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Symmetry of anisotropic exchange interactions in semiconductor nanostructures

K. V. Kavokin
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

and A. F. Ioffe Physico-Technical Institute, 194021 Politechnicheskaya 26, St. Petersburg, Russia
~Received 14 January 2003; revised manuscript received 10 October 2003; published 5 February 2004!

The symmetry of exchange interaction of charge carriers in semiconductor nanostructures~quantum wells
and quantum dots! is analyzed. It is shown that the exchange Hamiltonian of two particles belonging to the
same energy band can be universally expressed via pseudospin operators of the particles. The relative strength
of the anisotropic exchange interaction is shown to be independent of the binding energy and the isotropic
exchange constant.
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The reduced symmetry of semiconductor nanostructu
suggests that the exchange interaction of charge carrie
such structures is not necessarily described by the isotr
~Heisenberg! spin Hamiltonian. In particular, the exchang
interaction of electrons and holes in quantum wells a
quantum dots is known to be extremely anisotropic, giv
rise to a fine structure of nanostructure excitons.1 Anisotropy
of the electron-hole exchange interaction in the exciton
known also for bulk crystals where it is defined by the un
cell symmetry and the exciton wave vector.2 It has been
shown3 that the exchange interaction of conduction-ba
electrons is also anisotropic if the structure lacks invers
symmetry. The main term of the anisotropic exchan
Hamiltonian in this case has the Dzyaloshinskii-Mori
form.4 The electron-electron anisotropic exchange was s
sequently widely discussed in relation to the quantum co
puting problem.5–7 It has been recently detected experime
tally via its contribution to the spin relaxation of dono
bound electrons in GaAs,8 where it has been shown to pu
the upper boundary for the electron-spin lifetime at don
concentrations around 1016 cm23. However, it remained so
far unclear whether or not the anisotropic spin Hamilton
suggested in Ref. 3 is universal for all types of charge ca
ers, e.g., for two-dimensional holes. The issue of the dep
dence of the anisotropic exchange constant on the param
of the localizing potential is also very sensitive, especia
for the discussion on feasibility of quantum computati
with solid-state spin systems.6 The constant was so far ca
culated using approximate methods.3,6 For instance, the ap
plicability of the Heitler-London method, which is known t
give an incorrect asymptotic expression for the isotropic
change integral,9,10 was recently questioned by Gor’kov an
Krotkov.11 Using the median-plane method,9 they have ob-
tained a correct asymptotic formula for the anisotropic
change constant in a specific case of hydrogenlike cente
zinc blende semiconductors, different from that calcula
earlier by the Heitler-London method.3 However, their ap-
proach is not always applicable to coupled quantum d
where the distance between quantum dots can be compa
to the quantum dot size. So far, no analytical expression
the anisotropic exchange constant has been obtained for
range of interdot distances, especially interesting for so
state quantum computing.12

The collection of unsolved problems and blank space
the existing knowledge on the anisotropic exchange in se
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conductor structures, given above, demonstrates the evi
demand for a consistent theoretical analysis of the iss
based on a general approach. In this paper, we conside
change interaction of two identical charge carriers localiz
in any symmetric double-well potential in a two-dimension
semiconductor structure. Using the pseudospin formalism
lows us to obtain a universal spin Hamiltonian describi
this class of systems.

Let us consider the exchange interaction of two identi
charge carriers~electrons or holes!, localized in two cen-
trosymmetric potential hollows@further referred to as quan
tum dots ~QD’s!13,14# in a quasi-two-dimensional semicon
ductor structure@quantum well~QW!#. The QD’s may be, for
example, self-organized QD’s;14 otherwise, they can be in
duced by electrostatic potential of nanometer-sized gates15 or
impurity centers.16 The distance between centers of the QD
will further be denoted asR12. In quasi-two-dimensiona
structures, the fourfold degeneracy of the valence band, t
cal of cubic semiconductors, is lifted. The states at extrem
points of two-dimensional subbands in absence of magn
fields retain only the Kramers twofold degeneracy. Th
wave functions can be written asC(r )un(r ), whereC(r )
5§(z)c(r) is an envelope function,r is the in-plane posi-
tion vector, andun(r ) is a Bloch amplitude,n561/2. The
function§(z) is defined by size quantization. The Bloch am
plitudesun(r ) are two-component functions transformed in
each other by the operator of time reversal:17

u11/2~r !5A~r !x11/21B~r !x21/2,

u21/2~r !52 i ŝyu11/2* ~r !5A* ~r !x21/22B* ~r !x11/2,
~1!

where the Pauli operatorŝy acts upon spinorsxm , andA(r )
andB(r ) are functions of coordinates only.

This property allows to associate the Kramers indexn
with an eigenvalue of a projection of a pseudospin operatj
( j 51/2) on some~generally fictitious! axis. The choice of
basis functions forj is not unambiguous. It is limited only by
the condition given by Eq.~1!. In particular, for heavy holes
with the projection of the angular momentum on the stru
ture axis Z, equal toJz563/2, it is convenient to choose th
functions as1 u j ,11/2&5uJz ,23/2& and u j ,21/2&5uJz ,
13/2&. This choice allows to avoid phase multipliers whic
would otherwise appear at wave functions in the pseudos
©2004 The American Physical Society02-1
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representation. For conduction-band electrons, the p
dospin coincides with the electron spins. Linear transforma-
tions of pseudospin wave functions determined in the b
$u11/2,u21/2% are equivalent to rotations of usual spin
functions:17

u11/2
abg 5exp~ ig/2!@u11/2exp~ ia/2!cos~b/2!

1u21/2exp~2 ia/2!sin~b/2!#,

u21/2
abg 5exp~2 ig/2!@2u11/2exp~ ia/2!sin~b/2!

1u21/2exp~2 ia/2!cos~b/2!#, ~2!

wherea, b, andg are analogs of Euler angles. Followin
the analogy, one can introduce the total pseudospinI5 j1
1 j2. Indeed, the Hilbert space of two-pseudospin wa
functions Amnum(r1)un(r2) breaks into two subspace
invariant with respect to the simultaneous transform
tion of both pseudospins along Eq.~2! with the samea,
b, and g. The basis functions of these subspac
j05@u11/2(r1)u21/2(r2)2u21/2(r1)u11/2(r2)#/A2 andj1M ,
equal to @u11/2(r1)u21/2(r2)1u11/2(r1)u21/2(r2)#/A2 (M
50) or u61/2(r1)u61/2(r2) (M561), are, obviously, eigen
functions of the operatorsÎ 2 and Î z .

The general form of the one-particle Hamiltonian of t
two-dimensional charge carrier in the pseudospin represe
tion is

Ĥ15
\2

2m
k21V~r!1h~k!• j , ~3!

whereV(r) is an effective two-dimensional potential@aver-
aged overz with the size-quantization wave function§(z)],
m is the effective mass for the two-dimensional motion, a
the ‘‘spin-orbit field’’ h(k) is a vector in the pseudospi
space.18 h(k) is an odd function of the components of th
wave vector. It is not equal to zero if the structure lac
inversion symmetry~which is very typical for nanostruc
tures!. This is the case when either the crystal unit cell lac
inversion symmetry@bulk inversion asymmetry,19 ~BIA !# or
the QW is asymmetric@structure inversion asymmetry20

~SIA!#. The components ofh(k) may be, or may not be
associated with certain Cartesian axes in the real spac
the two-dimensional case,h(k) is dominated by linear ink
terms:20–22

hh5Ahzkz , ~4!

where the matrixA is defined by the structure symmetry.
The problem we are going to solve is finding the fi

structure of the ground state of the two-particle Hamilton
~where SO represents spin orbit!:

Ĥ5Ĥ01ĤSO, ~5!

where
07530
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Ĥ05
\2

2m
k1

21
\2

2m
k2

21V1~r1!1V2~r2!

1E U12~ ur12r2u!§2~z1!§2~z2!dz1dz1 , ~6!

ĤSO5h~k1!• j11h~k2!• j2 , ~7!

andU12(ur12r2u) is the operator of the Coulomb interactio
between the two particles. Before tackling the effects of sp
orbit interaction in the form of Eq.~7! on the exchange in-
teraction, we should reconsider the ground-state structur
the HamiltonianH0. It is indeed well known for vacuum
electrons whose one-particle wave functions areC(r )xm ,
where the spinorxm is not a function of coordinates. To
the contrary, the Bloch amplitudeun does depend on coor
dinates, and, moreover, it may contain spinors with b
m511/2 andm521/2. The exciton~an electron-hole pair!
in a QD is a good example demonstrating that the excha
interaction of charge carriers may have a very different sy
metry as compared to that of free electrons. The QD exc
fine structure1 consists of two doublets, being thus quite d
ferent from the fine structure of a pair of vacuum electro
i.e., the well-known singlet-triplet structure associated w
the Heisenberg exchange.

In order to analyze the fine structure ofH0 for two par-
ticles belonging to the same subband, we first note that t
behavior should be identical to that of bare electrons in
aspects but the Coulomb interaction. Indeed, although Bl
amplitudes are functions of coordinates within the unit ce
the one-particle operators of the kinetic energy and of
potential energy in Eq.~6! in the effective-mass approxima
tion act upon envelope function, not Bloch amplitude
Therefore, with respect to these one-particle operators,
Bloch amplitudes are just equivalent to spinors. To the c
trary, calculating the Coulomb energy assumes taking in
grals over the unit cell also. It is due to this fact that t
symmetry of Bloch amplitudes of holes and electrons has
impact on the fine structure in the exciton.1,23

The fermionic wave functions of the two charge carrie
can be written in the following form, similar to that o
vacuum electrons:

C0~r1 ,r2!5@F0~r1 ,r2!1F0~r2 ,r1!#j0 ,

C1M~r1 ,r2!5@F1~r1 ,r2!2F1~r2 ,r1!#j1M , ~8!

where F0(r1 ,r2) and F1(r1 ,r2) are two-particle envelope
functions defined so that each particle is most likely to
found near its ‘‘home’’ center, whileF0(r2 ,r1) and
F1(r2 ,r1) correspond to interchanged particle positions.
determine the structure of respective energy levels,
should recall a property of the Bloch amplitudesun , which
results from their symmetry with respect to time revers
and is an equivalent formulation of the Kramers theorem.
follows from the Kramers theorem, the states symmetric w
respect to time reversal remain degenerated unless mag
field is applied. Mathematically, this means that matrix e
ments of any function of coordinates~not containing deriva-
2-2
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tives or spin operators! betweenu11/2(r ) and u21/2(r ) are
zero, while diagonal matrix elements are equal to each ot

^u11/2~r !u f ~r !uu21/2~r !&5^u21/2~r !u f ~r !uu11/2~r !&50,

^u11/2~r !u f ~r !uu11/2~r !&5^u21/2~r !u f ~r !uu21/2~r !&. ~9!

These equalities can be derived straightforwardly fr
Eq. ~1!.

Using Eq.~9!, one can easily find that

^C0~r1 ,r2!uU12~ ur12r2u!uC1M~r1 ,r2!&50,

^C0~r1 ,r2!uU12~ ur12r2u!uC0~r1 ,r2!&

Þ^C1M~r1 ,r2!uU12~ ur12r2u!uC1M8~r1 ,r2!&

5const~dMM8!. ~10!

Thus, the Coulomb interaction retains the singlet-trip
structure of the ground state of two identical charge carri
Exactly like in the case of two bare electrons, two-parti
states with the same total pseudospinI are degenerated. Con
sequently, the Hamiltonian of the exchange interaction
terms of pseudospin operators takes the Heisenberg form

ĤS522D~ j1• j211!, ~11!

where D is a constant to be determined for each spec
case.

Now we can consider the effect of the spin-orbit term
given by Eq.~7! on the exchange interaction. In the follow
ing, we will choose the axis X along the straight line co
necting the localization centers~QD’s!. To handle the spin-
orbit terms, we make use of a unitary transformati
proposed by Levitov and Rashba24 who used it to eliminate
spin-orbit terms in the one-dimensional case. The matriT
defined as

T5expF i
2m

\2 (
a

Aax~ ̂1ax11 ̂2ax2!G ~12!

transforms the Hamiltonian@Eq. ~5!# into the form

TĤT215Ĥ85Ĥ081ĤSO8 , ~13!

where

Ĥ085
\2

2m
k18

21
\2

2m
k28

21V1~r18!1V2~r28!

1E U12~ ur182r28u!§
2~z!dz2(

a

m~Aax!
2

\2
~14!

and

ĤSO8 5(
a

Aay~k1y̂1a8 1k2y̂2a8 ! ~15!

wherej185Tj1T21, j285Tj2T21.
07530
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The HamiltonianĤ8 does not contain spin-orbit terms an
therefore results in the exchange interaction in the form
Eq. ~11!:

ĤS8522D~ j18• j2811!. ~16!

Due to the axial symmetry of the system, the matrix e
ments ofk1y andk2y , calculated on the ground-state eige
functions of Ĥ08 @they can be obtained from Eq.~8! by the
transformation with the matrixT, which does not affect their
dependence ony], are exactly equal to zero. The same is tr
for all the odd powers ofk1y andk2y . Therefore,ĤSO8 does
not affect the exchange interaction.

Finally, to obtain the exchange Hamiltonian in the no
transformed basis, one should substitute the expression
j18 and j28 into Eq. ~16!. Since the transformationT is a rota-
tion through the angle (2m/\2)A(nAnxAnxx around the vec-
tor Anx in the pseudospin space,ĤS in the nontransformed
basis is not unambiguously defined; it depends on the c
dinatesx1 andx2 at which we take the pseudospin operato
j1 and j2. A natural choice is to define them at the centers
corresponding QD’s; for instance, this definition allows us
write the Zeeman interaction in the usual form,ĤZ
5mBgab j aBb , whereB is the magnetic field,mB is the Bohr
magneton, andgab is a symmetric tensorg factor25 whose
principal directions do not depend on the envelope wa
function of the localized particle. This way, we come to t
expression forĤS obtained in Ref. 3:

ĤS522D„11 j1• j2cosg1~d• j1!~d• j2!~12cosg!

1d•@ j13 j2#sing…, ~17!

whereg5(2m/\2)A(nAnxAnxR12 and d is a unit vector in
the pseudospin space, defined so thatdn5Anx /A(nAnxAnx.
The first anisotropic term has the form of pseudodip
interaction,25 and the second one, of the Dzyaloshinsk
Moriya interaction.4 At small g, the Dzyaloshinskii-Moriya
interaction dominates.

Equation~17! demonstrates a remarkable universality
the exchange interaction in two-dimensional semiconduc
nanostructures; this form of the Hamiltonian holds for bo
electrons and holes, for any type of centrosymmetric loc
izing potentials. Equation~17! is valid for identical as well as
for different QD’s. Moreover, the angleg characterizing the
relative strength of the anisotropic exchange depends onl
the distance between the QD’s and the orientation of the
of QD’s with respect to the crystal axes. It is not sensitive
binding energies of the charge carriers in the QD’s and to
value of the isotropic exchange constantD.

The value ofg can be now easily calculated for thos
structures where the components of the matrixA are known.

In @100# oriented GaAs quantum wells the dominatin
BIA terms are22 Ayy52Axx5@a\3/(mA2mEg)#^kz

2& and
Axy5Ayx50, wherea'0.065, Ref. 26~here coordinatesx
and y are taken along the cubic crystal axes!. This givesg
5(2a\/A2mEg)^kz

2&R12. For example, in a 5-nm-wide
GaAs QW with infinitely high barriers, g5(3
2-3
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3105 cm21)R12. For example, if the distance between ce
ters of the QD’s is 20 nm, we obtaing50.6.

For Rashba terms,Ayy5Axx50 andAxy52Ayx5a. In a
single-side modulation-dopedn-type Si/SiGe quantum well
the constanta of 1.1310212 eV cm was measured.27 This
givesg5(2ma/\2)R12'(6.73102 cm21)R12.

Bulk inversion asymmetry terms for holes in zinc blen
semiconductors include both cubic and linear ink terms.28

The cubic termH3V has the same symmetry as the Dress
haus term for electrons, with the constantaV\3/mA2mEg,
wherem is the conduction-band electron mass andaV'0.1
for GaAs. The linear term is given by the expression

H1V5
2

A3
¸~k"V!, ~18!

whereV̂z5 Ĵz( Ĵx
22 Ĵy

2)1( Ĵx
22 Ĵy

2) Ĵz ~other components ofV
are obtained by cyclic permutation of indices!, J is the hole
spin operator (J53/2), and¸'10210 eV cm. Taking matrix
elements ofH1V andH3V within pairs of the states withJz
561/2 ~light holes! andJz563/2 ~heavy holes!, and going
to the pseudospin notation, we obtain for a@100# QW:

hl~k!52S 2
aV\3

mA2mEg

^kz
2&2A3¸ D ~kxex2kyey!,

hh~k!522A3¸~kxex2kyey!, ~19!

wherehl(k) andhh(k) are spin-orbit fields@see Eq.~3!# for
light and heavy holes, respectively,ex andey are unit vectors
alongX andY, respectively. Consequently,

g l5S 4aV\ml

mA2mEg

^kz
2&2

2A3ml

\2
¸ D R12

for light holes, andgh5(4A3mh /\2)¸R12 for heavy holes,
whereml andmh are effective masses of the light and hea
holes, respectively, corresponding to their motion along
QW plane. For example, in a 10-nm-wide GaAs QW,g l
'(53105 cm21)R12, gh'(105 cm21)R12.

The symmetry of exchange interactions has be
discussed in relation to feasibility of quantum computat
with spins of localized electrons in semiconduct
nanostructures.3,5,6A necessary condition for practical qua
tum computing to become possible is that the error proba
ity per quantum gate be less than a certain value~of the order
of 1025).29 As shown in Ref. 6, there exists a way of pe
forming exchange-mediated quantum gates, which allow
avoid errors caused by the anisotropy, provided the direc
of d remains constant when the isotropic exchange cons
is changed. The above consideration shows that this is ind
the case as long as the direction ofR12 and the matrix of
spin-orbit termsA do not change. The latter may change,
principle, when the gate is performed by applying elect
fields that can bring about additional SIA~Rashba! terms. In
this specific situation, the anisotropy-induced errors can
still suppressed using time-symmetric gate pulses, as
07530
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posed recently by Stepanenkoet al.30 Since the anisotropic
component of the exchange interaction is present in pra
cally all types of semiconductor structures currently cons
ered prospective for qubit implementation, and typical valu
of g are, according to the above estimations, not small; m
sures to suppress the uncontrollable effect of anisotropy~for
example, as proposed in Ref. 30! should be taken in any
design of exchange-mediated quantum gates. On the o
hand, large values ofg are favorable for quantum-computin
algorithms employing anisotropy of the exchan
interaction.7

Another issue that is worth mentioning in relation wi
the quantum-computing problem is a possibility to use h
pseudospins as qubits. Indeed, according to Eqs.~11! and
~17!, pseudospins of holes interact exactly the same way
spins of electrons. Consequently, all the quantum gates
posed to be implemented with electron spins can, in p
ciple, be done with holes.31 Recent experiments32,33 have
shown that quantum dot holes can have quite long spin l
times~of the order of nanoseconds! in zero or small magnetic
fields. On the other hand, holes have an advantage of b
not coupled with lattice nuclei by the contact Ferm
interaction18,34 ~the remaining dipole-dipole interaction i
several orders of magnitude weaker!. The contact hyperfine
interaction of electron spins with hundreds of thousands
nuclei within the QD results in a complex pattern of sp
relaxation35,36 and may present a formidable source of dec
herence because of the high entropy of the nuclear-spin
ervoir. Though it has been proposed to suppress the nuc
spin-induced decoherence either with magnetic fields
using dynamical polarization of nuclear spins,37 this would
impose additional requirements to quantum-computer
signs, while existing requirements are already extrem
stringent. These considerations suggest that holes in quan
dots may be good candidates for modeling few-qubit syste
virtually decoupled from the nuclear-spin environme
~though building a scalable quantum computer with ho
would face the same major difficulties38 as all the other ap-
proaches discussed so far!.

In conclusion, the exchange interaction of charge carr
~electrons or holes! localized in two-dimensional semicon
ductor structures is shown to be described by a unive
Hamiltonian in terms of carriers’ pseudospins. It has t
Heisenberg form unless spin-orbit terms, linear in the car
wave vector, are present in the total Hamiltonian of the s
tem. In this latter case, anisotropic contributions having b
Dzyaloshinskii-Moriya and pseudodipole form arise. T
‘‘rotation angle’’g, characterizing the relative strength of th
anisotropic exchange, linearly depends on the distance
tween the localization centers and does not depend on b
ing energies of the carriers.

The author is grateful to I. A. Merkulov, E. L. Ivchenko
L. P. Gor’kov, and P. G. Krotkov for stimulating discussion
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