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Weak localization of electrons in an external electric field
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The impact of an electric field on the electron localization problem is studied within the framework of a
field-theoretic formulation. The investigation shows that the impact of the electric field on the localization
corrections is governed by the interplay between two time scales, one set by the electric field, and the other by
the phase relaxation rate. At very low temperatures the scaling of the conductivity is governed by the electric
field. In this regime the conductivity depends logarithmically on the field, and an arbitrarily small electric field
delocalizes the electron states. At higher temperatures the behavior of the conductivity is governed by the
temperature scaling. In this regime the field has no impact on the observable leading localization corrections.

DOI: 10.1103/PhysRevB.69.075119 PACS number~s!: 73.50.2h, 73.20.Fz, 72.15.Lh
ha
n

hy
be

o
as
n

ec
-
at

liz
no
o-

tic

ne
e
d
e

k

e
y

za
ap
t
t
p
n

if
ica
st
a

ap-

on.
ms
ld

-

e-
af-
the
c-
is
eak
the
bi-

ts a
by
n

ile
e
he

in
ld
her
an

en
in

of
ion
is
ex-
ory
to
be

l ef-
I. INTRODUCTION

The physics of weakly disordered electron systems
been the subject of considerable theoretical and experime
interest over the past years. According to semiclassical p
ics, the electrons in such systems move ballistically in
tween occasional scattering events due to impurities
phonons, which results in diffusive dynamics. The semicl
sical picture has long been known to be incorrect in o
dimension, where arbitrarily weak disorder leads to all el
tronic states being localized.1 A completely new understand
ing of transport in two dimensions was obtained in the l
1970’s by the scaling theory of Abrahamset al.2 These au-
thors showed that quantum interferences lead to the loca
tion of all electronic states in two dimensions as well,
matter how weak the disorder. Accordingly, all tw
dimensional systems are, strictly speaking, insulators.3

The same conclusion was reached by a field-theore
approach that was pioneered by Wegner.4 Using the replica
trick to deal with the quenched disorder, he derived a ge
alized nonlinears model whose coupling constant is th
electrical conductivity. Wegner’s original theory use
bosonic fields, but later applications of his method deriv
the same model starting from a fermionic formulation.5 A
supersymmetric formulation, which avoids the replica tric
was also given.6,7

A third approach to the localization problem were mod
mode coupling theories. While the original formulation b
Götze8 missed the interference effects that lead to locali
tion in two dimensions, a self-consistent diagrammatic
proach by Vollhardt and Wo¨lfle,9 as well as an improvemen
on Götze’s original method,10 yielded results in agreemen
with both the scaling theory and the field-theoretic a
proaches. They also agree well with numerical simulatio
and with experiments.

All of the above approaches focus on the electronic d
fusion coefficient, and make a connection to the electr
conductivity by means of an Einstein relation. By contra
experimentally the conductivity is measured by applying
0163-1829/2004/69~7!/075119~10!/$22.50 69 0751
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electric field. This raises the question how an externally
plied electric field affects the localization phenomena.

In the literature, there is no clear answer to this questi
Exact results are available for one-dimensional syste
only.11–13 These are characterized by a critical electric fie
Fc such that for field strengthsF,Fc the states remain
~power-law! localized, while forF.Fc the states are ex
tended.

Unfortunately, these exact calculations for on
dimensional systems do not reveal how the electric field
fects the quantum interference effects responsible for
weak localization in two dimensions. The impact of an ele
tric field on the localization in two dimensional systems
therefore much less clear. It has been argued that a w
homogeneous electric field has no influence at all on
localization.14–16 Other authors have concluded that an ar
trary small electric field already leads to delocalization.17,18

In between these two extremes lies a theory that predic
strong modification of the weak-localization corrections
an electric field,19,20 and theories in which delocalizatio
only occurs if the electric field exceeds a critical value.21–23

Experimentally, the situation is not clear either. Wh
early experiments24,25 seemed to find modifications of th
weak-localization corrections by a field, no impact of t
electric field on the localization corrections was observed
Ref. 26. Similarly, Ref. 27 concluded that an electric fie
has no impact on the localization corrections. On the ot
hand, the scaling argument of Ref. 18, which implies that
arbitrary small electric field leads to delocalization, is oft
used in the interpretation of experiments, as discussed
Ref. 28.

In the present paper we revisit this problem by means
field-theoretic techniques. We conclude that delocalizat
does indeed occur for arbitrarily small fields. However, th
effect is not observable at realistic temperatures, which
plains some of the apparent contradictions between the
and experiment. We also find that the leading contribution
the electric-field scaling, which was assumed in Ref. 18 to
the dominant effect, has a zero prefactor, and the actua
©2004 The American Physical Society19-1
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fect of the electric field is weaker. This is important for a
tempts to extract the dynamical critical exponents from
perimental data.28

This paper is organized as follows. In Sec. II we introdu
our model and formulate an effective field theory. Th
theory is investigated in a Gaussian approximation in S
III, which yields a generalized diffusion equation for dens
fluctuations. In Sec. IV we derive a generalized nonlineas
model, which is investigated in a one-loop approximation.
Sec. V we discuss our results and their connections to pr
ous investigations. Some technical points are relegated to
appendix.

II. MODEL AND FIELD-THEORETIC FORMULATION

We consider the Hamilton operator

H5Hx1V~x!. ~2.1!

Here

Hx52
D

2m
1F•x ~2.2!

is the Hamilton operator for free particles in the presence
an electric fieldF, with D the Laplace operator andm the
electron mass, andV(x) is a random potential. We use uni
such that\ and the electron charge are equal to unity.V is
characterized by a Gaussian distribution with zero mean
second moment

^V~x!V~x8!&dis5
1

2pnt
d~x2x8!. ~2.3!

Here ^•••&dis denotes the disorder average,n is the density
of states per spin at the Fermi level, andt is the single-
particle scattering time. Unless otherwise noted, we cons
a two-dimensional systemd52 in the weak-disorder regime
mt5kF,/2@1, where, is the mean-free path, andm andkF
are the chemical potential and the Fermi wave number,
spectively, in equilibrium.

In our investigation we focus on configuration averages
retarded and advanced Green functions and their produ
These functions are solutions of the differential equation

~6 iv1E2H ! GR,A~x,x8uE;v!5d~x2x8!. ~2.4!

In equilibrium, F50,E5m is the chemical potential. ForF
Þ0, the quantityE2F•x[mx is the chemical potential in a
local equilibrium approximation, i.e., the kinetic energy of
electron located at pointx. As a boundary condition, we
require that the Green functions vanish at infinity.17,23 The
solutions of Eq.~2.4! then are symmetric with respect to a
interchange ofx andx8,

GR,A~x,x8uE;v!5GR,A~x8,xuE;v!. ~2.5a!

This symmetry is a direct consequence of the time-reve
invariance, which is not broken by the electric field.14

The electric field does, however, break the translatio
invariance in real space. In the absence of the random po
tial, or after disorder averaging, a translation by a vectoa
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leads to an energy changeF•a. The configuration average
ḠR,A of the Green functions therefore satisfy the relations

ḠR,A~x1a,x81auE;v!5ḠR,A~x,x8uE2F•a;v!. ~2.5b!

The symmetry properties expressed by Eqs.~2.5! will be
important later.

We now consider a generating functional for our Gre
functions. Following Ref. 29, we define

ZR,A@ j R,A#5E D@F#expS 6 iSR,A/21E dxj R,A(x)F(x) D ,

~2.6!

where

SR,A5E dxF~x!~6 iv1E2H !F~x!, ~2.7!

with F(x) a real scalar field. The retarded and advanc
Green functions are obtained according to the rule

GR,A(x,x8uE;v)5
7 id2

d j R,A~x!d j R,A~x8!
U

j 50

ln ZR,A@ j R,A#.

~2.8!

To calculate the configuration average we use the rep
trick. To this end we consider 2n copies of the original gen-
erating functional (n for the retarded degrees of freedom
andn for the advanced ones!, and take the limitn→0 at the
end of the calculation. The replicated generating functio
takes the form

~ZRZA!n5E )
a

D@Fa#expS (
a

E dxj a(x)Fa(x) D
3expF i

2 (
a

E dxFa~x!~ iva

1E2H !LaFa~x!G . ~2.9!

Here a52(n21), . . . ,n, La521 for a<0 and La51
for a.0, va5vLa , and j a5 j A for a<0 and j a5 j R for
a.0. Now we calculate the configuration averageZ̄
5^(ZRZA)n&dis, which generates the averaged Green fu
tionsḠR,A. If one performs a Hubbard-Stratonovich transfo
mation to decouple the resulting term quartic inF, and then
integrates outF, one finds

Z̄@ j 50#5E D@Q#eA[Q] , ~2.10!

where

A@Q#5
pn

8t E dx tr@Q~x!#22
1

2
tr ln GQ

21 , ~2.11!

with
9-2
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~GQ
21!aa8~x,x8uE;v!

5F ~ iva1E2Hx!daa81
i

2t
Qaa8~x!Gd~x2x8!.

~2.12!

It is easy to show thatGQ , averaged with respect to th
action A, and taken in the limitn→0, is diagonal in the
replica indices, and equal toḠR (ḠA) for a.0 (a,0). The
Q-matrix fields in the Eqs.~2.11! and ~2.12! are real-valued
matrix fields which satisfy the relationship

LaQaa8~x!5La8Qa8a~x!. ~2.13!

Equations~2.11!–~2.13! define the effective action which
forms the basis for our further investigations.

III. TRANSPORT AND HEATING IN GAUSSIAN
APPROXIMATION

A. Saddle-point Green functions

We now look for a saddle-point solutionQSP of the effec-
tive actionA@Q#, defined by

dA@Q#

dQ U
Q5QSP

50. ~3.1!

The saddle-point values ofQ and GQ are diagonal in the
replica indices,Qaa8

SP
5daa8Qa ,(GQSP)aa85daa8Ga , as are

the exact expectation values. From Eqs.~2.11! and~2.12! we
find

Qa~x!5
i

pn
Ga~x,xuE;v!5

i

pn
Ga~0,0uE2F•x;v!,

[Q̃a~mx!. ~3.2!

In the second equation we have used the generalized tr
lational invariance property of the Green function, E
~2.5b!, and the notation in the third equation emphasizes
the saddle-point field depends onx and the direction ofF
only via mx5E2F•x.

In order to obtain an equation for the Green function
use the generalized translation invariance property~2.5b! and
the time-reversal invariance. Due to these properties
Green function in the presence of the electric field can
written in the form23

Ga~x,x8uE;v!5E dk

~2p!d
e2 ik•(x2x8)

3ga~kuE2F•~x1x8!/2;v!, ~3.3!

wherega(kuE;v) is a function that depends only quadra
cally on the fieldF. If we work to linear order in the field
the function ga(kuE;v) thus reduces to the equilibrium
Green function,
07511
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ga~kuE;v!'
1

iva1E2ek1
i

2t
Q̃a~E!

, ~3.4!

whereek5k2/(2m). The only difference to the situation in
the absence of the field is then that the quantitymx , which
has replaced the chemical potential, goes to zero at the c
sical turning point, whereF•x5E. We will nevertheless
considerumxu large compared to 1/(2t) in calculating the
integral in Eq.~3.3!, i.e., we consider only the region fa
from the classical turning point. In this approximation w
obtain

Qa~x!5sgnva . ~3.5!

In writing down Eq. ~3.5! we have ignored the imaginar
part of Qa , which only leads to a weakly field-depende
renormalization of the chemical potential. The saddle-po
Green function obtained in this way agrees with that deriv
in Ref. 23 in a self-consistent Born-approximation.

We note that the simple structure of the above sadd
point solution is a result of the constant density of states
our model. If the density of states were energy depend
the saddle-point field would pick up an energy and field d
pendent contribution from the density of states, which wo
modify Eq. ~3.5!.

B. Gaussian fluctuations

We now consider the Gaussian fluctuations about
saddle-point solution. SubstitutingQ5QSP1dQ into Eq.
~2.11!, we find for the Gaussian part of the action

A(2)@dQ#5
pn

8t E dxdy(
aa8

dQaa8~x!Fd~x2y!

2
1

2pnt
Ga8~y,xuE;v!Ga~x,yuE;v!GdQa8a~y!.

~3.6!

The properties of the Gaussian propagators depend
whether both Green functions in Eq.~3.6! are retarded or
advanced, or whether one is retarded and the other advan
In the former case, the propagator is massive, in the la
soft. Settingv5V/2, the soft propagatorP satisfies the
equation

E dyG~x,yuE;V!P~y,x8uE;V!5d~x2x8!, ~3.7a!

where

tG~x,yuE;V!5d~x2y!2
1

2pnt
Ga.0~x,yuE;V/2!

3Ga8,0~y,xuE;V/2! ~3.7b!

is the corresponding soft vertex.P describes the relaxation o
the particle number density.9

From Eqs.~2.5! we obtain the following properties of th
vertex functionG,
9-3
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G~x,x8uE;V!5G~x8,xuE;V!, ~3.8a!

and

G~x1a,x81auE;V!5G~x,x8uE2F•a;V!. ~3.8b!

These relations are important for a gradient expansion of
vertex function. With their help, Eqs.~3.7! can be written to
second order in the gradient operator and in the classic
accessible region,

@V2“•D~mx!“#P~x,x8uE;V!5d~x2x8!. ~3.9!

Here

D~mx!5mxt/m ~3.10!

is the electron diffusion coefficient in a local equilibriu
approximation. The details of the derivation are given in
Appendix. We see that, inside the classically accessible
gion, the soft propagator is governed by a generalized di
sion equation, as one would expect from the fact that ph
cally, P describes the relaxation of density fluctuation
Outside the classically accessible region,G(x,x8uE;V)
'd(x2x8). Accordingly, only the modes inside the class
cally accessible region are generalized diffusion mod
again in agreement with what one would expect. Equat
~3.9! is very similar to the equation derived in Ref. 17 b
kinetic theory methods.

For later reference we note that, in a schematic notat
the Gaussian propagatorP has the form

P51/@V2D“

21~D/E!F•“#. ~3.11!

Accordingly, there is a frequency scale

V* 5DF2/E2, ~3.12!

or a time scalet* 51/V* that separates diffusive behavior
V@V* from field-dominated drift behavior atV!V* .

In deriving the generalized diffusion equation we ha
taken into account only terms linear inF. An estimate of the
terms quadratic inF shows that they are small compared
the ones kept provided thatuFu,/m!1, with , the mean-free
path.

C. Density relaxation

The generalized diffusion equation, Eq.~3.9!, differs from
the ordinary diffusion equation by the real-space depende
of D, which produces a term linear in the gradient. Th
introduces a new singularity into the differential equation.
a result, the solution of this equation for long times diffe
strongly from the ordinary Gaussian one. Let the field po
in x direction,F5(F,0), putx5(x,y) andx85(x8,0),30 and
perform a Fourier transform with respect to the directi
transverse to the field,

P~x,k;x8uE;V!5E dyeikyP~x,x8uE;V! ~3.13!

We then find that the solution of Eq.~3.9! takes the form

P~x,k;x8uE;V!5P~mx ,uku;mx8uE;V!, ~3.14a!
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P~m,p;m8uE;V!

5
1

D8F
e2p(m1m8)/F$Q~m2m8!

3M @ 1
2 ~11V/D8Fp!,1,2pm8/F#

3U@ 1
2 ~11V/D8Fp!,1,2pm/F#1Q~m82m!

3U@ 1
2 ~11V/D8Fp!,1,2pm8/F#

3M @ 1
2 ~11V/D8Fp!,1,2pm/F#%

3G@ 1
2 ~11V/D8Fp!#. ~3.14b!

Here D85D(E)/E5t/m. The functionsU and M in Eq.
~3.14b! are the confluent hypergeometric functions.31 In or-
der to obtain this solution we have required thatP vanishes
at infinity in the classically accessible region and that
probability current vanishes at the turning point, so that
particles cannot penetrate into the classically forbidden
gion.

To understand the nature of this solution we recall thaP
describes the relaxation of the particle number density. Le
consider, at timet50, an ensemble of particles with energ
E5m, located atx50, and with a homogeneous density
the direction perpendicular to the electric field. According
the initial number density is given by

n0~x,E!5
2p

L
d~E2m!d~x!, ~3.15!

whereL is the linear dimension of the system iny direction.
The evolution of this initial density is governed by the prop
gatorP for k50. In this limit P takes the form

P~m,0;m8uE;V!

5
2

D8F
FQ~m2m8!K0SA4Vm

D8F2D I 0SA4Vm8

D8F2 D
1Q~m82m!K0SA4Vm8

D8F2 D I 0SA4Vm

D8F2D G .

~3.16!

Here I 0 and K0 are the modified Bessel functions. The i
verse Laplace transformation yields

P~x,0;x8uE;t !5

expS 2
mx1mx8

D8F2t
D

D8Ft
I 0S 2Amxmx8

D8F2t
D .

~3.17!

Equation~3.17! explicitly displays the characteristic time

t* 5E/D8F2, ~3.18!
9-4
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which was apparent already in Eq.~3.9! @see Eqs.~3.11! and
~3.12!#, and which serves as the boundary between the sh
time and the long-time behavior. In order to determine
structure of the generalized diffusion propagator fort!t* ,
we use Eq.~3.14a!. For t!t* the spread of the initiald
package in x direction is small, and we can us
Fx/E,Fx8/E!1, in addition to the asymptotic expansion
I 0 for large arguments. If we expand the exponent with
spect tox2x8, we find

P~x,0;x8uE;t !5
1

A4pD~E!t
e2(x2x8)2/4D(E)t. ~3.19!

As expected, the relaxation of the initial density perturbat
is diffusive in this time regime. Note that in writing Eq
~3.19! we have ignored the first moment of the generaliz
diffusion propagator, which is nonzero. While the first m
ment is crucial for calculating currents, it is irrelevant for o
current discussion.

In the opposite limit,t@t* , the behavior is very different
In this case the width of the particle packet becomes v
large and the asymmetry of the particle packet, which
small initially, is getting considerable. The Bessel function
Eq. ~3.17! approaches unity for asymptotically long times,
that

P~x,0;x8uE,t !5
1

D8Ft
expS 2

mx1mx8

D8F2t
D ~3.20!

for Amxmx8/D8F2t!1. For very largeuxu, which satisfy the
requirementAmxmx8/D8F2t@1, we obtain

P~x,0;x8uE,t !5
1

D8Ft
expS 2

~Amx2Amx8!2

D8F2t
D .

~3.21!

These results show that in this regime the dynamics is
longer diffusive.

If, instead of the distribution function~3.15!, we consider
a d pulse in both the longitudinal and transverse directio
we have to investigate the functionP for nonzero values ofk.
We have not been able to do so exactly, and have resorte
a WKB approximation instead. The results obtained in t
way are in qualitative agreement with the case analy
above.

D. Transport and heating

So far we have considered the relaxation of density p
turbations. We now turn to the questions of transport a
Joule heating. To this end we consider, instead of Eq.~3.15!,
an initial density distribution

n0~x,E!5
2pN

V
d~E2m2F•x!. ~3.22!

HereN is the total particle number andV is the system vol-
ume. Note that Eq.~3.22! describes a uniform number den
sity in the classically accessible region, since
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n0~x!5E dE

2p
n0~x,E!5Q~mx!N/V. ~3.23!

To see how such a density distribution evolves, we rea
that P, Eq. ~3.17!, gives the probability to find a particle a
energym8 at time t, if it had the energym at time t50. In
the limit of long times,t@t* , the mean particle energy there
fore increases linearly with time,

m~ t !5
1

FE dmmP~m,0;m8ut !5m1D8F2t. ~3.24!

Note thatP andP were normalized with respect to an inte
gration overx. Changing the integration variable tom results
in the additional factor 1/F in Eq. ~3.24!. Equation~3.24!
shows that the energy fed into the system increases the
netic energy of the charge carriers.

According to the generalized diffusion equation, t
current-density distribution is given by

j~x,EuV!52D~mx!¹n~x,EuV!, ~3.25!

wheren(x,EuV) is to be calculated fromn0 by means of the
propagatorP. The volume averaged current density takes
form

j~V!5
1

VE dE

2p
dxj~x,EuV!. ~3.26!

For our spatially uniform charge-density distributio
n(x,EuV)5n(mxuV), and we obtain

j~V!52FE dm

2p

dD~m!

dm
n~muV!. ~3.27!

In our Gaussian approximation, the derivative of the diff
sion constant is independent ofm, and thus can be taken ou
of the integral. We finally obtain

j~V!52
tN

mV

F

V
. ~3.28!

The Gaussian theory thus yields an Ohmic current that le
to Joule heating.

IV. NONLINEAR s MODEL

A. Effective action

The derivation of a matrix field theory in Sec. III ha
proceeded in analogy to the case without an electric fie
and the result was structurally very similar to the latter.
particular, matrix elements that correspond to products
retarded and advance degrees of freedom are soft, w
those corresponding to products of two advanced or two
tarded degrees of freedom are massive. The chief differe
is that, in the presence of an electric field, the soft mode
Gaussian approximation are not diffusive, but rather obey
more complicated differential Eq.~3.9!.

It is obvious from these observations that one can de
an effective field theory for the soft modes by repeating
procedure that leads to a nonlinears model in the zero-field
9-5
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case.29,32 As expected, the only change is that the Lapla
operator in thes model is replaced by the differential oper
tor from Eq.~3.9!. We thus find

Aeff@Q̂#52
pn

8 E dx tr@Q̂~x!@“•D~mx!“#Q̂~x!#

2
pn

2
VE dx tr@LQ̂~x!#. ~4.1!

HereL is a diagonal matrix whose elements have been gi
after Eq.~2.9!. The matrix elements ofQ̂ are elements of the
homogeneous spaceO(n,n)/O(n)3O(n), andQ̂ is subject
to the constraints

tr Q̂~x!50, ~4.2a!

Q̂2~x!51, ~4.2b!

Q̂T~x!5LQ̂~x!L. ~4.2c!

These can be incorporated in a parametrization in term
n3n matricesq,

Q̂5S A11qqT q

2qT 2A11qTqD . ~4.3!

Roughly speaking, the fieldQ̂ contains the soft parts of th
field Q of the preceding section.

An expansion of the action, Eq.~4.1!, to quartic order inq
reads

Aeff5A(2)1A(4), ~4.4a!

with

A(2)52
pn

4 E dx(
aa8

qaa8~x!@V2“•D~mx!“#qaa8~x!,

~4.4b!

A(4)5
pn

32 (
$a i %

E dx$qa1a2
~x!qa3a2

~x!@V

2“•D~mx!“#qa3a4
~x!qa1a4

~x!1qa2a1
~x!qa2a3

~x!

3@V2“•D~mx!“#qa4a3
~x!qa4a1

~x!%. ~4.4c!

B. One-loop theory for the diffusivity

The expansion of the effective action in powers ofq al-
lows for a systematic loop expansion. To one-loop order
find the following result for the diffusivityD,

D (1)~mxuV!5D~mx!F12
1

pn
P~x,xuE;V!G , ~4.5!

which has the same structure as in the absence of the ele
field. The only difference is thatP(x,xuE,V) is calculated
from Eq. ~3.14b!, according to the relationship
07511
e

n

of

e

tric

P~x,xuE,V!5E
0

ldp

p
P~mx ,p;mxuE,V!, ~4.6!

wherel is an ultraviolet cutoff. In the absence of the elect
field this integral is infrared divergent ifV50. In the pres-
ence of the electric field we obtain, forV50, and in the
limit lmx /F@1,

D (1)~mx!5D~mx!F12
1

2p2nD~mx!
ln~lmx /F !G . ~4.7!

The static one-loop diffusivity is thus finite in two dimen
sions, indicating that the electric field destroys the mec
nism that gives rise to localization ind52. This was already
obvious from Eq.~3.11!, which is less infrared divergen
than a diffusion propagator.

For V@1/t* , with t* from Eq. ~3.18!, the functionP
reduces to the conventional diffusion propagator, as d
cussed in Sec. III. Consequently, in this regime the corr
tions to the bare diffusion coefficient take the same form
in the conventional weak-localization theory in the absen
of the field.

C. Scaling analysis

We now perform a scaling analysis of the generaliz
nonlinears model. Our procedure is analogous to the one
Ref. 33. To this end, we deviate from our restriction tod
52 and consider the model ind>2, ignoring the complica-
tions that arise from the chemical-potential dependence
the density of states ind.2. We first write the effective
action in a schematic form that leaves out everything tha
not necessary for power-counting purposes,

Aeff5
1

G2
E dx“2q21HE dxVq21

F

G2
E dxx“2q2

1
1

G4
E dx“2q41•••. ~4.8!

HereH}n, 1/G2}nt, etc. We now assign a scale dimensi
@L#521 to lengthsL. For F50, this action contains two
fixed points, namely, a stable Gaussian one that describe
diffusive phase, and a critical one that describes the And
son transition.

1. Gaussian fixed point

The Gaussian fixed point that describes diffusion in
absence of an electric fieldF50 is characterized by a scal
dimension of the fieldq equal to

@q#diff5~d22!/2. ~4.9a!

Frequencies must scale like wave numbers squared in a
fusive phase, so we also require

@V#diff52. ~4.9b!

G2 andH are then dimensionless,

@G2#diff5@H#diff50, ~4.9c!
9-6
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and all higher-order terms are irrelevant, with the least irr
evant couplings having a scale dimension

@u#diff52~d22!, ~4.9d!

where u denotes a generic irrelevant operator. 1/G4 is an
example of such a least irrelevant operator. Adding the e
tric field, we see thatF is relevant with respect to the diffu
sive fixed point,

@F#diff51. ~4.10!

The frequency dependent diffusivity, whose bare value isD
51/G2H, therefore obeys a scaling law

D~V,F,u!5D~Vb2,F b,u b2(d22)!. ~4.11!

At V50, and for smallF, we conclude that the diffusivity
has the structure

D~F !}const1Fd22, ~4.12!

and ind52 one expects a logarithmic dependence ofD on
F. This is in agreement with the explicit perturbative result
the preceding section.

ForVÞ0, D is a function ofF2/V, in agreement with the
explicit Gaussian theory in Sec. III. There are two scal
regimes. For smallV, the scaling ofD is governed by the
electric field, and for largeV, the scaling is governed by th
frequency. The crossover between these two scaling reg
is at a frequencyV5V* , Eq. ~3.12!. In an experiment, the
frequencyV is effectively replaced by 1/tf , wheretf is the
phase relaxation time.34 The weak-localization physics ca
therefore only be observed if the temperature is large c
pared to a crossover temperatureT* , which is given by

1/tf~T* !5DF2/E2. ~4.13!

We will further discuss this condition in Sec. V below.

2. Critical fixed point

We now turn to the critical fixed point that describes
Anderson transition atF50. Here we choose the fieldq to
be dimensionless, and the scale dimension of the freque
to bed,

@q#c50, @V#c5d. ~4.14!

The bare scale dimension ofG2 is then@G2#c5@G4#c5•••

[@G#c522d52e. An explicit renormalization-group cal
culation shows thatH is not renormalized, while the reno
malized counterpart ofG, g, has a fixed point valueg*
5O(e). The deviations ofg from g* constitute the relevan
operator at the critical fixed point, whose scale dimens
determines the correlation length exponentn. To one-loop
order4

n51/e1O~1!. ~4.15!

The scale dimension ofF is also given by a loop expansion
but the leading term can again be determined just by po
counting,

@F#c511O~e!. ~4.16!
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The electric field is thus a relevant operator with respec
the critical Anderson fixed point. In particular, an arbitrari
weak fieldF destroys the usual localization ind52.

The above discussion shows only that theF50 fixed
point is unstable, and does not tell what happens instead.
perturbative result, Eq.~4.7!, suggests that there is a metall
phase ind52 for FÞ0. We note that the result, Eq.~4.16!,
is different from the popular scaling argument which a
sumes thatFj, with j the correlation length, represents th
critical energy or frequency scale, which yield
@F#5d11.18 We will come back to this discrepancy in Se
V below.

V. DISCUSSION

In summary, we have used field-theoretic methods to
vestigate the impact of an electric field on the localization
noninteracting electrons, mostly in two dimensions. We ha
found that there is a characteristic temperatureT* that sepa-
rates a regime where the physics is dominated by the fi
from one where it is not. ForT,T* the physics is dominated
by the electric field, which directly affects the structure
the localization corrections. In this regime the density rela
ation is strongly nondiffusive, and the usual wea
localization corrections to observables are replaced by lo
rithmic dependences on the field. The latter have the sa
structure as those derived in Refs. 20 and 22. Our treatm
shows that the applicability of these results is restricted
T,T* . For T.T* the electric field does not significantl
affect the diffusion of a particle packet. Consequently,
weak-localization corrections to the diffusion coefficient
this regime are the same as in equilibrium and independ
of the electric field. In this regime the approaches of Refs.
and 16 are well founded.

Let us estimate the value ofT* for parameter values tha
are representative of a typical weak-localizati
experiment.35 With D'14 cm2/s, F'1.631022 eV/cm,
and E'0.6 meV, one has 1/tf(T* )'104 Hz. At low tem-
peratures,tf is dominated by the electron-electron intera
tion and inversely proportional to the temperature,36 tf
5c/T. For the data of Ref. 35 we obtainc'1011 K21s21.
This yields T* '1027 K. We conclude that the crossove
between the field-dominated regime and the usual we
localization regime occurs at unobservably low temperatu
This explains why no field-dominated scaling correctio
were observed in the experiments of Refs. 26 and 27, an
shows that these observations are not at odds with the no
that an arbitrarily weak electric field does indeed destroy
weak localization.

We now come back to the scale dimension of the fieldF
with respect to the critical fixed point that describes t
metal-insulator transition. As mentioned in Sec. IV, a scal
argument given by Sondhiet al.18 assumes thatFj scales
like the critical energy scale. For the scale dimension oF
this yields @F#c5z11, with z the dynamical critical expo-
nent. Schematically, this corresponds to a critical propag
~in the case of an Anderson transition!
9-7
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1

V1D~“ !¹21F/“
. ~5.1!

This is not consistent with perturbation theory, however,
least not for the model studied here. From Eq.~3.11! we see
that the actual critical propagator has the structure

1

V1D~“ !¹21FD~“ !“
. ~5.2!

The difference between these two expressions account
the difference between the present result,@F#c51, and that
of Ref. 18. The reason for the additional gradient square
Eq. ~5.2! compared to Eq.~5.1! is the Ward identity4 that is
closely related to particle number conservation. Equat
~5.1! implies that the electric field breaks particle numb
conservation, which it does not. The same point can be m
at the level of a fermionic action,5 which can be seen a
follows. TheF•x term in the Hamiltonian, Eq.~2.2!, corre-
sponds to a term

SF5E dxE
0

1/T

dt~F•x!n~x,t! ~5.3!

in the action, withn the electron number density field. Th
latter corresponds ton5tr Q in the Q-matrix formulation of
the field theory, and in the nonlinears model this corre-
sponds to trQ̂50. This shows that the leading coupling ofF
to the electronic soft modes vanishes for symmetry reas
The leading nonvanishing term carries an additional grad
squared. This is the reason why one cannot obtain the n
linear s model for electrons in an electric field by simp
replacing the coupling term in the fermionic action by
Q-field counterpart. In contrast, an external magnetic fi
doesbreak a symmetry~viz., spin rotational invariance! and
gives some soft modes~viz., the spin diffusions! a mass, and
replacing the spin density in the Zeeman term by its co
sponding trace over aQ-field gives the correct answer. W
conclude that, in general, one cannot extract values for
dynamical exponentz from experimental data by assumin
@F#5z11, as was done in Ref. 28.

At this point we would like to note that our model doe
not take into account the electron-electron interaction and
resulting inelastic collisions. Therefore, our results are o
valid for sample sizes smaller than the energy relaxa
length. If inelastic collisions were taken into account, t
electron system should be described by a distribution fu
tion with an effective temperature. If the energy-transfer r
within the electronic subsystem is larger than the one
tween the electron and the phonon system, the effective t
peratureTeff would depend also on the strength of the a
plied electric field. Since in this case the temperatureT in the
in the phase relaxation timetf(T) would be replaced by
Teff , the field dependence of the effective temperature wo
also be reflected in the logarithmic corrections to the cond
tivity, as pointed out in Ref. 37. This can be mistaken fo
direct impact of the electric field on the localization corre
tions in a regime where there is actually none. Howev
these effects depend on the ratio between the energy-tra
07511
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rate in the electronic subsystem and the cooling rate. T
are therefore not universal, but dependent on the experim
tal conditions.

We finally discuss the relation of our theory to some p
vious work in the literature. We have already noted that o
equation for the crucial Gaussian propagator, Eq.~3.9!, is
very similar to the one obtained by Kirkpatrick with differen
methods.17 Indeed, our theory is in many respects a fie
theoretic version of his kinetic theory. A different differenti
equation for the propagator was used in Refs. 21–23, wh
found that a critical field strengthFc is necessary to delocal
ize the states at the Fermi energy. Instead of Eq.~3.9!, these
authors used

@V2D~E!“21D8~E!F•“#P~x,x8uE;V!5d~x2x8!,
~5.4!

with D8(E)5dD(E)/dE. The use of this equation wa
based on the notion that there is a rapid mechanism for c
ing, so that heating processes can be ignored. The resu
equation violates the properties expressed by Eqs.~3.8!,
which are based on time reversal symmetry and general
translational invariance. Indeed, if there is a rapid mec
nism for cooling that validates Eq.~5.4!, then the electrons
must obviously have already experienced inelastic collisi
before the time at which Eq.~5.4! becomes valid. They are
thus already in the diffusive regimet.t* where the electric
field no longer provides the leading effect. In the oppos
regime t,t* Eq. ~5.4! is not valid, and Eq.~3.9! must be
used instead.
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APPENDIX: DERIVATION OF THE GENERALIZED
DIFFUSION EQUATION

In order to obtain Eq.~3.9! we have to expandG about the
d function. To this end we need to calculate the moments
G. We first consider the zeroth moment, which is given
terms of

M05E dyGa~x,yuE;v!G2a~y,xuE;v!, ~A1!

with v5V/2 and a.0. In terms of the functionga , Eq.
~3.4!, we have

M05E dyE
k
E

p
ga@kuE2F•~x2y/2!;v#

3g2a@puE2F•~x2y/2!;v#ei (k2p)•y, ~A2!

where*k5*dk/(2p)2. The termsF•y/2 in Eq. ~A2! lead to
corrections ofO(F2). If we omit them we obtain
9-8
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M05E
k
ga~Kumx ;v!g2a~Kumx ;v!

5nE
2mx

` de

iv2e1
i

2t
sgn~v!

1

iv2ek1
i

2t
sgn~2v!

.

~A3!

In order to evaluate this integral we use the approximat
already discussed in Sec. III: Ifmx.0 we replacemx by `,
and if mx,0 we replacemx by 2`. In the hydrodynamic
limit we then obtain

M052pntQ~mx!~12Vt!. ~A4!

The first momentM1 is defined as

M15E dy~x2y!Ga~x,yuE;v!G2a~y,xuE;v!. ~A5!

In the same approximation as above we find

M15
F

4

d

dEEk

]2

]k2U
k50

ga~k1kumx ;v!g2a~kumx ;v!

5F
d

dE
M2 . ~A6!
a

fo
th

ion

r

e

07511
n

HereM2 is the second moment. It is defined as

M25
1

4E dy~y2x!2Ga~x,yuE;v!G2a~y,xuE;v!. ~A7!

Here we ignore the fact that anisotropic terms can arise
to the electric field, since any such terms are ofO(F2).
Again using the same approximations as above, we obtai
the hydrodynamic limit

M25
nmx

2m E
2mx

`

de
1

~1/4t21e2!2
52pntD~mx!tu~mx!.

~A8!

Collecting our results, we now have the following express
for G in the hydrodynamic regime, and forx in the classi-
cally accessible region,

G~x,y!5d~x2y!@V2“•D~mx!“#. ~A9!

From this, Eq.~3.9! follows immediately.
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