issue of the deperiion vector, andu,(r) is a Bloch amplitudey=*1/2. The
dence of the anisotropic exchange constant on the parametdkgictions(z) is defined by size quantization. The Bloch am-
of the localizing potential is also very sensitive, especiallyplitudesu,(r) are two-component functions transformed into
for the discussion on feasibility of quantum computationeach other by the operator of time reverSal:
with solid-state spin systenisThe constant was so far cal-

culated using approximate methotfsFor instance, the ap- Up 121 =AM X412 B(r) X - 172,

plicability of the Heitler-London method, which is known to

give an incorrect asymptotic expression for the isotropic ex-  u_q;,(r)= —i &yuil,z(r):A*(r)X_l,z— B*(r)x+1,
change integral}® was recently questioned by Gor’kov and )

Krotkov.!! Using the median-plane methddhey have ob- .
tained a correct asymptotic formula for the anisotropic ex-where the Pauli operater, acts upon spinorg,, , andA(r)
change constant in a specific case of hydrogenlike centers @andB(r) are functions of coordinates only.
zinc blende semiconductors, different from that calculated This property allows to associate the Kramers index
earlier by the Heitler-London methddHowever, their ap-  with an eigenvalue of a projection of a pseudospin opefator
proach is not always applicable to coupled quantum dotsj=1/2) on some(generally fictitiou$ axis. The choice of
where the distance between quantum dots can be comparatiasis functions foj is not unambiguous. It is limited only by
to the quantum dot size. So far, no analytical expression fothe condition given by Eq.1). In particular, for heavy holes
the anisotropic exchange constant has been obtained for thigth the projection of the angular momentum on the struc-
range of interdot distances, especially interesting for solidture axis Z, equal td,= *+ 3/2, it is convenient to choose the
state quantum computing. functions a$ |j,+1/2=[J,,—3/2) and |j,—1/2=]J,,
The collection of unsolved problems and blank spaces int3/2). This choice allows to avoid phase multipliers which
the existing knowledge on the anisotropic exchange in semiwould otherwise appear at wave functions in the pseudospin
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representation. For conduction-band electrons, the pseu- . h? K2

dospin coincides with the electron sginLinear transforma- Ho=ﬁk§+ ﬁk§+V1(P1) +Va(p2)
tions of pseudospin wave functions determined in the basis

{uj1p,Uu_qp} are equivalent to rotations of usual spinor
fur;rctions.17 +f Un(|ri—r2))s%(z1)s%(z)dzdz, (6)
u%hl=expli yi2)[ u., 1 expi a/2)cog BI2) Aso=h(ky)-j1+h(Ky)js, 7
+U_yexp—ial2)sin(Bl2)], andU5(|r;—r,|) is the operator of the Coulomb interaction
between the two particles. Before tackling the effects of spin-
uBn=exp( —i y/2)[ — U, 1.exp(i a/2)sin( BI2) orbit interaction in the form of Eq(7) on the exchange in-
teraction, we should reconsider the ground-state structure of
+U_1exp—ial2)cod B2)], (20 the HamiltonianH,. It is indeed well known for vacuum

electrons whose one-particle wave functions #er)y,, ,
wherea, B, andy are analogs of Euler angles. Following where the spinory, is not a function of coordinates. To
the analogy, one can introduce the total pseudosgin the contrary, the Bloch amplitude, does depend on coor-
+jo. Indeed, the Hilbert space of two-pseudospin wavedinates, and, moreover, it may contain spinors with both
functions A,,u,(r;)u,(r,) breaks into two subspaces u=+1/2 andu=—1/2. The excitor(an electron-hole pair
invariant with respect to the simultaneous transformadin a QD is a good example demonstrating that the exchange

tion of both pseudospins along E) with the samea, interaction of charge carriers may have a very different sym-
B, and vy. The basis functions of these subspacesmetry as compared to that of free electrons. The QD exciton
Eo=[Up1a(r)U_1or2) —U_ 1)UL 1r2) /2 and &y, fine structuré consists of two doublets, being thus quite dif-

equal to [Us (T U_1/(F2) FUpgs(F)U_1o(r2) 12 (M ferent from the fine structure of a pair of vacuum electrons,
=0) oru. r)u=15(r,) (M==1), are, obviously, eigen- i.e., the well-known singlet-triplet structure associated with

functions of the operator’ andi,. the Heisenberg exchange.
The general form of the one-particle Hamiltonian of the . N order to analyze the fine structure i for two par-

two-dimensional charge carrier in the pseudospin represent4€/€s belonging to the same subband, we first note that their
behavior should be identical to that of bare electrons in all

tion is
aspects but the Coulomb interaction. Indeed, although Bloch
52 amplitudes are functions of coordinates within the unit cell,
Ay==——k2+V(p)+h(k)-], 3) the one—particle operators of the kingtic energy and _of the
2m potential energy in Eq6) in the effective-mass approxima-

tion act upon envelope function, not Bloch amplitudes.
whereV/(p) is an effective two-dimensional potentia@ver-  Therefore, with respect to these one-particle operators, the
aged overz with the size-quantization wave functiaifz)], Bloch amplitudes are just equivalent to spinors. To the con-
mis the effective mass for the two-dimensional motion, andtrary, calculating the Coulomb energy assumes taking inte-
the “spin-orbit field” h(k) is a vector in the pseudospin grals over the unit cell also. It is due to this fact that the
space’® h(k) is an odd function of the components of the symmetry of Bloch amplitudes of holes and electrons has an
wave vector. It is not equal to zero if the structure lacksimpact on the fine structure in the excitbft
inversion symmetry(which is very typical for nanostruc- The fermionic wave functions of the two charge carriers
tureg. This is the case when either the crystal unit cell lackscan be written in the following form, similar to that of
inversion symmetrybulk inversion asymmetr&?, (BIA)] or vacuum electrons:
the QW is asymmetridstructure inversion asymme

(SIA)]. The components oh(k) may be, or may not be, Wo(rq,ry)=[Po(rqi,rs) +Po(rs,rq1) 1o,
associated with certain Cartesian axes in the real space. In

the two-dimensional casé(k) is dominated by linear itk W, r)=[D1(r,r) —P1(rp,r1)1ém (8)
terms?0-22

where ®y(rq,r,) and ®,(r4,r,) are two-particle envelope
h =A .k (4) functions defined so that each particle is most likely to be
7T found near its “home” center, while®y(r,,r;) and
where the matriXA is defined by the structure symmetry. CDl(r?’r.l) correspond to mterchangeq particle positions. To
determine the structure of respective energy levels, we

The problem we are going to solve is finding the fine . .
structure of the ground state of the two-particle Hamiltonians'hOUId recall a property of the .BIOCh amphtudga,s, which
- : results from their symmetry with respect to time reversal,
(where SO represents spin ojbit . . .
and is an equivalent formulation of the Kramers theorem. As
o follows from the Kramers theorem, the states symmetric with
H=Hy+Hso, ) respect to time reversal remain degenerated unless magnetic
field is applied. Mathematically, this means that matrix ele-
where ments of any function of coordinatésot containing deriva-
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tives or spin operatoysbetweenu . 15(r) andu_q,(r) are The HamiltoniarH’ does not contain spin-orbit terms and
zero, while diagonal matrix elements are equal to each othetherefore results in the exchange interaction in the form of

Eq. (12):
(Ui F(D[up(r))=(u_ ()] F(r)|uy 1)) =0,

(Ui (D [F(N]us o)) =(u_ 1 (D[ () [u_11r)). (9)
N ) ) Due to the axial symmetry of the system, the matrix ele-
These equa““es can be derived Stra]ghtforWardly fromments Ofkly and k2y’ calculated on the ground_state eigen_

Eq. (1. functions ofH}, [the i
. A 0 y can be obtained from E) by the
Using Eq.(9), one can easily find that transformation with the matriX, which does not affect their
(Wo(ry,r )| Uss[F1— o)) W 1 (r1,F2)) =0, dependence oy, are exactly equal to zero. The same is true

for all the odd powers ok,, andk,, . Therefore,l:|’SO does
(Wo(ry,ra)|Usal[ra—ra))[Wolry,ra))

not affect the exchange interaction.
Finally, to obtain the exchange Hamiltonian in the non-
F(Wim(ry,r)|Usd[ri—ra) [ Wi (ry,r2))
=COﬂSt(5MM,).

He=—2A(;-j5+1). (16)

transformed basis, one should substitute the expressions for
j1 andj; into Eq. (16). Since the transformation is a rota-
tion through the angle [@/%2) = ,A A, around the vec-

Thus, the Coulomb interaction retains the singlet-triplettor A, in the pseudospin spackls in the nontransformed
structure of the ground state of two identical charge carriershasis is not unambiguously defined; it depends on the coor-
Exactly like in the case of two bare electrons, two-particledinatesx; andx, at which we take the pseudospin operators
states with the same total pseudospare degenerated. Con- j1 andj,. A natural choice is to define them at the centers of
sequently, the Hamiltonian of the exchange interaction ircorresponding QD's; for instance, this definition allows us to
terms of pseudospin operators takes the Heisenberg form: write the Zeeman interaction in the usual forrﬁ-lz

(10

Hs=—2A(j;-j2+1), (11

= uglasl «Bg, WhereB is the magnetic fieldyg is the Bohr
magneton, and),z is a symmetric tensog facto”® whose
principal directions do not depend on the envelope wave

where A is a constant to be determined for each specifiGnction of the localized particle. This way, we come to the

case.

Now we can consider the effect of the spin-orbit terms
given by Eq.(7) on the exchange interaction. In the follow-
ing, we will choose the axis X along the straight line con-

necting the localization centef®D’s). To handle the spin-

expression folH s obtained in Ref. 3:

Hs=—2A(1+]j;-j,cosy+(d-j1)(d-j2)(1—cosy)
+d-[j1X]o]siny), (17

orbit terms, we make use of a unitary transformation

proposed by Levitov and Rastavho used it to eliminate

spin-orbit terms in the one-dimensional case. The mafrix

defined as
_2m - -
T=ex 'ﬁ > AU 1aX1+ ) 2a%2) (12
transforms the HamiltonialEq. (5)] into the form
THT =H'=H{+H%o, (13
where
"y ﬁz 12 hz 12 ' ’
Hozﬁkl +%k2 +Vi(p1) +Va(p2)
! ! 2 m(AaX)z
+ | Usdlri—r3))s¥(2)dz= > e 149
and
H50= 2 Aay(kd ot Koy 2a) (15)

wherej; =Tj T4, j,=Tj,T "

where y=(2m/%?) V= ,A,,A R, andd is a unit vector in
the pseudospin space, defined so that A,/ V= A A .
The first anisotropic term has the form of pseudodipole
interaction?® and the second one, of the Dzyaloshinskii-
Moriya interactiorft At small y, the Dzyaloshinskii-Moriya
interaction dominates.

Equation(17) demonstrates a remarkable universality of
the exchange interaction in two-dimensional semiconductor
nanostructures; this form of the Hamiltonian holds for both
electrons and holes, for any type of centrosymmetric local-
izing potentials. EquatiofiL7) is valid for identical as well as
for different QD’s. Moreover, the anglg characterizing the
relative strength of the anisotropic exchange depends only on
the distance between the QD’s and the orientation of the pair
of QD’s with respect to the crystal axes. It is not sensitive to
binding energies of the charge carriers in the QD’s and to the
value of the isotropic exchange constant

The value ofy can be now easily calculated for those
structures where the components of the matviare known.

In [100] oriented GaAs quantum wells the dominating
BIA terms aré® A= —A,,=[ah®(my2mEy)](k%) and
Ayy=Ayx=0, wherea~0.065, Ref. 26here coordinates
andy are taken along the cubic crystal axeBhis givesy
=(2aﬁ/\/2mEg)(k§>R12. For example, in a 5-nm-wide
GaAs QW with infinitely high Dbarriers, y=(3

075302-3



K. V. KAVOKIN

PHYSICAL REVIEW B 69, 075302 (2004

X10° cm YR,,. For example, if the distance between cen-posed recently by Stepanenkbal®® Since the anisotropic

ters of the QD’s is 20 nm, we obtaip=0.6.

For Rashba termgy,,=A,,=0 andA,,= —Aj,=a. In a
single-side modulation-dopesitype Si/SiGe quantum well,
the constant of 1.1x10 *? eVcm was measured. This
gives y=(2mala?)R,~(6.7x 107 cm H)Ry,.

component of the exchange interaction is present in practi-
cally all types of semiconductor structures currently consid-
ered prospective for qubit implementation, and typical values
of v are, according to the above estimations, not small; mea-
sures to suppress the uncontrollable effect of anisotftpy

Bulk inversion asymmetry terms for holes in zinc blende€xample, as proposed in Ref.)3should be taken in any

semiconductors include both cubic and linearkiterms?®

design of exchange-mediated quantum gates. On the other

The cubic termH 3, has the same symmetry as the Dresselhand, large values of are favorable for quantum-computing

haus term for electrons, with the constamﬁ3/m\/2mEg,
wherem is the conduction-band electron mass ang=0.1
for GaAs. The linear term is given by the expression

2

Hiv \/§%(k Q),
where(),=J,(3Z—37) + (33— 3%)J, (other components d®
are obtained by cyclic permutation of indi¢e$ is the hole
spin operator J=3/2), andx~10 1% eV cm. Taking matrix
elements ofH,,, andHg,, within pairs of the states with,
= *1/2 (light holeg andJ,= = 3/2 (heavy holes and going
to the pseudospin notation, we obtain fof1&0] QW:

(18)

_ [y ) _
hi(k)= (zm\/ﬁ<kz> \/§% (Kx&x kyey)u

hn(k)=—2\3x(ke—kyey), (19
whereh,(k) andhy(k) are spin-orbit field§see Eq(3)] for
light and heavy holes, respectivety, ande, are unit vectors
along X andY, respectively. Consequently,

4avhm| <k2> 2\/§m| )R
= —F/— - V
Y mm z 52 12

for light holes, andy,=(4+3my/%2) xR, for heavy holes,

algorithms the
interaction’

Another issue that is worth mentioning in relation with
the quantum-computing problem is a possibility to use hole
pseudospins as qubits. Indeed, according to EtB. and
(17), pseudospins of holes interact exactly the same way as
spins of electrons. Consequently, all the quantum gates pro-
posed to be implemented with electron spins can, in prin-
ciple, be done with hole¥. Recent experiment$® have
shown that quantum dot holes can have quite long spin life-
times(of the order of nanoseconds zero or small magnetic
fields. On the other hand, holes have an advantage of being
not coupled with lattice nuclei by the contact Fermi
interactiort®* (the remaining dipole-dipole interaction is
several orders of magnitude weakeFhe contact hyperfine
interaction of electron spins with hundreds of thousands of
nuclei within the QD results in a complex pattern of spin
relaxatiori®® and may present a formidable source of deco-
herence because of the high entropy of the nuclear-spin res-
ervoir. Though it has been proposed to suppress the nuclear-
spin-induced decoherence either with magnetic fields or
using dynamical polarization of nuclear spitishis would
impose additional requirements to quantum-computer de-
signs, while existing requirements are already extremely
stringent. These considerations suggest that holes in quantum
dots may be good candidates for modeling few-qubit systems
virtually decoupled from the nuclear-spin environment

employing anisotropy of exchange

wherem, andmj, are effective masses of the light and heavy (though building a scalable quantum computer with holes
holes, respectively, corresponding to their motion along th&yould face the same major difficult’sas all the other ap-

QW plane. For example, in a 10-nm-wide GaAs QW,
~(5X10° cm YRy, v~(10° cm HRy,.

proaches discussed so )far
In conclusion, the exchange interaction of charge carriers

The symmetry of exchange interactions has beenelectrons or holéslocalized in two-dimensional semicon-
discussed in relation to feasibility of quantum computationgyctor structures is shown to be described by a universal
with - spins  of localized electrons in  semiconductor Hamiltonian in terms of carriers’ pseudospins. It has the
nanostructure$™°®A necessary condition for practical quan- Heisenberg form unless spin-orbit terms, linear in the carrier
tum computing to become possible is that the error probabilgyaye vector, are present in the total Hamiltonian of the sys-

ity per quantum gate be less than a certain vahdiiehe order

tem. In this latter case, anisotropic contributions having both

of 10°°) 2 As shown in Ref. 6, there exists a way of per- pzyaloshinskii-Moriya and pseudodipole form arise. The
forming exchange-mediated quantum gates, which allows tergtation angle” y, characterizing the relative strength of the
avoid errors caused by the anisotropy, provided the directiogpjsotropic exchange, linearly depends on the distance be-

of d remains constant when the isotropic exchange constamjeen the localization centers and does not depend on bind-
is changed. The above consideration shows that this is indegdg energies of the carriers.

the case as long as the direction Rf, and the matrix of

spin-orbit termsA do not change. The latter may change, in
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