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Effective nonlinear optical properties of composite media of graded spherical particles
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We have developed a nonlinear differential effective dipole approximafidEDA), in an attempt to
investigate the effective linear and third-order nonlinear susceptibility of composite media in which graded
spherical inclusions with weak nonlinearity are randomly embedded in a linear host medium. Alternatively,
based on a first-principles approach, we derived exactly the linear local field inside the graded particles having
power-law dielectric gradation profiles. As a result, we obtain also the effective linear dielectric constant and
third-order nonlinear susceptibility. Excellent agreement between the two methods is numerically demon-
strated. As an application, we apply the NDEDA to investigate the surface plasmon resonant effect on the
optical absorption, optical nonlinearity enhancement, and figure of merit of metal-dielectric composites. It is
found that the presence of gradation in metal particles yields a broad resonant band in the optical region, and
further enhances the figure of merit.
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I. INTRODUCTION nonlinear graded spherical particl@sclusions. For such
particles, the linear and nonlinear physical properties will
Graded materials, whose material properties can vary corcontinuously vary along their radius.
tinuously in space, are abundant in nature. These materials The paper is organized as follows. In Sec. Il, we describe
have attracted much interest as one of the advanced inhomtike model and define briefly the effective linear dielectric
geneous composite materials in various engineeringonstant and third-order nonlinear susceptibility. In Sec. I,
applications: With the advent of fabrication techniques, the NDEDA is presented to investigate the effective linear
these materials can be well produced to tailor their propertiedielectric constant and third-order nonlinear susceptibility of
for specific needs via the design of the material and micrononlinear graded composite media in the dilute limit. In Sec.
structure gradients. Such a design makes graded materigh3 based on a first-principles approach, we derive the exact
quite different in physical properties from the homogeneousso|utions for composite media having power-law gradation
materials and other conventional composite materials. Morepyofiles inside the inclusions, which is followed by the nu-

over, the composite media consisting of graded inclusiongnerical results in Sec. V. Finally, some conclusion and dis-
can be more useful and interesting than those of homoge-ssion is shown in Sec. VI.

neous inclusions. Although various theories have been estab-

lished to investigate the optical and dielectric properties of

the composite media of homogeneous inclusfohthey fail

to deal with the inhomogeneous composites of graded inclu-

sions. Recently, a first-principles appro&eland a differen-

tial effective dipole approximatidrf have been presented in  Let us consider a nonlinear composite system, in which

order to investigate the dielectric response of graded materidentical graded spherical inclusions with radaysare ran-

als. domly embedded in a linear host medium of dielectric con-
The problem becomes more complicated by the presencgante,. The local constitutive relation between the displace-

of nonlinearity in realistic composites. Besides inhomogenementD and the electric fieldE inside the graded particle is

ity, such nonlinearity plays also an important role in the ef-given by

fective material properties of composite me®ia It is thus

necessary to establish a new theory to study the effective

nonlinear properties of graded composite media. In fact, the D=e(r)E+ x(r)|E|?E, (1)

introduction of dielectric gradation profiles in nonlinear com-

posites is able to provide an alternative way to control the

local-field fluctuation, and hence let us obtain the desiredwhere e(r) and x(r) are the linear dielectric constant and

effective nonlinear response. third-order nonlinear susceptibility, respectively. Note both
In fact, the previous one-shell mod&land multishell e(r) andx(r) are radial functions. Here we assume that the

model® which were used to study the effective nonlinearweak nonlinearity condition is satisfiédn other words, the

optical property, can be seen as an initial model of gradedontribution of the seconthonlineaj part[ x(r)|E|?] in the

inclusions. In this paper, we will put forth a nonlinear differ- right-hand side of Eq(1) is much less than that of the first

ential effective dipole approximatiofNDEDA) to investi-  (linean part e(r). We restrict further our discussion to the

gate the effective linear and nonlinear dielectric properties ofjuasistatic approximation, under which the whole composite

composite media containing a very small volume fraction ofmedium can be regarded as an effective homogeneous one

Il. MODEL AND DEFINITION OF EFFECTIVE LINEAR
AND NONLINEAR RESPONSES
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with effective linear dielectric constané, and effective potentials in the core, shell and host medium by solving the
third-order nonlinear susceptibility,. To show the defini- Laplace equatioff

tions of €, and y, we havé
¢.=—EgARcosh, R<r,

(D)= €cEq+ xelEol*Eo, 2
. . 3

where(- - -) represents the spatial average, & Ege, is _ _or
the external applied field alongaxis. $s=~Eo| BR R2 cosf, r<R<rdr,

The effective linear dielectric constaat is given by

1 D(r+dr)3
cFo=y f €Ein V= f(e(r)En,0) + (1= ) ex(Eyn.2), n=~Eo| Rm——pp—|cost, Rerdr, ()
\%
®) where

wheref is the volume fraction of the graded particles and the -
subscript stands for the linear local fidlde., obtained for 9e,e(r) 3e[e(r)+2€(r)]
the same system but witi(r)=0]. A= o = o \

In view of the existence of nonlinearity inside the graded

articles, y. can then be written 827 —
PRTIEES e o 3l -]

1 1 Q '
XeEgEg:_f Xi|E|ﬁn,iEﬁn,idV: _J X(r)|E|ﬁn,1Eﬁn,ldV

Viv Vg,
D

= f<X(r)|E|ﬁn,1Eﬁn,l>' (4) _ —

, , _ [e(r)—ep][e(r)+2e(r)]+ N[ e+ 2€(r) ][ e(r) —€(r)]
In the following section, we will develop a NDED#&on- = Q ,

linear differential effective dipole approximatipnn an at-
tempt to derive the equivalent linear dielectric consg(a) ~ With interfacial parametek=[r/(r +dr)]*, and
and third-order nonlinear susceptibilipfa) of the nonlinear

graded inclusions. Then, the effective linear dielectric con- Q=[e(r)+2e,][e(r)+2¢€(r)]+2\[e(r) —€,]
stant and third-order nonlinear susceptibility of the compos- —
ite media of nonlinear graded inclusions will be derived ac- X[e(r)—e(r)].

cordingly in the dilute limit. . . . .
gy The effective (overal) linear dielectric constant of the

system is determined by the dilute-limit expresdfon
I1I. NONLINEAR DIFFERENTIAL EFFECTIVE DIPOLE

APPROXIMATION €e=€,+3peyD, (6)

To establish the NDEDA, we first mimic the gradation

profile by a multishell construction. That is, we build up the . . . —
dielectric profile by adding shells graduafiyve start with - The equivalent dielectric constagtr +dr) for the graded

an infinitesimal spherical core with linear dielectric constantParticles with radius +dr can be obtained self-consistently
€(0) and third-order nonlinear susceptibilig(0), andkeep 2Y the vanishing of the dipole fact@ by replacinge, with

on adding spherical shells with linear dielectric constgn)  €(r +dr). Taking the limitdr—0 and keeping to the first
and third-order nonlinear susceptibili(r) at radiusr, untii ~ order indr, we obtain
r=a is reached. At radius, the inhomogeneous spherical

wherep is the volume fraction of graded particles with radius

particle with space-dependent dielectric gradation profiles — e(r)—e(r)

e(r) andx(r) can be replaced by Romogenousphere with e(r+dr)= E(r)+36(r))\?(r)(1—)\)+ e(r)(2+N)

the equivalent dielectric propertiegr) and y(r). Here the . .

homogeneous sphere should induce the same dipole moment — e(r)—e(r) e(r)y—e(r)

as the original inhomogeneous sphere. =e(r)— r 3+ e(r) }dr. ™

Next, we add to the sphere a spherical shell of infinitesi-
mal thicknesslr, with dielectric constang(r) and nonlinear Thus, we have the differential equation for the equivalent
susceptibility y(r). In this sense, the coated inclusions is dielectric constan?(r) ad
composed of a spherical core with radiydinear dielectric
constante(r), and nonlinear susceptibility(r), and a shell de(r) [e(r)—e(r)][e(r)+2e(r)]
with outermost radius+dr, linear dielectric constard(r), ar re(r) : ®
and nonlinear susceptibility(r). Since these coated inclu-
sions with a very small volume fraction are randomly em-Note that Eq.(8) is just the Tartar formula, derived for as-
bedded in a linear host medium, under the quasistatic apsemblages of spheres with varying radial and tangential
proximation, we can readily obtain the linear electric conductivity?
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Next, we speculate on how to derive the equivalent non-

linear suscept|b|I|tyX(r) After applying Eq.(4) to the
coated particles with radius+dr, we have

<|E|2E2>Rsr+dr

;(r+dr)
|Eol*E5
T <|E|2E2>Rsr 1 <X(r)|E|2E2>r<Rsr+dr
O E YT e
|Eol“Eo | Eol “Eg

©)

As dr—0, the left-hand side of the above equation admits

<| E|2E2>RSr+dr

;(rerr)
|EolES

2
362 ‘

6(I’+dl’)+262‘

362

(r+dr)
e(r+dr)+2e,

)2

3de(r)/dr
262"‘?([‘)

dx(r)
dr

x(NK[2K?—=dry(r)|K|?K?

|

with K=(362)/[?(r)+262]. The first part of the right-hand
side of Eq.(9) is written as

de(r)/dr \*
Aetrfdr) o e jee X0 4 (10)
2e,t+ €(r)

X(N(EPPE)per

= x(r)|K|2K?2
| Eol°Ej

1+ (6y+2y* —3)—

(11)

where

_Le(n—eslle(r) —e(r)]
e(r)[e(r)+2e]

The second part of the right-hand side of Ef) has the
form*®

<X(r)|E|2E2>r<Rsr+dr

(1-
|Eol2ES

\)

:3X(r)

dr|z|?22(5+ 18x*>+ 18 x|?

+4x3+ 12x| x| 2+ 24|x|?x?), (12

where

() —e(r)

_ee(r)+2e(n)]
e(r)+2€(r) -

e(r)[e(r)+2e,]
Substituting Eqs(10)—(12) into Eq.(9), we have a differ-

ential equation for the equivalent nonlinear susceptibility
x(r), namely,
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(2€2+:(|’) 1
(6y+2y*—3)

r
?(r)+2e(r)]2(?(r)+2s(r))2
3e(r) | 3e(r)

X (54 18x%+ 18|x|%+ 4x3+ 12x|x| %+ 24|x|>x?).
(13

dx(r) de(r)/dr

dr

3de(r)/dr
2e,t+ e(r)

=x(r)

+x(r)

3x(r)
5r

So far, the equivalen¢(r) and x(r) of graded spherical
particles of radiug can be calculated, at least numerically,
by solving the differential equations Eq&8) and (13), as
long ase(r) (dielectric-constant gradation profiland y(r)
(nonlinear-susceptibility gradation profilare given. Here
we would like to mention that, even thougffr) is indepen-
dent ofr, the equivaleng(r) should still be dependent an
because ok(r) as a function ofr. Moreover, for bothe(r)
=€, and x(r) = x; (i.e., they are both constant and indepen-
dent ofr) Egs. (8) and (13) will naturally reduce to the
solutlonSe(r) =€, and X(r) X1-

To obtaine(r =a) and y(r =a), we integrate Eqg8) and
(13) numerically at given initial COI’]dItIOI’]SE(r—>0) and
x(r—0). Oncee(r=a) andy(r=a) are calculated, we can
take one step forward to work out the effective linear and

nonlinear responses, and x. of the whole composite in the
dilute limit, i.e.?

(r—a)— €2
— e, 3y 2 (14)
e(r=a)+2e,
and
362 ‘2 362 2
=fx(r=a)
e(r—a)+262‘ e(r =a)+2¢,
(15

IV. EXACT SOLUTION FOR POWER-LAW GRADATION
PROFILES

Based on the first-principles approach, we have found
that, for a power-law dielectric gradation profile, i.e(r)
=A(r/a)", the potential in the graded inclusions and the
host medium can be exactly given‘y

¢i(r)=—§&Eqgricosd, r<a,

¢n(r)=—Egrcosf+ %Eocose, r>a, (16
r

where the coefficient§; and &, have the form

ands is given by
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1 1.10-
s= 5[\/9+ 2n+n?—(1+n)].
The local electric field inside the graded inclusions can be 1.051
derived from the potentidt= —V ¢,
E;=&,EorS Y(scosée, —sinfe,) = £, Eor S *{(s—1)cosé o 100
Xsinf cos¢e,+(s—1)cosd sind sinpe, . - T ::nggﬁ
+[(s—1)cogh+1]e}, (17) R n=3.0 NDEDA
wheree, , g,, ande, e,, ande, are unix vectors in spherical
coordinates and in Cartesian coordinates. In the dilute limit, 0'900 1 2 3 4

from Eq. (3), we can obtain the effective linear dielectric A
constant as follows

FIG. 1. The effective linear dielectric constani vs A for the
power-law dielectric gradation profile(r)=A(r/a)" in the dilute
limit f=0.05. Lines: numerical results from the NDEDEQq. (8)];

1
€c=€r+ —f [A(r/a)"—e5]e,- E;dV
VEoJ g,
symbols: exact resulfEq. (18)].

2+S ( A €)

SA+2e, 2+n+s_2+s)' (18)

=e,+ 3e,f . :
step size guarantees accurate numerics.

In Fig. 1, the effective linear dielectric constard,) is
plotted as a function oA for various indices. It is shown
that e, exhibits a monotonic increase for increasiigand
decreasing). This can be understood by using the equiva-

lent dielectric constank(r=a) which increases a# in-
creasesIf decreasesMoreover, the excellent agreement be-
tween the NDEDAEGq. (8)] and the first-principles approach
[Eq. (18)] is shown as well.

Next, the effective third-order nonlinear susceptibility
(xe) is plotted as a function oA for the linear gradation
profile x(r) =k, +ksr/a (Fig. 2), and for the power-law pro-
file x(r)=k,(r/a)*2 (Fig. 3. We find that the effective non-

On the other hand, the substitution of EG7) into Eqg. (4)
yields

1
Xezvj x(r)|€1)%€3(s?cog 6+ sir? ) ?r*s2singdrd 6d ¢
Q;

f a
=§|§1|2§§(8+4s+33“)J0 x(ryrés=2dr. (19

For example, for a linear profile of(r), i.e., x(r)=k;
+k,r/a, Eq. (19 leads to

 f 3er ‘2 3e, \? ) 4 linear susceptibility decreases for increashd he reason is
Xe=20|sA+ 2¢,| | SAT 26 (8+4s7+3sY) that, as mentioned above, for largerthe graded inclusions
possess larger equivalent dielectric constant, and the local
ks N 4k, 20 field inside the nonlinear inclusions will become more weak,
s " 4s—1)" (20 which results in a weaker effective nonlinear susceptibility

Xe- INn addition, increasing leads generally to increasing

In addition, for a power-law profile of(r), namely, x(r)
=k,(r/a)*2, Eq.(19) produces

2 [8+4s7+3s!

k,—1+4s

362
sA+ 262

_f 362 ‘2
X5 sA+ 26|

1 . (21

V. NUMERICAL RESULTS

Xe, and such a trend is clearly observed at lafgé\gain,
we obtain the excellent agreement between the first-
principles approachiEgs. (20) and (21)] and the NDEDA
[Egs.(8) and(13)].

In what follows, we investigate the surface plasmon reso-
nance effect on the metal-dielectric composite. We adopt the
Drude-like dielectric constant for graded metal particles,

. - namely,
We are now in a position to evaluate the NDEDA. For the

comparison between the first-principles approach and the

NDEDA, we first perform numerical calculations for the case wﬁ(r)

where the dielectric constant exhibits power-law gradation e(r)=1- wlotiyn]’ (22)
profiles e(r)=A(r/a)", while the third-order nonlinear sus- @ty

ceptibility shows two model gradation profile&) linear

profile x(r)=k;+k,r/a, and (b) power-law profile y(r) wherew,(r) andy(r) are the radius-dependent plasma fre-
=ky(r/a)*2. Without loss of generality, we take,=1 and  quency and damping coefficient, respectively. For the sake of
a=1 for numerical calculations. The fourth-order Runge-simplicity, sety(r)= x; to be independent af in an attempt
Kutta algorithm is adopted to integrate the differential equato emphasize the enhancement of the effective optical non-
tions[Eqgs.(8) and(13)] with step size 0.01. Meanwhile, the linearity, ande,= 1.77 (the dielectric constant of watee
initial core radius is set to be 0.001. It was verified that thisassume furthew(r) to be
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16,
% (@)

O n=0.1 exact
O n=1.0 exact
i A n=3.0 exact
n=0.1 NDEDA

12

L — n=1.0 NDEDA
-------- n=3.0 NDEDA

FIG. 2. The effective third-order nonlinear susceptibijtyvs A
for power-law dielectric-constant gradation profiéér)=A(r/a)"
and linear nonlinear-susceptibility gradation profike(r)=k;
+k,r/a with (a) k;=1 andk,=1, and(b) k;=2 andk,=3. Lines:
numerical results from the NDEDPEQs. (8) and (13)]; symbols:
exact result§Eq. (19)].

, r<a. (23

r
wp(r)zwp( 1—kw5

This form is quite physical fok,>0, since the center of

grains can be better metallic so thaj(r) is larger, while the
boundary of the grain may be poorer metallic so thg(r)
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O n=0.1 exact

(@) O  n=1.0 exact

“ A n=3.0 exact

k —n=0.1 NDEDA
s T n=1.0 NDEDA
Ve e n=3.0 NDEDA

%K,

%X/,

FIG. 3. Same as Fig. 2, but for power-law nonlinear-
susceptibility gradation profilg(r) =k, (r/a)*e.

resonance, as expected. However, for the case of the graded
particles, i.e.k,# 0, besides a sharp peak, a broad continu-

ous resonant band in the high-frequency region is apparently
observed. The position of the sharp peak can be estimated

from the resonant condition Rg(r=a)]+2e,=0, while

the broad continuous spectrum is indeed a salient result of
the gradation profile. More exactly, the broad spectrum re-
sults from the effect of the radius-dependent plasma fre-
quency. In Ref. 15, we found that, when the shell model is

is much smaller. Such the variation can also appear becau&@ken into account, a broad continuous spectrum should be
of the temperature effeét.For small particles, we have the €xpected to occur around the large pole in the spectral den-

radius dependeny(r) as?

— k7
V(r)—y(oc)+m, r<a, (24)

sity function. In fact, the graded particles under consider-
ation can be regarded as a certain limit of multishells, which
thus should yield the broader spectra in k)( |x.l/x1 as

well as|y.|/Im(e). In addition, we note that increasirkg,
makes both the surface plasmon frequency and the center of

where y() stands for the damping coefficient in the bulk the resonant bands red shifted. In particular, the resonant
material. Herek,, is a constant which is related to the Fermi pands can become more broad due to strong inhomogeneity
velocity ve . In this case, the exact solution being predictedof the particles. From the figure, we conclude that, although
by a first-principles approach is absent. Fortunately, we cathe third-order optical nonlinearity is always accompanied
resort to the NDEDA instead. with the optical absorption, the figure of merit in the high-
In Fig. 4, we plot the optical absorptidn-Im(eg)], the  frequency region is still attractive due to the presence of
modulus of the effective third-order optical nonlinearity en-weak optical absorption. Thus, we believe that graded par-
hancement ||/ x1) and the figure of merit|§|/Im(e))  ticles have potential applications in obtaining the optimal
versus the incident angular frequensy For the case of the figure of merit, and make the composite media more realistic
homogeneous particles, i.&, =0, there is a single sharp for practical applications.
peak atw~0.50,, corresponding to the surface plasmon Finally, we focus on the effect of(r) on the nonlinear
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log, [Im(e )]

FIG. 4. (a) The linear optical absorption
Im(e.), (b) the enhancement of the third-order
optical nonlinearity| x¢|/x1, and(c) the figure of
merit =|x¢|/Im(e.) vs the incident angular fre-
quency w/w, for dielectric-constant gradation
profile e(r)=1—wf,(r)/[w(w+iy(r))] with
wp(r)=wp(1-k,r/a) and y(r)=0.0lw,. Pa-
rametersie,=1.77 andf =0.05.

log, (1)

optical property in Fig. 5. As evident from the results, thecompared with the exact solutions derived from a first-
variation ofk., plays an important role in the magnitude of principles approach for the power-law dielectric gradation
the effective optical properties, particularly at the surfaceprofiles, and the excellent agreement between them has been

plasmon resonance frequency. shown. We should remark that the exact solutions are also
obtainable for the linear dielectric gradation profiles with
VI. CONCLUSION AND DISCUSSION small slopegthe derivation not shown herdn this case, the

excellent agreement between the two methods can be shown
Here a few comments are in order. In this work, we haveas well since the NDEDA is valid indeed for arbitrary gra-
developed an NDEDAnonlinear differential effective dipole dation profiles. In general, the exact solution is quite few in
approximation to calculate the effective linear and nonlinear realistic composite research, and thus our NDEDA can be
dielectric responses of composite media containing nonlineassed as a benchmark.
graded inclusions. The results obtained from the NDEDA are In this work, the NDEDA was derived for the composite

FIG. 5. Same as Fig. 4, but with,(r)=w,

g and y(r)= y(«)+k,/(r/a) for y()=0.01w,.
6
— k=
-~ k=2"10%,
2 40 Fy —va (y3, la _
54 k=5"10%, g
% - k=1"10%0, g
[0}
g £
24
L2
02 04 06 08 1.0 02 04 0.6 08 1.0
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containing the nonlinear graded inclusions in a linear hostconsistent mean-field approximatighthe applicability of
Interestingly, it can be readily generalized to the compositdtNDEDA to more general cases, where lingafr)] and non-
system where the graded inclusions and the host are bottmear[ x(r)|E|?] parts can be comparable, may be also pos-
nonlinear’® In this situation, the effective third-order nonlin- sible.
ear response can be written?4$? To one’s interest, the NDEDA can be applied to biological
cells. Since the interior of biological cells is often inhomo-
geneous and nonlinear in nature, they can be treated as par-
ticles having dielectric gradation profilédvioreover, in the
case of cell membranes containing mobile charges intro-
18 18 duped by the adsorbed hydrophobic ions, the local dielectric
3B+ B* +—p2+—|B|? anisotropy occurs naturally, and should be expected to play a
5 S role3! Thus, it is also interesting to see what happens to the
NDEDA as one takes into account the local dielectric anisot-
, (25) ropy. The resultant anisotropic NDEDA will help to investi-
gate the ac electrokinetic phenomena of biological G8lls.
where B=[e(r=a)— e,]/[e(r=a)+2¢,] and y, is the Work along this direction is in progress. _ o
third-order nonlinear susceptibility of the host medium. As a _1© SUm up, we put forth an NDEDA and a first-principles
matter of fact, for this purpose, the perturbation method cafPProach for investigating the optical responses of nonlinear
also be adoptet? graded spherical particles. The excellent agreement between

The NDEDA is strictly valid in the dilute limit. To e two methods has been shown. As an application, we ap-
achieve the strong optical nonlinearity enhancement, wé’l'ed the NDEDA tp d|$cuss the surfgce p'aS”.‘O“ resonance
need possibly nonlinear inclusions with high volume frac-(?ﬁ‘aCt on th_e effective I!near and n_onllnear .optlcgl properties
tions. In this connection, the effect of the volume fraction is/Ik€ the optical absorption, the optical nonlinearity enhance-
expected to cause a further broadening of the resonant pea@ent' _and the_ figure of merit. Itis found that the dielectric
and possibly, a desired separation of the optical absorptioﬂrad"’ltIon profile can be used to antrol the sur_fa_ce plasr_non
peak from the nonlinearity enhancement due to mutual esonance anq achieve the Iarge figure of .mer_lt In _the high-
interaction&” Therefore, it is of particular interest to gener- Teduency region, where the optical absorption is quite small.
alize the NDEDA for treating the case of high volume frac-
tions.

It is also instructive to develop the first-principles ap- This work has been supported by the Research Grants
proach to weakly nonlinear graded composites. The pertutr€ouncil of the Hong Kong SAR Government under Project
bation approaclf in weakly nonlinear composites is just NO. CUHK 4245/01P and CUHK 403303, and by the Na-
suitable for this problem. Moreover, with the aim of the tional Natural Science Foundation of China under Grant No.
variational approach’ the NDEDA may be applied to the 10204017(L.G.) and the Natural Science of Jiangsu Prov-

cases of strong nonlinearity, where the linear paft)] in ince under Grant No. BK200203&.G.). We thank Profes-
Eqg. (1) vanishes. On the other hand, based on the selfsor G. Q. Gu for his fruitful discussions.
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