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High-field transport of electrons and radiative effects using coupled force-balance
and Fokker-Planck equations beyond the relaxation-time approximation

Danhong Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona
Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA

~Received 3 September 2003; revised manuscript received 17 October 2003; published 27 February 2004!

The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass
and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion
of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate
electrons. This approach allows us to include the anisotropic energy-relaxation process which has been ne-
glected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the
incident infrared field with different polarizations. Based on this model, the transport of electrons is explored
under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic de-
pendence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is
displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared
field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of
electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic
coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the
infrared field due to a suppressed momentum-relaxation process~or frictional force! under parallel polarization
but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular
polarization.

DOI: 10.1103/PhysRevB.69.075214 PACS number~s!: 72.20.Ht, 61.82.Fk, 61.80.Az, 72.10.Di
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I. INTRODUCTION

High-field transport of electrons is usually referred
when the electric field applied to the system is no lon
small and the current-voltage relation deviates from line
response theory. There are many theories that have been
posed to describe this phenomenon since 1930. However
semiclassical Boltzmann transport equation with a drift te
still seems to be the only one amenable to practical calc
tions. In practice, however, solution of the Boltzmann tra
port equation also becomes a laborious task when the sy
goes beyond the linear regime. Fro¨hlich and Paranjape1 first
utilized a displaced Maxwellian distribution function to d
scribe the electron transport in insulators and semicond
tors. Later, Arai2 applied a similar model to describe electro
transport in metals at low temperatures but by means o
Fermi-Dirac distribution function, in which a finite electro
temperature was predicted under an applied field even w
the lattice temperature became zero. Shortly after that,
and Ting3 proposed the coupled first-order force-balance a
energy-balance equations to describe electrons in semi
ductors and metals at both low and high temperatures
assuming an isotropic quasi-thermal-equilibrium~Fermi-
Dirac! distribution for hot electrons with a temperature d
ferent from the lattice temperature.

The effect of acceleration of electrons under a dc field
be included in the Boltzmann transport equation using
field-induced drift term after an acceleration ansatz has b
employed for uncorrelated scatters.4 This approach was re
cently generalized to study the drifting motion of electro
under a low-frequency ac bias.5 There appears to be muc
less justification for treating electron transport with an
field oscillating at optical frequencies by directly adding
drift term to the Boltzmann transport equation even thou
the resulting conductivity is inversely proportional to th
0163-1829/0/69~7!/075214~12!/$22.50 69 0752
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square of the optical frequency, since the time-average
locity of an electron under an optical field is in fact ze
between two successive scattering events. For weak exte
fields, linear-response theory6 or a linear-field expansion o
the Boltzmann transport equation4 could be applied. In this
weak-field limit, a complete approach for treating electro
phonon drag effects of any degree under a magnetic field
proposed by simultaneously solving Boltzmann equations
both electrons and phonons.7 However, these theories fail to
produce correct results for high-field electron transport.

It has been known for quite a long time that the drift
electrons under a dc field can be regarded as a field-dr
center-of-mass~collective! motion of many electrons.8 The
scattering of electrons by the lattice or by impurities can th
be considered as a motion relative to this center of mas
uniform external optical field is also known to couple only
the center-of-mass motion. The ions on the lattice and i
ized impurity atoms in the material system remain station
with respect to the moving center of mass. Therefore,
center-of-mass motion couples to the relative scattering
tion. This causes a frictional force to act on each drifti
electron due to lattice or impurities.3 As a result, the accel-
eration of electrons under the dc field will be opposed by t
friction. The classically measurable frictional force is
quantum-statistical average of the friction acting on ea
electron, involving a many-electron relative scattering m
tion, and therefore depends on the occupation of electron
different states. On the other hand, the distribution of el
trons in various states is determined by the relative ela
and inelastic scattering motions of electrons, including C
lomb scattering, phonon scattering, and impurity scatterin

The existence of a dc or an optical field couples t
center-of-mass motion of electrons with their relative scat
ing motion. In this situation, the dc drift modifies the ener
conservation in electron scattering with phonons by addin
14-1
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Doppler shift along the dc field direction, causing the sc
tering process to be anisotropic.3 The time-dependent drift
on the other hand, anisotropically modifies the strength
the electron scattering as well as the energy conservatio
the same time.9,10 For a spatially uniform optical field inci-
dent on semiconductors, direct photon absorption is forb
den when the photon energy is smaller than the band
However, the incident photons can still be absorbed by e
trons with the help of their scattering with phonons, whi
provides momentum to the electrons.

The simplest way to treat a steady-state distribution
electrons is the introduction of an electron temperature fo
Fermi-Dirac function of hot electrons. The value of the ele
tron temperature, different from the lattice temperature,
be obtained by employing a first-order energy-balance eq
tion for the relative motion of electrons.3 However, the as-
sumption of an isotropic Fermi-Dirac function for hot ele
trons cannot be justified even in steady state when
external field exists for all time. In the limits of strong opt
cal field and zero drift velocity, the exact solution of th
Boltzmann scattering equation including the electro
electron interaction shows the existence of multiple s
peaks in the electron distribution as a function of elect
kinetic energy.10 Thus, the electron distribution is nonequ
librium and the energy-balance formalism fails.11 After the
optical field has been turned off, the electron distributi
quickly relaxes into a quasiequilibrium Fermi-Dirac functio
through electron-electron interaction, bringing the ener
balance equation back into validity. The energy-balan
equation cannot be justified when either the drift velocity
large~the Doppler shift is comparable to the phonon ener!
or the optical field is strong. In addition, the energy-balan
equation excludes the effect of electron-electron scatte
on the electron temperature. A more rigorous method
volves the use of the Boltzmann scattering equation with
a drift term for anisotropic scattering of electrons in relati
motion. In the presence of an intense optical field only, t
approach has been successfully applied to study laser d
age in dielectric and semiconductor materials.9,10,12 How-
ever, the incoherent Boltzmann scattering theory canno
applied to study the dynamics of electrons if a dipole co
pling of electrons to the external optical field exists wh
either the photon energy becomes greater than the band
or a spatially nonuniform optical field is incident on the sy
tem after diffraction by a surface grating. In this case, a
coherent density-matrix theory13 with off-diagonal matrix el-
ements is required. One advantage of the current approa
that it includes a generalization of the definition of electr
temperature for non-equilibrium electrons. In addition, t
extension of the current approach to one that incorpor
coherent density-matrix equations13 for the relative motion
of electrons is straight forward when pump-laser-induced
terband excitation exists.

In this paper, we use a first-order force-balance equa
to describe electron drift due to a slow center-of-mass m
tion under a dc electric field. At the same time, we adopt
Boltzmann scattering equation without a drift term for t
ultrafast process of anisotropic scattering of electrons w
phonons and impurities in a relative motion by assuming t
07521
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no dipole coupling to the external optical field exists in t
system. In order to highlight the physics and simplify t
calculation of high-field electron transport in the presence
both dc and optical fields, we expand the Boltzmann scat
ing equation up to second order for degenerate electron
obtain the Fokker-Planck equation including Joule heat
and antidiffusion terms.12 In this way, the anisotropic distri-
bution of electrons and the anisotropic scattering of electr
under an incident optical field with different polarization
can be fully incorporated into our model. In addition, th
heating of electrons can be more precisely described bey
the isotropic Fermi-Dirac function of hot electrons used in
first-order energy-balance equation.

The organization of the paper is as follows. In Sec. II, w
introduce our model and derive the coupled force-bala
and Boltzmann scattering equations by separating the ce
of-mass and relative motions of electrons. After the exp
sion of the Boltzmann scattering equation we obtain
Fokker-Planck equation to simplify the calculation of hig
field electron transport beyond the relaxation-time appro
mation. Analytical expressions for the expansion coefficie
are presented in Sec. III. Numerical results are displaye
Sec. IV for the dependence of anisotropic distributions
electrons on the parallel and perpendicular kinetic energ
with respect to the dc field direction, as well as for the d
pendence of drift velocities and heating of electrons on
larizations of the incident optical field parallel and perpe
dicular to an applied dc electric field. The paper is brie
concluded in Sec. V.

II. MODEL

Let us consider a bulk semiconductor, e.g., GaAs, wh
is doped with electron concentrations3D to form a three-
dimensional~3D! electron gas. In this section, we first sep
rate the dynamics of a many-electron system into a cen
of-mass motion plus a relative motion under both dc a
infrared fields. The equation for the center-of-mass motion
electrons is built after a quantum-statistical average is ta
to obtain a classical frictional force. The relative motion
electrons is studied by using the Boltzmann scattering eq
tion including anisotropic scattering of electrons wi
phonons and impurities beyond the relaxation-time appro
mation. After that, the Fokker-Planck equation for degen
ate electrons including Joule heating and antidiffusion ter
is derived by expanding the Boltzmann scattering equatio
second order, which significantly simplifies the calculation
high-field electron transport.

A. Center-of-mass and relative motions

In the presence of a spatially uniform infrared field with
vector potentialAW (t) and a dc fieldEW dc, the Hamiltonian
of an interacting three-dimensional electron gas can
written as
4-2
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H5
1

2m*
(

i
~pŴ i2eAW !21(

i , j

e2

4pe0e rurW i2rW j u

2e(
i

rW i•EW dc1(
i ,a

U imp~rW i2RW a!

2(
i ,,

uW ,•¹WrW i
U ion~rW i2RW ,!, ~1!

where i 51,2, . . . ,Ne is the index of Ne electrons, a
51,2, . . . ,Na, is the index for Na impurity atoms, ,

51,2, . . . ,N, is the index forN, lattice ions,rW i is the posi-
tion vector for thei th electron,RW a and RW , are the position
vectors of impurity atoms and lattice ions,uW , represents the
ion displacement from the thermal equilibrium position,m*
is the effective mass of electrons, ande r is the relative di-
electric constant of the host material. The single-elect

momentum operator ispŴ i52 i\¹WrW i
, and both the impurity

potentialU imp(rW i2RW a) and the ion potentialU ion(rW i2RW ,) are
included. We first define the center-of-mass momentum
position vectors by

PW ĉ5(
i 51

Ne

pŴ i , RW c5
1

Ne
(
i 51

Ne

rW i , ~2!

and those for the relative motion by

pW 8 i
ˆ

5pŴ i2
1

Ne
PW ĉ, rW i

85rW i2RW c. ~3!

By using the center-of-mass and relative momentum and
sition vectors defined above, we can separate the t
Hamiltonian, including the Hamiltonians of electrons a
phonons, into one center-of-mass HamiltonianHcm and an-
other relative HamiltonianĤrel , given by

Hcm5
~PW ĉ!2

2Nem*
1

Nee
2A2

2m*
2

e

m*
AW •PW c
ˆ

2NeeEW dc•RW c, ~4!

Ĥrel5(
kW ,s

«kâkWs
†

âkWs1(
qW ,l

\vqlb̂qW l
†

b̂qW l

1
1

2 (
kW ,kW8,s,s8

(
qW

e2

e0e rq
2VâkW1qW s

†
âkW82qW s8

†
âkW8s8âkWs

1(
kW ,s

(
qW ,l

Cql~ b̂qW l1b̂
2qW l
†

!eiqW •RW c
âkW1qW s

†
âkWs

1(
kW ,s

(
qW ,a

U imp~q!eiqW •(RW c2RW a)âkW1qW s
†

âkWs , ~5!

where the infrared field is treated classically,V is the volume
of the system,\vql is the phonon energy with wave numb
q for mode l ~totally three modes!, «k5\2k2/2m* is the
kinetic energy of electrons with wave numberk, and the
index s561 is for up and down spin states for electron
Here, we useâkWs

† (âkWs) to represent the creation~annihila-
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tion! operator of electrons andb̂qW l
† (b̂qW l) to denote the cre-

ation ~annihilation! operator of phonons.U imp(q) is the Fou-
rier transform of the impurity potential andCql is the
electron-phonon coupling constant~given in Sec. II B!. The
existence of the infrared field causes the ions in the lattice~or
ionized impurity atoms! to oscillate with time relative to the
electrons. This driven oscillation transfers kinetic ener
from the lattice to the electrons through the electron-phon
coupling. The quantum mechanics for the electron sys
gives rise to the following operator commutations14 with
Ne@1:

@rW i8 ,PW ĉ#5@RW c, pW 8̂ i #50,

@Ra
c ,P̂b

c #5 i\dab ,

@r ia8 ,p̂ j b8 #5 i\dabFd i j 2
1

Ne
G' i\dabd i j , ~6!

wherea,b5x,y,z. By using these operator commutation
we get two Heisenberg equations for the center-of-mass
tion of electrons:

d

dt
PW ĉ5

1

i\
@PW ĉ,Hcm1Ĥrel#

5NeeEW dc2 i(
qW ,l

CqlqW eiqW •RW c
~ b̂qW l1b̂

2qW l
†

!r̂qW

2 i(
qW ,a

U imp~q!qW eiqW •(RW c2RW a)r̂qW , ~7!

uŴ 5
d

dt
RW c5

1

i\
@RW c,Hcm1Ĥrel#5

PW ĉ

Nem*
2

e

m*
AW , ~8!

where r̂qW5(kW ,sâkW1qW s
†

âkWs is the density-wave operator fo

electrons, AW (t)5(EW op/V f)cos(Vft), and EW op(t)
5EW opsin(Vft). Here, V f is the infrared-field angular fre
quency andEop is its amplitude. Applying a quantum
statistical averagê̂ •••&& to both Eqs.~7! and~8!, we define
the following quantities:

Nem*
d

dt
uW 0[ K K d

dt
PW ĉL L , ~9!

uW d[ K K d

dt
RW cL L 5uW 02

e

m* V f

EW op cos~V ft !, ~10!

whereuW 05^^PW ĉ/Nem* && is the part of the drift velocity re-
lated to the center-of-mass canonical momentum.

The center-of-mass motion of electrons can be regar
as aslowmotion in comparison with thefast relative scatter-
ing motion of electrons. Combining Eqs.~7!–~10! and using
the Fermi ~Bose! statistics for electron~phonon! operators
âkWs

† ,âkWs (b̂qW l
† ,b̂qW l), we get the force-balance equation3
4-3
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Nem*
d

dt
uW d5Nem*

d

dt
uW 01NeeEW op~ t !, ~11!

Nem*
d

dt
uW 05NeeEW dc1FW i@uW d#1FW p@uW d#, ~12!

whereFW i (FW p) are the frictional forces due to impurity~pho-
non! scattering. For steady state or cases in which the t
period of an optical field is much smaller than th
momentum-relaxation time of electrons, the last term in
~11! has no contribution. By considering the slow driftin
motion of the center-of-mass in comparison with the ultraf
energy-relaxation process of electrons in the relative mo
and keeping only the leading-order interaction of electro
with phonons and impurities, we can introduce a quantu
statistical average11 to the frictional forces acting on all elec
trons which occur on the right-hand side of Eq.~12! due to
impurity and phonon scattering. We know that the elect
temperature should be determined by the ultrafast rela
~internal! motion of electrons. In contrast, the drifting motio
of electrons is very slow compared to the relative scatter
process. As a result, when the frictional forces acting on
electrons are quantum-statistically averaged, one can us
Fermi-Dirac function as a first-order approximation with
effective temperature adiabatically evolving fromT* (t5
2`)5T to T* (t>0)5Te. The anisotropic scattering in th
relative motion of electrons produces nonzero friction
forces given by

FW i@uW d#522pniV(
kW

(
qW

qW uU imp~q!u2~nkW1qW2nkW !

3 (
M52`

`

JuM u
2 ~ uMqW u!d~«k1q2«k1\qW •uW 0

1M\V f!, ~13!

FW p@uW d#524p(
kW

(
qW ,l

qW uCqlu2~nkW1qW2nkW ! (
M52`

`

JuM u
2 ~ uMqW u!

3@N0~vql!2N08~vql1qW •uW 01MV f!#

3d~«k1q2«k1\vql1\qW •uW 01M\V f!. ~14!

Here, M50,61,62, . . . , JM(x) is the M th-order Bessel
function, ni is the impurity concentration, andN0(vql)
5@exp(\vql /kBT)21#21 is the Bose-Einstein function fo
equilibrium phonons with lattice temperatureT. The
electron-phonon coupling strengthuCqlu2 and electron-
impurity coupling strengthuU imp(q)u2 have essentially bee
modified by the multiplicative factorJuM u

2 (uMqW u). Using Eq.
~13!, we get the same resistivity obtained from the Bol
mann transport equation to leading order for both nondeg
erate and degenerate electron gases when impurity scatt
is considered andEop50. At high temperatures (T
>300 K), it is known that the scattering from impuritie
becomes much less significant than that from phonons,
we will ignore it hereafter.N08(vql1qW •uW 01MV f) in Eq.

~14! is obtained fromN0(vql1qW •uW 01MV f) by replacing
the lattice temperatureT with the nonequilibrium electron
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temperatureTe, which will be explicitly given3 in Sec. III.
The force-balance equation describes the momentum diss
tion process for drifting electrons. It is easy to show from E
~14! that FW i@uW d#5FW p@uW d#50 if uW 050W . Here, the center-of-
mass drift causes a nonzero frictional force by producin
Doppler shiftqW •uW 0 relative to the phonon frequencyvql and
introducing anisotropic phonon scattering. On the oth
hand, the infrared field mainly modifies the electron-phon
coupling strength and drivesTe away fromT by changing the
average kinetic energy of the electrons.nkW in Eq. ~14! is the
occupation probability of electrons, and

MqW5
eqW •EW op

m* V f
2

. ~15!

B. Boltzmann and Fokker-Planck equations

As we noted earlier, both uniform infrared and dc fiel
couple only to the center-of-mass motion of electrons but
directly to their relative motions. The drift of electrons, how
ever, couples the center-of-mass and relative motions
high temperatures, phonon scattering in the system
dominate impurity scattering. The first-order Coulomb e
fects can be included within the Hartree-Fock approxim
tion. The Hartree energy shifts only the band edges an
irrelevant to our current work. The Fock energy between t
electrons can be neglected compared to the average ki
energy of each electron ifs3D

1/3aB* @1 with effective Bohr
radiusaB* 54pe0e r\

2/m* e2. For the concentrations3D cho-
sen in this paper,s3D

1/3aB* @1 is satisfied. The second-orde
Coulomb effects include screening and pair scatteri
Screening has been considered in this paper within the s
Thomas-Fermi approximation. A discussion about using
more sophisticated random-phase approximation can
found in a recent paper.15 Pair scattering does not directl
contribute to the drift velocity. For time scales much long
than the pair scattering time, this effect can be included p
nomenologically by introducing a homogeneous lifetim
1/Gee to electrons, whereGee is the pair scattering rate on th
order of 10 ps21. This will broaden the loss (d) functions in
both the force-balance and Boltzmann scattering equati
Obviously, this will not qualitatively change the features pr
dicted in this paper. The force-balance equation3 for the
center-of-mass motion takes into account the moment
dissipation effect. The energy-relaxation effect is included
the relative scattering motion. If we could assume an iso
pic Fermi-Dirac function for hot electrons,3 the electron tem-
perature would be found from a first-order energy-balan
equation for the relative motion of electrons. However, th
is no justification for this assumption if the external fie
exists for all time. On the other hand, the Boltzmann scat
ing equation has been very successfully applied to exp
laser damage of dielectric and semiconductor materials10,12

under an intense laser field. We consider the situation
which the infrared photon energy is much smaller than
band gap of bulk GaAs and the amplitude of the infrar
field is moderate. In this case, we can neglect the multip
ton interband excitation process. For the relative motion
4-4
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electrons under both dc and infrared fields, we use the B
zmann scattering equation without the drift term to descr
the relative scattering motion with phonons at high tempe
tures, given by

d

dt
nkW5W kW

(in)
~12nkW !2W kW

(out)
nkW , ~16!

where the scattering-in and scattering-out rates of elect
by phonons are12

W kW
(in)

5
2p

\ (
qW ,l

uCqlu2 (
M52`

`

JuM u
2 ~ uMqW u!@nkW2qWNqW ld~«k

2«k2q2\vql1\qW •uW 02M\V f!

1nkW1qW~NqW l11!d~«k2«k1q1\vql2\qW •uW 0

1M\V f!#, ~17!

W kW
(out)

5
2p

\ (
qW ,l

uCqlu2 (
M52`

`

JuM u
2 ~ uMqW u!@~12nkW1qW !

3NqW ld~«k1q2«k2\vql1\qW •uW 02M\V f!1~1

2nkW2qW !~NqW l11!d~«k2q2«k1\vql2\qW •uW 0

1M\V f!#. ~18!

The terms containingNqW l11 represent the contribution
from phonon emission, while the terms containingNqW l are
the contributions from phonon absorption. In the absence
both dc and infrared fields, the steady-state solution of
~16! gives rise to a Fermi-Dirac function with the lattic
temperature. The pair scattering effect can be phenom
logically included by changing thed functions to Lorenzian
functions with a homogeneous broadening\Gee, where the
scattering rateGee is on the order of 10 ps21. However, this
does not qualitatively change the features predicted in
paper. The modification of electron-phonon scattering w
MÞ0 results from the drifting electrons interacting with th
infrared field through phonon scattering. This effect is a
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historically known asfree-carrier absorption of photons. The
free-carrier absorption of photons occurs only close to
Fermi surface if the Fermi energy of electrons is much lar
than~i.e., degenerate electrons! the electron temperature an
phonon energies. In this case, by assuming small energ
e.g.,\vql , \V f , \qW •uW 0 relative to the electron kinetic en
ergy «k'«F with «F5\2(3p2s3D)2/3/2m* at T50 K for
weak dc and moderate infrared fields, we can expand
Boltzmann scattering equation in Eq.~16! to second order
with respect to these energies. As a result, the Fokker-Pla
equation for drifting electrons under dc and infrared fie
formally becomes12

d

dt
f ~«kW !1@VT~«kW !1VF~«kW !#

d

d«kW
f ~«kW !2@DT~«kW !1DF~«kW !#

3
d2

d«kW
2 f ~«kW !5@AT~«kW !1AF~«kW !# f ~«kW !. ~19!

Here, f («kW)5r(«k)nkW is the continuous distribution function
of electrons with density of states r(«k)
5A(2m* )3«k/2p2\3. We note that this equation is differen
from the standard Fokker-Planck equation16 and cannot be
written as a conservation law for particle number and curr
within the energy space even in the absence of source te
on the right-hand side of Eq.~19!. But we will still call Eq.
~19! the Fokker-Planck equation for simplicity. This equatio
is linear with respect tof («kW) and, thus, greatly simplifies th
calculation of the scattering dynamics of electrons. On
right-hand side of Eq.~19!, we include two source terms
The coefficient for the thermal spontaneous phonon emis
is

AT~«kW !5
2p

\ (
qW ,l

uCq,lu2@d~«k2«k1q1\vql2\qW •uW 0!

2d~«k2«k2q2\vql1\qW •uW 0!#, ~20!

and the coefficient for the field-induced spontaneous pho
emission is
AF~«kW !5
p

2\ (
qW ,l

uCq,lu2M qW
2
@d~«k2«k1q1\vql2\qW •uW 01\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!

2d~«k2«k2q2\vql1\qW •uW 01\V f!2d~«k2«k2q2\vql1\qW •uW 02\V f!#

2
p

\ (
qW ,l

uCq,lu2M qW
2
@d~«k2«k1q1\vql2\qW •uW 0!2d~«k2«k2q2\vql1\qW •uW 0!#. ~21!

In addition, we define in Eq.~19! the thermal energy transfer rate due to phonon scattering by

VT~«kW !5
2p

\ (
qW ,l

uCq,lu2~\vql2\qW •uW 0!@NqW ld~«k2«k2q2\vql1\qW •uW 0!2~NqW l11!d~«k2«k1q1\vql2\qW •uW 0!#, ~22!

and the field-induced energy transfer rate by
4-5
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VF~«kW !5
p

2\ (
qW ,l

uCq,lu2M qW
2
$NqW l~«k2«k2q!@d~«k2«k2q2\vql1\qW •uW 01\V f!1d~«k2«k2q2\vql1\qW •uW 02\V f!#

1~NqW l11!~«k2«k1q!@d~«k2«k1q1\vql2\qW •uW 01\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!#%

2
p

\ (
qW ,l

uCq,lu2M qW
2
~\vql2\qW •uW 0!@NqW ld~«k2«k2q2\vql1\qW •uW 0!2~NqW l11!d~«k2«k1q1\vql2\qW •uW 0!#.

~23!

Finally, we define in Eq.~19! the thermal energy diffusion coefficient due to phonon scattering by

DT~«kW !5
p

\ (
qW ,l

uCq,lu2~\vql2\qW •uW 0!2@NqW ld~«k2«k2q2\vql1\qW •uW 0!1~NqW l11!d~«k2«k1q1\vql2\qW •uW 0!#,

~24!

and the field-induced energy diffusion coefficient by

DF~«kW !5
p

4\ (
qW ,l

uCq,lu2MqW
2
$NqW l~«k2«k2q!2@d~«k2«k2q2\vql1\qW •uW 01\V f!1d~«k2«k2q2\vql1\qW •uW 02\V f!#

1~NqW l11!~«k2«k1q!2@d~«k2«k1q1\vql2\qW •uW 01\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!#%

2
p

2\ (
qW,l

uCq,lu2M qW
2
~\vql2\qW •uW 0!2@NqW ld~«k2«k2q2\vql1\qW •uW 0!1~NqW l11!d~«k2«k1q1\vql2\qW •uW 0!#.

~25!

The electron-phonon scattering depends not only on the electron distribution but also on the phonon distributi
nonequilibrium phonon distribution can be computed from another scattering equation due to their coupling to electr17

d

dt
NqW l5QqW l

em
~NqW l11!2QqW l

abs
NqW l2

NqW l2N0~vql!

tql
, ~26!

where tqW l is the relaxation time of phonons from the boundary scattering. In Eq.~26!, the phonon-emission rate due
electron-phonon scattering to leading order is found to be10

QqW l
em

5
4p

\
uCq,lu2(

kW

f ~«kW !

r~«k!
H @d~«k2«k1q1\vql2\qW •uW 0!1d~«k2«k2q2\vql1\qW •uW 0!#S 12

1

2
M qW

2D1
1

4
M qW

2
@d~«k

2«k1q1\vql2\qW •uW 01\V f!1d~«k2«k2q2\vql1\qW •uW 02\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!

1d~«k2«k2q2\vql1\qW •uW 01\V f!#J 1
4p

\
uCq,lu2(

kW

~«k1q2«k!

r~«k!
F d

d«kW
f ~«kW !G H 1

4
M qW

2
@d~«k2«k1q1\vql

2\qW •uW 01\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!#1d~«k2«k1q1\vql2\qW •uW 0!S 12
1

2
M qW

2D J , ~27!

and the phonon-absorption rate is

QqW l
abs

5
4p

\
uCq,lu2(

kW

f ~«kW !

r~«k!
H @d~«k2«k2q2\vql1\qW •uW 0!1d~«k2«k1q1\vql2\qW •uW 0!#S 12

1

2
M qW

2D
1

1

4
M qW

2
@d~«k2«k2q2\vql1\qW •uW 01\V f!1d~«k2«k1q1\vql2\qW •uW 02\V f!1d~«k2«k2q2\vql

1\qW•uW02\Vf!1d~«k2«k1q1\vql2\qW •uW 01\V f!#J 1
4p

\
uCq,lu2(

kW

~«k2q2«k!

r~«k!
F d

d«kW
f ~«kW !G H 1

4
M qW

2
@d~«k2«k2q

2\vql1\qW •uW 01\V f!1d~«k2«k2q2\vql1\qW •uW 02\V f!#1d~«k2«k2q2\vql1\qW •uW 0!S 12
1

2
M qW

2D J . ~28!
075214-6
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Equations~11!, ~12!, ~16!, and ~26! can be combined together to study the electron-phonon drag effect.7 The scattering
interaction between drifting electrons and phonons constitutes a frictional force on the center-of-mass motion of electr
force-balance equation determines the center-of-mass drift velocity from Eq.~11!, where upon ignoring the frictional force du
to impurity scattering in Eq.~12! the remainder of the frictional force from phonons in Eq.~14! can now be written as

FW p[uW d] 524p(
kW

1

r~«k!
F d

d«kW
f ~«kW !G(

qW ,l

qW uCq,lu2(«k1q2«k)H S 12
1

2
M qW

2D [N0(vql)2N08(vql1qW •uW 0)]

3d(«k1q2«k1\vql1\qW •uW 0)1
1

4
M qW

2
$[N0~vql!2N08~vql1qW •uW 01V f!]d~«k1q2«k1\vql1\qW •uW 01\V f!

1@N0~vql!2N08~vql1qW •uW 02V f!#d~«k1q2«k1\vql1\qW •uW 02\V f!%J . ~29!
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From Fröhlich electron-phonon coupling, we find the co
pling matrix to be12

uCqu25S \vLO

2V D S 1

e`
2

1

es
D e2

e0~q21Qs
2!

, ~30!

wherevLO is the frequency of dominant longitudinal-optic
~LO! phonon modes,e` and es are the high-frequency an
static dielectric constants of the host material, andQs

2

5(e2/e0e r)(m* /p2\2)(3p2s3D)1/3 represents the Thomas
Fermi screening effect. For acoustic phonon scattering,
the other hand, we use the deformation-poten
approximation.17 This leads to

uCq,u25
\vq,

2rc,
2V FD21

9

32q2
~eh14!

2G S q2

q21Qs
2D 2

, ~31!

uCqtu25
\vqt

2rct
2V

13

64q2
~eh14!

2S q2

q21Qs
2D 2

, ~32!

wherel5,,t corresponds to one longitudinal and two tran
verse acoustic-phonon modes,c, andct are the sound veloci
ties for these modes,r is the ion mass density,D is the
deformation-potential coefficient, andh14 is the piezoelectric
constant. Applying the Debye model to low-energy acous
phonons, we getvql5clq with l5,,t.

III. RADIATIVE EFFECT AND ELECTRON TRANSPORT
UNDER DC AND INFRARED FIELDS

It is known that the scattering between LO phonons a
electrons becomes dominant at high temperatures in p
semiconductors, such as GaAs. In this section, we disc
the radiative effect and electron transport under both an
frared field and a dc electric field by including the optica
phonon scattering at high temperatures in GaAs. We cons
the indirect absorption of the infrared field by electrons
the relative motion and the resulting change in the none
librium electron temperature for an anisotropic distributi
of electrons. We assume an outside heat bath connecte
the GaAs system to keep a constant lattice temperature.
der this assumption we further assumeNqW l'N0(vql) for
07521
n
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c

d
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phonons under a weak electron-phonon coupling in the r
tive scattering motion of electrons~neglecting the electron
phonon drag effect!. By using these approximations, analy
cal expressions for the expansion coefficients in the Fokk
Planck equation can be obtained.

For the case with both dc and infrared fields, the therm
quantitiesAT(«kW), VT(«kW), andDT(«kW) can be obtained from
the functions defined in Eqs.~A1!–~A3! ~in the appendix!

AT~«k'
,«ki

!5
4a

p~\vLO!3/2
@G0

1~k' ,ki!2G0
2~k' ,ki!#,

~33!

VT~«k'
,«ki

!52
4a

pA\vLO

@G1
1~k' ,ki!2G1

2~k' ,ki!#,

~34!

FIG. 1. Illustration for orientations of electron (kW ) and phonon

(qW ) wave vectors.EW dc anduW 0 lie in the ~z! direction. The electron

wave vectorkW can be decomposed as a parallel component (kW i) ~in

the z direction! and a perpendicular componentkW' ~in the x direc-

tion!. The phonon wave vectorqW can also be decomposed in th

same way. The angle betweenqW' and thex direction within thex-y

plane is denoted asf, and the angle betweenkW and thez direction
within the x-z plane is represented byu.
4-7
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DT~«k'
,«ki

!5
2aA\vLO

p
@G2

1~k' ,ki!1G2
2~k' ,ki!#,

~35!

where a5(e2/16pe0)A2m* vLO
2 (1/e`21/es), k'

5A2m* «k'
/\, and ki5A2m* «ki

/\. The anisotropic de-

pendence on«k'
and«ki

in Eqs.~33!–~35! is a consequence
of the applied dc electric field, as shown in Fig. 1.

The field-induced quantitiesAF(«kW), VF(«kW), andDF(«kW),
proportional toEop

2 , can be obtained from the functions d
fined in Eqs.~A4!–~A6!:

AF~«k'
,«ki

!5
a

p~\vLO!3/2
@R1

(11)~k' ,ki!1R1
(21)~k' ,ki!

2R2
(11)~k' ,ki!2R2

(21)~k' ,ki!#

2
2a

p~\vLO!3/2
@R1

(0)~k' ,ki!2R2
(0)~k' ,ki!#,

~36!

VFT~«k'
,«ki

!52
a

pA\vLO

@S1
(11)~k' ,ki!1S1

(21)~k' ,ki!

2S2
(11)~k' ,ki!2S2

(21)~k' ,ki!#, ~37!

VJ~«k'
,«ki

!5
2a

pA\vLO

@S1
(0)~k' ,ki!2S2

(0)~k' ,ki!#,

~38!

DFT~«k'
,«ki

!5
aA\vLO

2p
@T1

(11)~k' ,ki!1T1
(21)~k' ,ki!

1T2
(11)~k' ,ki!1T2

(21)~k' ,ki!#, ~39!

DA~«k'
,«ki

!52
aA\vLO

p
@T1

(0)~k' ,ki!1T2
(0)~k' ,ki!#,

~40!

VF(«kW)5VFT(«kW)1VJ(«kW), and DF(«kW)5DFT(«kW)
1DA(«kW). VFT(«kW) andDFT(«kW) with M561 represent the
infrared-field-induced corrections to relevant thermal qua
ties VT(«kW) and DT(«kW), respectively.VJ(«kW).0 for M50
comes from the effect of Joule heating due to power abs
tion from the infrared field by electrons, andDA(«kW),0 for
M50 is a result of the antidiffusion of electrons in ener
space due to a correction to spontaneous phonon emissio
Joule heating.12 The anisotropic dependence on«k'

and«ki

in Eqs. ~36!–~40! reflects different radiative effects for tw
polarizations~parallel and perpendicular touW 0) of the inci-
dent infrared field in addition to the existence of a dc fie
~parallel touW 0), as shown in Fig. 1.

With the help of functions defined in Eqs.~A7!–~A9!, the
frictional force from phonon scattering can be expressed
07521
i-

p-

by

s

Fp

Nem*
5

4a

p3s3D

A 1

2m*
E

2`

1`

dki E
0

1`

k'dk'

1

r~«k'
1«ki

!

3F ] f ~«k'
,«ki

!

]«k'

1
] f ~«k'

,«ki
!

]«ki
G @H~k' ,ki!1W1~k' ,ki!

1W2
(11)~k' ,ki!1W2

(21)~k' ,ki!#. ~41!

The anisotropic scattering contributes to the frictional for
in Eq. ~41! in two respects:~i! through the functionsH, W1,
and W2

61 defined in Eqs.~A7!–~A9! and ~ii ! through the
distribution function f («k'

,«ki
) obtained from the Fokker-

Planck equation for degenerate electrons. Having calcula
these expansion coefficients in Eqs.~33!–~40! and the fric-
tional force in Eq.~41!, the Fokker-Planck equation in Eq
~19! can be solved simultaneously with the force-balan
equation in Eq.~11! along with the boundary condition
f (0, 0)5] f (0,«ki

)/]«k'
5] f («k'

,0)/]«ki
50.

When electrons stay in a nonequilibrium state, we can
define an electron temperature through the Fermi-Di
distribution.3 However, we can still define a general noneq
librium electron temperature through the average energy
each electron in the relative motion. By calculatingm(Te)
for fixed Te and s3D, Te can be found from the following
equation:2

2p\2

m* s3D
E

0

1` k4dk

11exp$@«k2m~Te!#/kBTe%

5H eE
0

tp
@EW dc1EW op~ t !#•uW d~ t !dt2

1

2
m* uuW d~ t !u2J

1
1

s3D
E

0

1`

f ~«kW !«kd«kW , ~42!

wherem(Te) is the chemical potential for free electrons
the temperatureTe. The combination of the first and secon
terms on the right-hand side of Eq.~42! represents the ne
increase of internal energy of electrons from friction
forces, and the last term comes from the change in
average kinetic energy of electrons in the relative mot
mainly due to indirect photon absorption. ThisTe depends
on both external and system parameters, such
s3D , \vLO , m* , Edc, Eop, andV f , but not on the electron
kinetic energy, and it is different from the lattice temperatu
T. For very high lattice temperatures at which the quant
degeneracy can be neglected, the left side of Eq.~42! can
simply be replaced by32 kBTe In Eq. ~42!, the momentum-
relaxation timetp is given by

1

tp
5

1

s3D
E

0

1`F 1

tT~«kW !
1

1

tF~«kW !
G f ~«kW !d«kW , ~43!

where the state-dependent nonlocal quantities can be
pressed through
4-8
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1

tT~«kW !
5

2p

\ (
qW

uCqu2@Rk,k1qd~«k2«k1q1\vLO2\qiu0!1Rk,k2qd~«k2«k2q2\vLO1\qiu0!#, ~44!

1

tR~«kW !
5

p

2\ (
qW

uCqu2M qW
2
$Rk,k1q@d~«k2«k1q1\vLO2\qiu01\V f!1d~«k2«k1q1\vLO2\qiu02\V f!#

1Rk,k2q@d~«k2«k2q2\vLO1\qiu01\V f!1d~«k2«k2q2\vLO1\qiu02\V f!#%

2
p

\ (
qW

uCqu2M qW
2
@Rk,k1qd~«k2«k1q1\vLO2\qiu0!1Rk,k2qd~«k2«k2q2\vLO1\qiu0!#. ~45!
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The magnitude of 1/tp reflects the strength of the frictiona
force. In the above two equations, we have defined
angular-distribution factor for electron momentu
dissipation18

Rk,k6q512
kW•~kW6qW !

ukW•~kW6qW !u
. ~46!

IV. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations, we have chosen GaAs
the host material.EW dc is assumed in thez direction, as shown
in Fig. 1, andEW op is chosen to be either parallel or perpe
dicular to EW dc. For GaAs we have taken parameters as f
lows: m* 50.067m0 with free-electron massm0 , s3D51
31018 cm23, \vLO536 meV, e r512, es511, e`513,
\V f525 meV, andT5300 K. Other parameters, such
Edc andEop, will be given directly in the figure captions. I
the numerical calculations below, we will show results on
for steady-state cases.

In Fig. 2 the scaled distribution functionf̄ («k'
,«ki

) ~in

units of s3D /«F) is exhibited as a function of«k'
~dashed

curve with«ki
50) and of«ki

~solid curve with«k'
50) for

EW opiEW dc with Edc50.58 kV/cm andEop520 kV/cm. A sub-
stantial difference between our model and the energy-bala
approach11 can be seen clearly here; energy-balance equa
give the dashed curve. It is evident from this figure that
distribution function of electrons exhibits an anisotropic d
pendence on«ki

and «k'
, which is absent in the energy

balance approach. This anisotropy is attributed to the e
tence ofEW dc andEW op applied to the GaAs system.

We display in Fig. 3 the scaled distribution functio
f̄ («k'

,«ki
) as a function of parallel kinetic energy«ki

of

electrons with«k'
50 for EW opiEW dc ~solid curve! andEW op'EW dc

~dashed curve! with Edc50.58 kV/cm andEop520 kV/cm.
From this figure we find that the distribution function
electrons evidently depends on the polarization of the in
dent infrared field. This is a consequence of the differ
modifications to electron-phonon scattering in the prese
of an incident infrared field with parallel and perpendicu
07521
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polarization relative toEW dc. This anisotropic coupling to the
infrared field will contribute differently tou0 ~compare the
solid curves in Figs. 4 and 5!.

In Fig. 4 we show the calculated drift velocityu0 ~solid
curve and left axis! and the nonequilibrium electron temper
ture Te ~dashed curve and right axis! as functions of the
amplitude of the incident infrared fieldEop for EW opiEW dc with
Edc50.58 kV/cm. From the figure we find thatu0 increases
sublinearly withEop in the range ofEop shown, similar to
results reported by Lei at highEop, T510 K, and terahertz
frequencies.11 However, the higher temperatureT5300 K
used in our calculation bringsu0 down below 107 cm/s. In
addition, the increase ofTe is greatly limited atT5300 K
and the range for the ratioTe/T is significantly reduced.

In addition, we present the calculated drift velocityu0
~solid curve and left axis! and nonequilibrium electron tem
peratureTe ~dashed curve and right axis! as functions ofEop

FIG. 2. Scaled distribution functionf̄ («k'
,«ki

) in units of
s3D /«F as a function of parallel kinetic energy«ki

/«F ~solid curve
with «k'

50) and of perpendicular kinetic energy«k'
/«F ~dashed

curve with «ki
50) for EW opiEW dc. Here, «ki

5\2ki
2/2m* , «k'

5\2k'
2 /2m* , «F5\2(3p2s3D)2/3/2m* at T50 K, EW dc

50.58 kV/cm, andEW op520 kV/cm.
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in Fig. 5 for EW op'EW dc with Edc50.58 kV/cm. By comparing
this figure with Fig. 4 we find thatu0 decreases withEop
instead of increasing withEop in this case. Althoughu0 de-
creases withEop, Te still increases withEop due to the in-
creased average kinetic energy of electrons by power abs
tion from the applied infrared field.

The effect of the polarization of the incident infrared fie
can be further visualized by looking at the momentu
relaxation rate 1/tp in Fig. 6 as a function ofEop for EW op'EW dc

~solid curve! and EW opiEW dc ~dashed curve! with Edc
50.58 kV/cm. From this figure we find that the momentu

FIG. 3. Scaled distribution functionf̄ («k'
, «ki

) in units of
s3D /«F as a function of parallel kinetic energy«ki

/«F of electrons

with «k'
50 for parallel polarizationEW opiEW dc ~solid curve! and per-

pendicular polarization EW op'EW dc ~dashed curve!. Here, EW dc

50.58 kV/cm andEW op520 kV/cm.

FIG. 4. Calculated drift velocityu0 in units of 106 cm/s ~solid
curve and left axis! and nonequilibrium electron temperatureTe in
units of K ~dashed curve and right axis! as functions of the ampli-
tude of the incident infrared fieldEop. Here,Edc is set to be 0.58

kV/cm andEW op is assumed to be parallel toEW dc.
07521
rp-

-

-

relaxation process is suppressed by the incident infrared
for parallel polarization but enhanced for perpendicular p
larization. This result provides an explanation for Figs. 4 a
5, whereu0 for parallel polarization in Fig. 4 increases wit
Eop due to the suppression of momentum relaxation or fr
tional force, whileu0 for perpendicular polarization in Fig. 5
decreases withEop due to the enhancement of momentu
relaxation.

V. CONCLUSIONS

In conclusion, we have developed a model, in which el
trons are interacting with an infrared field in a bulk semico

FIG. 5. Calculated drift velocityu0 in units of 106 cm/s ~solid
curve and left axis! and nonequilibrium electron temperatureTe in
units of K ~dashed curve and right axis! as functions of the ampli-
tude of the incident infrared fieldEop. Here,Edc is set to be 0.58

kV/cm andEW op is assumed to be perpendicular toEW dc.

FIG. 6. Calculated momentum-relaxation rate 1/tp in units of
THz as a function of the amplitude of the incident infrared fieldEop

for perpendicular polarizationEW op'EW dc ~solid curve! and parallel

polarizationEW opiEW dc ~dashed curve!. Here, Edc is set to be 0.58
kV/cm.
4-10
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HIGH-FIELD TRANSPORT OF ELECTRONS AND . . . PHYSICAL REVIEW B69, 075214 ~2004!
ductor while they are undergoing transport due to an app
strong dc electric field, by coupling the force-balance eq
tion for the slow center-of-mass motion of electrons and
Fokker-Planck equation for the ultrafast relative scatter
motion of degenerate electrons. This allows us to fully
clude in our model the anisotropic energy-relaxation proce
which was neglected in the past when the first-order ene
balance equation was used. At the same time, it also all
us to include the anisotropic coupling of electrons to
incident infrared field which gives rise to different friction
forces for polarizations of the infrared field perpendicular
parallel to the applied dc field. Based on this model, we
study high-field transport of electrons under strong dc a
infrared fields beyond the relaxation-time approximation.

From our numerical study, we have discovered the an
tropic dependence of the electron distribution function
parallel and perpendicular kinetic energies of electrons.
have also quantified the effect of anisotropic coupling to
incident infrared field with polarizations parallel and perpe
dicular to the applied dc electric field. We have found th
the drift velocity of electrons increases with the amplitude
the infrared field for the parallel polarization due to a su
pression of momentum relaxation but decreases with
infrared-field amplitude for the perpendicular polarizati
due to an enhancement of momentum relaxation. The hea
of electrons has been precisely described beyond the
order energy-balance equation in addition to the inclusion
anisotropic coupling to an incident infrared field having d
ferent polarizations.

The first requirement for the Fokker-Planck equation to
a good approximation to the Boltzmann scattering equa
in the relative scattering motion of electrons is that the Fe
energy«F must be greater thankBT for equilibrium elec-
trons. The other requirements include«F@\vql , \V f , and
\qiu0. When a dipole coupling of electrons to an extern
optical field exists, i.e., using a grating to produce a nonu
form field or with photon energy greater than the band gap
the host materials, the incoherent Boltzmann scattering e
tion should be replaced by full coherent density-matrix eq
tions with off-diagonal matrix elements.
or

er
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APPENDIX

We can decompose the electron and phonon wave vec
along the direction ofEW dc and perpendicular to it, as show
in Fig. 1. Here, for optical-phonon scattering of electrons
high temperatures in polar semiconductors we first de
three functions that determineAT(«kW), VT(«kW), andDT(«kW)
in the case ofEW dcÞ0 but EW op50 @see Eqs.~33!–~35!#:

G0
6~k' ,ki!5

A2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,0!

3
q'

qi
21q'

2 1Qs
2

, ~A1!

G1
6~k' ,ki!5

A2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,0!

3
q'

qi
21q'

21Qs
2 S 12

qiu0

vLO
D FN0~vLO!1

1

2
6

1

2G ,
~A2!

G2
6~k' ,ki!5

A2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,0!

3
q'

qi
21q'

21Qs
2 S 12

qiu0

vLO
D 2FN0~vLO!1

1

2
6

1

2G .
~A3!

In the above three equations, we have introduced the foll
ing function fork'q'Þ0:
x6~kW ,qW ,M !5
u~2k'q'2uq'

2 1qi
262kiqi72m* ~vLO2qiu01MV f!/\u!

A4k'
2 q'

2 2@q'
2 1qi

262kiqi72m* ~vLO2qiu01MV f!/\#2
,

whereu(x) is a unit step function. On the other hand, f
k'q'50 we define

x6~kW,qW,M!5pd Fq'
21qi

262kiqi7
2m*

\
~vLO2qiu01MV f!G .

Moreover, we define another three functions that will det
mineAF(«kW), VF(«kW), andDF(«kW) in the case ofEW opÞ0 with
-

M50,61 @see Eqs.~36!–~40!#:

R6
(M )~k' ,ki!5

gA2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,M !

3
q'~a'q'

2 1a iqi
2!

qi
21q'

2 1Qs
2

, ~A4!
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S6
(M )~k' ,ki!5

gA2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,M !

3
q'~a'q'

2 1a iqi
2!

qi
21q'

2 1Qs
2 S 12

qiu0

vLO
1

MV f

vLO
D

3FN0~vLO!1
1

2
6

1

2G , ~A5!

T6
(M )~k' ,ki!5

gA2m* \vLO

\ E
2`

1`

dqi E
0

1`

dq'x6~kW ,qW ,M !

3
q'~a'q'

2 1a iqi
2!

qi
21q'

2 1Qs
2 S 12

qiu0

vLO
1

MV f

vLO
D 2

3FN0~vLO!1
1

2
6

1

2G , ~A6!

where g5(eEop/m* V f
2)2. We takea'50 and a i51 for

EW opiEW dc, but we seta i50 anda'51/2 for EW op'EW dc ~unpo-
larized infrared field!. Finally, for the frictional force in Eq.
~41! we define the following functions withM50,61:

H~k' ,ki!5E
2`

1`

dqi E
0

1`

dq'j~kW ,qW ,0!
q'qi

qi
21q'

2 1Qs
2

t.

. B

07521
3@N0~vLO!2N08~vLO1qiu0!#S 11
qiu0

vLO
D ,

~A7!

W1~k' ,ki!52
g

2E2`

1`

dqi E
0

1`

dq'j~kW ,qW ,0!

3
q'qi~a'q'

2 1a iqi
2!

qi
21q'

2 1Qs
2 @N0~vLO!

2N08~vLO1qiu0!#S 11
qiu0

vLO
D , ~A8!

W2
(M )~k' ,ki!5

g

4E2`

1`

dqi E
0

1`

dq'j~kW ,qW ,M !

3
q'qi~a'q'

2 1a iqi
2!

qi
21q'

2 1Qs
2 @N0~vLO!2N08~vLO

1qiu01MV f!#S 11
qiu01MV f

vLO
D . ~A9!

In the above three equations, we have introduced the foll
ing function fork'q'Þ0:
j~kW ,qW ,M !5
u~2k'q'2uq'

21qi
212kiqi12m* ~qiu01vLO1MV f!/\u!

A4k'
2 q'

2 2@q'
2 1qi

212kiqi12m* ~qiu01vLO1MV f!/\#2
.

On the other hand, fork'q'50 we define

j~kW,qW,M!5pdFq'
21qi

212kiqi1
2m*

\
~qiu01vLO1MV f!G .
. B

.
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