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Weak localization of electrons in an external electric field

O. Bleibaum
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
and Institut fu Theoretische Physik, Otto-von-Guericke Universkéagdeburg, 39016 Magdeburg, Germany

D. Belitz
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
(Received 22 September 2003; published 27 February)2004

The impact of an electric field on the electron localization problem is studied within the framework of a
field-theoretic formulation. The investigation shows that the impact of the electric field on the localization
corrections is governed by the interplay between two time scales, one set by the electric field, and the other by
the phase relaxation rate. At very low temperatures the scaling of the conductivity is governed by the electric
field. In this regime the conductivity depends logarithmically on the field, and an arbitrarily small electric field
delocalizes the electron states. At higher temperatures the behavior of the conductivity is governed by the
temperature scaling. In this regime the field has no impact on the observable leading localization corrections.
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[. INTRODUCTION electric field. This raises the question how an externally ap-
plied electric field affects the localization phenomena.

The physics of weakly disordered electron systems has In the literature, there is no clear answer to this question.
been the subject of considerable theoretical and experiment&ixact results are available for one-dimensional systems
interest over the past years. According to semiclassical physnly.}~** These are characterized by a critical electric field
ics, the electrons in such systems move ballistically in bef. such that for field strength&<F. the states remain
tween occasional scattering events due to impurities ofpower-law localized, while forF>F. the states are ex-
phonons, which results in diffusive dynamics. The semiclastended.
sical picture has long been known to be incorrect in one Unfortunately, these exact calculations for one-
dimension, where arbitrarily weak disorder leads to all elecdimensional systems do not reveal how the electric field af-
tronic states being localizedA completely new understand- fects the quantum interference effects responsible for the
ing of transport in two dimensions was obtained in the lateweak localization in two dimensions. The impact of an elec-
1970’s by the scaling theory of Abrahares al? These au- tric field on the localization in two dimensional systems is
thors showed that quantum interferences lead to the localizaherefore much less clear. It has been argued that a weak
tion of all electronic states in two dimensions as well, nohomogeneous electric field has no influence at all on the
matter how weak the disorder. Accordingly, all two- localization*4~*¢ Other authors have concluded that an arbi-
dimensional systems are, strictly speaking, insulators. trary small electric field already leads to delocalizati6i®

The same conclusion was reached by a field-theoreticdh between these two extremes lies a theory that predicts a
approach that was pioneered by Weghelsing the replica  strong modification of the weak-localization corrections by
trick to deal with the quenched disorder, he derived a generan electric field®?° and theories in which delocalization
alized nonlinearc model whose coupling constant is the only occurs if the electric field exceeds a critical vaftie®
electrical conductivity. Wegner's original theory used Experimentally, the situation is not clear either. While
bosonic fields, but later applications of his method derivedearly experimenté?® seemed to find modifications of the
the same model starting from a fermionic formulattoA.  weak-localization corrections by a field, no impact of the
supersymmetric formulation, which avoids the replica trick,electric field on the localization corrections was observed in
was also give}’ Ref. 26. Similarly, Ref. 27 concluded that an electric field

A third approach to the localization problem were mode-has no impact on the localization corrections. On the other
mode coupling theories. While the original formulation by hand, the scaling argument of Ref. 18, which implies that an
Gotze® missed the interference effects that lead to localizaarbitrary small electric field leads to delocalization, is often
tion in two dimensions, a self-consistent diagrammatic apused in the interpretation of experiments, as discussed in
proach by Vollhardt and Witle,® as well as an improvement Ref. 28.
on Gaze’s original method? yielded results in agreement In the present paper we revisit this problem by means of
with both the scaling theory and the field-theoretic ap-field-theoretic techniques. We conclude that delocalization
proaches. They also agree well with numerical simulationgloes indeed occur for arbitrarily small fields. However, this
and with experiments. effect is not observable at realistic temperatures, which ex-

All of the above approaches focus on the electronic dif-plains some of the apparent contradictions between theory
fusion coefficient, and make a connection to the electricabnd experiment. We also find that the leading contribution to
conductivity by means of an Einstein relation. By contrast,the electric-field scaling, which was assumed in Ref. 18 to be
experimentally the conductivity is measured by applying anthe dominant effect, has a zero prefactor, and the actual ef-
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fect of the electric field is weaker. This is important for at- |eads to an energy change a. The configuration averages

tempts to extract the dynamical critical exponents from ex-GRA of the Green functions therefore satisfy the relationship
perimental dat&®

This paper is organized as follows. In Sec. Il we introduce
our model and formulate an effective field theory. This
theory is investigated in a Gaussian approximation in SecThe symmetry properties expressed by E@s5) will be
1, which yields a generalized diffusion equation for density important later.
fluctuations. In Sec. IV we derive a generalized nonlinear We now consider a generating functional for our Green
model, which is investigated in a one-loop approximation. Infunctions. Following Ref. 29, we define
Sec. V we discuss our results and their connections to previ-

GRA(x+a,x +aE;w)=GRAXX'|E-F-aj0). (2.5b

ous investigations. Some technical points are relegated to the _ , - RA _
appendix. VA [JR,A]:J D[®]exp £iS™ /2+J dxjra(X)P(X) |,
(2.6
Il. MODEL AND FIELD-THEORETIC FORMULATION
where
We consider the Hamilton operator
H=H,+V(x). (2.2) SR'A=J dxd (X)(Fiw+E—H)P(x), 2.7

Here with ®(x) a real scalar field. The retarded and advanced

Green functions are obtained according to the rule

A
HXZ—E‘FF'X (2.2) o
, , _ , GRA(X,X'|E: ) = +16 ‘ In ZRAT
is the Hamilton operator for free particles in the presence of (xX'|Ejw)= Sir A(X) SirA(X') Liral
an electric fieldF, with A the Laplace operator armu the RA RAVE M=o 2.9

electron mass, and(x) is a random potential. We use units
such thatih and the electron charge are equal to unifyis
characterized by a Gaussian distribution with zero mean an
second moment

To calculate the configuration average we use the replica
ﬁiick. To this end we considerr2copies of the original gen-
erating functional § for the retarded degrees of freedom,
1 andn for the advanced ongsand take the limin—0 at the
(VOOV(X))gis=5 —— o(x=x'). (2.3  end of the calculation. The replicated generating functional

T takes the form

Here(- - -)q4i denotes the disorder averagejs the density
of states per spin at the Fermi level, ands the single- ZRZA n:f D[® lex jdx' P (X
particle scattering time. Unless otherwise noted, we consider ( ) 1;[ [P % Ja()Pa(x)
a two-dimensional systenh=2 in the weak-disorder regime, .
ur=Kkel/2>1, wheret is the mean-free path, andandkg X ex L > f dx® ,(x)(iw
are the chemical potential and the Fermi wave number, re- 2 7 “ “
spectively, in equilibrium.
In our investigation we focus on configuration averages of LTE—
retarded and advanced Green functions and their products. E-H)APL]. 29

These functions are solutions of the differential equations
Here a=—-(n—1),...n, A,=—1 for a<0 andA,=1

(xiw+E—H) GRAXX'|E;w)=8(x—x"). (2.4  for a>0, w,=wA,, andj,=]a for a<0 andj,=jg for
a>0. Now we calculate the configuration average

In equilibrium, F=0,E= u is the chemical potential. Fd¥ ;
#0, the quantityE — F - x= u, is the chemical potential in a =((ZRZ*)")gss, which generates the averaged Green func-

local equilibrium approximation, i.e., the kinetic energy of antionsG™*. If one performs a Hubbard-Stratonovich transfor-
electron located at point. As a boundary condition, we mMmation to decouple the resulting term quarticlin and then
require that the Green functions vanish at infifity> The  integrates outP, one finds

solutions of Eq.(2.4) then are symmetric with respect to an

interchange ok andx’, Z[j =0]=f D[Q1eM, (2.10

GRAXX'|E;0)=GRAX' X|E;w). (2.5a
where
This symmetry is a direct consequence of the time-reversal

invariance, which is not broken by the electric fiéfd. Y 1 .

The electric field does, however, break the translational ALQ]= EJ dxtr[Q(x)]Z—Etrln Gg™, (211
invariance in real space. In the absence of the random poten-
tial, or after disorder averaging, a translation by a veetor with
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(G aar (XX'|E; @) 1
9. (K E;0)~ . : (3.4

i . i~
=| ({0, E=Hy)8par+ 5-Quar(¥) | S(x=X"). lwq+E— et 5-Qu(E)

(212  Wheree=k?/(2m). The only difference to the situation in
the absence of the field is then that the quanity which
It is easy to show thaGq, averaged with respect to the has replaced the chemical potential, goes to zero at the clas-
action A, and taken in the limin—O0, is diagonal in the sical turning point, where=-x=E. We will nevertheless
replica indices, and equal ®R (G*) for >0 (a<0). The  consider|u,| large compared to 1/ in calculating the
Q-matrix fields in the Eqs(2.11) and(2.12 are real-valued integral in Eq.(3.3), i.e., we consider only the region far

matrix fields which satisfy the relationship from the classical turning point. In this approximation we
obtain
AaQaa’(X) Aa’Qa’a(X)' (213 Qa(X)=Sgl’1wa. (35)
Equations(z.l_])—(z.ls‘) define Fhe ef_fect_ive action which | writing down Eq. (3.5 we have ignored the imaginary
forms the basis for our further investigations. part of Q,, which only leads to a weakly field-dependent
renormalization of the chemical potential. The saddle-point
. TRANSPORT AND HEATING IN GAUSSIAN Green function obtained in this way agrees with that derived
APPROXIMATION in Ref. 23 in a self-consistent Born-approximation.
. . We note that the simple structure of the above saddle-
A. Saddle-point Green functions point solution is a result of the constant density of states in
We now look for a saddle-point solutid@S® of the effec-  our model. If the density of states were energy dependent,
tive actionA[Q], defined by the saddle-point field would pick up an energy and field de-
pendent contribution from the density of states, which would
SA[Q] modify Eq. (3.5).
30 =0. (3.1
Q=Q%P B. Gaussian fluctuations

The saddle-point values d@ and G, are diagonal in the We now consider the Gaussian fluctuations about our
replica indicesQSP,=6aa/Qa,(GQSP)M,= 8,.:G,, as are saddle-point solution. Substitutin@=Q%"+5Q into Eq.

the exact expectation values. From E@1D and(2.12 we (211, we find for the Gaussian part of the action

find

APL3Q]- - [ dxay, 50, (0| ax-y

Qu(X)= =G (XX[E;0) = —G,(00E~F-xiw),

1
3 — 5 =G, (VX E;0)G, (XY E;0)
=Qu(1). (32 2mvT

In the second equation we have used the generalized tra
lational invariance property of the Green function, Eq
(2.5b), and the notation in the third equation emphasizes th
the saddle-point field depends anand the direction of
only via u,=E—F-X.

In order to obtain an equation for the Green function we
use the generalized translation invariance prop@b and
the time-reversal invariance. Due to these properties the
Green function in the presence of the electric field can be f dyl' (x,y|[E; Q)P(y,x'|E;Q)=8(x—x"), (3.79
written in the fornt®

5Qa’a(y)-

(3.6

n'?he properties of the Gaussian propagators depend on
é\fvhether both Green functions in E¢3.6) are retarded or
advanced, or whether one is retarded and the other advanced.
In the former case, the propagator is massive, in the latter,
soft. Settingw=0/2, the soft propagatoP satisfies the
equation

where

Ga(x,x’|E;w)=f e ik =X PN . .
(2m)d TGV Q)= 8(x=y) = 5——Gaxo(X,Y|E; /2)

Xgo(KE=F-(x+x")/2;0), (3.3 X G, —o(V,X|E;Q/2) (3.7b

whereg,(k|E;w) is a function that depends only quadrati- is the corresponding soft verteR.describes the relaxation of
cally on the fieldF. If we work to linear order in the field, the particle number density.

the function g,(k|E;w) thus reduces to the equilibrium From Egs.(2.5 we obtain the following properties of the
Green function, vertex functionl’,
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L(x,X'|E;Q)=T(x",X|E;Q), (3.8a  where
and P, p;p'|E; Q)
I'(x+ax +aE;Q)=T(x,xX'|E-F-aQ). (3.8h 1
. . . ) - _e—p(u+u')/F{@( —u)
These relations are important for a gradient expansion of the D'E H—H

vertex function. With their help, Eq$3.7) can be written to
second order in the gradient operator and in the classically XM[3(1+Q/D'Fp),1,2pu’IF]
accessible region,

[Q-V D(u) VIP(XX'|E:Q)=8(x—x'). (3.9 ¥ULz(1+Q/DFp) 1. 2pu/F1+ O =)

Here XU[3(1+Q/D'Fp),1,2pu'/F]

D(uy) = uyr/m (3.10 XM[3(1+Q/D'Fp),1,2pul/F1}

is the electron diffusion coefficient in a local equilibrium 1 ,
approximation. The details of the derivation are given in the XTLz(1+Q/DFp)]. (3.149
Appendix. We see that, inside the classically accessible rgqere D’'=D(E)/E=r/m. The functionsU and M in Eq.
gion, the soft propagator is governed by a generalized diffur3 141 are the confluent hypergeometric functidhdn or-

sion equation, as one would expect from the fact that physiger to obtain this solution we have required tRavanishes
cally, P describes the relaxation of density fluctuations.at infinity in the classically accessible region and that the
Outside the classically accessible regioki(x,x'|E;Q)  probability current vanishes at the turning point, so that the
~6(x—x"). Accordingly, only the modes inside the classi- particles cannot penetrate into the classically forbidden re-
cally accessible region are generalized diffusion modesgion_

again in agreement with what one would expect. Equation  To understand the nature of this solution we recall fat
(3.9 is very similar to the equation derived in Ref. 17 by gescribes the relaxation of the particle number density. Let us

kinetic theory methods. _ . _ consider, at timé=0, an ensemble of particles with energy
For later reference we note that, in a schematic notationz— ,,  |ocated atx=0, and with a homogeneous density in
the Gaussian propagatbrhas the form the direction perpendicular to the electric field. Accordingly,
P=1[Q—DV2+(D/E)F-V]. (3.11) the initial number density is given by
Accordingly, there is a frequency scale 2
No(x,E) = 8(E— p) 8(x), (3.19
Q* =DF?/E?, (3.12
or a time scale¢* = 1/Q* that separates diffusive behavior at \{_vr?ereL IIS fche "f”ehé_“ pll_m_elnjlon .Of _the systerr:jytr)dlrehctlon.
Q> 0O* from field-dominated drift behavior & <Q* . e evolution of this initial density Is governe y the propa-

In deriving the generalized diffusion equation we havegatorPfor k=0. In this limit 7> takes the form
taken into account only terms linear fh An estimate of the

terms quadratic ifF shows that they are small compared to PlpOip'[E;€2)
the ones kept provided thiE|¢/u<1, with ¢ the mean-free 5 40, 40,
path. = 2 1 O(u—uK | /
D'E (u—n")Ko D'E2 0 D'E2
C. Density relaxation
. e . . 40 ' 40 u
The generalized diffusion equation, E§.9), differs from +O(u'—u)Kg — =]l —
the ordinary diffusion equation by the real-space dependence D'F D'F
of D, which produces a term linear in the gradient. This (3.16

introduces a new singularity into the differential equation. As
a result, the solution of this equation for long times differsHere |, and K, are the modified Bessel functions. The in-
strongly from the ordinary Gaussian one. Let the field pointverse Laplace transformation yields

in x direction,F= (F,0), putx=(x,y) andx’ = (x’,0),%° and
perform a Fourier transform with respect to the direction F{ JTRE TN
transverse to the field, €

DR 2V

P(x,0;x'|E;t)= - lo :“X;ux
P(x,k;x’|E;Q)=J dye“P(x,x'|E;Q) (3.13 D'Ft D*F% (3.17)
We then find that the solution of E¢3.9) takes the form Equation(3.17) explicitly displays the characteristic time
PO X |E; Q) =Py, | K[ g |E; ), (3148 t*=E/D'F?, (3.18
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which was apparent already in E®.9) [see Egs(3.11) and dE
(3.12)], and which serves as the boundary between the short- No(X) = f zno(x,E) =0 (u)N/V. (3.23
time and the long-time behavior. In order to determine the

structure of the generalized diffusion propagator tfeat*, To see how such a density distribution evolves, we realize
we use Eq.(3.143. For t<t* the spread of the initiab  that P, Eq.(3.17), gives the probability to find a particle at
package in x direction is small, and we can use energyu’ attimet, if it had the energy. at timet=0. In

Fx/E,Fx'/E<1, in addition to the asymptotic expansiqn of the limit of long timest>t*, the mean particle energy there-
lo for large arguments. If we expand the exponent with re<ore increases linearly with time,

spect tox—x’, we find

1
(x—x")%/4D (E)t ’u(t):EI dupP(p,Ou'[)=p+D'F?t. (3.24
——e XX . (3.19
4mD(E)t Note thatP and P were normalized with respect to an inte-

As expected, the relaxation of the initial density perturbationdration overx. Changing the integration variable toresults
is diffusive in this time regime. Note that in writing Eq. N the additional factor ¥ in Eq. (3.24. Equation(3.24
(3.19 we have ignored the first moment of the generalizedhoWs that the energy fed into the system increases the ki-
diffusion propagator, which is nonzero. While the first mo- N€tic energy of the charge carriers. _
ment is crucial for calculating currents, it is irrelevant for our  According to the generalized diffusion equation, the
current discussion. current-density distribution is given by

In the opposite limitf>t*, the behavior is very different. : _
In this case the width of the particle packet becomes very J(X,E[Q) = =D (1) Vn(x,E[Q), (3.25
large and the asymmetry of the particle packet, which isvheren(x,E|Q) is to be calculated from, by means of the
small initially, is getting considerable. The Bessel function inpropagatoiP. The volume averaged current density takes the
Eq. (3.17 approaches unity for asymptotically long times, soform
that

P(x,0;x'|E;t)=

1(dE
j(Q)=vJ dej(x,E|Q). (3.2

(3.20

1 JTNESN
P(x,0;x'|E,t)=——exp — X
D'Ft D'F?t

For our spatially uniform charge-density distribution,

n(x,E[Q)=n(u,/Q), and we obtain
for \ e, /D'F?t<1. For very largdx|, which satisfy the (x,E[Q2) =n(u,{/2)

requirementy u,u,/D'F?t>1, we obtain _ du dD(w)
Q)==F| 5= n( /). (3.27)
N \/_ 5 27 du
1 _ I
P(x,0;x'|E,t)= ’—exp( - M . In our Gaussian approximation, the derivative of the diffu-
D'Ft D'F1 sion constant is independent af and thus can be taken out

(3.2 of the integral. We finally obtain

These results show that in this regime the dynamics is no N F
longer diffusive. (Q)=—— —. (3.29

If, instead of the distribution functio(8.15, we consider mV Q)
a ¢ pulse in both the longitudinal and transverse directions;rne Gaussian theory thus yields an Ohmic current that leads
we have to investigate the functiéhfor nonzero values . 4 joule heating.
We have not been able to do so exactly, and have resorted to
a WKB approximation instead. The results obtained in this
way are in qualitative agreement with the case analyzed
above. A. Effective action

IV. NONLINEAR o MODEL

. The derivation of a matrix field theory in Sec. Il has
D. Transport and heating proceeded in analogy to the case without an electric field,

So far we have considered the relaxation of density perand the result was Structurally very similar to the latter. In
turbations. We now turn to the questions of transport andarticular, matrix elements that correspond to products of
Joule heating. To this end we consider, instead of(Bd.5), retarded and advance degrees of freedom are soft, while
an initial density distribution those corresponding to products of two advanced or two re-

tarded degrees of freedom are massive. The chief difference

27N is that, in the presence of an electric field, the soft modes in
No(X,E) = —;— 8(E—pn—F-x). (322 Gaussian approximation are not diffusive, but rather obey the
more complicated differential E¢3.9).
HereN is the total particle number andis the system vol- It is obvious from these observations that one can derive
ume. Note that Eq(3.22 describes a uniform number den- an effective field theory for the soft modes by repeating the
sity in the classically accessible region, since procedure that leads to a nonlineamodel in the zero-field
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case?®32 As expected, the only change is that the Laplace
operator in ther model is replaced by the differential opera-

tor from Eg.(3.9). We thus find
~ s ~ ~
Al 01=— T [ &xtQ0OIY D) V1000

- ;QJ dxt A O(X)]. @.1)

HereA is a diagonal matrix whose elements have been given

PHYSICAL REVIEW B 69, 075119 (2004

)\dp
P(X,XlE,Q)ZJO ?’P(Mx,p;ﬂx|E,Q), (46)
where\ is an ultraviolet cutoff. In the absence of the electric
field this integral is infrared divergent i =0. In the pres-
ence of the electric field we obtain, fé2=0, and in the
limit Ay /F>1,

DM () =D(p)| 1- In(Auy/F) | (4.7)

2m?vD (4

after Eq.(2.9). The matrix elements d) are elements of the  The static one-loop diffusivity is thus finite in two dimen-

homogeneous spa&(n,n)/O(n) X O(n), andQ is subject
to the constraints

trQ(x)=0, (4.23
Q*(x)=1, (4.2b
QT(x)=AQ(X)A. (4.209

sions, indicating that the electric field destroys the mecha-
nism that gives rise to localization th= 2. This was already
obvious from Eq.(3.11), which is less infrared divergent
than a diffusion propagator.

For Q> 1/t*, with t* from Eq. (3.18, the functionP
reduces to the conventional diffusion propagator, as dis-
cussed in Sec. lll. Consequently, in this regime the correc-
tions to the bare diffusion coefficient take the same form as
in the conventional weak-localization theory in the absence

These can be incorporated in a parametrization in terms adf the field.

nXn matricesq,

[ V1itad' q
Q= 4.3

—q' —JTraa)

Roughly speaking, the fiel® contains the soft parts of the

field Q of the preceding section.
An expansion of the action, E¢4.1), to quartic order irg
reads
Aeii=AD+A®, (4.49

with

A= j 0X, G (O[Q= VD (1) V10l (),
“ (4.4b

A(4)_ J’ dx {qalaz(x)qa3a2(x)[ﬂ

-V. D(MX)V]qa3a4(X)qa1a4(X) + Qazal(x)qa2a3(x)
X[Q_V'D(MX)V]qa4a3(X)qa4al(X)}' (440

B. One-loop theory for the diffusivity
The expansion of the effective action in powersgoél-

lows for a systematic loop expansion. To one-loop order we

find the following result for the diffusivityD,

DU, 0)=D(sw)| 1~ PxXED) |, (45

C. Scaling analysis

We now perform a scaling analysis of the generalized
nonlinearoc model. Our procedure is analogous to the one in
Ref. 33. To this end, we deviate from our restrictiondo
=2 and consider the model =2, ignoring the complica-
tions that arise from the chemical-potential dependence of
the density of states il>2. We first write the effective
action in a schematic form that leaves out everything that is
not necessary for power-counting purposes,

Ag= G deV2q2+Hfdeq +—f dxxV2g?

dxVv2g*+ - - (4.9

G4
HereHx v, 1/G,vr, etc. We now assign a scale dimension
[L]=—1 to lengthsL. For F=0, this action contains two
fixed points, namely, a stable Gaussian one that describes the
diffusive phase, and a critical one that describes the Ander-
son transition.

1. Gaussian fixed point

The Gaussian fixed point that describes diffusion in the
absence of an electric fiel=0 is characterized by a scale
dimension of the fieldj equal to

[a]gir=(d—2)/2. (4.9a

Frequencies must scale like wave numbers squared in a dif-
fusive phase, so we also require

[Q]gitr= 2. (4.9

which has the same structure as in the absence of the electis.,, andH are then dimensionless,

field. The only difference is tha®(x,x|E,Q) is calculated

from Eq. (3.14b, according to the relationship

[Galgir=[H]air=0, (4.90
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and all higher-order terms are irrelevant, with the least irrel-The electric field is thus a relevant operator with respect to

evant couplings having a scale dimension the critical Anderson fixed point. In particular, an arbitrarily
— weak fieldF destroys the usual localization @=2.
[uai=—(d=2), (4.99 The above discussion shows only that the=0 fixed

where u denotes a generic irrelevant operatoiG1/is an  point is unstable, and does not tell what happens instead. The
example of such a least irrelevant operator. Adding the elegperturbative result, Eq4.7), suggests that there is a metallic
tric field, we see thaF is relevant with respect to the diffu- phase ind=2 for F#0. We note that the result, E4.16),

sive fixed point, is different from the popular scaling argument which as-

sumes that &, with & the correlation length, represents the

[Flair=1. 410 ritical energy or frequency scale, which vyields

The frequency dependent diffusivity, whose bare valuB is [F]=d+ 1.8 We will come back to this discrepancy in Sec.
=1/G,H, therefore obeys a scaling law V below.

D(Q,F,u)=D(Qb? Fb,ub (@-2), (4.11)

At =0, and for smallF, we conclude that the diffusivity V. DISCUSSION

has the structure , : :
In summary, we have used field-theoretic methods to in-

D(F)econst-F972, (4.12 vestigate the impact of an electric field on the localization of
noninteracting electrons, mostly in two dimensions. We have
found that there is a characteristic temperaflitethat sepa-
rates a regime where the physics is dominated by the field
from one where it is not. FOF<T* the physics is dominated
explicit Gaussian theory in Sec. lll. There are two scalingby the e!ect_ric field, W.hiCh direc.tly aﬁects the strupture of
regimes. For small), the scaling ofD is governed by the thg Iocghzatlon correcnon_s. I|j this regime the density relax-
electric field, and for larg€), the scaling is governed by the &tion is strongly nondiffusive, and the usual weak-
frequency. The crossover between these two scaling regimé%cal'?at'on corrections to obgervables are replaced by loga-
is at a frequency)=Q*, Eq.(3.12. In an experiment, the rithmic dependences on th_e field. The latter have the same
frequency() is effectively replaced by %/,, wherer, is the structure as those d_erlve_(_j in Refs. 20 and 22_. Our tr_eatment
phase relaxation tim¥. The weak-localization physics can Shows that the applicability of these results is restricted to
therefore only be observed if the temperature is large comI <T*. For T>T* the electric field does not significantly

and ind=2 one expects a logarithmic dependencédobn
F. This is in agreement with the explicit perturbative result in
the preceding section.

ForQ#0, D is a function ofF%/(), in agreement with the

pared to a crossover temperatdre, which is given by affect the diffusion of a particle packet. Consequently, the
weak-localization corrections to the diffusion coefficient in
1r4(T*)=DF?/E?. (4.13  this regime are the same as in equilibrium and independent
We will further discuss this condition in Sec. V below. of the electric field. In this regime the approaches of Refs. 14
and 16 are well founded.
2. Critical fixed point Let us estimate the value @™ for parameter values that

are representative of a typical weak-localization
experiment® With D~14 cnf/s, F~1.6x10 2 eV/cm,
andE~0.6 meV, one has &/(T*)~10" Hz. At low tem-
C[:yeratures,rd, is dominated by the electron-electron interac-

We now turn to the critical fixed point that describes an
Anderson transition af=0. Here we choose the fielgito
be dimensionless, and the scale dimension of the frequen

to bed, tion and inversely proportional to the temperati?rew
[q]c=0, [Q].=d. (4.14  =c/T. For the data of Ref. 35 we obtagw=10"' K™ 's™*.
This yields T*~10"’ K. We conclude that the crossover
The bare scale dimension &, is then[G,]c=[G4]c=---  between the field-dominated regime and the usual weak-

=[G].=2—d=—e. An explicit renormalization-group cal- |ocalization regime occurs at unobservably low temperatures.
culation shows thaH is not renormalized, while the renor- This explains why no field-dominated scaling corrections
malized counterpart of5, g, has a fixed point valug*  were observed in the experiments of Refs. 26 and 27, and it
=0(e). The deviations ofy from g* constitute the relevant shows that these observations are not at odds with the notion
operator at the critical fixed point, whose scale dimensiorthat an arbitrarily weak electric field does indeed destroy the
determines the correlation length exponentTo one-loop weak localization.
ordef We now come back to the scale dimension of the fleld
with respect to the critical fixed point that describes the
v=1/e+0(1). (419 metal-insulator transition. As mentioned in Sec. IV, a scaling
The scale dimension d is also given by a loop expansion, &rgument given by Sondtét al'® assumes thaF ¢ scales

but the leading term can again be determined just by powele the critical energy scale. For the scale dimensioriof
counting, this yields[F].=z+ 1, with z the dynamical critical expo-

nent. Schematically, this corresponds to a critical propagator
[F]lc=1+0O(e). (4.16 (in the case of an Anderson transitjon
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1 rate in the electronic subsystem and the cooling rate. They
5 . (5.9 are therefore not universal, but dependent on the experimen-
Q+D(V)V +F/V tal conditions.

This is not consistent with perturbation theory, however, at e finally discuss the relation of our theory to some pre-
least not for the model studied here. From E3j11) we see  VIOUS work in the literature. We have already noted that our

that the actual critical propagator has the structure equation for the crucial Gaussian propagator, E9), is
very similar to the one obtained by Kirkpatrick with different
1 methods-’ Indeed, our theory is in many respects a field-
5 ) (5.2 theoretic version of his kinetic theory. A different differential
Q+D(V)Vo+FD(V)V equation for the propagator was used in Refs. 21—23, which

The difference between these two expressions accounts fépund that a critical field strengthi is necessary to delocal-
the difference between the present redif].=1, and that 12€ the states at the Fermi energy. Instead of(B®), these
of Ref. 18. The reason for the additional gradient squared iuthors used

Eq. (5.2) compared to Eq(5.1) is the Ward identit§ that is

closely related to particle number conservation. Equation [2—D(E)V?+D’(E)F-V]P(x,x'|E;Q)=&(x—x"),
(5.1) implies that the electric field breaks particle number (5.9

conservation, which it does not. The same point can be made. ey . .
at the level of a fermionic actiohwhich can be seen as with D'(E)=dD(E)/dE. The use of this equation was
follows. TheF-x term in the Hamiltonian, Eq2.2), corre- based on the notion that there is a rapid mechanism for cool-

ing, so that heating processes can be ignored. The resulting
sponds to a term equation violates the properties expressed by EZSH),
T which are based on time reversal symmetry and generalized
Sp=f de d7(F-x)n(x, ) (5.3 translational invariance. Indeed, if there is a rapid mecha-
nism for cooling that validates E@5.4), then the electrons
in the action, withn the electron number density field. The must obviously have already experienced inelastic collisions
latter corresponds tn=tr Q in the Q-matrix formulation of ~ before the time at which Ed5.4) becomes valid. They are
the field theory, and in the nonlinear model this corre- thus already in the diffusive reginte>t* where the electric

sponds to tH=0. This shows that the leading couplingfof fielq no longer provide;s the quding effect. In the opposite
to the electronic soft modes vanishes for symmetry reason§€9imet<t* Eq. (5.4) is not valid, and Eq(3.9) must be
The leading nonvanishing term carries an additional gradiertSed instead.

squared. This is the reason why one cannot obtain the non-

linear c model for electrons in an electric field by simply ACKNOWLEDGMENTS
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sponding trace over ®-field gives the correct answer. We
conclude that, in general, one cannot extract values for the APPENDIX: DERIVATION OF THE GENERALIZED
dynamical exponent from experimental data by assuming DIFFUSION EQUATION
[F]=z+1, as was done in Ref. 28. i
At this point we would like to note that our model does _ !N order to obtain Eq(3.9) we have to expani about the

not take into account the electron-electron interaction and thé function. To this end we need to calculate the moments of
resulting inelastic collisions. Therefore, our results are onlyl - We first consider the zeroth moment, which is given in
valid for sample sizes smaller than the energy relaxatioferms of

length. If inelastic collisions were taken into account, the

electron system should be described by a distribution func- ) )
tion with an effective temperature. If the energy-transfer rate Mo= J’ dYGa(XYE;0)G- (Y X|E @),
within the electronic subsystem is larger than the one be-

tween the electron and the phonon system, the effective tenmwvith w=/2 and«>0. In terms of the functiorg,,, Eq.
peratureT . would depend also on the strength of the ap-(3.4), we have

plied electric field. Since in this case the temperaiune the

(A1)

in the phase relaxation time,(T) would be replaced by

Ter, the field dependence of the effective temperature would Mozf dyfkf 9oL K E—F-(x—y/2); 0]

also be reflected in the logarithmic corrections to the conduc- P

tivity, as pointed out in Ref. 37. This can be mistaken for a Xg_plE—F-(x—Vy/2);0]e® Py (A2)

direct impact of the electric field on the localization correc-
tions in a regime where there is actually none. Howeverwhere[,= [dk/(2)2. The termsF-y/2 in Eq.(A2) lead to
these effects depend on the ratio between the energy-transfesrrections ofO(F?2). If we omit them we obtain
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Mo= fkga(Klux:w)gfa(Klux:w)

©

de 1

) i
) lwo— €+ 2—ngr(—w)

=y T :
iw—e€ 2ngl”(cu
(A3)

In order to evaluate this integral we use the approximatio
already discussed in Sec. lll: lf,>0 we replaceu, by o,
and if u,<0 we replaceu, by —«. In the hydrodynamic
limit we then obtain

Mo=27v70 () (1— Q7). (A4)

The first moment, is defined as

M1=f dy(X—Y)G(X,Y|E;0)G_ (Y, X E;w). (A5)

In the same approximation as above we find

F d 32
Ml:ZELE 709a(k+K|Mx;w)g—a(kmx;w)
=F d M A6
=FigM2. (AB)

PHYSICAL REVIEW B69, 075119 (2004

Here M, is the second moment. It is defined as

1
M2=ZJ dy(Y—=X)?Go(X,Y|E;@)G_ (V. X|E;0). (A7)

Here we ignore the fact that anisotropic terms can arise due
to the electric field, since any such terms are @fF?).

r}B\Qain using the same approximations as above, we obtain in

the hydrodynamic limit

%

1

gL
; i (LA + €2)2

=om =2mv7D (1) TO(11x)-

(A8)

Collecting our results, we now have the following expression
for I' in the hydrodynamic regime, and farin the classi-
cally accessible region,

I'(x,y)=86(x=y)[Q=V-D(u)V]. (A9)

From this, Eq.(3.9) follows immediately.
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