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Phonon modes in Si†111‡ nanowires
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We solve a long standing question concerning the boundary conditions for optical phonons in nanowires.
The controversy between the so-calledclampedand free conditions is well documented in standard literature.
We answer this question of the boundary conditions by presenting a spring-and-mass model of the Stillinger
and Weber type to calculate optical and acoustic phonons in Si@111# nanowires. Our results show that this
model, in parallel to the bulk case, is sufficient to describe important features of the phonon spectrum.
Furthermore, our results predict that optical phonons in nanowires are subject to clamped boundary conditions.
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I. INTRODUCTION

Over the last decades nanostructures have become a
of intense study, not only experimentally but also from
theoretical point of view. One field of interest deals wi
phonon modes in nanotubes and nanowires.1–3 Despite the
fact that a lot of research has been done in this field, a c
troversy about the boundary conditions of optical phon
modes in nanowires has arisen. Two different possibilit
i.e., the so-calledclampedand free boundary conditions, are
discussed in the literature.4–10Motivated by this discrepancy
we performed numerical calculations on optical phonons
Si @111# nanowire in order to solve this longstanding que
tion.

II. THEORY

Sound waves are acoustical phonons of long wavelen
They can be calculated using classical elasticity theory
the boundary conditions are well known.2,11 The vibrational
modes of an infinite cylinder are described in stand
texts.11–13A similar classical analysis is possible for optic
phonons of long wave length. In this case, the dynam
equation must have a term of the orderO(q2), whereq is the
wave vector of the phonon. The frequency equation at lo
wavelength for an optical phonon of amplitudeQm (m
5x,y,z) can be written as

v~q!2Qm5v0
2Qm1vc

2tmn~q!Qn2FmnabqaqbQn . ~1!

The first term on the right-hand side of Eq.~1! is due to the
short-range forces between the nearby neighbors. This i
isotropic interaction in cubic crystals. The second term is d
to the long-range dipolar interaction. It provides the splitti
between LO and TO phonons and in three-dimensional cu
crystals it has the form

tmn~q!53
qmqn

q2
2dmn . ~2!

This functional form will change in a nanowire, since th
sum over dipolar interactions is essentially o
dimensional.14 The last term in Eq.~1! is the quadratic term
in the wave vector mentioned above. The fourth-rank ten
0163-1829/2004/69~7!/075213~5!/$22.50 69 0752
eld

n-
n
,

a
-

h.
d

d

l

g

an
e

ic

or

Fmnab is determined by group theory. In the case of cub
crystalsF is found to have three independent constants, si
lar to elastic constants, which are calledf 11, f 12, and f 44 in
Voigt notation. For silicon we find thatvc

250 and therefore
we can write the actual equation as

]2

]t2
Qx52v0

2Qx2 f 11

]2Qx

]x2
2 f 44S ]2

]y2
1

]2

]z2D Qx

2~ f 121 f 44!
]

]x S ]Qy

]y
1

]Qz

]z D . ~3!

Cyclic permutations give similar equations forQy and Qz .
The choice of sign in front of the constantsf i j is determined
by the expectation thatf i j .0 for most solids. For isotropic
systems the relation 2f 445 f 112 f 12 holds and Eq.~3! be-
comes

]2

]t2
Qm52v0

2Qm2 f 44¹
2Qm2~ f 112 f 44!¹m~¹•Q!. ~4!

This equation has an obvious similarity to the wave equat
for sound waves. The vector amplitudeQm in Eqs. ~3! and
~4! requires three boundary conditions on each surface. H
the question arises as to what are the boundary condition
optical phonons in a nanowire? The ‘‘free’’ conditions ensu
that the surface of the nanowire is stress free, whereas
‘‘clamped’’ conditions meanQ50 all around the surface. In
general, these possibilities contradict.

In order to answer this question, we used a spring-a
mass model to calculate phonon modes in a Si@111# nano-
wire. All previous calculations of phonons in wires hav
used the isotropic model mentioned above. In contrast to
we used a crystalline model. We utilized a parametrizat
by Keating,15 which is a special case of the well-known Stil
inger and Weber model.16 This model has been proved to b
accurate and sufficient to describe phonon spectra and re
quantities of materials that crystallize in the diamond str
ture. Within this model, the dynamical equation for particli
with amplitudeQi can be written as
©2004 The American Physical Society13-1
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M
]2

]t2
Qm

i 52
]U

]Qm
i

, ~5!

whereM is the same mass for all particles. The potentiaU
consists of two parts. The first part describes the interac
of particle i with its four nearest neighbors. The second te
deals with the bond bending of the bonds between partici,
j and i, k. Thereby,j andk are confined to the tetrahedron
the center of which particlei is placed. Note that this inter
action constitutes a three-body force. The interactions ca
written as

Un.n.5a(
i

N

(
j 51

4

@Ri j
•~Qi2Qj !#2, ~6!

Ub.b.5b(
i

N

(
j ,k. j

4 Fcosu j ik1
1

3G2

, ~7!

whereN is the number of particles,Ri j is a unit vector con-
necting the equilibrium positions of particlesi andj, andu j ik
is the angle between the two bondsi, j and i, k. The model
includes two parametersa and b, which determine the
‘‘strength’’ of Un.n. andUb.b.. We solved the model for the S
bulk material and fitted the bulk spectrum17 with the two
model parameters. Next, we applied the model to a Si na
wire, using the same ratio fora/b. Note that in case of a
wire, atoms on and near the surface might not necess
have four nearest neighbors.

III. COMPUTATIONAL DETAILS

Silicon nanowires grow naturally along the@111# direc-
tion, which we also chose to be thez axis of our coordinate
system. In this configuration the Si atoms form hexago
layers perpendicular to thez direction, similar to the case o
close-packed spheres.18 For our calculations we approxi
mated the cross section of the nanowire by a hexagon.
six layers of Si atoms in the unit cell are now constructed
depicted in Fig. 1. Two layers of hexagons are stacked
rectly atop of each other~a!. The next two layers are shifted
so that the atoms appear in the spaces between the atom
the first layer~b!. The last two layers are shifted again,
that the atoms cover the remaining empty sites~c!. There are
several choices for the placing of the last two layers w
respect to the first four. For our calculations we chose
arrangement in which the center of mass is located in

FIG. 1. Approximation for a Si@111# nanowire by a hexagon
shaped cross section. Depicted are the placings of the first
layers as black spheres~a!, the two middle layers in gray color~b!,
and the last two layers as white spheres~c!. The line of sight par-
allels thez direction, which also forms the axis of the nanowire.
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middle of the first layer, which then also defines the axis
the nanowire. The nanowire shown in Fig. 1 is rather sm
since it has only three atoms across its diameter. We
refer to this system as a unit cell withone ring of atoms,
since the hexagon in Fig. 1~a! has one atom in the center an
one ring of atoms around the center one. This nomencla
provides an easy mechanism for creating bigger nanowi
In order to ‘‘grow’’ larger diameters, we simply add mor
rings of atoms. Figure 2 depicts different unit cells with tw
~a! and seven~b! rings. The distance between two Si atoms
approximately 0.384 nm. A wire with ten rings would ther
fore have 21 atoms across its cross section, i.e., 8 nm
order to grow a 50 nm wire, 131 atoms have to be arran
along the diameter, i.e., 65 rings. For our calculations
considered wires with a number of rings from one to sev
Bigger values are impracticable due to the huge resul
matrix size. A unit cell with seven rings already consists
1014 atoms, which results in a dynamical matrix the size
304233042.

IV. RESULTS

As mentioned above, the model used contains two par
etersa andb. For our calculations of the Si@111# nanowire
phonon spectrum, the same ratioa/b was utilized as found
for the Si bulk material. The remaining degree of freedo
was fitted so that the highest optical phonon withq50 lies at
15.3 THz, i.e., the value for the bulk material.17 For nanow-
ires, only the wave vector along the axis of the wire is
interest. Henceforth, we abbreviateq5(0,0,qz) with q. Part
of the phonon spectrum for a Si@111# nanowire with seven
rings of atoms is depicted in Fig. 3. The entire spectr
consists of 3042 branches according to the 1014 atoms in
unit cell. The spectrum shows four acoustic branches c
acterized by lim

q→0
n i(q)50, wheren i(q) is the frequency

of modei for the wave vectorq. Two of these branches ar
linear inq and can therefore be identified as the longitudin
and transverse acoustical phonons. The transverse phon
a torsional mode in the wire. Furthermore, two branches p
portional toq2 can be observed, which are characteristic
wires. From the linear modes we calculated longitudinal a
transversal sound velocities and the results are depicte

o

FIG. 2. Unit cell of a Si nanowire along the@111# direction.
Each unit cell consists of 6 layers in the hexagonal structure.
picted are a unit cell with two rings of atoms~a! and with seven
rings of atoms~b!. For better visualization, the groups of differe
layers are colored in different gray scales.
3-2
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Fig. 4. The sound velocities can be fitted to a 1/r behavior.
Using this parameterization, the limits for a large number
rings can be calculated and we find:vL→9.3 and vT
→6.1 km/s. Concerning longitudinal sound waves, a w
with an large number of rings behaves like the bulk mater

FIG. 3. Some low frequencies of the phonon spectrum for a
@111# nanowire.q thereby refers to the reduced wave vector. Fo
acoustic branches are clearly visible. Two acoustic modes linea
q ~longitudinal and transversal!, but also two modes proportional t
q2, which are characteristic for wires.
07521
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The limit for the longitudinal velocity approaches almo
perfectly the bulk value of 9.35 km/s, which emphasizes
validity of the model used. The value for the transver
sound velocity, on the other hand, is an overestimation
about 20%.

From our calculations we not only obtained frequenc
for all modes of the spectrum, but also eigenvectors of
vibrations, i.e., the displacement of all atoms. In Fig. 5
see the eigenvectors of the four modes around 1.5 THz
q50. The Si atoms are depicted by little spheres with glyp

i
r
in

FIG. 4. Sound velocitiesvL andvT of the longitudinal and trans-
versal acoustic modes in a Si nanowire along its axis. The veloc
increase with the diameter of the wire, i.e., the number of rings u
in the cross section. The corresponding bulk values for Si along
@111# direction are 9.35 and 5.09 km/s, which are marked by
broken lines.
s

FIG. 5. ~Color online! Eigen-

vectors of the acoustic mode
around 1.5 THz forq50. The line
of sight is slightly off the @111#
direction in order to better view
the mostly longitudinal modes in
~a! and ~b!.
3-3
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FIG. 6. ~Color online! Eigen-
vectors of some optical phono
modes around 15.3 THz forq50.
The line of sight parallels the
@111# direction, except in case~c!,
where it is slightly of the@111# di-
rection, so that the mostly longitu
dinal mode is better to see.
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indicating their movements according to value and directi
The modes are increasing in frequency from~a! to ~d!. While
the eigenvectors in~a! and ~b! are almost exclusively longi
tudinal, the ones in~c! and~d! are mostly transversal. Eigen
vectors for valuesqÞ0 look similar to the ones depicted
Note that only modes near the upper and lower freque
boundary of the spectrum are purely optical or purely aco
tic. Modes in the region in between are, in general, a su
position of both and the character changes gradually. In
6 the highest frequency optical phonon modes around 1
THz are depicted. For all graphs in this figure the line
sight parallels the@111# direction, so that the symmetry o
the eigenvector becomes more obvious. However, in gr
~c! the line of sight is slightly off the@111# direction in order
to better depict the mostly longitudinal solution. It can
seen that, although the opposed symmetry from the wir
sixfold, all kinds of symmetries are present. As for acousti
07521
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phonons, eigenvectors for valuesqÞ0 look similar to the
ones depicted. All optical modes obeyQ50 on the surface
of the wire, which follows naturally from the solution of Eq
~5!, i.e., the dynamical equation4. This is also true for modes
with qÞ0. The result does not depend on the material u
and is therefore completely general as long as the diam
structure is utilized. It follows that optical phonon modes
nanowires are subject to clamped boundary conditions. T
is different from the boundary conditions found in Fig.
whereQÞ0 was found on the surface, in accordance to
well-known stress free boundary conditions for acousti
phonons.

V. CONCLUSIONS

We solve a long standing question concerning the bou
ary conditions for optical phonons in nanowires by perfor
3-4
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ing phonon calculations for Si@111# nanowires. Using a
spring-and-mass model of the Stillinger and Weber type
solved for the phonon spectrum as well as for the eigenv
tors, i.e., the displacement of all atoms, of phonons in fr
standing wires of several diameters. The model used is a
crystalline model, whereas previous calculations solved
ther isotropic models or focused on other systems like e
bedded wires. Our results for the phonon spectrum and
culated sound velocities emphasize the validity of o
approach. The calculated eigenvectors for acoust
phonons are in agreement with the well-known bound
conditions for acoustical modes, i.e., vanishing surfa
,
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stress. The eigenvectors for the optical modes reveal tha
displacements at the surface of the wire are zero, wh
means that optical phonons in nanowires are subjec
clamped boundary conditions.
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