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Phonon modes in S{111] nanowires
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We solve a long standing question concerning the boundary conditions for optical phonons in nanowires.
The controversy between the so-callddmpedandfree conditions is well documented in standard literature.
We answer this question of the boundary conditions by presenting a spring-and-mass model of the Stillinger
and Weber type to calculate optical and acoustic phonons [A13] nanowires. Our results show that this
model, in parallel to the bulk case, is sufficient to describe important features of the phonon spectrum.
Furthermore, our results predict that optical phonons in nanowires are subject to clamped boundary conditions.
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[. INTRODUCTION F.vap IS determined by group theory. In the case of cubic
crystalsF is found to have three independent constants, simi-
Over the last decades nanostructures have become a fidhr to elastic constants, which are called, fi,, andfy,in
of intense study, not only experimentally but also from aVoigt notation. For silicon we find thab§=0 and therefore
theoretical point of view. One field of interest deals with we can write the actual equation as
phonon modes in nanotubes and nanowirésDespite the
fact that a lot of research has been done in this field, a con-

troversy about the boundary conditions of optical phonon L 0= — w201 &—f <9_Z+5_2

modes in nanowires has arisen. Two different possibilities, 42 Q= 0oQx~ T a2 May? a2 Qx

i.e., the so-callea¢lampedandfree boundary conditions, are

discussed in the literatufe1® Motivated by this discrepancy, d [dQy dQ,

we performed numerical calculations on optical phonons in a — (oot f44)& oy +E : €
Si [111] nanowire in order to solve this longstanding ques-

tion.

Cyclic permutations give similar equations fQ;, and Q,.

The choice of sign in front of the constarfts is determined

by the expectation that; >0 for most solids. For isotropic
Sound waves are acoustical phonons of long wavelengtigystems the relation f2,=f,,—f,, holds and Eq.(3) be-

They can be calculated using classical elasticity theory an§0mes

the boundary conditions are well knon! The vibrational

modes of an infinite cylinder are described in standard P2

texts!1 13 A similar classical analysis is possible for optical 70 =020 — V20 —(fi— i)V (V. 4

phonons of long wave length. In this case, the dynamical  4t? A 0Qu~faV"Qu (T~ T Vu(V-Q)- - (4)

equation must have a term of the ord®(q?), whereq is the

wave vector of the phonon. The frequency equation at longrps equation has an obvious similarity to the wave equation
wavelength for an optical phonon of amplitud®, («  for sound waves. The vector amplitu@g, in Egs. (3) and
=X,y,2) can be written as (4) requires three boundary conditions on each surface. Here
2 .2 2 the question arises as to what are the boundary conditions for
@(@)°Qu=0Qut @clun( Q= F rapdadpQy - (1) optigal phonons in a nanowire? The “free” congitions ensure
The first term on the right-hand side of EQ) is due to the that the surface of the nanowire is stress free, whereas the
short-range forces between the nearby neighbors. This is dieclamped” conditions mearQ=0 all around the surface. In
isotropic interaction in cubic crystals. The second term is dugeneral, these possibilities contradict.
to the long-range dipolar interaction. It provides the splitting In order to answer this question, we used a spring-and-
between LO and TO phonons and in three-dimensional cubimass model to calculate phonon modes in &13il] nano-
crystals it has the form wire. All previous calculations of phonons in wires have
used the isotropic model mentioned above. In contrast to this
q.9, we used a crystalline model. We utilized a parametrization
L@ =3=——2= =0, (2 by Keating!® which is a special case of the well-known Still-
q inger and Weber modéf. This model has been proved to be
This functional form will change in a nanowire, since the accurate and sufficient to describe phonon spectra and related
sum over dipolar interactions is essentially onequantities of materials that crystallize in the diamond struc-
dimensional* The last term in Eq(1) is the quadratic term ture. Within this model, the dynamical equation for particle
in the wave vector mentioned above. The fourth-rank tensowith amplitudeQ' can be written as

II. THEORY
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FIG. 1. Approximation for a S[111] nanowire by a hexagon
shaped cross section. Depicted are the placings of the first twc
layers as black spheréa), the two middle layers in gray coldb),
and the last two layers as white sphefels The line of sight par- (@
allels thez direction, which also forms the axis of the nanowire.

a)

FIG. 2. Unit cell of a Si nanowire along thgl11] direction.
P JU Each unit cell consists of 6 layers in the hexagonal structure. De-
o= (5) picted are a unit cell with two rings of atonta) and with seven
gtz TH aQ'ﬂ’ rings of atomgb). For better visualization, the groups of different
layers are colored in different gray scales.
whereM is the same mass for all particles. The potenitlal
consists of two parts. The first part describes the interactiomiddle of the first layer, which then also defines the axis of
of particlei with its four nearest neighbors. The second termthe nanowire. The nanowire shown in Fig. 1 is rather small,
deals with the bond bending of the bonds between paiiticle since it has only three atoms across its diameter. We will
j andi, k. Thereby,j andk are confined to the tetrahedron in refer to this system as a unit cell withne ring of atoms,
the center of which particleis placed. Note that this inter- sjnce the hexagon in Fig(d) has one atom in the center and
action constitutes a three-body force. The interactions can bgne ring of atoms around the center one. This nomenclature
written as provides an easy mechanism for creating bigger nanowires.
In order to “grow” larger diameters, we simply add more

N 4 . . . . . .
_ i (A 2 rings of atoms. Figure 2 depicts different unit cells with two
Unn. aZ J—Z‘l [RY-(Q'=QDT%, 6) (a) and severtb) rings. The distance between two Si atoms is
approximately 0.384 nm. A wire with ten rings would there-
N 4 112 fore have 21 atoms across its cross section, i.e., 8 nm. In
Ub.b.zﬁz E cosbjix + 3| (7) ~ order to grow a 50 nm wire, 131 atoms have to be arranged
Poik>] along the diameter, i.e., 65 rings. For our calculations we

considered wires with a number of rings from one to seven.
Bigger values are impracticable due to the huge resulting
matrix size. A unit cell with seven rings already consists of
1014 atoms, which results in a dynamical matrix the size of
3042x 3042.

whereN is the number of particle®R' is a unit vector con-
necting the equilibrium positions of particleandj, and 6,

is the angle between the two bonidg andi, k. The model
includes two parameters and B, which determine the
“strength” of U,,,,.andU, ,.. We solved the model for the Si
bulk material and fitted the bulk spectrifrwith the two
model parameters. Next, we applied the model to a Si nano- IV. RESULTS

wire, using the same ratio fag/§. Note that in case of &  Ag mentioned above, the model used contains two param-
wire, atoms on and near the surface might not necessarilyio s, andg. For our calculations of the $111] nanowire
have four nearest neighbors. phonon spectrum, the same ratidg8 was utilized as found
for the Si bulk material. The remaining degree of freedom
lll. COMPUTATIONAL DETAILS was fitted so that the highest optical phonon wjth0 lies at
Silicon nanowires grow naturally along thé&11] direc- .15'3 THz, i.e., the value for the bulk ma;eHﬁlFor hanow-
ires, only the wave vector along the axis of the wire is of

tion, which we also chose to be tlzeaxis of our coordinate . : tH forth bbrevi 00 ith a. Part
system. In this configuration the Si atoms form hexagona|n erest. Henceforth, we abbreviate=(0,0g,) with g. Par

layers perpendicular to thedirection, similar to the case of of the phonon spectrum for a f111] nanowire with seven

close-packed spheré$.For our calculations we approxi- rings_ of atoms is depicted in Fig. 3. The entire spectrum
mated the cross section of the nanowire by a hexagon. THeONsists of 3042 branches according to the_1014 atoms in the
six layers of Si atoms in the unit cell are now constructed adinit qell. The _spectrum shows four acoqstlc branches char-
depicted in Fig. 1. Two layers of hexagons are stacked giacterized by lim_,vi(q) =0, wherew;(q) is the frequency
rectly atop of each othdg). The next two layers are shifted, of modei for the wave vectorg. Two of these branches are
so that the atoms appear in the spaces between the atomslioar inq and can therefore be identified as the longitudinal
the first layer(b). The last two layers are shifted again, soand transverse acoustical phonons. The transverse phonon is
that the atoms cover the remaining empty si@sThere are  a torsional mode in the wire. Furthermore, two branches pro-
several choices for the placing of the last two layers withportional tog? can be observed, which are characteristic for
respect to the first four. For our calculations we chose amires. From the linear modes we calculated longitudinal and
arrangement in which the center of mass is located in théransversal sound velocities and the results are depicted in
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05 — FIG. 4. Sound velocities, andv of the longitudinal and trans-
| . ..;:-‘ ] versal acoustic modes in a Si nanowire along its axis. The velocities
:.-‘.',f:? | | | increase with the diameter of the wire, i.e., the number of rings used
00" 02 04 08 08 1 in the cross section. The corresponding bulk values for Si along the
[111] direction are 9.35 and 5.09 km/s, which are marked by the
broken lines.

FIG. 3. Some low frequencies of the phonon spectrum for a Si
[111] nanowire.q thereby refers to the reduced wave vector. FourThe limit for the longitudinal velocity approaches almost
acoustic branches are clearly visible. Two acoustic modes linear iperfectly the bulk value of 9.35 km/s, which emphasizes the
g (longitudinal and transversabut also two modes proportional to validity of the model used. The value for the transverse

g2, which are characteristic for wires. sound velocity, on the other hand, is an overestimation of
about 20%.
Fig. 4. The sound velocities can be fitted to a fiéhavior. From our calculations we not only obtained frequencies

Using this parameterization, the limits for a large number offor all modes of the spectrum, but also eigenvectors of the
rings can be calculated and we findi—9.3 and vy  vibrations, i.e., the displacement of all atoms. In Fig. 5 we

—6.1 km/s. Concerning longitudinal sound waves, a wiresee the eigenvectors of the four modes around 1.5 THz for
with an large number of rings behaves like the bulk materialg=0. The Si atoms are depicted by little spheres with glyphs
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FIG. 5. (Color online Eigen-
vectors of the acoustic modes
around 1.5 THz fog=0. The line
of sight is slightly off the[111]
direction in order to better view
the mostly longitudinal modes in
(a) and(b).

?ﬂiﬁj /‘ ) ‘./'

a

075213-3



T. THONHAUSER AND G. D. MAHAN PHYSICAL REVIEW B69, 075213 (2004

2?
22
2.0
2,
>
’)
%
I ]
2

Js'i?a’?.?ﬁ.yﬁﬁ,

P55 59 559 5959 59
?ﬁ'ﬁs’w’,ﬁ’ e53 s > 3y
. of i
- P FIG. 6. (Color online Eigen-
5 ‘: . TR oy vectors of some optical phonon
;’Waﬁf 5 v Lt T /’ a3 o modes around 15.3 THz fay=0.
¢ _ > L aithay % b7t » > The line of sight parallels the

’ [111] direction, except in casg),
where it is slightly of thg 111] di-
rection, so that the mostly longitu-
dinal mode is better to see.

» 9@ PSSR s it g
» agf (ﬁ AR

D O A A
g 2z
=

indicating their movements according to value and directionphonons, eigenvectors for valuegst0 look similar to the
The modes are increasing in frequency fr@anto (d). While  ones depicted. All optical modes ob&=0 on the surface
the eigenvectors ia) and(b) are almost exclusively longi- of the wire, which follows naturally from the solution of Eq.
tudinal, the ones irfc) and(d) are mostly transversal. Eigen- (5), i.e., the dynamical equatidriThis is also true for modes
vectors for valuegj#0 look similar to the ones depicted. with g#0. The result does not depend on the material used
Note that only modes near the upper and lower frequencgnd is therefore completely general as long as the diamond
boundary of the spectrum are purely optical or purely acousstructure is utilized. It follows that optical phonon modes in
tic. Modes in the region in between are, in general, a supemanowires are subject to clamped boundary conditions. This
position of both and the character changes gradually. In Figs different from the boundary conditions found in Fig. 5,

6 the highest frequency optical phonon modes around 15.&hereQ+ 0 was found on the surface, in accordance to the
THz are depicted. For all graphs in this figure the line ofwell-known stress free boundary conditions for acoustical
sight parallels thg111] direction, so that the symmetry of phonons.
the eigenvector becomes more obvious. However, in graph

(c) the line of sight is slightly off th¢111] direction in order

to better depict the mostly longitudinal solution. It can be

seen that, although the opposed symmetry from the wire is We solve a long standing question concerning the bound-
sixfold, all kinds of symmetries are present. As for acousticakry conditions for optical phonons in nanowires by perform-

V. CONCLUSIONS
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ing phonon calculations for Si111] nanowires. Using a stress. The eigenvectors for the optical modes reveal that all
spring-and-mass model of the Stillinger and Weber type walisplacements at the surface of the wire are zero, which
solved for the phonon spectrum as well as for the eigenveaneans that optical phonons in nanowires are subject to
tors, i.e., the displacement of all atoms, of phonons in freeelamped boundary conditions.

standing wires of several diameters. The model used is a real

crystf'illlne r_nodel, whereas previous calculations so!ved ei- ACKNOWLEDGMENTS
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