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Effective nonlinear optical properties of composite media of graded spherical particles
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We have developed a nonlinear differential effective dipole approximation~NDEDA!, in an attempt to
investigate the effective linear and third-order nonlinear susceptibility of composite media in which graded
spherical inclusions with weak nonlinearity are randomly embedded in a linear host medium. Alternatively,
based on a first-principles approach, we derived exactly the linear local field inside the graded particles having
power-law dielectric gradation profiles. As a result, we obtain also the effective linear dielectric constant and
third-order nonlinear susceptibility. Excellent agreement between the two methods is numerically demon-
strated. As an application, we apply the NDEDA to investigate the surface plasmon resonant effect on the
optical absorption, optical nonlinearity enhancement, and figure of merit of metal-dielectric composites. It is
found that the presence of gradation in metal particles yields a broad resonant band in the optical region, and
further enhances the figure of merit.
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I. INTRODUCTION

Graded materials, whose material properties can vary c
tinuously in space, are abundant in nature. These mate
have attracted much interest as one of the advanced inho
geneous composite materials in various enginee
applications.1 With the advent of fabrication technique
these materials can be well produced to tailor their proper
for specific needs via the design of the material and mic
structure gradients. Such a design makes graded mate
quite different in physical properties from the homogeneo
materials and other conventional composite materials. Mo
over, the composite media consisting of graded inclusi
can be more useful and interesting than those of homo
neous inclusions. Although various theories have been es
lished to investigate the optical and dielectric properties
the composite media of homogeneous inclusions,2,3 they fail
to deal with the inhomogeneous composites of graded in
sions. Recently, a first-principles approach4,5 and a differen-
tial effective dipole approximation6,7 have been presented i
order to investigate the dielectric response of graded ma
als.

The problem becomes more complicated by the prese
of nonlinearity in realistic composites. Besides inhomoge
ity, such nonlinearity plays also an important role in the
fective material properties of composite media.8–14 It is thus
necessary to establish a new theory to study the effec
nonlinear properties of graded composite media. In fact,
introduction of dielectric gradation profiles in nonlinear com
posites is able to provide an alternative way to control
local-field fluctuation, and hence let us obtain the desi
effective nonlinear response.

In fact, the previous one-shell model15 and multishell
model,16 which were used to study the effective nonline
optical property, can be seen as an initial model of gra
inclusions. In this paper, we will put forth a nonlinear diffe
ential effective dipole approximation~NDEDA! to investi-
gate the effective linear and nonlinear dielectric properties
composite media containing a very small volume fraction
0163-1829/2004/69~7!/075105~8!/$22.50 69 0751
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nonlinear graded spherical particles~inclusions!. For such
particles, the linear and nonlinear physical properties w
continuously vary along their radius.

The paper is organized as follows. In Sec. II, we descr
the model and define briefly the effective linear dielect
constant and third-order nonlinear susceptibility. In Sec.
the NDEDA is presented to investigate the effective line
dielectric constant and third-order nonlinear susceptibility
nonlinear graded composite media in the dilute limit. In S
IV, based on a first-principles approach, we derive the ex
solutions for composite media having power-law gradat
profiles inside the inclusions, which is followed by the n
merical results in Sec. V. Finally, some conclusion and d
cussion is shown in Sec. VI.

II. MODEL AND DEFINITION OF EFFECTIVE LINEAR
AND NONLINEAR RESPONSES

Let us consider a nonlinear composite system, in wh
identical graded spherical inclusions with radiusa, are ran-
domly embedded in a linear host medium of dielectric co
stante2. The local constitutive relation between the displac
mentD and the electric fieldE inside the graded particle i
given by

D5e~r !E1x~r !uEu2E, ~1!

where e(r ) and x(r ) are the linear dielectric constant an
third-order nonlinear susceptibility, respectively. Note bo
e(r ) andx(r ) are radial functions. Here we assume that t
weak nonlinearity condition is satisfied.8 In other words, the
contribution of the second~nonlinear! part @x(r )uEu2# in the
right-hand side of Eq.~1! is much less than that of the firs
~linear! part e(r ). We restrict further our discussion to th
quasistatic approximation, under which the whole compo
medium can be regarded as an effective homogeneous
©2004 The American Physical Society05-1
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with effective linear dielectric constantee and effective
third-order nonlinear susceptibilityxe . To show the defini-
tions of ee andxe , we have8

^D&5eeE01xeuE0u2E0 , ~2!

where^•••& represents the spatial average, andE05E0ez is
the external applied field alongz axis.

The effective linear dielectric constantee is given by

eeE05
1

VEV
e iElin,idV5 f ^e~r !Elin,1&1~12 f !e2^Elin,2&,

~3!

wheref is the volume fraction of the graded particles and
subscript stands for the linear local field@i.e., obtained for
the same system but withx(r )50].

In view of the existence of nonlinearity inside the grad
particles,xe can then be written as8,17

xeE0
2E0

25
1

VEV
x i uEu lin,i

2 Elin,i
2 dV5

1

VEV i

x~r !uEu lin,1
2 Elin,1

2 dV

5 f ^x~r !uEu lin,1
2 Elin,1

2 &. ~4!

In the following section, we will develop a NDEDA~non-
linear differential effective dipole approximation!, in an at-
tempt to derive the equivalent linear dielectric constantē(a)
and third-order nonlinear susceptibilityx̄(a) of the nonlinear
graded inclusions. Then, the effective linear dielectric c
stant and third-order nonlinear susceptibility of the comp
ite media of nonlinear graded inclusions will be derived a
cordingly in the dilute limit.

III. NONLINEAR DIFFERENTIAL EFFECTIVE DIPOLE
APPROXIMATION

To establish the NDEDA, we first mimic the gradatio
profile by a multishell construction. That is, we build up t
dielectric profile by adding shells gradually.6 We start with
an infinitesimal spherical core with linear dielectric consta
e(0) and third-order nonlinear susceptibilityx(0), andkeep
on adding spherical shells with linear dielectric constante(r )
and third-order nonlinear susceptibilityx(r ) at radiusr, until
r 5a is reached. At radiusr, the inhomogeneous spheric
particle with space-dependent dielectric gradation profi
e(r ) andx(r ) can be replaced by ahomogenoussphere with
the equivalent dielectric propertiesē(r ) and x̄(r ). Here the
homogeneous sphere should induce the same dipole mo
as the original inhomogeneous sphere.

Next, we add to the sphere a spherical shell of infinite
mal thicknessdr, with dielectric constante(r ) and nonlinear
susceptibilityx(r ). In this sense, the coated inclusions
composed of a spherical core with radiusr, linear dielectric
constantē(r ), and nonlinear susceptibilityx̄(r ), and a shell
with outermost radiusr 1dr , linear dielectric constante(r ),
and nonlinear susceptibilityx(r ). Since these coated inclu
sions with a very small volume fraction are randomly e
bedded in a linear host medium, under the quasistatic
proximation, we can readily obtain the linear elect
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potentials in the core, shell and host medium by solving
Laplace equation18

fc52E0ARcosu, R,r ,

fs52E0S BR2
Cr3

R2 D cosu, r ,R,r 1dr,

fh52E0S R2
D~r 1dr !3

R2 D cosu, R.r 1dr , ~5!

where

A5
9e2e~r !

Q
, B5

3e2@ ē~r !12e~r !#

Q
,

C5
3e2@ ē~r !2e~r !#

Q
,

D

5
@e~r !2e2#@ ē~r !12e~r !#1l@e212e~r !#@ ē~r !2e~r !#

Q
,

with interfacial parameterl[@r /(r 1dr)#3, and

Q5@e~r !12e2#@ ē~r !12e~r !#12l@e~r !2e2#

3@ ē~r !2e~r !#.

The effective ~overall! linear dielectric constant of the
system is determined by the dilute-limit expression19

ee5e213pe2D, ~6!

wherep is the volume fraction of graded particles with radi
r. The equivalent dielectric constantē(r 1dr) for the graded
particles with radiusr 1dr can be obtained self-consistent
by the vanishing of the dipole factorD by replacinge2 with
ē(r 1dr). Taking the limit dr→0 and keeping to the firs
order indr, we obtain

ē~r 1dr !5e~r !13e~r !l
ē~r !2e~r !

ē~r !~12l!1e~r !~21l!

5 ē~r !2
ē~r !2e~r !

r
F31

ē~r !2e~r !

e~r !
Gdr. ~7!

Thus, we have the differential equation for the equivale
dielectric constantē(r ) as6

dē~r !

dr
5

@e~r !2 ē~r !#@ ē~r !12e~r !#

r e~r !
. ~8!

Note that Eq.~8! is just the Tartar formula, derived for as
semblages of spheres with varying radial and tangen
conductivity.20
5-2
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Next, we speculate on how to derive the equivalent n
linear susceptibilityx̄(r ). After applying Eq. ~4! to the
coated particles with radiusr 1dr, we have

x̄~r 1dr !
^uEu2E2&R<r 1dr

uE0u2E0
2

5lx̄~r !
^uEu2E2&R<r

uE0u2E0
2

1~12l!
^x~r !uEu2E2& r ,R<r 1dr

uE0u2E0
2

.

~9!

As dr→0, the left-hand side of the above equation admi

x̄~r 1dr !
^uEu2E2&R<r 1dr

uE0u2E0
2

5x̄~r 1dr !U 3e2

ē~r 1dr !12e2
U2S 3e2

ē~r 1dr !12e2
D 2

5x̄~r !uKu2K22drx̄~r !uKu2K2F3dē~r !/dr

2e21 ē~r !

1S dē~r !/dr

2e21 ē~r !
D * G1uKu2K2

dx̄~r !

dr
dr, ~10!

with K5(3e2)/@ ē(r )12e2#. The first part of the right-hand
side of Eq.~9! is written as

l
x̄~r !^uEu2E2&R<r

uE0u2E0
2

5x̄~r !uKu2K2F11~6y12y* 23!
dr

r G ,
~11!

where

y5
@e~r !2e2#@ ē~r !2e~r !#

e~r !@ ē~r !12e2#
.

The second part of the right-hand side of Eq.~9! has the
form19

~12l!
^x~r !uEu2E2& r ,R<r 1dr

uE0u2E0
2

5
3x~r !

5r
druzu2z2~5118x2118uxu2

14x3112xuxu2124uxu2x2!, ~12!

where

x5
ē~r !2e~r !

ē~r !12e~r !
and z5

e2@ ē~r !12e~r !#

e~r !@ ē~r !12e2#
.

Substituting Eqs.~10!–~12! into Eq.~9!, we have a differ-
ential equation for the equivalent nonlinear susceptibi
x̄(r ), namely,
07510
- dx̄~r !

dr
5x̄~r !F3dē~r !/dr

2e21 ē~r !
1S dē~r !/dr

2e21 ē~r !
D * G

1x̄~r !S 6y12y* 23

r D
1

3x~r !

5r
U ē~r !12e~r !

3e~r !
U2S ē~r !12e~r !

3e~r !
D 2

3~5118x2118uxu214x3112xuxu2124uxu2x2!.

~13!

So far, the equivalentē(r ) and x̄(r ) of graded spherica
particles of radiusr can be calculated, at least numerical
by solving the differential equations Eqs.~8! and ~13!, as
long ase(r ) ~dielectric-constant gradation profile! andx(r )
~nonlinear-susceptibility gradation profile! are given. Here
we would like to mention that, even thoughx(r ) is indepen-
dent ofr, the equivalentx̄(r ) should still be dependent onr
because ofe(r ) as a function ofr. Moreover, for bothe(r )
5e1 andx(r )5x1 ~i.e., they are both constant and indepe
dent of r ), Eqs. ~8! and ~13! will naturally reduce to the
solutionsē(r )5e1 and x̄(r )5x1.

To obtainē(r 5a) andx̄(r 5a), we integrate Eqs.~8! and
~13! numerically at given initial conditionsē(r→0) and
x̄(r→0). Onceē(r 5a) andx̄(r 5a) are calculated, we can
take one step forward to work out the effective linear a
nonlinear responsesee andxe of the whole composite in the
dilute limit, i.e.,8

ee5e213e2f
ē~r 5a!2e2

ē~r 5a!12e2

, ~14!

and

xe5 f x̄~r 5a!U 3e2

ē~r 5a!12e2
U2S 3e2

ē~r 5a!12e2
D 2

.

~15!

IV. EXACT SOLUTION FOR POWER-LAW GRADATION
PROFILES

Based on the first-principles approach, we have fou
that, for a power-law dielectric gradation profile, i.e.,e(r )
5A(r /a)n, the potential in the graded inclusions and t
host medium can be exactly given by4

f i~r !52j1E0r scosu, r ,a,

fh~r !52E0rcosu1
j2

r 2
E0cosu, r .a, ~16!

where the coefficientsj1 andj2 have the form

j15
3a12se2

sA12e2
and j25

sA2e2

sA12e2
a3,

ands is given by
5-3
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s5
1

2
@A912n1n22~11n!#.

The local electric field inside the graded inclusions can
derived from the potentialE52“f,

Ei5j1E0r s21~scosuer2sinueu!5j1E0r s21$~s21!cosu

3sinu cosfex1~s21!cosu sinu sinfey

1@~s21!cos2u11#ez%, ~17!

whereer , eu , andex , ey , andez are unix vectors in spherica
coordinates and in Cartesian coordinates. In the dilute lim
from Eq. ~3!, we can obtain the effective linear dielectr
constant as follows

ee5e21
1

VE0
E

V i

@A~r /a!n2e2#ez•EidV

5e213e2f
21s

sA12e2
S A

21n1s
2

e2

21sD . ~18!

On the other hand, the substitution of Eq.~17! into Eq. ~4!
yields

xe5
1

VEV i

x~r !uj1u2j1
2~s2cos2u1sin2u!2r 4s22sinudrdudf

5
f

5a3
uj1u2j1

2~814s13s4!E
0

a

x~r !r 4s22dr. ~19!

For example, for a linear profile ofx(r ), i.e., x(r )5k1
1k2r /a, Eq. ~19! leads to

xe5
f

20U 3e2

sA12e2
U2S 3e2

sA12e2
D 2

~814s213s4!

3S k2

s
1

4k1

4s21D . ~20!

In addition, for a power-law profile ofx(r ), namely,x(r )
5k1(r /a)k2, Eq. ~19! produces

xe5
f

5 U 3e2

sA12e2
U2S 3e2

sA12e2
D 2

k1S 814s213s4

k22114s D . ~21!

V. NUMERICAL RESULTS

We are now in a position to evaluate the NDEDA. For t
comparison between the first-principles approach and
NDEDA, we first perform numerical calculations for the ca
where the dielectric constant exhibits power-law gradat
profilese(r )5A(r /a)n, while the third-order nonlinear sus
ceptibility shows two model gradation profiles:~a! linear
profile x(r )5k11k2r /a, and ~b! power-law profile x(r )
5k1(r /a)k2. Without loss of generality, we takee251 and
a51 for numerical calculations. The fourth-order Rung
Kutta algorithm is adopted to integrate the differential eq
tions @Eqs.~8! and~13!# with step size 0.01. Meanwhile, th
initial core radius is set to be 0.001. It was verified that t
07510
e

t,

e

n

-
-

s

step size guarantees accurate numerics.
In Fig. 1, the effective linear dielectric constant (ee) is

plotted as a function ofA for various indicesn. It is shown
that ee exhibits a monotonic increase for increasingA ~and
decreasingn). This can be understood by using the equiv
lent dielectric constantē(r 5a) which increases asA in-
creases (n decreases!. Moreover, the excellent agreement b
tween the NDEDA@Eq. ~8!# and the first-principles approac
@Eq. ~18!# is shown as well.

Next, the effective third-order nonlinear susceptibili
(xe) is plotted as a function ofA for the linear gradation
profile x(r )5k11k2r /a ~Fig. 2!, and for the power-law pro-
file x(r )5k1(r /a)k2 ~Fig. 3!. We find that the effective non
linear susceptibility decreases for increasingA. The reason is
that, as mentioned above, for largerA, the graded inclusions
possess larger equivalent dielectric constant, and the l
field inside the nonlinear inclusions will become more wea
which results in a weaker effective nonlinear susceptibi
xe . In addition, increasingn leads generally to increasin
xe , and such a trend is clearly observed at largeA. Again,
we obtain the excellent agreement between the fi
principles approach@Eqs. ~20! and ~21!# and the NDEDA
@Eqs.~8! and ~13!#.

In what follows, we investigate the surface plasmon re
nance effect on the metal-dielectric composite. We adopt
Drude-like dielectric constant for graded metal particle
namely,

e~r !512
vp

2~r !

v@v1 ig~r !#
, ~22!

wherevp(r ) andg(r ) are the radius-dependent plasma fr
quency and damping coefficient, respectively. For the sak
simplicity, setx(r )5x1 to be independent ofr, in an attempt
to emphasize the enhancement of the effective optical n
linearity, ande251.77 ~the dielectric constant of water!. We
assume furthervp(r ) to be

FIG. 1. The effective linear dielectric constantee vs A for the
power-law dielectric gradation profilee(r )5A(r /a)n in the dilute
limit f 50.05. Lines: numerical results from the NDEDA@Eq. ~8!#;
symbols: exact results@Eq. ~18!#.
5-4
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vp~r !5vpS 12kv

r

aD , r ,a. ~23!

This form is quite physical forkv.0, since the center o
grains can be better metallic so thatvp(r ) is larger, while the
boundary of the grain may be poorer metallic so thatvp(r )
is much smaller. Such the variation can also appear bec
of the temperature effect.21 For small particles, we have th
radius dependentg(r ) as22

g~r !5g~`!1
kg

r /a
, r ,a, ~24!

whereg(`) stands for the damping coefficient in the bu
material. Herekg is a constant which is related to the Ferm
velocity vF . In this case, the exact solution being predict
by a first-principles approach is absent. Fortunately, we
resort to the NDEDA instead.

In Fig. 4, we plot the optical absorption@;Im(ee)#, the
modulus of the effective third-order optical nonlinearity e
hancement (uxeu/x1) and the figure of merit (uxeu/Im(ee))
versus the incident angular frequencyv. For the case of the
homogeneous particles, i.e.,kv50, there is a single shar
peak atv'0.5vp , corresponding to the surface plasm

FIG. 2. The effective third-order nonlinear susceptibilityxe vs A
for power-law dielectric-constant gradation profilee(r )5A(r /a)n

and linear nonlinear-susceptibility gradation profilex(r )5k1

1k2r /a with ~a! k151 andk251, and~b! k152 andk253. Lines:
numerical results from the NDEDA@Eqs. ~8! and ~13!#; symbols:
exact results@Eq. ~19!#.
07510
se

n

resonance, as expected. However, for the case of the gr
particles, i.e.,kvÞ0, besides a sharp peak, a broad contin
ous resonant band in the high-frequency region is appare
observed. The position of the sharp peak can be estim
from the resonant condition Re@ ē(r 5a)#12e250, while
the broad continuous spectrum is indeed a salient resu
the gradation profile. More exactly, the broad spectrum
sults from the effect of the radius-dependent plasma
quency. In Ref. 15, we found that, when the shell mode
taken into account, a broad continuous spectrum should
expected to occur around the large pole in the spectral d
sity function. In fact, the graded particles under consid
ation can be regarded as a certain limit of multishells, wh
thus should yield the broader spectra in Im(ee), uxeu/x1 as
well as uxeu/Im(ee). In addition, we note that increasingkv

makes both the surface plasmon frequency and the cent
the resonant bands red shifted. In particular, the reson
bands can become more broad due to strong inhomogen
of the particles. From the figure, we conclude that, althou
the third-order optical nonlinearity is always accompan
with the optical absorption, the figure of merit in the hig
frequency region is still attractive due to the presence
weakoptical absorption. Thus, we believe that graded p
ticles have potential applications in obtaining the optim
figure of merit, and make the composite media more reali
for practical applications.

Finally, we focus on the effect ofg(r ) on the nonlinear

FIG. 3. Same as Fig. 2, but for power-law nonlinea
susceptibility gradation profilex(r )5k1(r /a)k2.
5-5
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FIG. 4. ~a! The linear optical absorption
Im(ee), ~b! the enhancement of the third-orde
optical nonlinearityuxeu/x1, and~c! the figure of
merit [uxeu/Im(ee) vs the incident angular fre-
quency v/vp for dielectric-constant gradation
profile e(r )512vp

2(r )/@v(v1 ig(r ))# with
vp(r )5vp(12kvr /a) and g(r )50.01vp . Pa-
rameters:e251.77 andf 50.05.
he
of
c

v
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e
ar
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te
optical property in Fig. 5. As evident from the results, t
variation of kg plays an important role in the magnitude
the effective optical properties, particularly at the surfa
plasmon resonance frequency.

VI. CONCLUSION AND DISCUSSION

Here a few comments are in order. In this work, we ha
developed an NDEDA~nonlinear differential effective dipole
approximation! to calculate the effective linear and nonline
dielectric responses of composite media containing nonlin
graded inclusions. The results obtained from the NDEDA
07510
e

e

ar
e

compared with the exact solutions derived from a fir
principles approach for the power-law dielectric gradati
profiles, and the excellent agreement between them has
shown. We should remark that the exact solutions are a
obtainable for the linear dielectric gradation profiles w
small slopes~the derivation not shown here!. In this case, the
excellent agreement between the two methods can be sh
as well since the NDEDA is valid indeed for arbitrary gr
dation profiles. In general, the exact solution is quite few
realistic composite research, and thus our NDEDA can
used as a benchmark.

In this work, the NDEDA was derived for the composi
FIG. 5. Same as Fig. 4, but withvp(r )5vp

andg(r )5g(`)1kg /(r /a) for g(`)50.01vp .
5-6
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containing the nonlinear graded inclusions in a linear ho
Interestingly, it can be readily generalized to the compo
system where the graded inclusions and the host are
nonlinear.23 In this situation, the effective third-order nonlin
ear response can be written as,24,25

xe5 f x̄~r 5a!U 3e2

ē~r 5a!12e2
U2S 3e2

ē~r 5a!12e2
D 2

1x2~12 f !1x2f S 3b1b* 1
18

5
b21

18

5
ubu2

1
6

5
ubu2b1

2

5
b31

8

5
ubu2b2D , ~25!

where b[@ē(r 5a)2e2#/@ ē(r 5a)12e2# and x2 is the
third-order nonlinear susceptibility of the host medium. As
matter of fact, for this purpose, the perturbation method
also be adopted.26

The NDEDA is strictly valid in the dilute limit. To
achieve the strong optical nonlinearity enhancement,
need possibly nonlinear inclusions with high volume fra
tions. In this connection, the effect of the volume fraction
expected to cause a further broadening of the resonant p
and possibly, a desired separation of the optical absorp
peak from the nonlinearity enhancement due to mut
interactions.27 Therefore, it is of particular interest to gene
alize the NDEDA for treating the case of high volume fra
tions.

It is also instructive to develop the first-principles a
proach to weakly nonlinear graded composites. The per
bation approach28 in weakly nonlinear composites is jus
suitable for this problem. Moreover, with the aim of th
variational approach,29 the NDEDA may be applied to the
cases of strong nonlinearity, where the linear part@e(r )# in
Eq. ~1! vanishes. On the other hand, based on the s
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consistent mean-field approximation,30 the applicability of
NDEDA to more general cases, where linear@e(r )# and non-
linear @x(r )uEu2# parts can be comparable, may be also p
sible.

To one’s interest, the NDEDA can be applied to biologic
cells. Since the interior of biological cells is often inhom
geneous and nonlinear in nature, they can be treated as
ticles having dielectric gradation profiles.7 Moreover, in the
case of cell membranes containing mobile charges in
duced by the adsorbed hydrophobic ions, the local dielec
anisotropy occurs naturally, and should be expected to pla
role.31 Thus, it is also interesting to see what happens to
NDEDA as one takes into account the local dielectric anis
ropy. The resultant anisotropic NDEDA will help to invest
gate the ac electrokinetic phenomena of biological cell32

Work along this direction is in progress.
To sum up, we put forth an NDEDA and a first-principle

approach for investigating the optical responses of nonlin
graded spherical particles. The excellent agreement betw
the two methods has been shown. As an application, we
plied the NDEDA to discuss the surface plasmon resona
effect on the effective linear and nonlinear optical propert
like the optical absorption, the optical nonlinearity enhan
ment, and the figure of merit. It is found that the dielect
gradation profile can be used to control the surface plasm
resonance and achieve the large figure of merit in the h
frequency region, where the optical absorption is quite sm

ACKNOWLEDGMENTS

This work has been supported by the Research Gr
Council of the Hong Kong SAR Government under Proje
NO. CUHK 4245/01P and CUHK 403303, and by the N
tional Natural Science Foundation of China under Grant N
10204017~L.G.! and the Natural Science of Jiangsu Pro
ince under Grant No. BK2002038~L.G.!. We thank Profes-
sor G. Q. Gu for his fruitful discussions.

k-11D.J. Bergman and D. Stroud,Solid State Physics: Applied in Re
search and Applications, edited by H. Ehrenreich and D. Turn
bull ~Academic Press, New York, 1992!, Vol. 46, p. 147.

12V. M. Shalaev,Nonlinear Optics of Random Media: Fractal Com
posites and Metal-Dielectric Films~Springer-Verlag, Berlin,
2000!.

13See, for example, the articles inProceedings of the Fifth Interna
tional Conference on Electrical Transport and Optical Prope
ties of Inhomogeneous Media, edited by P.M. Hui, Ping Sheng
and L.H. Tang@Physica B279 ~2000!#.

14A.K. Sarychev and V.M. Shalaev, Phys. Rep.335, 275 ~2000!.
15L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, J. Appl. Phys.88, 1893

~2000!.
16J.W. Huas, H.S. Zhou, S. Takami, M. Hirasawa, I. Honma, and

Komiyama, J. Appl. Phys.73, 1043~1993!.
17D. Stroud and V.E. Wood, J. Opt. Soc. Am. B6, 778 ~1989!.
18B.K.P. Scaife,Principles of Dielectrics~Clarendon Press, Oxford

1989!.
19K.W. Yu, P.M. Hui, and D. Stroud, Phys. Rev. B47, 14 150

~1993!.
20G.W. Milton, The Theory of Composites~Cambrige University
5-7



en

9

,

L. GAO, J. P. HUANG, AND K. W. YU PHYSICAL REVIEW B69, 075105 ~2004!
Press, Cambridge, 2002!, Chap. 7.
21L. Gao and Z.Y. Li, J. Appl. Phys.91, 2045~2002!.
22A.E. Neeves and M.H. Birnboim, J. Opt. Soc. Am. B6, 787

~1989!.
23G.L. Fischer, R.W. Boyd, R.J. Gehr, S.A. Jenekhe, J.A. Osah

J.E. Sipe, and L.A. Weller-Brophy, Phys. Rev. Lett.74, 1871
~1995!.

24D.J. Bergman, Phys. Rev. B39, 4598~1989!.
25J.E. Sipe and R.W. Boyd, Phys. Rev. A46, 1614~1992!.
26J.P. Huang, L. Gao, K.W. Yu, and G.Q. Gu, cond-mat/03105
07510
i,

3

~unpublished!.
27L. Gao, K.W. Yu, Z.Y. Li, and Bambi Hu, Phys. Rev. E64,

036615~2001!.
28G.Q. Gu and K.W. Yu, Phys. Rev. B46, 4502~1992!.
29K.W. Yu and G.Q. Gu, Phys. Lett. A193, 311 ~1994!.
30K.W. Yu, P.M. Hui, and H.C. Lee, Phys. Lett. A210, 115 ~1996!.
31V.L. Sukhorukov, G. Meedt, M. Ku¨rschner, and U. Zimmermann

J. Electrost.50, 191 ~2001!.
32L. Gao, J.P. Huang, and K.W. Yu, Phys. Rev. E67, 021910

~2003!.
5-8


