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Danhong Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona
Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA

(Received 3 September 2003; revised manuscript received 17 October 2003; published 27 Febrgary 2004

The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass
and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion
of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate
electrons. This approach allows us to include the anisotropic energy-relaxation process which has been ne-
glected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the
incident infrared field with different polarizations. Based on this model, the transport of electrons is explored
under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic de-
pendence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is
displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared
field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of
electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic
coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the
infrared field due to a suppressed momentum-relaxation précefrictional force under parallel polarization
but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular

polarization.
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[. INTRODUCTION square of the optical frequency, since the time-average ve-

locity of an electron under an optical field is in fact zero

High-field transport of electrons is usually referred tobetween two successive scattering events. For weak external
when the electric field applied to the system is no longeffields, linear-response theSrgr a linear-field expansion of
small and the current-voltage relation deviates from linearthe Boltzmann transport equatfooould be applied. In this
response theory. There are many theories that have been prnweak-field limit, a complete approach for treating electron-
posed to describe this phenomenon since 1930. However, thhonon drag effects of any degree under a magnetic field was
semiclassical Boltzmann transport equation with a drift termproposed by simultaneously solving Boltzmann equations for
still seems to be the only one amenable to practical calculaboth electrons and phonohsiowever, these theories fail to
tions. In practice, however, solution of the Boltzmann trans-produce correct results for high-field electron transport.
port equation also becomes a laborious task when the system It has been known for quite a long time that the drift of
goes beyond the linear regime.”Rtich and Paranjagdirst  electrons under a dc field can be regarded as a field-driven
utilized a displaced Maxwellian distribution function to de- center-of-masscollective motion of many electron$.The
scribe the electron transport in insulators and semiconducscattering of electrons by the lattice or by impurities can then
tors. Later, Arai applied a similar model to describe electron be considered as a motion relative to this center of mass. A
transport in metals at low temperatures but by means of aniform external optical field is also known to couple only to
Fermi-Dirac distribution function, in which a finite electron the center-of-mass motion. The ions on the lattice and ion-
temperature was predicted under an applied field even whemed impurity atoms in the material system remain stationary
the lattice temperature became zero. Shortly after that, Lavith respect to the moving center of mass. Therefore, the
and Ting proposed the coupled first-order force-balance andenter-of-mass motion couples to the relative scattering mo-
energy-balance equations to describe electrons in semicotion. This causes a frictional force to act on each drifting
ductors and metals at both low and high temperatures bglectron due to lattice or impuriti€sAs a result, the accel-
assuming an isotropic quasi-thermal-equilibriugRermi-  eration of electrons under the dc field will be opposed by this
Dirac) distribution for hot electrons with a temperature dif- friction. The classically measurable frictional force is a
ferent from the lattice temperature. gquantum-statistical average of the friction acting on each

The effect of acceleration of electrons under a dc field carelectron, involving a many-electron relative scattering mo-
be included in the Boltzmann transport equation using &ion, and therefore depends on the occupation of electrons in
field-induced drift term after an acceleration ansatz has beedifferent states. On the other hand, the distribution of elec-
employed for uncorrelated scattér§his approach was re- trons in various states is determined by the relative elastic
cently generalized to study the drifting motion of electronsand inelastic scattering motions of electrons, including Cou-
under a low-frequency ac bidsThere appears to be much lomb scattering, phonon scattering, and impurity scattering.
less justification for treating electron transport with an ac The existence of a dc or an optical field couples the
field oscillating at optical frequencies by directly adding acenter-of-mass motion of electrons with their relative scatter-
drift term to the Boltzmann transport equation even thoughng motion. In this situation, the dc drift modifies the energy
the resulting conductivity is inversely proportional to the conservation in electron scattering with phonons by adding a
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Doppler shift along the dc field direction, causing the scato dipole coupling to the external optical field exists in the
tering process to be anisotropiche time-dependent drift, system. In order to highlight the physics and simplify the
on the other hand, anisotropically modifies the strength otalculation of high-field electron transport in the presence of
the electron scattering as well as the energy conservation abth dc and optical fields, we expand the Boltzmann scatter-
the same timé&!° For a spatially uniform optical field inci- ing equation up to second order for degenerate electrons to
dent on semiconductors, direct photon absorption is forbidebtain the Fokker-Planck equation including Joule heating
den when the photon energy is smaller than the band gapnd antidiffusion term&? In this way, the anisotropic distri-
However, the incident photons can still be absorbed by eledsution of electrons and the anisotropic scattering of electrons
trons with the help of their scattering with phonons, whichunder an incident optical field with different polarizations
provides momentum to the electrons. can be fully incorporated into our model. In addition, the
The simplest way to treat a steady-state distribution oheating of electrons can be more precisely described beyond
electrons is the introduction of an electron temperature for @he isotropic Fermi-Dirac function of hot electrons used in a
Fermi-Dirac function of hot electrons. The value of the elec-first-order energy-balance equation.
tron temperature, different from the lattice temperature, can The organization of the paper is as follows. In Sec. Il, we
be obtained by employing a first-order energy-balance equantroduce our model and derive the coupled force-balance
tion for the relative motion of _eIe_ctror?sHoyvever, the as-  5nqd Boltzmann scattering equations by separating the center-
sumption of an isotropic Fermi-Dirac function for hot elec- ¢ mass and relative motions of electrons. After the expan-
, ) . o M&ion of the Boltzmann scattering equation we obtain the
E;Tefriz;"g f:i]lg ?gf;sdf?ifrta\l/letlg?;ﬁ Ir;r;cZeel;(rggts sO(IILSJ'Eir(())r?go?FtJE;: Fokker-Planck equation to simplify the calculation of high-
. v, th X field electron transport beyond the relaxation-time approxi-
Boltzmann scattering equation including the electron- . . ; . y
mation. Analytical expressions for the expansion coefficients

electron interaction shows the existence of multiple side

peaks in the electron distribution as a function of electrort'® presented in Sec. lll. Numerical results are displayed in

kinetic energy® Thus, the electron distribution is nonequi- S¢¢- !V for the dependence of anisotropic distributions of

librium and the energy-balance formalism fditsAfter the el_ectrons on the parallgl and' per.pendlcular kinetic energies
optical field has been turned off, the electron distributionWith respect to the dc field direction, as well as for the de-

quickly relaxes into a quasiequilibrium Fermi-Dirac function Pendence of drift velocities and heating of electrons on po-
through electron-electron interaction, bringing the energylarizations of the incident optical field parallel and perpen-

balance equation back into validity. The energy-balancdlicular to an applied dc electric field. The paper is briefly

equation cannot be justified when either the drift velocity isconcluded in Sec. V.

large (the Doppler shift is comparable to the phonon engrgy

or the optical field is strong. In addition, the energy-balance

equation excludes the effect of electron-electron scattering Il. MODEL

on the electron temperature. A more rigorous method in-

voIv_es the use of_the Bo_ltzmann _scattering equati_on Without Let us consider a bulk semiconductor, e.g., GaAs, which
a drift term for anisotropic scattering of electrons in relative ;g doped with electron concentrationsp to form a three-

motion. In the presence of an intense optical field only, thisdimensional(SD) electron gas. In this section, we first sepa-

apprqach_ has t_)een succe;sfully applied to %ﬁ‘{g laser darpalte the dynamics of a many-electron system into a center-
age in dielectric and semiconductor materials.® How- o yasq motion plus a relative motion under both dc and

ever, the incoherent Boltzm_ann scattering theory_ cannot b|‘?1frared fields. The equation for the center-of-mass motion of
applied to study the dynamics of electrons if a dipole cou-

pling of electrons to the external optical field exists when‘alecmr.]S Is built -after a guantum-statistical average i_s taken
either the photon energy becomes greater than the band g obtain a class_|cal frlcthnal force. The relative m_ot|on of
or a spatially nonuniform optical field is incident on the sys-€/€ctrons is studied by using the Boltzmann scattering equa-
tem after diffraction by a surface grating. In this case, a fulltion including anisotropic scattering of electrons with
coherent density-matrix theddwith off-diagonal matrix el- pho_nons and impurities beyond the reIaxa'u_on-Ume approxi-
ements is required. One advantage of the current approach ®ation. After that, the Fokker-Planck equation for degener-
that it includes a generalization of the definition of electronate electrons including Joule heating and antidiffusion terms
temperature for non-equilibrium electrons. In addition, theis derived by expanding the Boltzmann scattering equation to
extension of the current approach to one that incorporatesecond order, which significantly simplifies the calculation of
coherent density-matrix equatididor the relative motion high-field electron transport.
of electrons is straight forward when pump-laser-induced in-
terband excitation exists.

In this paper, we use a first-order force-balance equation A. Center-of-mass and relative motions
to describe electron drift due to a slow center-of-mass mo- i . . . )
tion under a dc electric field. At the same time, we adopt the [N the presence of a spatially un|f9rm infrared field with a
Boltzmann scattering equation without a drift term for the vector potentialA(t) and a dc fieldEy., the Hamiltonian
ultrafast process of anisotropic scattering of electrons wittof an interacting three-dimensional electron gas can be
phonons and impurities in a relative motion by assuming thawritten as
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where i=1,2,... N, is the index of N, electrons, a
=1,2,...Ng, is the index for N, impurity atoms, ¢
=1,2,... N, is the index forN, lattice ions,ﬂ is the posi-
tion vector for theith electron,R, and R, are the position

vectors of impurity atoms and lattice ionig represents the
ion displacement from the thermal equilibrium position
is the effective mass of electrons, agdis the relative di-
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tion) operator of electrons ariol" - (qu) to denote the cre-
ation (annihilation operator of phononsU'mp(q) is the Fou-
rier transform of the impurity potential an€,, is the
electron-phonon coupling constafgfiven in Sec. II B. The
existence of the infrared field causes the ions in the lattce
ionized impurity atomsto oscillate with time relative to the
electrons. This driven oscillation transfers kinetic energy
from the lattice to the electrons through the electron-phonon
coupling. The quantum mechanics for the electron system
gives rise to the following operator commutatibhsvith
NS1:

electric constant of the host material. The single-electron

momentum operator ifSi:—ihV}i, and both the impurity

potentialU™(r;— R,) and the ion potentidl °"(r;,— R,) are

[r,",PI=[RS, p'i1=0,
[RS,PS1=i18,4,
1
[ Ia'p]ﬁ] Ih&aﬁ I]_N_ %Ih5aﬁ5iji (6)
e

included. We first define the center-of-mass momentum an#here «,8=X,y,z. By using these operator commutations,

position vectors by

— Ne " Ne
ISC: ﬁi ' ﬁ‘::_ E I:)i ' (2)
=1 ei=1
and those for the relative motion by
= 2 1= - - S
Pi=pi— P i =ri—R. )
e

By using the center-of-mass and relative momentum and po-
sition vectors defined above, we can separate the total

Hamiltonian, including the Hamiltonians of electrons and
phonons, into one center-of-mass Hamiltonfdg,, and an-

other relative Hamiltoniar,, given by

(%2
2N m*

e
- EA P NeEEdC RC

Ne?A?
_l’_
2m*

(4)

cm—

3 ~t oA At on
Hre= 2 €@y, 80T 2 hwg bl by
k,o q,\ d

2
€ ab .
K'—qo’

"T

YA agr o A,

€060V

+

k+ qa'ak‘T

+2 > CqA(E)aerbJr )e'q RA!

i R R
q ( a)a»+daako_,

+2, > UMmP(g)e

k,o g,a

©)

where the infrared field is treated classicalhjis the volume
of the systemf w, is the phonon energy with wave number
q for mode \ (totally three modes &,=%2k?/2m* is the
kinetic energy of electrons with wave numbler and the
index o= =1 is for up and down spin states for electrons.

Here, we use, (a;,) to represent the creatio@nnihila-

we get two Heisenberg equations for the center-of-mass mo-
tion of electrons:

d,\
aPC: _[PC Hem™ Hrel]

- . - .". 3C A~ ,\T ~

:NeEEdc_|z:4\ Cq)\qelq R (bd)\+b_a)\)Pd
q,
—iX U™(q)geld R-Rapg, @

q.a
~ d. . E’\C e .
u= dtR :_[R Hcm+Hrel]_ Ne?— FA, (8)

where pq Eka k+q akU is the density-wave operator for
electrons,  A(t)=(Eqp/Qgcos@t),  and  Egft)
=I§Opsin(th). Here, Q¢ is the infrared-field angular fre-
quency andE,, is its amplitude. Applying a quantum-
statistical averagg- - - ) to both Eqs(7) and(8), we define
the following quantities:

- d. dl's‘c 9
o o= { 5 , 9
. d. - e .

U= | GR) | =t~ g Eapcot 0, (10

whereﬁ():((l’s\clNem*)) is the part of the drift velocity re-

lated to the center-of-mass canonical momentum.

The center-of-mass motion of electrons can be regarded
as aslowmotion in comparison with théastrelative scatter-
ing motion of electrons. Combining Eq&.)—(10) and using

the Fermi(Bose) statistics for electroriphonon operators

|Z Ak, (qu, bs\), we get the force-balance equation
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- . d. S temperatureT,, which will be explicitly giveri in Sec. IIl.
glda= Nem* e+ Nee Eoi(t), (1D The force-balance equation describes the momentum dissipa-
tion process for drifting electrons. It is easy to show from Eq.
(14) that Ifi[ﬁd]=lfp[ﬁd]=0 if up=0. Here, the center-of-
mass drift causes a nonzero frictional force by producing a

whereF; (F,) are the frictional forces due to impuritpho- ~ Doppler shiftq- ug relative to the phonon frequenay, and
non) scattering. For steady state or cases in which the timétroducing anisotropic phonon scattering. On the other
period of an optical field is much smaller than the hand, the infrared field mainly modifies the electron-phonon
momentum-relaxation time of electrons, the last term in Eqcoupling strength and drive&, away fromT by changing the
(11) has no contribution. By considering the slow drifting average kinetic energy of the electrong.in Eq. (14) is the
motion of the center-of-mass in comparison with the ultrafaspccupation probability of electrons, and

energy-relaxation process of electrons in the relative motion
and keeping only the leading-order interaction of electrons
with phonons and impurities, we can introduce a quantum-
statistical averadeé to the frictional forces acting on all elec-
trons which occur on the right-hand side of Ef2) due to
impurity and phonon scattering. We know that the electron B. Boltzmann and Fokker-Planck equations

temperature should be determined by the ultrafast relative ag we noted earlier, both uniform infrared and dc fields
(interna) motion of electrons. In contrast, the drifting motion couple only to the center-of-mass motion of electrons but not
of electrons is very slow compared to the relative scatteringjirectly to their relative motions. The drift of electrons, how-
process. As a result, when the frictional forces acting on albyer, couples the center-of-mass and relative motions. At
electrons are quantum-statistically averaged, one can use tﬂ?gh temperatures, phonon scattering in the system will
Fermi_-Dirac function as a ﬁrst-_order appro_ximation with an 4ominate impurity scattering. The first-order Coulomb ef-
effective temperature adiabatically evolving frofi (t= " fects can be included within the Hartree-Fock approxima-
—2)=T to T*(t=0)=T.. The anisotropic scattering in the {jon, The Hartree energy shifts only the band edges and is
relative motion of electrons produces nonzero frictionaljrejevant to our current work. The Fock energy between two

Nem*

d. .
Nem™ Uo=Ne€ Eget Fil U]+ Flual, 12

eq-Eqp
Ma: . 15
4 mr0? 19

forces given by electrons can be neglected compared to the average kinetic
e 1/3 % : :
2ro 0 . LMD (2 e o e energy of each electron ifr3pag>1 with effective Bohr
Filud] an'VEIZ % AU * (g g1 radiusag = 4meyeh?/m* €. For the concentratioor;p cho-

sen in this papergssas>1 is satisfied. The second-order

Coulomb effects include screening and pair scattering.

0

2 - _— _). 1 . . . . . - .
XM:Z_DO Jjw (M) 8o q— et id- Ug Screening has been considered in this paper within the static
Thomas-Fermi approximation. A discussion about using a
+M7Q)y), (13)  more sophisticated random-phase approximation can be

found in a recent papér. Pair scattering does not directly
contribute to the drift velocity. For time scales much longer
than the pair scattering time, this effect can be included phe-

)

Flgl=—472 > dCa\l*(nirg—m0) 2 (1M

K dx X , ) o
K o nomenologically by introducing a homogeneous lifetime
X[No(wgy) —Ng(wgr+g-Uug+MQy)] 1T . to electrons, wher€ . is the pair scattering rate on the
.. order of 10 ps®. This will broaden the lossd) functions in
X 8(ey4q— ext g +ig-Ug+MAQ). (14)  both the force-balance and Boltzmann scattering equations.
Here, M=0,=1,+2, ..., Jy(x) is the Mth-order Bessel Obviously, this will not qualitatively change the features pre-

dicted in this paper. The force-balance equatidor the
center-of-mass motion takes into account the momentum-
dissipation effect. The energy-relaxation effect is included in
the relative scattering motion. If we could assume an isotro-
pic Fermi-Dirac function for hot electrorighe electron tem-
perature would be found from a first-order energy-balance
equation for the relative motion of electrons. However, there
is no justification for this assumption if the external field

¢ dd te elect hen i it it "Exists for all ime. On the other hand, the Boltzmann scatter-
crate and degenerate electron gases when impurity sca enn% equation has been very successfully applied to explain

Egggnsldg:e_d kandEOPtT] Ot' thAt h'gtp _temfperatl_Jres TE laser damage of dielectric and semiconductor matéfitts
- ), it is known that the scattering from impurities under an intense laser field. We consider the situation in

becomes much less significant thanath*at from phonons, a hich the infrared photon energy is much smaller than the
we will ignore it hereafterNg(wg, +d-Uo+M€Qy) in EQ.  pand gap of bulk GaAs and the amplitude of the infrared
(14) is obtained fromNo(wqurﬁ-JoJr ML) by replacing field is moderate. In this case, we can neglect the multipho-
the lattice temperatur@ with the nonequilibrium electron ton interband excitation process. For the relative motion of

function, n; is the impurity concentration, antly(wg)
=[exp6wm/kBT)—1]‘1 is the Bose-Einstein function for
equilibrium phonons with lattice temperatur@. The
electron-phonon coupling _strengtt(3q>\|2 and electron-
impurity coupling strengthU'™P(q)|? have essentially been
modified by the multiplicative factaifM|(|Ma ). Using Eq.
(13), we get the same resistivity obtained from the Boltz-
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electrons under both dc and infrared fields, we use the Bolthistorically known agree-carrier absorption of photon3he
zmann scattering equation without the drift term to describdree-carrier absorption of photons occurs only close to the
the relative scattering motion with phonons at high temperaFermi surface if the Fermi energy of electrons is much larger

tures, given by than(i.e., degenerate electrornthe electron temperature and
phonon energies. In this case, by assuming small energies,
Engzwgn)(l—ng)—l/v@“t)n,;, (16) €.9.fwg, hQ;, - U, relative to the electron kinetic en-
dt k k ergy e ~eg With ep=12(37%03p)?¥2m* at T=0 K for

where the scattering-in and scattering-out rates of electronyeak dc and moderate infrared fields, we can expand the
by phonons arg Boltzmann scattering equation in E(L6) to second order

with respect to these energies. As a result, the Fokker-Planck

iy 27 * , equation for drifting electrons under dc and infrared fields
win=—2 > |qu|2M2 I (I MaDINg- NGy 8(e formally become¥
aq.A -
ey a—Fiwg +hG- Uy~ MAQ,) d d
k-q ax 0 f af(slz)"'[VT(le)"'VF(SIZ)]d ~f(e) —[Dr(ex) + De(ei) ]
> > €k
+ g (NG +1) (e — e gt hog —hQ-Ug ,
d
+M7Q) ], 17 ><Ff(sg)=[AT(8§)+AF(SQ)]f(8|z)- (19
&2
k
2 = : : o :
WE"“";% 2 |Cq>\|2 > J‘2M|(|Md|)[(1_n|2+d) Here,f(sg)=p(sk)n|g_|s the continuous distribution function
a M= - of electrons with density of states p(ey)

=(2m*)3¢, /27?43, We note that this equation is different
from the standard Fokker-Planck equatiband cannot be
written as a conservation law for particle number and current
within the energy space even in the absence of source terms
+M7iQ;)]. (18) on the right-hand side of Eq19). But we will still call Eq.

(19) the Fokker-Planck equation for simplicity. This equation

is linear with respect té(e¢) and, thus, greatly simplifies the

XNy (et q— ek~ gy +7G- Ug— MAQ) + (1

— ) (Ngu+1) 8(ey—q— e+ gy — G- Ug

The terms containingNg, +1 represent the contributions

from phonon emission, while the terms containiNg, are  cjcylation of the scattering dynamics of electrons. On the
the contributions from phonon absorption. In the absence Oifight-hand side of Eq(19), we include two source terms.

both dc and infrared fields, the steady-state solution of Edrpe coefficient for the thermal spontaneous phonon emission
(16) gives rise to a Fermi-Dirac function with the lattice is

temperature. The pair scattering effect can be phenomeno-

logically included by changing thé functions to Lorenzian 2 ) ..
functions with a homogeneous broadenin.., Where the Are) =5~ 2 |Caal A 8(ek—exiqthwg—7hG-Ug)
scattering ratd . is on the order of 10 pst. However, this a4

does not qualitatively change the features predicted in this
paper. The modification of electron-phonon scattering with
M # 0 results from the drifting electrons interacting with the and the coefficient for the field-induced spontaneous phonon
infrared field through phonon scattering. This effect is alsocemission is

— 8(ex— ey q— hwg +H9- Ug)], (20)

v > - > -
Ar(er) = o7 > |Cq,)\|2M3[5(8k_8k+q+hwq)\_hq'u0+ﬁﬂf)+5(8k_8k+q+ﬁwq)\_hq'uO_th)
q,A
— 8(ex— er_q—hwg +AG-Ug+h Q) — 8(e—ex_q—hwg+hG-Ug— Q)]

o IO IO
=5 2 [CqaPM I 86— ers gt iwg— G- Uo) — 8ok skq— hwgy +1d-Uo)]. (21)
q,\
In addition, we define in Eq.19) the thermal energy transfer rate due to phonon scattering by
2 ) N N N
VT(SK):TZ |Cq,)\| (hwgn—h0-Ug)[Ng\d(ex—ex_q—iwg+7q-Ug) — (Ng+1) 8(ex— &y gt hwg—hd-Ug)], (22
q,\

and the field-induced energy transfer rate by
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ar > - > -
VF(SIZ):EZ |Cq,)\|2ME{Na}\(gk_Squ)[g(sk_squ_hwq)\'}'ﬁq'u0+ﬁQf)+5(8k_8k7q_hwq)\+hq'UO_ﬁQf)]
an
+(Ngn+ 1) (&= 814 ) [ (&~ 8y g T 0y — G- Ug+h Q) + 88— &1 g Hhwgy— Q- Up— Q) ]}
o > - O N
_zZ |Cq,>\|2M§(ﬁwq>\_hQ'Uo)[Ndxa(Sk_Squ_ﬁwq)\"‘ﬁqUo)_(Ndx"‘1)5(8k—8k+q+ﬁwq>\_ﬁqUo)]-
an
(23

Finally, we define in Eq(19) the thermal energy diffusion coefficient due to phonon scattering by

o N N N
Dr(ep) = % 2 |Cq,>\|2(ﬁwq>\_ﬁQ'Uo)z[Naxa(sk_8qu_ﬁwq>\+ﬁQ'Uo)+(Nd>\+1)5(8k_8k+q+ﬁwq>\_ﬁQ'Uo)],
q,\
(24)
and the field-induced energy diffusion coefficient by

ar > - > >
De(ex) = 77 > |Cq,>\|2M§{Nd)\(£k_Sk—q)z[‘s(sk_sk—q_hwq)\+ﬁq'u0+ﬁQf)+ O(ex—ex—q—hwgp+hq-Uy—Ald)]
aA
+ (NG + 1) (8= 814 )L ek Exi g Hhgy —hq- U+ Q) + 88— ey g T iy — 10 Up— ) ]}
o s > > > O
o Z}\ |Cq,)\|2M E(ﬁwqx_ﬁQ'Uo)z[No'p\fs(Sk_Sk—q_ﬁwqx"'ﬁQ'Uo)"’(Nd)\"’ 1)d(ex—exiqthog—7hq-Ug)].
q

(29

The electron-phonon scattering depends not only on the electron distribution but also on the phonon distribution. The
nonequilibrium phonon distribution can be computed from another scattering equation due to their coupling to éfectrons:

d N
dtNQ = (qu+1) ®absN w, (26)
o

where 75, is the relaxation time of phonons from the boundary scattering. In(Eg), the phonon-emission rate due to
electron-phonon scattering to leading order is found t§ be

1 2
+ ZM a[ 5(8k

f(Sk) > > > > 1
em——| th22 1 [8ereicsqt gy =ha: o) + Sler— i g~ hog +Ad-Ug) ]| 1= ZMG

—8k+q+hwq)\—ﬁa~ Ug+782) + 5(sk—8k,q—hwq)\+hﬁ~ Ug—H Q)+ 5(sk—sk+q+hqu—hci- Ug— 50

- - (&g &) 1 5
+o(ex—ek—q—hwgp+hq-Ug+hldy) ] + ﬁ |Cq }\|22k P(Sk) deg f(Sk) ZM&[&(SK—8k+q+ﬁwq)\
- - - - - 1,
—hq-Ug+hQys) + 8(ey—exrqthog —hq-Up— i) ]+ S(ex— & gt iwg—h0- Ug) 1—51\/1& , (27

and the phonon-absorption rate is

477

abs__
G)cix =

. f(sk>
|Cqul 2 (o0 | Lok ereg —hwg+1G-Ug) + (e — ey qt+ hwgn—1G-Up)] 1——M

1 N .
+ ZM é[ﬁ(sk—sk_q—ﬁwq)\-i-ﬁquo-i- 7 Q)+ 6(e—exrqthog—hg-Ug—A) + d(ex— ey q—Fiwgy

- - - - (Ek—q— &K
+hG-Ug—hQ) + 8e— ey g+ hrwg — G- Ug+h Q]| + |qu|22 e T«

p(21) e

dSk

1 2
ZM&[&(SK_Sk_q
.- - - 1,

—fiwg+ - g+ i) + (e~ ex—q— g +1iG- U= h Q)]+ Hex—e—q—fiwg +hd-Ug)| 1= ZM¢| 1. (28
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Equations(11), (12), (16), and (26) can be combined together to study the electron-phonon drag éffdee. scattering
interaction between drifting electrons and phonons constitutes a frictional force on the center-of-mass motion of electrons. The
force-balance equation determines the center-of-mass drift velocity frotiBgwhere upon ignoring the frictional force due

to impurity scattering in Eq(12) the remainder of the frictional force from phonons in Etd) can now be written as

'Ep[l]d]

d 1, L
e f(ep) E Q|Cq N CTED) 1_5/\4& [No(@gp) —=No(wgy+0d-Ug)]
K

aA

N 1 N .
X5(8k+q_8k+ﬁwq)\+ﬁq'U0)+ZME{[No(wq)\)_Né(a)q)\+q'U0+Qf)]5(8k+q_8k+ﬁwq)\+ﬁQ'U0+ﬁQf)

+[No<wqx>—Né(wqﬁﬁ'Go—nowsmq—sk+hwqx+hﬁ-Jo—mo}]. (29)

From Frdlich electron-phonon coupling, we find the cou- phonons under a weak electron-phonon coupling in the rela-

pling matrix to bé? tive scattering motion of electron®eglecting the electron-
phonon drag effe¢t By using these approximations, analyti-
, [foo)[1 1 e’ cal expressions for the expansion coefficients in the Fokker-
|Cql*= 2V |\ e, e m* (30 planck equation can be obtained.
S

For the case with both dc and infrared fields, the thermal
wherew ¢ is the frequency of dominant longitudinal-optical quantitiesAt(eg), V1(eg), andD+(eg) can be obtained from
(LO) phonon modese., and € are the high-frequency and the functions defined in Eq$A1)—(A3) (in the appendix
static dielectric constants of the host material, a@d
= (€% ege,) (M* | m°1?) (372 03p) V2 represents the Thomas-
Fermi screening effect. For acoustic phonon scattering, on @ + A
the other hand, we use the deformation-potential W(tho)g/z[GO (k. k= Go (ku k)],
approximatior.’ This leads to (33

Ar(er, o) =

|Cq€|2:

q2 ’

Ao
2
2pCsV 3292 Vir(ek, ,81) == ﬁ—[G 1 (ky k) =Gy (ky kpT,

w
(39

hog 13 q°
|th|2: T ( 14)2(

2

2007 62 q2+Q§> -
where\ =¢,t corresponds to one longitudinal and two trans- (z)
verse acoustic-phonon modesg,andc, are the sound veloci- >
ties for these modeg is the ion mass densityp is the %4
deformation-potential coefficient, aind, is the piezoelectric
constant. Applying the Debye model to low-energy acoustic
phonons, we gebg, =c,q with A=¢,t.

=~V
=
Qv

)

Ill. RADIATIVE EFFECT AND ELECTRON TRANSPORT
UNDER DC AND INFRARED FIELDS

=V

9
It is known that the scattering between LO phonons and q

electrons becomes dominant at high temperatures in polar (x)
semiconductors, such as GaAs. In this section, we discuss
the radiative effect and electron transport under both an in-
frared field and a dc electric field by including the optical-
phonon scattering at high temperatures in GaAs. We considef!
the indirect absorption of the infrared field by electrons inWave vectoik can be decomposed as a parallel componkpt((n
the relative motion and the resulting change in the nonequithe z direction and a perpendicular componét (in the x direc-
librium electron temperature for an anisotropic distributiontion). The phonon wave vectay can also be decomposed in the
of electrons. We assume an outside heat bath connected same way. The angle betwegn and thex direction within thex-y
the GaAs system to keep a constant lattice temperature. Utane is denoted a#, and the angle betwednand thez direction
der this assumption we further assumg,~Ng(wq,) for  within thex-z plane is represented by

FIG. 1. lllustration for orientations of electrorfi)( and phonon
é ) wave vectorsEdC and u0 lie in the (2) direction. The electron

075214-7
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2a\Vhw 3
Dr(ex, o) = ——— 163 (ki .k + Gz (k. k],
(39
where a=(2/16mep) V2m* win(1le.— ey, k,

=2m*ey /f, and kH:1/2m*skH/ﬁ. The anisotropic de-

pendence o’y andskH in Egs.(33)—(35) is a consequence

of the applied dc electric field, as shown in Fig. 1.
The field-induced quantitie&r(e), Ve(eg), andDg(gf),

PHYSICAL REVIEW B 69, 075214 (2004

L Fmdkfﬂk dk !
C mBogp Y 2mt ) = 1o ™ LP(SkL"'sk”)

em*
Itlex, o) (e ek [H(ky k) +Wi(k, k)
X + o |
o or LK 1K K|
+HWETD(k, k) + WS Dk, k. 0

The anisotropic scattering contributes to the frictional force

proportional toEop, can be obtained from the functions de- in Eq. (41) in two respectsti) through the function$f, W;,

fined in Egs.(A4)—(A6):

a -
Ar(ex, 1e1) = W[R&H)('ﬁ K +RE Dk, k)
LO
—RU Bk, kp—RED(k, k]
2a Ok, K O}k, K
—W[R+ (ki k) =R (ky Sk,
(36)
a —
Ver(ex, o)== WT[S(J”(M k) +SE Pk, k)
LO
=Sk, k) —STH(k, kT, (37)
2a (0) (0)
VJ(8kL,8k”)=7T\/T[S+ (k. k) =S (ky kT,
LO

(38)

avhw o _
Derlex, ek) = —5— [ T4 Dk kp+TE Pk, k)

+TED K, k) +TCY(k, kT, (39

and W21 defined in Egs.(A7)—(A9) and (ii) through the
distribution functionf(skﬂsk“) obtained from the Fokker-

Planck equation for degenerate electrons. Having calculated
these expansion coefficients in E433)—(40) and the fric-
tional force in Eq.(41), the Fokker-Planck equation in Eq.
(19 can be solved simultaneously with the force-balance
equation in Eq.(11) along with the boundary conditions
f(0, 0)= &f(O,skl‘)/z?skL:z?f(skL,O)/c?skH:O

When electrons stay in a nonequilibrium state, we cannot
define an electron temperature through the Fermi-Dirac
distribution® However, we can still define a general nonequi-
librium electron temperature through the average energy of
each electron in the relative motion. By calculatingT,)
for fixed T, and o3p, T, can be found from the following
equation?

k*dk
(Te)l/keTe}

2mh? J
m*O'3D 0 1+9Xp{[8k_

_ P = 1 1 * |01 2
=€ o [Edc+Eop(t)]'ud(t)dt_§m |ud(t)|

+ o
+— f(eg)edeg, (42

O3pJo

where u(T,) is the chemical potential for free electrons at

Daler e0)= — avﬁwLo[T(o)(k k) + TO(k, k)] the temperaturd@,. The combination of the first and second
ALEK Bk P AL AT = AR R terms on the right-hand side of E(2) represents the net
(40 increase of internal energy of electrons from frictional

Ve(8) =Ver(ed) + VoD, and De(sp) =Der(ef) forces, and the last term comes from the change in the

average kinetic energy of electrons in the relative motion
‘mainly due to indirect photon absorption. Thig depends
both external and system parameters, such as

o3p, oo, M*, Eqe, Eqp, and)¢, but not on the electron
inetic energy, and it is different from the lattice temperature
T. For very high lattice temperatures at which the quantum
g generacy can be neglected, the left side of (B8) can

mply be replaced by¥kgT, In Eq. (42), the momentum-
relaxatlon timer, is given by

+Da(eg). Ver(eg) andDeq(eg) with M= +1 represent the
infrared-field-induced corrections to relevant thermal quanti-
ties V1(eg) and D1(eg), respectivelyV(gg)>0 for M=0
comes from the effect of Joule heating due to power absor
tion from the infrared field by electrons, am(eg) <O for

M =0 is a result of the antidiffusion of electrons in energy
space due to a correction to spontaneous phonon emission
Joule heating? The anisotropic dependence eR ands

in Egs. (36)—(40) reflects different radiative effects for two

polarizations(parallel and perpendicular tﬁb) of the inci- 1 1 [+
dent infrared field in addition to the existence of a dc field P 0'_30 .
(parallel toJo), as shown in Fig. 1. P

With the help of functions defined in Eq&A\7)—(A9), the  where the state-dependent nonlocal quantities can be ex-
frictional force from phonon scattering can be expressed agpressed through

1

+

f(ep)deg, (43

Tr(eg)  Te(eR)
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1 2 )
(o0) =7 2 |Cql T Rick+qO(ek— €xsqt w0~ hOUg) + Ry k—qO(ex— 8k—q— A w o+ AU ], (44)
T(ek q

1 T

(o0 2k Z |Cq|2M E{Rk,kJrq[5(8k_8k+q+ﬁwLO_hq||U0+ﬁQf)+5(8k_8k+q+thO_thu0_ﬁQf)]
rR(Ek q

+Rk,k—q[5(8k_8k—q_thO+ ﬁq”U0+ th)'i‘ 5(8k_8k_q_ﬁw|_o+ ﬁQHUO_th)]}

T
s > |CqlPM E[Rk,k-%—qé(sk_8k+q+ﬁwLO_ﬁq\\u0)+Rk,k—q5(8k_Sk—q_ﬁwLO+ﬁQ\\u0)]- (45)
q

The magnitude of I, reflects the strength of the frictional ,,|4rization relative t&y,. This anisotropic coupling to the

force. In the above two equations, we have defined theqrared field will contribute differently tai, (compare the
angular-distribution ~ factor for electron ~momentum ¢.iid curves in Figs. 4 and)5

dissipatiort® In Fig. 4 we show the calculated drift velocity, (solid
K- (K= a) curve and left axisand the non_equilibrium elect_ron tempera-
Rikeq=1— —=——. (46) ture T, (dashed curve and right aigs functions of the
' k- (k=q)| amplitude of the incident infrared fiel,, for Eqy|Eqc with
Eq4=0.58 kV/cm. From the figure we find that, increases
V. NUMERICAL RESULTS AND DISCUSSION sublinearly withE,, in the range ofE,, shown, similar to

results reported by Lei at high,,, T=10 K, and terahertz
In our numerical calculations, we have chosen GaAs afrequencies! However, the higher temperatufe=300 K
the host materiak 4 is assumed in the direction, as shown used in our calculation brings, down below 106 cm/s. In

in Fig. 1, andE, is chosen to be either parallel or perpen-2addition, the increase df, is greatly limited afT=300 K
and the range for the ratid./T is significantly reduced.

dicular toE4.. For GaAs we have taken parameters as fol- o . :
e . B In addition, we present the calculated drift velocity
lows: m*=0.06Mn, with free-electron massny, o;p=1 . o
(solid curve and left axisand nonequilibrium electron tem-

8 -3 — — — —
;;é?i 2C5mme’vﬁ(;rh((jj'l_'363(;?)el\</.’ gt;elrz’paerzklelt’ergw ;ulj; 4 PeratureT, (dashed curve and right axias functions of,,

Eqc andE,p, will be given directly in the figure captions. In
the numerical calculations below, we will show results only 012 y . y . ' . y T
for steady-state cases.

In Fig. 2 the scaled distribution functio?(ski,sk”) (in
units of o3p/eg) is exhibited as a function oékL (dashed 0.09 |-

curve withskH=O) and of.skH (solid curve withskLZO) for o

Eod|Eqc With Eq=0.58 kV/cm andE,,=20 kV/cm. Asub- 8
stantial difference between our model and the energy-balanc™ o.06
approacht can be seen clearly here; energy-balance equatiors
give the dashed curve. It is evident from this figure that the§
distribution function of electrons exhibits an anisotropic de-
pendence o and &k, which is absent in the energy-
balance approach. This anisotropy is attributed to the exis:
tence ofEq. andE,, applied to the GaAs system.

We display in Fig. 3 the scaled distribution function 0.00
f(skﬂsku) as a function of parallel kinetic energy of

electrons withe, =0 for Eop|| Eg. (solid curve and EOPL Eqc

e e 0S8 e SR e ), ke
electrons evidently depends on the polarization of the inciyvIth Skiz_o) and of perptindlciular kinetic energyLzlsF (dashed
dent infrared field. This is a consequence of the differenfurve With e =0) for Eoj|Euc. Here, ey =h?kj/2m*, &
modifications to electron-phonon scattering in the presence#?k?/2m*,  eg=h2(37%03p)?¥2m* at T=0K, Eg
of an incident infrared field with parallel and perpendicular =0.58 kv/cm, andiop= 20 kvicm.

Parallel Fields
E,=0.58kV/cm
Eop =20kV/cm

B
8 o0

Parallel Energy
- - - - Perpendicular Energy

1 2 1 " 1 " 1 "
1 2 3 4 5
Kinetic Energy  (e_)

FIG. 2. Scaled distribution functiorfi(skﬂsk”) in units of
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0.12 . T . T r T . T 698
- ~ E,=0.58kV/cm 1eos
Eop =20kV/cm
0.09 |- |
— { 694
o —_
Y w
-~ ~
Q _—
G 5 692 X
~ 006 . ©
C — |_“’
=t o - 690
3 >
=]
B 003 4 [, Perpendicular Fields 688
e 88 E =058KkV/
) =0 cm
Parallel Fields 3
- - - - Perpendicular Fields gel——t o Lo 11 1. 111 Tege
" 12 13 14 15 16 17 18 19 20
0.00 L L L . L L L L Eo (kV/cm)
0 1 2 3 4 5 P

Parallel Kinetic Ener:
W (&) FIG. 5. Calculated drift velocity, in units of 1 cm/s (solid

_ curve and left axisand nonequilibrium electron temperaturgin
FIG. 3. Scaled distribution functiorf(ey , ekH) in units of  units of K (dashed curve and right axias functions of the ampli-
o3p/eg as a function of parallel kinetic enerw”/eF of electrons  tude of the incident infrared fieltt,,. Here,Ey is set to be 0.58

with &, =0 for parallel polarizatiorE oj| Eq (solid curve and per-  kvicm andE,, is assumed to be perpendiculartg,.

pendicular - polarization EqplL Eq; (dashed curnje Here, Eqc  ojayation process is suppressed by the incident infrared field

=0.58 kV/cm andE ;=20 kv/iem. for parallel polarization but enhanced for perpendicular po-
larization. This result provides an explanation for Figs. 4 and

in Fig. 5 for EopL Edc with E4.=0.58 kV/cm. By comparing 5, whereu, for parallel polarization in Fig. 4 increases with
this figure with Fig. 4 we find thati, decreases withe,, Eop due to the _suppression of momentum _rela_xati_on or fric-
instead of increasing witk,, in this case. Althoughu, de-  tional force, whileu, for perpendicular polarization in Fig. 5
creases WithE,,, T, still increases withE,, due to the in- ~ decreases witl,, due to the enhancement of momentum
creased average kinetic energy of electrons by power absorfglaxation.
tion from the applied infrared field.

The effect of the polarization of the incident infrared field
can be further visualized by looking at the momentum- V. CONCLUSIONS

relaxation rate X, in Fig. 6 as a function o, for Eqpl Eqc In conclusion, we have developed a model, in which elec-
(solid curve and EOpHEdC (dashed curve with E4.  trons are interacting with an infrared field in a bulk semicon-
=0.58 kV/cm. From this figure we find that the momentum-

1.96 ——T—T1——
95 ——/——m—————F————1——7——1——— 730 [ E,.=058kV/cm
: 194 | -
9.0 790
85| 192 | -
I 710
~ 80 I
2 700 _ F 1o} 4
% 75k x o
= 690 g AN
Z ol - ~ 188} ~----o
s o5 680
T / ) 186 Perpendicular Fields i
, Parallel Fields e - - - - Parallel Fields
6.0 ! E, =058 kV/cm L
7
184 L 1 L 1 2 1 L 1 L 1 " 1 "
5.5 " 1 1 1 1 1 " 1 " 1 " 1 1 1 " 1 " 660
5 16 17 18 19 20 21 22 23 24 10 12 14 16 18 20 22 24
E, (kV/cm) E, (kV/cm)
FIG. 4. Calculated drift velocity, in units of 16 cm/s (solid FIG. 6. Calculated momentum-relaxation rate,lih units of

curve and left axisand nonequilibrium electron temperatufgin THz as a function of the amplitude of the incident infrared figlg
units of K (dashed curve and right axias functions of the ampli- for perpendicular polarizatioEopJ_ Edc (solid curve and parallel
tude of the incident infrared fiel&,,. Here,Eq. is set to be 0.58  polarization |§Op|||§dc (dashed curve Here, Eg4. is set to be 0.58
kv/cm and Eop is assumed to be parallel .. kvicm.
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ductor while they are undergoing transport due to an applied ACKNOWLEDGMENTS
strong dc electric field, by coupling the force-balance equa-
tion for the slow center-of-mass motion of electrons and th
Fokker-Planck equation for the ultrafast relative scatterini‘na
motion of degenerate electrons. This allows us to fully in-
clude in our model the anisotropic energy-relaxation process,
which was neglected in the past when the first-order energy-
balance equation was used. At the same time, it also allows \We can decompose the electron and phonon wave vectors
us to include the anisotropic coupling of electrons to thealong the direction OF:dc and perpendicular to it, as shown
incident infrared field which gives rise to different frictional ;, Fig. 1. Here, for optical-phonon scattering of electrons at
forces for polarizations of the infrared field perpendicular OThigh temperatures in polar semiconductors we first define
parallel to the applied dc field. Based on this model, we cany ae functions that determin®(£;), V-(eg), andD+(sf)
study high-field transport of electrons under strong dc an - - )
infrared fields beyond the relaxation-time approximation. In the case 0E 4.7 0 butEo,=0 [see Eqs(33~(35)]:
V2m*hw o [+
el

The authors are grateful to Professor S. W. Koch and Pro-
ssor J. V. Moloney for their helpful discussions and com-
ents on the relative scattering motion of electrons.

APPENDIX

From our numerical study, we have discovered the aniso-
tropic dependence of the electron distribution function on N
parallel and perpendicular kinetic energies of electrons. We Go (ki k)=

+ oo N
dq“fo quXi(kquo)
have also quantified the effect of anisotropic coupling to the

incident infrared field with polarizations parallel and perpen- a.

dicular to the applied dc electric field. We have found that X (A1)

the drift velocity of electrons increases with the amplitude of 9 +9:+Qs

the infrared field for the parallel polarization due to a sup-

pression of momentum relaxation but decreases with th (K, k)= V2m*fl“’LOJ+C’°d f“‘d (K.d,0)

infrared-field amplitude for the perpendicular polarization 1% "l h A dQa=tka,

due to an enhancement of momentum relaxation. The heating

of electrons has been precisely described beyond the first- a. qjUo 11

order energy-balance equation in addition to the inclusion of X 21 P+ Q2 1- w0 No(wio) + Eii ;

anisotropic coupling to an incident infrared field having dif- GrraTies

ferent polarizations. (A2)
The first requirement for the Fokker-Planck equation to be

a good approximation to the Boltzmann scattering equation or* " e "

in the relative scattering motion of electrons is that the Ferm'(;zi(kl k)= Zm—ﬁwLOJ+ dq\|j+ dql)(i(lz,ﬁ,O)

energy eg must be greater thakgT for equilibrium elec- h —o 0

trons. The other requirements include>f wg, , ), and s

fiduo. When a dipole coupling of electrons to an external d (1_ qluo) [N (0,0)+ }il}

optical field exists, i.e., using a grating to produce a nonuni- of+? +Q2 wLo OFLeT T 272

form field or with photon energy greater than the band gap of (A3)

the host materials, the incoherent Boltzmann scattering equa-
tion should be replaced by full coherent density-matrix equain the above three equations, we have introduced the follow-
tions with off-diagonal matrix elements. ing function fork, q, #0:

_6(2k q, — |aZ + af = 2kjo F 2m* (o~ Guo+MQ)/A])

Xt(lz-a:M)_ — ’
Vak?o? —[a? +qf = 2kjgy 7 2m* (w o — quo+ MQ)/7]?

where 6(x) is a unit step function. On the other hand, for M=0,+ 1 [see Eqs(36)—(40)]:
k. q, =0 we define
TL@ quJ dq, x-(k,q,M)

2m* RM(k, k)=
0

7 (00— qUo+MQy) |.

X+ (Ka,M)=8|of +0f =2k

2 2
Moreover, we define another three functions that will deter- XM

= 2 2 2 (A4)
mineAr(ei), Ve(ek), andDg(gg) in the case oEq,# 0 with qj+ai+Qs
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y\/2m*ﬁwLoJ’+°c 14 0)
h oo

+ oo
da [ da e kam) X[No(w,0)~ Nj( w0+ Ty ]
(A7)

SM(k, k)=

XQL(‘MQL"’QM)( Q\|U0+ Mﬂf)

q”Jqu—QS Wo @o

7 —+ oo + o N
Wik, k) =— Eﬁm d0I||J0 dq, é(k,q,0)

11
| No(w )+—¢—}, (AS)
o(@ro) + 5+ 5  de0i(@a? +agaf)

’)/\2m ha)Lof d J N q|+qJ_+QS
q

dQLX:(k:qu)

[No(@L0)

TM(k, k)=

1+ M), (A8)
LO

No(wi ot djuo)]

CIL(%%JWQ)( _ 9o 'V'Qf)2
q||+qL+QS

w0 W0

Wk, k=2 dq [ aa ek

1 1
No(w10) + 5 %5, (A6)

quH(aLQL aaf)

where y=(eEy,/m*Qf)2. We takee, =0 and ;=1 for [No(wi0) —No(@Lo

O - s +0g°+
Eop|Eqc. but we setwy=0 anda, = 1/2 for EpL Eq (unpo- aj+ai+Q
larized infrared field Finally, for the frictional force in Eq. QjUo+ MOy
(41) we define the following functions witM =0,+1: + QU+ MQp ]| 1+ T eg ) (A9)
H(k, k)= J’ quJ dq, &(k,q, 0)& In the above three equations, we have introduced the follow-
qf+a +Q3 ing function fork, q, #0:
|
- 0(2k, q, —|of +af+ 2K+ 2m* (U + w o+ M Q) /)
£(k,q,M)= S

VakZq? —[af +of + 2kygy+ 2m* (gyuo+ @ o+ MQ) /A1
On the other hand, fdk, q, =0 we define

*

R 2m

(qHUO+ (,()Lo+ M Qf) .
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