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Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations
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The quantum magnetic oscillations are studied for planar condensed-matter systems with a linear, Dirac-like
spectrum of quasiparticle excitations. We derive analytical expressions for magnetic oscilldédtsas—van
Alphen effec} in the density of states, thermodynamic potential, magnetization, and chemical potential both for
zero and finite temperatures, and in the presence of scattering from impurities. We discuss also a possibility of
using magnetic oscillations for detection of a gap that may open in the spectrum of quasiparticle excitations
due to a nontrivial interaction between them.
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I. INTRODUCTION netic field has to be taken into account by considering an
equation foru that leads to the chemical-potential oscilla-
Magnetic oscillations(MO) in metald proved to be a tions. This equation is crucial in 2D case even for the large
powerful tool for investigation of the shape of their Fermi Fermi energyer>w, , since despite smallness of the chemi-
surface. The oscillations of magnetization were predicted byal potential shift,du~ »,, due to the magnetic field com-
Landau in 1933.The experimental discovery of MO came pared toeg, it can change the phase of the magnetization
soon: Shubnikov and de Ha&SdH) found oscillations of MO [in 3D the oscillating paru~ o, (w, /€)Y, so that
electrical conductivity in Bi crystals, and later de Haas andfor eg> w, it does not alter the MO with a high accurdcy
van Alphen(dHvA) discovered the oscillations of magneti- Nevertheless, under certain conditions discussed in Refs. 7
zation. Despite more than 70 years old history of MO theyand 8 the oscillations of the chemical potential are small and
continue to attract attention of both experimentalists andne may still assume that the chemical potentiadoincides
theorists. The recent experimental studies are mostly focuseglith the Fermi energyr as in the limit(i).
on quasi-two-dimension&tjuasi-2D organic conductors and ~ On the other hand, in condensed-matter systems with a
superconductorffor a review, see e.g., Ref).3The ultimate linear, “relativistic” spectrum of quasiparticle excitations,
hope is that better understanding of the 2D and quasi-2he conditions favorable for MO seem to persist to rather
organic systems can also contribute into the studies of highsmall magnetic fields and high temperatut&is is particu-
temperature superconductors that have a similar layeredrly true for 2D systems with the Dirac quasiparticle spec-
structure. As suggested recently in Ref. 4, dHVA experimentrum.
can be used as a probe to detect band- and/or angle- There is a wide variety of planar condensed-matter sys-
dependent gap amplitudes of type-1l superconductors. tems that in the low-energy limit have a linear dispersion law
It turns out that these experimental advances demand alssf the quasiparticle excitations. In particular, the studies of
further development of the MO theory. While MO observed high-temperature cuprate superconductors inspired a big in-
in 3D metals are well described by Lifshits-KosevidhK)  terest in the so-called nodal excitations that are the gapless
(for dHVA effech and Adams-Holstefh (for SdH effeci  fermion excitations associated with zeros of the gap function.
theories, there is no commonly accepted and used theory f@epending on the physical origin of the gap, one can con-
MO in 2D and quasi-2D materialsAs discussed in Ref. 7, sider rather different physical situations that are in general
there are two essential features of dHVA effect in 2D caselescribed by different theoretical models. For example, if the
that differ it from 3D case. gap opens due to the anisotropic electron-hole pairing, which
(1) The sharp sawtoothlike shape of the oscillations seeis one of the possible states of the electron system with a
in the low-temperaturél <w_ and high-purityl’<w_ re-  half-filled band and nested Fermi surface, this corresponds to
gions. Heregw, is the distance between Landau levels ind a 2D orbital antiferromagnefOAF) or staggered flux
is the width of Landau’s levels due to impurity scattering. state!®*2
(2) Due to the Landau quantization of the 2D kinetic en- There is a consensus that the superconducting state in
ergy in the magnetic field, both the density of electromsd  cuprates has a-wave superconducting energy gap, with
the chemical potentigk cannot be fixed simultaneously as nodes along the diagonals of the Brillouin zdi linear-
the magnetic field is changed. Depending on the physicakation of the Bogolyubov spectrum of quasiparticles around
situation, two extreme limits are usually considered. four nodes on the Fermi surface leads to another realization
(i) The limit of fixed and field independent chemical po- of gapless fermion excitations. Although from physical point
tential », which can be represented by a grand canonicabf view the OAF state seems to be more complicated than
ensemble. This corresponds to the case originally studied bihe d-wave superconducting state, because the former is
Lifshits and Kosevichin 3D. characterized by nonzero local currents violating time-
(i) The limit of fixed density of carriers, in which a  reversal and translational symmetries, the Dirac description
strong dependence of the chemical potengiabn the mag- of OAF state turns out to be simpler since an external elec-
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tromagnetic field enters into the theory in the same way as in A. Hamiltonian of d-density-wave state

QED;. ;. ) . . Due tod,2_,2 momentum dependence of the gap in the
Carbon-based materials, e.g., pyrolytic graphite and CalpAF states it is also called-density-wave(DDW) state?’

bon nanotubes, present one more examPl'g of the planar syppe mean-field phenomenological Hamiltonian describing
tems with the relativistic dispersion 1a#71 From an ex- this state can be written H<8

perimental point of view these materials are probably the
most promising because the quality of available samples al-
ready allows one to observe SdH effécf and to study HODW— f
quantum effects that are due to a high magnetic flelsee o=1.1 JRBZ (27)?
Ref. 20 for a review

The relativistic theories in an external magnetic field have ~DK)aalx,(k), 2.0
been the subject of research in quantum-field theory foiwhere the spinors
many yeargfor reviews see Ref. 21The extraction of MO

% -
Xo(K)le(k)oz—ul

from the general expressions presents a rather subtle and c,(k) . N "
interesting problem that was investigated in Refs. 22-26.  Xo(K)={ . | )] Xo(K)=(c,(k)c,(k+Q))
However these studies of the MO in QED are mostly con- 7 2.2

centrated on the field-theoretical aspects. ) -

The purpose of the present paper is to make a systemat®l€ composed from creation and annihilation operators
study of the MO in QEB, , devoting special attention to the Cy(k) andc,(k) for momentumk and spinc, the single-
link with planar condensed-matter systems and to quantitieparticle energy is e(k) = —2t(cosk.a+cosk,a), with t
that are particularly important for condensed-matter theorypeing the hopping parametes, is the chemical potential,
e.g., density of state09), thermodynamic potential, and D(k)=(D/2)(coska—coska) is the d-density-wave gap,
magnetization. To make the theory more realistic we als@ndQ=(x/a,w/a) is the wave vector at which the density-
include into the model the effect of scattering from impuri- wave ordering takes place. The integral is over the reduced
ties, by considering Landau levels with field and Brillouin zone(RBZ) ando; are Pauli matrices. Throughout
temperature-independent width. the paperi=c=Kkg=1 units are chosen, unless stated ex-

We begin by presenting in Sec. Il three 2D models men+licitly otherwise.
tioned above that can be studied using the same effective This Hamiltonian describes the excitations with the spec-
relativistic Lagrangian written in Sec. Il D in the presence oftrum E(k)=—u=e?(k)+D?(k). Linearizing the spec-
an external magnetic field. The Green’s function necessargrum about the four node®;= (= w/2a,= w/2a) with i
for subsequent calculations is introduced in Sec. Ill, and the=1, . .. ,4 athalf filling (x=0) one obtainsE(k)=—u
DOS oscillgtions ar_e StUdled in Sec. IV both with and Wlth- + ‘/Uszxz—i_Uszyz’ where the Fermi Ve|0city calculated for
out scattering from impurities. The general representation fopalf filling, ve=|de(k)/dk|(_n| = 2+/2ta, the DDW gap ve-
the thermodynamic potential in terms of the DOS and its “nklocity vp=|ID(K)/ K| _n| = 1/y2Dya, and the momenta

to the corresponding nonrelativistic potential are considereg ,nqk° are given in the local nodal coordinate systéee
in Sec. V. In Sec. VI we derive the expression for the ther—F)i(g_ 2 of Ref. 28,

modynamic potential aT =0 in the absence of impurities — “ging this linearized spectrum and inserting the vector
with explicitly extracted MQ(the calculational details and an ,qtential in a way that preserves the charge conservation for
alternative representation for the thermodynamic potential ignq original Hamiltoniar{2.1), one can arriv® at the follow-

terms of the generalized function are given in Appendixes 4 pirac Lagrangian describing the quasiparticles in the vi-
A and B). In Sec. VI A and at the end of Sec. VIIIC we cinity of one of the nodes, e.gN;_,= (/2a, 7/2a)

discuss a possibility of detecting a gap that may open in the
spectrum of one of the systems discussed above. The analyti- £=? (x)i}”D Xi ), x=(tr) 23
cal expression for the magnetizationTat 0 in the absence v vAaR R o

of impurities written in terms of Bernoulli polynomials is wherey! (x)=x'T(x) o, is the Dirac conjugated spindr)a-

obtained in the previous sections to the presence of impuri-

ties (Secs. VIII A and VIII B with the calculational details ha—ieAy(X), =0,
presented in Appendix )Cand in Sec. VIII C for nonzero
temperature. In Conclusions, Sec. IX, we give a concise UF[ﬁgx_iEAl(x) . v=1,
summary of the obtained results. D,= c (2.9
e
—i— v=2,
Il. MODEL va[ iy IGALN) |
There are many planar condensed-matter models that iand they matrices are
the low-energy sector can be reduced to QEDform, and _ o .
here we briefly describe some of them underlining the main y'=(o1,—ioy,iaz), {v*,y"}=21,0"",
assumptions leading to the Dirac-like form of the effective
Hamiltonians. g*’=diag1,-1,—-1), u&,»=0,1,2. (2.5
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The chemical potentigk can be introduced in the Lagrang- whereW¥ andlIsz(:,b}r,dfl) are the standard Nambu spinors,
ian (2.3) by choosingAy,=u/e and the sum over the spin g(p) is the single-particle energyr.=(m,*+i,)/2, and
components in Eq(2.3) can be regarded as an additional A(t,ry;r,) is the bilocal gap operator the Hermitian conju-

flavor index. gate of which includes the transpose in the functional sense,
In 2+ 1 dimensions, there are two inequivalent represent.e., A'(t,r,;r,)=[A(t,r,;r;)]*. The nontrivial dependence
tations of Dirac algebrasee, e.g., Ref. 30 of A(t,ry;r,) on the relative coordinate,—r, is supposed
o “ . to described-wave pairing state. Further simplification of the
Yy =03, Yy =log, Yy =loy, (2.6a pairing term of Eq(2.10 is possible if one assumes that the
A A R amplitude of the pairing term is a constant with respedt to
W=—-03, y'=—io;, y’=-io,, (2.6b and the center-of-mass coording®e=(r;+r,)/2. For cu-

which correspond to right- and left-handed coordinate Sysprates this assumption may well be justified even above the

. ritical temperaturel.. Below T, in the vortex state this
tems. As one can check, ogrmatrices(2.5) correspond to critical tempe c: B€ N © €

the representatiof2.6h if one makes a unitary transforma- assumption corresponds to neglecting vortex core contribu-
P i y tions and considering pure “phase vortices.” Since we deal

tion x'=Uyx', y*=Uy"U~% with U=(1/2)(I,—io1  with the amplitude of the bilocal complex fieli(t,ry,r>), it
—lioytios) Since the physical properties of the system des patural to consider also its phagét,R). There are, how-
pend only on the algebra that these matrices obey, one cafyer, some subtleties in writing the continuum version of the
d|rect_ly work with the more commonly used representatlonpairing term of Eq.(2.10 in an explicitly gauge invariant
(2.6) instead of Eq(2.5). form that can be solved by choosing an appropriate form of

e o, 2% % diferenial operatr 0 (see Rels 31 and 325ince
phy d we look for the low-energy quasiparticle excitations near

nodes present in the original HaT'Itoméml)' In fact, only four gap nodes, we write the linearized Hamiltonian for one
two neighboring nodes, e.gN;—-=(7/2a,7/2a) andN;_, of these nodes asee, e.g., Refs. 28 and 31
=(m/2a,— w/2a) are nonequivalent in RBZ, and the corre- e '

sponding local nodal coordinate systems are related to each

other by parity transformationk(,k,)— (k,,—ky) with the Hase=¥T(x)
simultaneous interchangg-<—uvp . Thus the sum over non-

equivalent nodes can be taken into account by doubling A .
spinors +i VAT € i 0(x)/2[?ye—| 0(x)/2

+ivyr.e G(X)lzayei 0(x)/2

. . €
|U|:T3< &X—I ETgAX

W (x), (2.12)

Y :( 'ﬁtlr) 2.7 wherev is the Fermi velocity and y=|dA (K)/dk|=n| is
v ¢,§ ' the gap velocity defined by the slope of the superconducting
) ] ] ] gapA (k). Both velocities are calculated in the nodal points
and using the reducible representation yfmatrices, »*  on the true Fermi surface of the system, but not at half filling

=(03,i0y,i0)®03, as for the DDW case. The linearization puts restrictions on
0 . 0 the domain of validity of the Hamiltonia¢2.11) which, how-
yo:<03 ) 1:('01 _ ) ever, remains rather widg.
0 —o3 0 —ioy Finally, introducing the Dirac conjugated spinay'
, =T, we can obtain from the Hamiltonia®.11) a La-
2_ 102 0 2.9 grangian similar to Eq(2.3), but with the vector potential
Y 0 —ioy)’ ' that couples only with theg term. Again making, if neces-
. . . " sary, a unitary transformation, one can combine spingrs
with the following Lagrangian density: originating from two opposite nodes into one four-
v component spinor.
L=Y,(X)1y"D,Y o(X). (2.9 Thus in the absence of the field the low-lying quasiparti-
cle excitations in thelSC are described by the relativistic
B. Hamiltonian of d-wave superconducting state dispersion law

In contrast to the hypothetical DDW statkwave super- sy
conductivity = (dSC) is observed in  cuprate E(k) == Vugki +viky, (2.12
superconductorS It can be described by the

Bogolyubov—de Genne@dG) Hamiltonian where the moment&, andk, are given in the local nodal

coordinate system. Experimental valueswgf and v, for
e cuprates can be found in Ref. 34, for example, the value of
8(_iv_7'3—A(r))_,U,}\P(t,r) ve~2.5x10° m/s and the anisotropy of the Dirac cone
¢ velv, varies between 10 and 20 depending on doping and

HBdG: f dzr‘I'T(t,r)7'3

compound.
—f dzrlf d2r [ AT(t,r ;) Wit r) 7o W(t,ry) There are two important differences between DDW and
dSC Hamiltonians. Making a gauge transformation that re-
W (t,r) V(L)AL rr)], (2.10 moves the phase from the last term of E2}11), we observe
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tEat quasiparticle;alijr& supercondggtor do r;]ot couple ;in;_pllyéto: i+ and y°12=(03,io,, —i0y). This representation of
the vector potentiaA corresponding to the magnetic field — : :
B=V XA bput to the supercuprrerv ag—(Ze/ﬁc)A gwheree y matrices can be mapped in the representa(lbﬁa) by

is the phase of the superconducting order parameter. ThigSINg a unitary tran_sformatlon W't“u:(ll\/z)(.l tiog).
difference between DDW andSC cases leads to a conclu- Since the local coorqlmate s_ystem for.the padrit is related
sion that in an external magnetic field the nodal quasipartil© the system associated with the pditiby a parity trans-
cles of DDW state form Landau leveldwhile in dSC state formation, these two spinors can be again combined in one
Landau levels are strongly mixé@l.Nevertheless, we pre- four-qomponent Dirac spino¥ ;= (41,.42,). The nur_nber
senteddSC Hamiltonian(2.11) here due to its practical im- ©f SPin componenti has to be regarded as an adjustable

portance, and the fact that the simplified physical picturd?@rameter andN=2 corresponds to the physical case. Fi-
based on the Landau lev&ig® may become relevant for nally, the Lagrangian density of noninteracting quasiparticles

higher energié€ and can be regarded as the first approxima/€2ds

tion to a more complicated case of the vortex staté-wave N 09+
superconductors. Lo= vF\I_f(,(t,r)(M—iyl&x
The second difference comes from the fact that for DDW o=1 UF
state chemical potentigk is explicitly present in the La-
grangian(2.3), while for dSC state it was absorbed in the
definition of the Fermi velocity  on the Fermi surface. The
origin of this difference can be traced back to the different = i 0 . :
structures of the Hamiltoniar(&.1) and(2.10. One can also where W,="¥;y" and 4x4 y matrices are either

say that indSC state the chemical potential of nodal quasi-(73+173; ~101)® 073 (Ref. 41 or can be taken from the uni-

H H 14,42 c; :
particles is zero, so that when the applied field is changed thigry .equwalent reprgsentatltﬁB.S). Smcg th? terms with
dy.y IN EQ. (2.19 originate from the usual kinetic term of the

corresponding Landau levelsven if they were formedcan-

not cross the chemical potential and produce dHvA efféct. tight-binding Hamiltonian, vector potential can be inserted
in the Lagrangiar(2.15 using a minimal coupling prescrip-

tion. Finally we note that the three-dimensional version of

the Dirac Hamiltonian2.14) was used in Ref. 9 to describe
The semimetallic energy band structure of a singlean unusual magnetoresistance in the two doped chalco-

graphene sheet has the conduction and valenbands with  genides Ag, ;Se and Ag. sTe.

the energy dispersiéh

¥, (t,r), (2.19

—i yzéy

C. Layered graphite

D. Model relativistic Lagrangian

E(kx,ky)Zit\/1+4COS¥COSK§—a+4CO§%. As we have seen, many models of planar condensed-

matter systems result in the Dirac-type form of the effective
(2.13 low-energy theory. Thus as a starting point of the present

Heret~3 eV, a=\3acc=2.46 A is the lattice constant of Paper we choose the following Lagrangian:

two-dimensional graphite, wheeg. ¢ is the distance between — .

two nearest carbon atoms. These two bands touch each other L=¢i(iy*D,—A) gy, n=0,1,2, (2.1

and cross the Fermi level in six K points located at the _ . . . T

corners of the hexagonal 2D Brillopuin zone, but only WhireDf‘_a“_'.eAﬂ Is the _covanant ﬂenvatlva/;i: iy |

two of them, for exampleK = (2/a)(1/\3,1/3) andK’ is the Dirac conjuga_ted_splnor, and the vector potential for
. : o the external magnetic fiel@ perpendicular to the plane is

=(2m/a)(0,2/3) are inequivalent due to the periodicity of aken in the symmetric gauge

the Brillouin zone. The low-energy excitations can be studiec}

by taking the continuum limia—0 at any two independent

K points labeled ag=1,2. They have a linear dispersion A=

Ev= +vek, with ve=(1/3/2)ta~9.7x 10° m/s. These exci-

tations can be formally described by a pair of two-The nonzero chemical potentiad will also be taken into

componentWeyl) spinorsi;,,, which are composed of the account by choosinghq=u/e, in the energy-momentum

Bloch states residing on the two different sublattices of thespace this corresponds to a shifting— w+ u. We assume

biparticle hexagonal lattice of the graphene sheet. Thehat the fermions carry an additional flavor index

B B
— =Xp, 5 Xq |-

5X2: 5 (2.17

Hamiltonian describing these excitations, for example, inthe=1, ... N which can be used to calculate the sum over
pointK coincides with the free Dirac orfé:*® equivalent nodes in the cased5C case and to sum over the
spin components in the cases of DDW and graphite. In Eq.
d’k — —. (2.16 we have already set the velocitiessve=vp=v,
:a;m f Wlﬂlg(t,k)(y ket v7Ky) h1o(t.K), =1, so that we consider the “isotropic Dirac cone.” When it

(2.14 is needed they can be restored according to the prescription
' discussed in Refs. 29 and 43. The Diramatrices are taken
where the momenturk= (k, k) is already given in a local in the reducible four-component representation and they

coordinate system associated with a chosen K po%[,. obey the Clifford (Dirac) algebra y*y”+ y*y*= 21 ,g*".
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The explicit form of they matrices is given in Eq2.8) and  whereM,,= A%+ 2eBnand

the symmetry properties of the Lagrangian with reducible

four-dimensional representation are discussed, for example, p? p?
in Refs. 30,42 and 44. We have also included a nigag fl(p)=2{|:’—|-n<2@) - P+Ln—1(2@)
term A in the Lagrangiar(2.16). The physical origin of this

gap depends on the underlying system we consider. For ex- 0?
ample, it is well known that an external magnetic field is a _ 1 o1

strong catalyst in generating such a gap for Dirac fermions fa(p)=4(p1y +p2y )Lnl(zﬁ)’ @4

(the phenomenon of magnetic catalysisUsually the open-

ing of the gap marks an important transition which occurs inwith P.=[1*sgn(B)i y*v?]/2 being projectors andl.,,

the system. In particular, in the case of pyrolytic graphite a_ﬁ Laguerre’s polynomials L(l_le). In what follows, for
poor screening of the Coulomb interaction may lead to exciconvenience, we takeB>0. The chemical potentigk, as
tonic instability resulting in the opening of the gap in the mentioned above, has to be taken into account via the shift
electronic spectrum and manifesting itself through the onsel, — o+ u.

of an insulating charge-density wa(gee e.g., Refs. 41 and | contrast to the nonrelativistic Landau levels with the

42)._There are, however, many obstacles in experimental _deénergiesEn=(eﬁB/mc)(n+ 1) (heremis the effective mass
tection of such a gap, so that in the context of the MO studieg e carriery in the relativistic problem with zero gap
we consider in Secs. VI A and VIII C a possibility for its the energies areE,=.(ehvrv,/C)B2n, n=0,1

n— FU2 s =U,1,...,

detection using dHVA and SdH effects. h tored all N d d
A full theory of MO should also include the Zeeman in- V1€ W€ réstored all parame ety vE ,up Orv, depend-

teraction term which leads to a spin factor in the LK formula.iNd On the model we consideto show explicitly the differ-
Here, however, we neglect this term motivated by the facENCes: For the no.nre_latlwst!c problem the distance between
that for the relativistic spectrum the MO may become ob-Landau levels coincides with the cyclotron frequensy
servable for the relatively low fields when the spin splitting = €#B/(m0), so thatw (K) ~1.35(T)me/m, wherem, is

is still small. If necessary, the Zeeman term can be addethe electron mass, while for the relativistic problem the cor-
explicitly both to the original Hamiltonial2.1) and the La- responding energy scale, characterizing the distance between

grangian(2.16. Landau levels, is
lll. SPECTRAL FUNCTION OF DIRAC QUASIPARTICLES hvpv,2eB
IN AN EXTERNAL FIELD w =\ (K)=4.206
The Green’s function of Dirac fermions described by the i
Lagrangian(2.16 in an external field given by the vector ><10‘4\/—2vF(m/s) VB(T), (3.5
potential(2.17) reads UF

X - wherev is given in m/s. For example, choosing,/m=1
S(x—y):exp(ieJ AhdzA)S(x—y), (3D we estimate thato.~(1K)B(T), but this value can be in-

Y creased by using metals such as Bi with a large natiom.
whereS is the translation invariant paB of the Green’'s Making the estimate for the relativistic case with a rather
function. Its derivation using the Schwinger proper-timesmall ve=2x10° m/s andvg/v,=20, which are typical
method and decomposition over Landau-level poles has beeslues of the parameters for the DDW model, we obtain
discussed in many papefsee, e.g., Refs. 29,44 and)450  w, ~18 K- B(T) which shows that in the systems with the
that here we begin with the spectral function associated withinear dispersion law the quantum condition favorable for
the translationary invariant pa& of the Green's function, MO persists to rather high temperatures and small fiélds.
Moreover, repeating the estimate for the Fermi velocity in
graphite, vp,=9.7x10° m/s, we obtain even largee,
~ (400 K)yB(T). We note that since the Zeeman term has

~ ~ . the same magnitude as., it is indeed small compared to
R A 1 1
where the retarde®”™, and advancedy™, Greens’ functions », and can be safely neglected.

are written in the energy-momentum representation. This ™\, o qer to consider the MO for a more realistic case, one
spectral function decomposed over Landau levels fads g0\ introduce the effect of quasiparticle scattering that

1 - , = .
Alw,p)= ﬁ[SA(w—IO,p)—SR(w-i-IO,p)], (3.2

P2\ & results in aDingle factor in the expression for the amplitude
A(w,p)zexp( — —) > (—1)" of MO. In general, this can be done by considering dressed
B} /i=0 fermion propagators that include the self-enexgy) due to
oM+ T the scattering from impurities. Up to now the problem of
[(y Mot 8)fa(p) + T2(p) S(w—M,) scattering from impurities in the presence of a magnetic field
2M,, does not have yet a satisfactory solution. Therefore, here we
(v'M,— A)f,(p)—fo(p) choosg tEe _case of constant Wldtlﬁzl_“(w:O)z _
oM S(w+Mp) ]|, —ImX™(w=0)=1/(27), 7 being a mean free time of quasi-
n

particles, so that thé-like quasiparticle peaks corresponding
(3.3  tothe Landau levels in Eq3.2) acquire a Lorentzian shape:
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1 r In fact, instead of the Lorentz distribution any other normal-
(wEMpy)—— ——————. (3.6)  ized probability distribution can be uskth order to intro-
T (0EMp)“+T duce phenomenologically the energy-level width. In what

follows we shall use the Lorentz distribution which allows

Such a broadening of Landau levels with a constiédnt analytical calculations. Physically, the Lorentz distribution
was found to be a rather good approximation valid in notcorresponds to an extremely strong disorder since all mo-
very strong magnetic fields'® Definitely, the treatment of ments of this distribution diverge. The quasiparticle DOS at

disorder in the presence of the magnetic field in such a simthe Fermi surface can be obtained by evaluating(E® for
plified manner should be considered as only the first step=,,. Eq.(4.2) can be also rewritten as

until further progress in this problem is achiev@d connec-

tion with this, see, Ref. 47 The technical advantage of the NeBle|

approximationl” = const is that one can first consider dHVA Dg(€)=

oscillations with §-like Landau levels aT =0 and only af-

terwards introduce the effect of level broadening due to the eB d

finite temperature and quasiparticle scattering convoluting :—sgr(e)—{a(GZ—Az)

the final results with the appropriate distribution functions 2m de

(see, Refs. 1 and 48 and Seg. Yowever, this simplifica- %

tion is only valid if all Landau levels have the same width. +22 0(e— A%—2eBn)
n=1

S(e2—A?)+2>, 5(e2—A%2—2eBn)
n=1

, (4.9

IV. OSCILLATIONS OF DENSITY OF STATES where 6 is the step function. Note thadtieB/(27) is the
We begin with the calculation of the quasiparticle densitydens'ty of the Landau levels. Using the Poisson summation

of states(DOS) Dy(€) in the absence of scattering €0)  formula
which is expressed in terms of the spectral funciidr) as

%F<0)+Z F(n)
n=1

Do(e)- | T voAep)] 4.0
€)= r €, , .
0 5 (2m)2 Yo p ) _ |
S o =f F(x)dx+2Re>, | F(x)e?™**dx,
where the domain of integratioB is chosen to preserve the 0 k=1 Jo
volume of the original Brillouin zone. We also assume that (4.5

the summation over spin states that are identical in the ab-

sence of Zeeman term is included in the definition of trace irwe find the sum over the Landau levels
D(e). This, as mentioned above, can be done by taking an

appropriate value oN.

Evaluating the trace and expanding the limits of integra- * 1 €2—A2
tion over momenta toe, we get the DOS as the sum 6f > 0(e2—A2—2eBn)=0(e2—A?)| — 5% 5B
functions of Landau’s level energies: n=1
) e?—A?
NeB ” » sinl 7k B
Doe)=—_— 5(6—A)+5(6+A)+2n§=:1[5(€—|\/|n) +k21 —
(4.6)
+6(e+My)]]. 4.2
Substituting now the last expression in E4.4) we obtain

the final expression for the DOS with zero broadening that

The fact that the original Brillouin zone has a finite volume can be written in three equivalent forms

can be taken into account later using the finite limits of in-
tegration if necessary and/or by implying that the DD&) N d
is multiplied by the facto®(A —|e|), whereA is the band- - el 2_ A2
width. Do(e)=5_sgrle) ;-1 0(e"—A%)

The broadening of Landau levels due to the scattering is w0 _
taken into account according to the prescription given by Eqg. +2eBY isin k(e —A%) 4.73
(3.6). Itis easy to see that this prescription corresponds to the =1 mk eB '
convolution of the density of statd3y(e) with the Lorentz

e2— A2

distribution Pp(w) =T/[ m(w?+T?)]: N d
:ZSQF(E)E[G(GZ—AZ) 62—A2
D(e)= fﬁmdwpr(w—e)Do(w), Jloodep(w)Zl. 2eB . m(e2—A?)
43 + Ttan (CO[(—ZGB ))H (4.7
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N d EZ_AZ o0
———sgr(e) | 0(e*~A?)| 2~ A2~ 2eB Bl( ) . 1= 2 [ a1 cotX
2 de 2eB 7)o (X+Z)2 2
(4.79
The summation in Eq4.7b was done using the formula 2 & (2+2  dx X
=— f tan” 1| cot—
L _ mE=0 Jok  (x+2)? 2
sin(rnx) . sin( X)
> ———=tan Y ————|, 4.9
A=t N 1—-cog mx) 2 * 2 dx .
. . . . _ =—> f —tan1<cot—)
and Eg.(4.70 is written using the Bernoulli polynomials T k=0 Jo (x+2n+2)? 2

B,(x) periodically continued beyond the intenfdl,1]:

=%j01dx(1—2x){(2,x+z/2), (4.12

5 2n! i Lo dop N7 X
=— — -— =
n(X) 2 0 2mkx= 5|, n=2,
where {(s,x) is the generalized zeta function and we used
0=x=<1; n=1, 0<x<1. (4.9  also that tan(cot(mx/2))=(7/2)(1—x) for 0<x<2. The

. . ~_lastintegral is evaluated using the propertieg déinction
In fact, all the Bernoulli polynomials we dealt with in this

paper depend on the fractional part rfwofof their argument L 1 L
X, i.e.,Bp(mod x]) (here mo@x] is a shorthand notation for J dx{(2x+2)=—, j dx x{(2x+2)=¥(1+2)—Inz,
x modulo 1, i.e., modk]=x—[x], where[x] is the largest 0 z 0
integer satisfying x]<x). In what follows, for brevity we (4.13
omit the sign mof] and write simplyB,(x).

so that we finally get

A. DOS in the presence of scattering

Now we turn to calculating DOS in the presence of the = w(f +InE— 1 414
impurity scattering ratd” using convolution(4.3). Since 2 2 z ’
Do(€) is an even function o€, the expression foD (e) can
be written as follows: Thus, we express the DOS in terms of the digamma function

IJII
N ) A2/eB dX
D(e)=—2|m (e+il") f —
- X+z Do N[FI 2 ] (e+iD) w(AZ—(eHF)Z)
€)= —nz——1Im| (e+i _—
2 (= dx ) X w2 2eB 2eB
+—f tan | cot=| |}, (4.10a
mlo (x+2)? 2 eB } (415
_ 4.1
2_ H 2 !
oAl AT(eril? A= (eiD)

or in equivalent form
where we used Eq4.7b for Dgy(e€), representedPr as

Pr(exw)=—Im(e+xw+il')"! and integrated by parts to N A2 NeBd A2—(e+ilN)?
obtain the second term in square brackets in(Ed.03. We Dle)=—=TIng g+ — gcm |nF<T)
also put an explicit cutoff\ associated with the bandwidth m m
in the first integral describing nonoscillating part of DOS. 1 [A2—(e+il)?

It is easy to calculate that +2 In 6B ) (4.16

2 2
Im (e+iF)J'A fe8 =TIn A It is evident that the DOS oscillations are contained inghe
o Xtz V(e2=A?~T?%)?+4€T? function when the real part of its argument becomes nega-
tive. They can be extracted in explicit form using the rela-
+ etanfl—zer . (411 tionship
A?4+T2—¢?

The second integral in E¢4.10 denoted a$ can be calcu- P(—2)=(2)+ E+ meot( 7z). (4.17)
lated if we take into account that the function z
tan™ 1(cot(mx/2)) is periodic with the periodt= 2, so that we
can write Hence we get
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(Az—(e—i—iI‘)z)_ (Az—(e+iF)2

58 5B )[H(GZ—AZ—F2)+ O(A2+T2— )]

n |e2—A2—T?|-2iel'| 2 A2 |e2— A2—T?|—2iell
=Rey 2eB —isgrie”—AT=T5)Imy 2eB
o2 A2-T?) 2eB ot €~ A*~T?+2iel 418
e“—A°— Trcotr , .
= A’—T2+2iel’ 2eB
|
so that Eq.(4.15 is rewritten as known results. First of all, it is easy to obtain from E4.15

that in the limit of zero fieldB=0 the DOS becomes

5 N ol 2 s |e2— A2—T2|—2iel’
(6)=—)T|Ingg~Re&¥ 2eB oo~ N r) A o A
)= —| ' N——m——ee n——
2 A2 12 2 VI2+(e—A)? V24 (e+A)?
eBle— A“—T"| .
_( 2 A2 T2)24 4212 +esgne”—A"-T7) T €e2—A2-T?
€ € +| €l §+tan‘1—2|6IF ) : (4.22
o (|62—A2—F2|—2ier)
my 2eB and forA =0, after restoring the prefactor 2f{v ,) with the
velocitiesvg andv, , it reduces to the DOS derived in Ref.
2eBel’ 49.
2_A2_T2 .
+ (2— A2—T?)2+ 42 +rf(e"— A1) As follows from Eq.(4.19), the DOS at zero energy but in

the finite field is given by

y esini‘(ZwsF/eB)—Fsir{w(ez—Az—Fz)/eB]}

2 2 2 2 2
cosl{2mel /eB) - cog m(e2— A2~ T?)/eB] D(0)= | 2 _q,(A il )+InA il
2 2,12 2eB 2eB
For smalll" the main contribution comes from the last term B eB 4.2
in Eq. (4.19, thus DOS in the presence bf can be repre- A24+T2| (4.23

sented in the form similar to E¢4.73:

The first term of Eq(4.23 is nothing else but the zero en-

ergy DOS(4.22 in the absence of the magnetic field. The

behavior of the DOS4.23 can be now studied in various

asymptotical regimes. For example, fde=0 andI’—0 we
i 1 wk(e?—A2-T7?) find

JrZeBk:1 P

2mk|e|T
ey T g

N d
D(e)= Esgr(e)&{ e(eZ—AZ—Fz)[ —A*-T?

AZ
—+TInz—

N | eB
] D(0)=— , (4.24)

(4.20 72| T 2eB

i.e., DOS is enhanced in the presence of the magnetic field if

Using now the formula I'’<eB. In the opposite limieB<I'2 we have

)

1 _, Sinx
> & “sinkx=tan , t>0, (4.2) 5(0) N['| A% (eB)? (425
k=1 e'—cox = |5 - :
% T? 3r4
one can check that the last term in E4.19 is recovered. It
is evident that oscillating part of DOS is contained in theOn the other hand, foA#0 andI"—0 we obtain
sum overk in Eq. (4.20.
D(0)= I A* A" 5 4.2
B. DOS in limiting cases (0)= 2 NSeB 2eB| a2’ (4.26

Since the final expressions for DOS, HE¢.15, and es-
pecially Eq.(4.19 are rather lengthy, it is useful to consider so that nonzero gap regularizEs—~0 divergence, which is
a few simple limiting cases and compare them with thepresent in Eq(4.24).
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V. REPRESENTATION FOR THERMODYNAMIC % e~
POTENTIAL Q1(p)= —Tf deDo(e)In( 2 cos%), (5.6
A. General expressions where Dy(€) is the DOS with zero level broadenind (
All thermodynamic quantities such as the magnetization= 0). Then the potential at finite T is obtained by convo-
M and the number of electrorld can be found from the luting Q(x) with the distribution functionP(w). The
grand thermodynamic potentiél, which in the relativistic  statement that the level broadening is equivalent to consid-
case(see Refs. 25 and 44an be written using the DOS as ering the distribution of the chemical potentials was proven
follows: in Ref. 48, and we adopt here its derivation for the relativis-
tic thermodynamic potential Ed5.1). Indeed, if the levels
IE_'M are broadened, then the density of states is obtained as a
(2 CoShoT ) 5.1 convolution ofDy(€) with the probability distributiorP(€)
of energiese:

©

Q(T,,u)=—Tj_xdeD(e)ln

with the DOSD (€) given by Eq.(4.3). We assume every-

where that the voluméarea of the system is unity, so that

Eq. (5.1) corresponds to the thermodynamic potential perQ(Tw“):_Tf
unit volume. It is convenient to separate the vacuum contri-

bution atT=0, =0 in the thermodynamic potential. For

that we write = _Tf

o0 E_
dwde Pp(o—e¢) Do(w)ln( 2 coshz—_lfu>

E—wW— U
2 cosh—_l_)

dwde Pr(w)Dy(€)ln 5

Q(T,,u)z—Tf

de D(e)[In(ele™ 2T = —Tf dode Pr(w—u)Dy(€)in| 2 coshez_?w)

+el= N 9(e)+ b~ e)]] -
) = f, do Pr(o—uw)Q1(w), (5.7
=—5| deD —u)s -T

2)_."¢ (e)le=p)sgrie) where the potentiaf)+(u) is given by Eq.(5.6). If several
. damping effects occur together, the corresponding convolu-
Xf deD(e)[In(1+e*= ) T)g(e) tions have to be carried out successivélye order is not
—w essential

(= m)IT The effect of finite temperature can also be included in

+In(1+e )O(—€)] (52 this scheme by choosing the distribution functi®q(z),
which describes the temperature line broadening, equal to the

or, using the evenness of the functibre), i e - i
g Drfe) negative derivative of the Fermi function, i.e.,

o

Q(T,,u)=—f:deeD(e)—Tf_mdeD(e)[ln(1+e("“‘€)”) Ne(2) _ 1
9z

X 0(e)+In(1+ el WMy g(— e)]. 5.3 4T cosﬁﬁ

Pr(2)=— (5.9

The first(divergenj term in the last expression is the vacuum We now show that the thermodynamic potential, Eg6),
energy while the second orteonvergentis due to contribu- can be obtained as the convolution(®§(w) with the distri-
tions of real quasiparticle excitations. bution functionPt given by Eq.(5.8):

At zero temperaturd =0, we thus have

Ll QT(M):f_wdeT(w_M)QO(w)- (5.9

Q(O,M)=Q(0,p«=0)+f deD(e)(e—|ul)
0 Since the vacuum contribution does not change under aver-

aging over thermal anBl distributions, it is enough to prove

this fact for the finite parf)+(u). Performing integration by

It is easy to see that the density of states is related to thparts we obtain

thermodynamic potential at zero temperature,

=0(0)+Qo(u). (5.4)

Qr(u)= —TficdeD(e)[ln(1+e("_5)”) (e)

d?Q(T=0,
D(u)=— S T=08) (5.5
du +In(1+elsPMyg(—€)]
As was already mentioned, the constant Landau-level width o €
approximation appears to be a very useful simplification, =—J defe(e) fodXSQYTX)D(X), (5.10
viz., instead of calculating the potenti&.1) with I'#0, one o
can start from the potentidb, wheref:(¢€) is the relativistic thermal distribution function
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0(e) 0(—e€)

Te(&)= e T 15 g

(5.11

which is also used in semiconductor physics. Integrating b
parts for the second time, we obtain

- © g —u)
= [ T wode, 612
where
W(e)= f:dxsgrm foxdysgrtym(y). (5.13
Since
Ing(e)
e _4Tcosﬁe/2T_>5(€)' =0 (514
we find that
W(u)=—0o(p), (5.15
hence
- © d - -
D)= f_wde(—y)wf). (5.16

The common effect of level broadening due to both tempera-
ture and damping effects can be written as successive con-

volutions

Q(T,un)= ffwdw’dwpr(w'—,LL)PT(w—w')QO(w).
(5.17

PHYSICAL REVIEW B9, 075104 (2004

- w= f deD(e)ng(e—w)=n, (5.19
au —

etermines the density of carriemsn nonrelativistic many-

ody theory as a function df, B, andu. On the other hand,
one can consider E¢5.19 as an equation for as a func-
tion of T, B, andn, which is typical for studies in a canonical
ensemble. In Eq5.19 ng(w) = 1[exp/T)+1] is the usual
Fermi function. AtT=0, u=0, Eq.(5.19 gives the density
of particles for a half-filled band,

nozf deD(e)b(—e), (5.20
so that the deviation of the particle density framis due to
a finite temperature and nonzero chemical potential.

It is convenient to redefine the thermodynamic potential
in order to have an explicit proportionality @f to the den-
sity of free carriers. Thus we introduce

o0

(T, ) = Qnr(T, p) + o= — f _deD(e)[TIn(1

+elr=aMy— uo(—e)]. (5.21)

Inserting 1= 6(€) + 6(— €) before the logarithm, the last ex-
pression is rewritten in the form

Q' (T,u)=-— f:de ED(E)—Tfj;deD(e)[ln(l

+elr=aMyge)+In(1+els=MTyg(—€)],
(5.22

where the first term gives the energy due to the half-filled

zone. As is seerf)’ (T, ) acquires the form of a relativistic

thermodynamic potentidlcompare with Eq.(5.3)]. Its de-

Hence for calculating thermodynamic quantities we need tdivative with respect tqu,

know only the thermodynamic potenti@ly(w) at zero tem-

perature and zero width of levels that is directly expressed

via the DOSD(¢€), Eq.(4.7). Thus the knowledge of zefb
(and zeral' if the Landau levels have the same widihOS
is completely sufficient to write down the finiflethermody-
namic potential.

B. Link with nonrelativistic thermodynamic potential and
equation for chemical potential

We start from the expression for the nonrelativistic ther-
modynamic potentialsee, e.g., Ref.)1

Qur(T,p) = —Tf:deD(e)In(le elr=9Ty (5,18

expressed in terms of the DA ¢) for original nonrelativ-
istic tight-binding Hamiltonians considered in Sec. Il. Due to
the complexity of the tight-binding spectrum, this DOS can-
not be found explicitly foB+ 0 and the only property of the
DOS we need is that it is an even function eof

70 (Tp) _
S
~[1-ne(e=w)16(~€)]

0

p= f  deD(lnele= u) (e

M
2) .

deD(e)tan o7

(5.23

determines the charge density of carriers or carrier imbal-
ancep (p=n—ng=n,—n_, wheren, andn_ are the den-
sities of “electrons” and “holes”, respective)yas a function
of T andB at fixedu. Note that nowp=0 atu=0 and there

is a symmetry with respect to the transformatien- —

and p— —p. In the present paper, however, we will mostly

use the canonical ensemble interpretation of GBR3, viz.,

as the equation for as a function oflf andB at fixed p.

VI. ZERO-TEMPERATURE THERMODYNAMIC
POTENTIAL

The zero-temperature thermodynamic potential is given
by Eq. (5.4), and for calculation of its vacuum contribution
04(0) we refer to Appendix A. The thermodynamic poten-

The derivative of the thermodynamic potential18 with
respect to the chemical potentjal
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tial with vacuum energy1,(0) subtracted is given by the
second term of Eq5.4):

PHYSICAL REVIEW B 69, 075104 (2004

~ [l
fig(rn)= | " deDo(er(e- 1, 6.0
where the DOS fof'=0 case is given by Eq4.7). In what .
follows we choose for definitenegs>0. CalculatingQq(u) A A /"i ; Ao
(see Appendix B for the detailwe obtain that it can be 4 ,’: /1 i /'/i ; //i
represented as a sum of regular and oscillating terms, 20 1 1 / el i
| -+ ;v /)
~ . 0 I"i— I -!—— ;I i i' 1 l’ / /|
QO(M)_Qreg(/—L)+Qosc(M)a (6.2 " H ; ! / i ! i I' ,' J.”/'I’
with Q.4(1) expressed in terms of generalizédunction, i/ i/ '/ ) L
B
N T, I A A
Qreg(p) == 5 0(n=A)| gu(u"—34%)—AeB
024 026 028 03 032 034
1 AZ B!, Tesla™!
—(2eB)¥%| — = 51+ 525 (6.3
2eB FIG. 1. The magnetizatioM (in K/T cm? calculated forN
and =1) as a function of inverse field ! for three different values of
chemical potential and A=T=I'=0. We wuse eB
N(eB)3? — (200 K3)B(T).
Qosdp)=—_——0(n—4)
Bi(X)=x—1/2, By(x)=x?>—x+1/6,
szl W[Jl(wkv)cos{wkw) Ba(x)=x3—3x%/2+x/2,
+ J, (kv ) sin( rkw) ], (6.4 B4(x) =x*—2x3+x?—1/30. (6.9

where the monotonic function, , are defined by EqB5).
Writing the last expression fal,s{ ) we introduced new
variables

—A2 _M_Z
eB ' U eB’

(6.9

W:

For small fieldseB<u?, we can use the asymptotic expan-

sion (B7) for J;,J, and represenf) . in terms of periodi-
cally continued Bernoulli polynomials defined in Ed.9):

N(eB)?

The terms oscillating with a magnetic fie[&qgs. (6.6) and
(6.7)] represent small corrections to the nonoscillating part of
the thermodynamic potentifEq. (6.3)] at eB<u?. Never-
theless, sincé) . contains fast oscillating functions of the
variable (u2— A?)/2eB, after differentiating it over the mag-
netic field, the magnetizatioM = — 9Q)/9dB acquires a large
oscillating part(see Sec. VIl and Figs. 1 and.2

A. The period of oscillations and its dependence ok
for fixed p

As it follows from the expression§6.4) and (6.6), the

Qosd p)= 32 O(u=12) frequency of oscillations of the thermodynamic potential is
equal tow/2=(u?— A?)/2eB. Therefore their periodB sat-
2 C(n+1/2)B, ,(w/2) [ 2eB\" isfies the relationship
— 2
= (n+2)! w .5 3
5 I 4 Vi
o e Jd AN
In particular, keeping the first few terms in the expansion we 0 : :! A
have M _ , I
2.5 | i
-5 i
N(eB)2 eB  (w s ] '
Qosd )= 6(pn—A4)| By 5 2 5Bsl 35 <10
3u
0608 1 1214 16 1.8
(e B) 2 B l,Tesla'1
4t B4< 2) G FIG. 2. The magnetizatioM (in K/T cm? calculated forN

=1) as a function of inverse fiel ™ for three different values of

where the explicit expressions for the Bernoulli polynomialsthe gapA and for T=I'=0. We useeB— (10* K?)B(T) and u

B,-B, are

=200 K that are typical for graphite.
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5B 2eB w? As pointed out in Ref. 35, the estimate & is not suf-

oB<B, (6.9 ficient for the detectability of dHVA effect. In addition we
should calculate the magnetization and estimate the magni-
tude of its oscillations.

B 2_A2—> Z_AZ'
M M

wherew, is defined in Eq(3.5). Using the estimate ob,

for the DDW model made below, E¢3.5), we obtain that VII. MAGNETIZATION

for A=0, =100 K, andB=1 T, the period of oscillation o , o )

SB=0.032 T, which is clearly within the detectable range of "€ magnetizatioM in the direction perpendicular to the

dHVA oscillation experiments and close to the estiméie plane should be calculated in the cano_mca_l ensemble, thus

~0.05 T made in Ref. 35. we need the Helmholt.z free energy which is related to the
Repeating this estimate wid=1 T for graphite with,, ~ 1€rmodynamic potential as

=200 K andA=0, we getéB=4 T, which is very close to

the observed value for period of the SdH oscillgtions in this F(p,B)=Q(u(p,B).B)+u(p.B)p. 7.

material'® However, so large a value @B clearly violates Then

the conditionsB<B implied to obtain Eq(6.9), and for the

case of graphite the period of MO is given by a more accu- IF(p,B) 90 (u,B)
rate expression M,(p,B)=— B~ B
n=u(p,B)
eB eB.,| ui—A2 A (6.10 whereM , is the magnetization obtained in the grand canoni-
cal ensemble at constapt,
whereB; andB; . ; are the values of the magnetic field in two 90 (u,B)
adjacent minima. In particular, for graphite again using for M, (u,B)=— _ , (7.3
an estimateu=200 K andA =0 we obtain|1/B;—1/B; 4| JB

= const
=8 T 1. Writing the last equality in Eq(6.10, we intro-

duced the area of an extremal cross section of the Fer
surface A= 7(u?—A?), as it is usually done. Thus, contrary
to conventional systems with quadratic dispersion law an

the period of MO~ 1/u, the period of MO in the systems "~ system with fixeg. In the present paper we restrict

with linear dispersiorifor A=0) is ~1/u? as seen in Fig. 1. ) . ; .
Making abgve e;qtimates \2ve havg assumed eve?ywher%ursewes in what follows by studying MO in the limii,

thatA=0. However, as it is clear from Eq.9) and(6.10), <e€g, SO that for fixedp, as shown in Sec. VIII A, one can

) . . lect the oscillations gf(B).
the opening of the gap increases the period of MO. In €Y . : .
particﬂlar, f%r graphi?e [:ven a rather smgll valuehofe.g., The thermodynamic potential consists of the sum of three

A<10"24, would produce a sizable 0.04 T change in the terms: the vacuum enerd@4), regular(6.3) and oscillating

. . o (6.4 parts. We begin with the calculation of the part of the
period of MO. The effect of the gap opening on the oscilla magnetization which is due to the vacuum energy, @d).

tions of the magnetization is shown in Fig. 2. This figure was As one could see from E¢5.22, this energy corresponds
obtained using the values of the parameters typical for grap% the energy of the half-filled Z(;ne. Thus this case is also

ite (see the captignAs one can see, the gap opening pro'interesting from physical point of view. Considering first

duces an observable change in the period of MO. Thus thi S : .
method can be useful to test the realization of magnetic cat—ioi]“m'tA_o’ we obtain from Eq(A5) that the magnetiza-

talysis phenomendfiin graphite(see Ref. 4pwhen the ex-
ternal magnetic field can induce the opening of an insulating
gapA(B) in the relativistic spectrum of quasiparticle excita- M(A=0u=0)=— 3N4(3/2) 328 (7.4)
tions. The crucial condition for the observation of thB ’ 4272 '
increase caused by the gap opening is that the chemical po-

tential  itself does not chang® as the gap\ opens. For- (note the diamagnetic character of the vacuum contribution
mally this condition corresponds to considering fixedin in magnetization The ~ B dependence of the magnetiza-
the grand canonical ensemble. However, if the experimentalon at =0 implies that the susceptibilityy=dM/oB
setup corresponds to the fixed carrier imbalapcene can «B~ Y2 diverges at zero field raising a question about the
see from Eqs(8.3) and(8.4) below that the entire difference stability of a homogeneous state described by effective La-
w?—A?=2m7|p|/IN adjusts to the strength of the applied grangian(2.16). As discussed in Refs. 12 and 35 in the case
field, so that the period of MO remains unchanged, makingf the OAF (DDW) this instability disappears if a coupling
the gap detection impossible. Nevertheless, as we discuss lagtween layers is included, or if finite temperature and/or
the end of Sec. VIII C, there is still a possibility of the gap chemical potential is included. The instability is also re-
detection if simultaneously with a frequency the amplitudemoved in the presence of the nonzero gaplindeed, using

of dHVA oscillations is measured. the asymptotics for zeta function

rﬁa}nd we used thatQ) (u,B)/du= —p. Formally, the magne-
tization calculated in the canonical ensemble has the same
éorm as the magnetization calculated in the grand canonical
ensemble, but we have to take into account oscillations of
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al—s 1 s VIIl. INFLUENCE OF IMPURITIES AND TEMPERATURE
(7.5 ON MAGNETIC OSCILLATIONS

+a)= -t
(sl a) s—1 2as 123lts

A. Thermodynamic potential ©(p) and equation for [ in the

presence of scattering

for a>1, we obtain from Eq(A4) that . . . o
To obtain the equation for the chemical potential it is

convenient to use the DOS expressed as in(£4.6), which
allows one to write down the thermodynamic potent@ll),

M(A,p=0)==5— 7 eB<AZ (7.0 including the effect of impurity scattering, as
. . . ~ Nu? | A?
Thus the opening of the gap removes the singularitp at Qo(p)=———TInz—
22 2eB

=0 in the susceptibility.
Now we turn to the casg>A when in addition to the

vacuum contribution two more terms appear in the thermo- _NeB “ delm InF(AZ—(fJFIF)Z)
dynamic potential, the regulaf),.4(x) and oscillating w? Jo 2eB

Qs 1) parts, that aT =0 are given by Eq96.3) and(6.4). ) o

As one can easily see, far>A field dependent terms in Eq. +£In A= (etil) ) 8.1)
(6.3 coincide with the corresponding terms in the vacuum 2 2eB ’

energy(A4) up to a sign, so that their total contribution to . _
the magnetization is zero. Therefore, only the osciIIatingcorreSpond.'ngly’ Eq(5.23 for the carrier imbalance ar
=0 and finitel" takes the form

term of the thermodynamic potential given by E6.4) con-
tributes to the magnetization.

0O 2
In the small-field limit,eB< w2, differentiating the poten- ~ 9o(p) _Np A

tial (6.6) we obtain p= p - ? r]ZeB
. Ne A%2—(u+il)?
Neub(u—A) <« T'(n+1/2) W t—m Il —— 5
M(A u)=— " 0 n+2| 5 m
2 n=o (N+1)! 2 _
1 [A?—(u+il)?
w\w](2eB| " +§|n 2B || 8.2
Bl 5 )5 =] (7.7)

1 For smalll’<u,A, one can derive from E(J8.2) a more

simple expression
where we used the relatioiB,(z)/dz=nB,,_1(z). Equation

(7.7 is the generalizatiqn to the reI_ativistic spectrum of thee§=,u2+ ZLB
formula for the_ magnetization obtglned by ShoenBeFgr T
ﬁgsgnple, keeping first few terms in the expans{@rv) we - i 2m( w2 A2)/(26B)]
exd 27 ul'/(eB)]—cod 27 (u2—A%)/(2eB)]’
New

v\ 3eB_[v| 1e’B%? (v 24 A2
M(A:O,M)Zﬁ Bl(—>—§—282(—)—— B3(§> m >A ’ (83)

2] 2,4

where we have introduced the Fermi energy, counted
from the edge of the gag@\, by means of the relation
, (7.9 (N/2m)(e2—A?) =p. Note that Eq(8.3) can also be derived
directly from the relationship= [§deDy(€e) and Eq.(4.20
using the sunm4.21).
where the explicit expressions for the Bernoulli polynomials In general, as mentioned in the Introduction, both fixed
are given in Eq(6.8). We recall that the Bernoulli polyno- and fixedp cases are possible. For example, fixjpagn Eq.
mials used here depend on the fractional part of their argut8.2) one can study the oscillations of the carrier imbalamce
ment so that magnetization is oscillating function with theas a function of the fiel®. Equation(8.3) can be considered
period 6B given by Eq.(6.9) and weakly varying amplitude. as the relativistic analog of the corresponding relation be-
The dependence of the magnetization on the inverse fieltveen u and e in nonrelativistic casé.One can deduce
B! is presented in Figs. 1 and 2 computed on the basis dbrmal “nonrelativistic” limit from Eq. (8.3 if one defines
Eq. (7.7). The dependenckl (B~ 1) has a clear sawtoothlike the nonrelativistic Fermi energyenn=mp/NA and corre-
shape showing that, for the considered range of the paransponding nonrelativistic chemical potentjak= w,,+A and
eters, it is indeed convenient to represent the oscillations igonsideru,,<A. This nonrelativistic limit is, in fact, irrel-
terms of the Bernoulli polynomials. evant for MO considered in the present paper, because “rela-
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dition 27ul'=eB is valid (see discussion about the
importance of the chemical-potential oscillations in Ref. 8
This problem, however, is beyond the scope of the present
work.

B. Thermodynamic potential Q,s() and magnetizationM ¢
in the presence of scattering

We return now to the oscillating part of the thermody-
namic potential6.1) including the effect of impurity scatter-

2412
W ing. The oscillating part can be writtesee Appendix C for
detaily as
N(eB)*” 2_A2_ T2
05 075 1 125 15 175 2 Qosdul) = — —0(u"— A1)
B'I,Tesla'l
. . N o1
FIG. 3. The chemical potentiaj{ e£)? as a function of inverse X E —3/2[J1(7-rkv,7-rky)cos( wkw)
field B~* for three different values of the Fermi energy, I' k=1 (7k)
=0.5K, andT=A=0. W B— (10* K?)B(T). .
; an e useeB— (107 KHB(T) + 3,( ko, mky)sin(rkw)], 8.5

tivistic” theory studied here emerges as an effective theory
for nonrelativistic models described in Sec. Il, so that it is
meaningless to consider its nonrelativistic limit.

On the other hand, for the magnetization the case of
fixed carrier imbalance is more natural, and therefore os-
cillations of the chemical potential have to be taken into
account by golving Eq8.3) for u(B). Ge.nerallyz this non- 2_p2_T2 AZLT? 12
linear equation cannot be solved analytically without further W= s U= y=—. (8.6
approximations, but foe2>eB the second term in E48.3) eB ' eB ’ eB’ '
represents a small correction to the constant value of the

chemical potential so that we obtain by iterations an approxi- ) . ]
mate solution Note that the variablev (and alsau) that was defined in Sec.

VI by Eq. (6.5 is redefined in the presence of scattering in
accordance with E(8.6). As before the frequency of MO is

where the functions of two argumenis(p,n) and J,(p,r)
éhat generalize the function andJ, defined in Eq.(B5),
are defined in Eq(C4) and the variablesy, u, andy are

) 2eB given byw/2, so that it would diminish in the presence of
M= T impurities if we considered the fixed case. This decrease
of the MO frequency for fixequ is specific for the present
. sin 27r( eﬁ—AZ)/(ZeB)] relativistic model, while in the nonrelativistic case the MO
Xtan™ frequency remains intact even in the presence of impurities.

exd 2meel/(eB)] - cog 2m(ef — A%)/(2eB)] The origin of the difference between relativistic and nonrel-
(8.4) ativistic cases can be traced back to the difference in zero
field DOS for these cases.
. o , For I',JeB<pu keeping the leading term in asymptotic
It is plotted in Fig. 3 for the model parameters typical for expansiondC8) and (C9) [this is the first term in EQ(C8)

graphite. As expected, these oscillations have savvtoothliksmy] we obtain from Eq(8.5) (omitting 6 function)
shape, and the sharpness of the teeth depends on the value of

I'. One can also anticipate that the relative amplitude of the

oscillations decreases as the Fermi enargyncreases and 5,

the fieldB decreases. This is indeed seen in Fig. 3. Yet in 2D Qo .T) = N(eB) > cog mkw)
the chemical-potential oscillations are rather strong even for osc.fbs 2mp 1 (wk)?
large e, due to the particular form of Ed8.3), that turns
out to be different from its 3D counterpart.

In spite of the smallness of the second term in B), it
is important to take into account the differencewofand e¢
in the arguments of oscillating functioris the magnetiza-
tion, for example in 2D, because it alters the phase of oscil-1t is easy to check that foF =0 Eq. (8.7) reduces to the
lations. The difference can be neglected if the additional conexpression that follows directly from E¢6.4) if one substi-

x oL 0. (8
ex WE’M>' (8.7
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tutes the first term of the expansié®7), J,(p)~1/\/p. This  for the nonrelativistic case, usually written in terms of the
comparison with Eq(6.4) allows one to identify in Eq(8.7) nonrelativistic cyclotron frequencyw.. Comparing Egs.

the Dingle factor (8.8 and (8.9), one can notice two facts. First one already
r discussed in Sec. lll, viz., in the relativistic caRg can be
RD(k.M)ZeXF< _ZWKM_B>’ (8.9 larger than it would be for the nonrelativistic case for the
e

same field foru<murv,=w/(2w.), so that the condition
which describes reduction of the amplitude of té har-  for the observation of MO in the relativistic case is less strict.
monic due to the electron scattering. As is seen, the finiten particular, for graphite this condition remains valid for
amount of impurities leads to smoothing of the oscillations., <m ,2~6x 10* K. Second, further increase gf makes

The factor(8.8) is a generalization of the Dingle harmonic 1o ynobservable, contrary to the nonrelativistic case, when

damping Rp does not depend on the chemical potential

r Calculating the magnetizatio7.3) and keeping only

NR _ - .
Ro (k)ocexp( 2mk wc) .9 dominant terms, we obtain from E(B.7)
v o N(u?-a?-T?) i Siakw) 5 e N(w?—A%-T?)
osc™ 27w =1 wk € T 27w
sif2m(u?—A?-T?)/(2eB
- n2m(u )/(2eB)] ’ (8.10
exd 2mul’/(eB)]—cog 2m(u?—A2—T?)/(2eB)]
|

where in the second equality we used E4.21). We will  culated from the zero-temperature potentigl5) using the

show now that the oscillating part of the magnetizafidg,.  convolution property, Eq(5.9). For that it is convenient to
is directly related to the oscillating part of the chemical po-rewrite the expressiofB.5) in the form
tential.
Comparing the result, Eq8.10), for M. with the solu-
tion for chemical potentia(8.4), one can notice that the os-

cillating part of the magnetization is directly proportional to N(eB)3?2 o i 1
lat g Qosdp,I) == —— 7 0(pu?—A>-T —
the oscillating part ofu~: osd . T) —— (u ))k:1 o
im [ dt e—i(wkv)t+i77ky/t _
N(E,Z:—AZ) 5 7o (1) osc X1m e*TJ —imkw |
osc™ 4eBer M )osc™ 2eB (8.11 0 \/f(t-i—l)

(8.12

[this is obvious if one neglects small terfig in the trigo-

nometric functions in Eq8.10]. This proportionality can be

in fact seen when Fig. 8lotted for finitel") is compared where we used that the functiods(p,r) andJ,(p,r) can be
with Figs. 1 and 2(plotted forI'’=0). Note that unlike the represented as Im and Re parts of the same function
nonrelativistic case the magnetization is proportional to

W2ee, NOtgsc. If the ratioseZ/eB and 27 ul'/eB are small,

the oscillating part of the chemical potential under trigono- © dte P/t
metric functions in Eq(8.10 leads to additional frequencies \/;Jl(p,f)z —Im \/——
in the Fourier spectrum of the magnetization. In its turn this 0 VH(t+i)

changes the harmonics amplitudes compared with the LK-
like formula, Eqg.(8.10. In the nonrelativistic case this was
demonstrated in Ref. 8, 50, and 51. = dte P/t

\/;Jz(p,r):Re . m, (8.13

C. Calculation of Q,s{p) for T#0

Now we consider the effect of finite temperature on theand rotated the integration contour to the imaginary axis.
oscillations of the thermodynamic potential that can be calHence
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O (Tl = N(eB)¥2 1
osd T, 1) = 2092 (&4 (k)32
i = dt ekt o de 5 2 1o itwmke? ~  €2—A%2-T?
ximl &7 = f (2= AT T)exp — — o —imk—— =—
O NUEFD Ty r s 2
2T
(8.149

At low temperature§ — 0, after making a shife— e+ u and changing the variable of integratien-2Te, the integral over
€ gives (neglectingT? term in the exponeht

o] <] 2

J’ de e*(iwk/eB)(t+l)4Tuezzf de CO% ATu(t+ 1)77'(6) _ A kTZM('I—i- 1) ’ 8.15

—= cosHfe 0 coslfe eB 2w KTu(t+1)

eBsinh————

eB
where we used the formui®.982.1 from Ref. 52. We obtain
N(eB)Y?Tu -
Qosd T, =— ———=—0(u?—A?-T?)
osd T, \/; ( kzl (wk)llz
—iml4n—imkw A (imktu“/eB)+ (i7ky)/t)
XIim| e e fo \ﬁe KT (1 + 1) (8.16
I
eB

Nonoscillating factor in the integrand has a maximunt at plitude with respect tor=0 case. This becomes more evi-

=0, thus we can take sinh evaluatedtatO while the re-
maining integral ovet is evaluated by means of EqQ<6)
and (C7). We finally get(omitting againé function)

. coq wkw) 1
Qosd T, 1) =NeBTY, — KT
Sin
eB
ul
XEXF{—ZWkE}
N(eB)? < cogwkw)
= Rr(k, w)Rp (K, 1),
) oz FrlkmRo(kiw)

(8.17)

where we introduced theemperature amplitude factor

2m°kTul(eB)
C 27%kTu
Sin eB

dent if we consider the limiB—0, so that the function
1/sinj 272k Tul(eB)]~exf —27°kTu/(eB)]. Comparison of
this exponent with Eq(8.8) allows one to introduce the

1 12 14

B~L,Tesla” 4

1.6 18 2

which is a relativistic equivalent of the temperature reduction FiG. 4. The magnetizatioM (in K/T cm? calculated forN

factor of the famous LK formula. Clearly, sinde;(k,u)
—1 for T—0, EQq.(8.17 reduces to Eq8.7), and for finite

=1) as a function of inverse fiel ™ for three different values of
the chemical potential. We useB— (10" K?)B(T), '=05K, T

T the thermal broadening causes a reduction of the MO am=5 K, andA=0.

075104-16



MAGNETIC OSCILLATIONS IN PLANAR SYSTEMs. .. PHYSICAL REVIEW B 69, 075104 (2004

The dependence of the magnetizati@®) on B~ is ob-
tained by differentiation of Eq8.17) and the results of nu-
merical computations are shown in Figs. 4 and 5. They illus-
trate the above-mentioned facts that the MO are smoothed as
the temperature and/or the chemical potential rise. Obviously
the increase of’ gives the same result. Moreover, one can
clearly see the damping of dHvVA amplitude as the fiBld
decreases. It is known that the damping of dHVA oscillation
amplitude as a function of several parameters is commonly
used to extract system parameters such as Dingle tempera-
ture and the effective electron mass. However, these methods
of analysis depend on the applicability of the LK theory.
Assuming that the relativistic generalization of the LK
theory considered here is valid at least fgqr<eg, we sug-
gest that, using Eq$8.10 and(8.17), one can extract both
the value ofu from the damping and the differencg,?

—A? from the frequency of dHVA oscillations. The knowl-
edge of these two parameters allows one to obtain the value
of the gapA even for the fixed carrier imbalange

06 08 1 12 14 16 18 2
B'I,Tesla'1

FIG. 5. The magnetizatioM (in K/T cm? calculated forN IX. CONCLUSIONS

=1) as a function of inverse fiel8~* for three different values of In this paper we have studied magnetic oscillations in
the chemical potential. We useB— (10" K*)B(T), '=0.5K, T thermodynamic quantities such as DOS, thermodynamic po-
=15K, andA=0. tential, and magnetization in planar systems with the relativ-
istic Dirac-like spectra for quasiparticle excitations. The at-
Dingle temperature tention was mainly paid to the regime, where the calculations
in canonical(fixed p) and grand canonicalfixed u) en-
r sembles give equivalent results. Our main results can be
TD=;, (8.19  summarized as follows.

(1) We have obtained analytical expressions that describe

. . . . MO in the DOS given by Eq<€4.7) and(4.19 for zero width
so that a reduction of amplitude due to quasiparticle scattefr _, (no impurities and Eq.(4.20 for finite width I' for
ing from impurities can be interpreted as leading to an effecy 5., 4au's levels. o

tive rise of a temperature from true temperatlreto T

+.T.D' i.e., as if the system could nlot be cqoled below a,4mic potential, Eq(6.6), and magnetization, Eq7.7), as a
minimal temperaturd, . Note that while the Dingle factors  gries in the periodically continued Bernoulli polynomials.

(8.8 and(8.9) are different, the value ofp itself is the same  1hjs representation turns out to be useful for the 2D case
for relativistic and nonrelativistic cases. Comparing EQ.yhen the oscillations have sawtoothlike shape. In the limit

(8.17 with the corresponding expressitb) for (oscin 2D w_<u it is sufficient to consider only first few terms of the
from Ref. 7 (this expression contains also a spin fad®r  gerjes.

which is not considered in our workone can notice that 3y For finite impurity scattering rat& and temperature
relativistic and nonrelativistic cases differ only by the factor,\ o have obtained the thermodynamic potent&ll?) and
(—1)* that appears due to the presence of the zero enerd¥presented it in terms of the Dingle factBp, Eq. (8.8,
Eo= w./2 for the nonrelativistic Landau levels. and the temperature amplitude facRy, Eq. (8.18), as it is

_ Itis seen from Eq(8.17) that the conditions for observa- ,g,ajly done in Lifshits-Kosevich theory. The spin facky
tion of dHVA oscillations can be formulated as an inequality .o, e calculated similarly if the Zeeman term is included in
for the strength of magnetic field the model.

(4) For finiteI", we have derived also E@8.2) for the
chemical potential. Its solution for fixed carrier imbalance
exhibits oscillations ofu as a function of the magnetic field.

It is shown that the oscillating part of the magnetization is in
The first inequality is necessary in order to have at least onéact directly proportional to the oscillating part of the chemi-
oscillation. It implies physically that the field must not be so cal potential(more precisely, t0 £2)sd-

high that all fermions are in the lowest Landau level, i.e., the (5) On the basis of obtained formulas, we have discussed
filling factor has to be bigger than one. The second inequalityhe possibility to detect a gap that may open in the spectrum
guarantees that the amplitude of oscillations is not exponerof the Dirac-like quasiparticle excitations due to a nontrivial
tially suppressed, and for that the magnetic field must bénteraction between them.

strong enough to make spacing between Landau levels big- One of the possible and necessary extensions of our re-
ger or of the order of the thickness of the thermal layer timessults would be to study magnetic oscillations for the case
the Fermi energy. when the consideration within the canonical ensemble is cru-

(2) ForI'=0, we have expressed the MO in thermody-

/.LZ_AZ

2

=eB=max2m?Tu,2m*Tpu}.  (8.20
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cial, i.e., in the regime where the oscillations of the chemicato write
potential described by Ed5.23 at fixedp (eg) cannot be
neglected. The necessity of such an extension emerges from NeB © dt

the fact that the oscillations oft become important for Qo(MZOB):—m T,zefmz
27 ul’<eB which is exactly the conditio8.20 for having ot
large amplitude of the MO. i
Another important extension would be to consider MO X|1+22, e‘zeB‘}
analytically in the transport quantities such as electrical and n=1
thermal conductivities. These oscillations were in fact seen .
in the numerical results presented in Ref._29, but analytical = lf Ee’mzeBtcotr(eBt),
results can be useful for comparison with the 4732) 1p2 t52

experiments’'8 While for dHvA effect the conditionp (A3)
=const is more natural, it is plausible that SdH effect can be
measured under conditiopn=const. This, as we have dis- where we introduced the ultraviolet cutoff as the band-
cussed in the paper, can be used for an experimental obsetidth. The integral can be evaluated through the generalized
vation of the gapA, especially if the gap depends on the [ function
applied field,A=A(B).

All above-mentioned problems can be treated analytically
due to the fact that the broadening of Landau levels has a Qo(u=0B)=— >
Lorentzian shape and the impurity scattering rhte(the m

AAZ
—— +AeB+(2eB)%?

J

width of this distribution is assumed to be field and tem- 1 A2 1
perature independent. In fact, both these assumptions can be g( -~ —+1]||+0 _), (A4)
guestioned, in particular for 2D systems with a linear disper- 2'2eB A

sion. For example, the validity of the first assumption for 2D 3. .
systems is now discussed in the literat(see Refs. in Ref, Where the term~A~ which does not depend ok andB is

8). While the second assumption may well be valid in theOMitted. The last expression coincides with the vacuum en-
low-field regime, it is necessary to investigate its domain of®r9y COTPUted n the secor_ld paperin Ref. Af' Settmg_m Eq.
validity and probably to consider also the dependeieg) (A4 A=0 and using the identity(—1/2,1)=¢(~1/2)=

Ref. 47 to access the high-field regime. —(1/4m){(3/2) we obtain

N¢(3/2)

2
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APPENDIX B: CALCULATION OF ()
APPENDIX A: CALCULATION OF VACUUM ENERGY

Qo(u=0,B) Substituting Eq.(4.79 in Eg. (6.1) and integrating by

As mentioned above, the vacuum contribution does noParts we obtain
change under averaging over thermal &nhdistributions, so N (x
it is sufficient to calculate it aT=0 and in the absence of Qop)=— —f deH(eZ—AZ){ez—Az
impurities. We calculate the vacuum term using the density 2mJo
of states in the form of Eq4.2),

1 wk(e2—A?)
o +2eBE —Si——5—
o NeB k=1 7K eB
QO(,u=O,B)=—J deeDo(e)=— 5 — A+2> M,
° =t =0P(w)+ QP (), (BD)

(A1)

The sum over the Landau levels is divergent and to calculat}g'here
it we use the representation N
. O () == g 0u=8)(n=M)*(u+24)  (B2)

1 f mdttsfle*at (A2)
as I'(s))o

and
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NeB (e2—A?) “ (—1)"T(2n+3/2)
Q(Z)(M)_ — —0(,u A)E f desm—B Jo(p)= \/—_ Z RTEET . (B7)
N(eB)%? w dxsin(kx) Thus for regular part of the potential we obtain
== b(p— A)E :
2m 7Tk Vx+u N
(B3) Qreg(M):_EQ(M_A)(M_A)Z(M"'ZA)
Writing the last expression faR{?)(u) we introduced new N(eB)¥ - "
variablesw defined in Eq(6.5 andu=A?/(eB). _ (e— - Ja(mku) . (B9
To extract explicitly the oscillations in the variablewe 2 k=1 (1 k)3’2

rewrite the integral in Eq(B3) as ) - ) )
while the oscillating part takes the for(6.4) written in Sec.

VI. Equation (B8) and (6.4) were also derived in Ref. 24

v dXS'n(WkX) fwdxsm(wkx) fo ﬂe—t(xw) using a different approacii. The sum in Eq.(B8) can be
0 VX+Uu Jmlo it evaluated through the generaliz&unction in the following
way:
1 o dte—t(ﬂ'ku)
mk[ Jo \(t2+1) i Jy(mku) 1 i = dte !
) EL (ak¥ [r &L (mo2)o 2+ 1)
— | —=———cog7kw .
o Vt(t2+1) Srkew) 1 wdte’“tz 1
» dt \/fe—t(wku) \/; 0 \/f k=1 t2+(71-k)2
—f Tsin(wkw) , (B4
0

1 o 1
—j dtt‘3/ze““(cotrt— —)
Jmlo t

wherev is defined in Eq.(6.5. The integrals in the last

equation can be expressed in terms of the degenerate hyper- 1 u 2
geometric function¥': =232 — 2 14 =| —ul2- 232
2 2 3
= dte P = dte P (B9)
np)=| —5—=-Im| ——
' 0 \E(t2+1) 0 \i(t+i) which finally results in Eq(6.3).
1 The oscillating partQ),;{x) of the thermodynamic po-
- _ \/;Im[ 1/2q,(_ —;ip” tential can be also represented in terms of the generalized
2'2 function. For that one should usel'(n+a)
= [3ds€'"* e~ and perform summation overby means
=—\/;Im[\/5\lf(1,2,|p” of the formula
J = dt\te o X xeY
\/;Jz(p)=—%[\/;J1(p)]=f i 2 nrBi= o X<2m  (B10
we obtain
= dte P 3
= e[\/ﬁ‘lf(l.—;ip”, .
o Vi(t+i) 2 ) n+a>Bn<y>
(B5) n=2
where we used also the relationstip o L, sxEY
=| dss e ® 1 —1—-sxBy(y)|. (B11)
0 e>—
V(a,b;z)=z'"P¥(a—b+1,2-b;z). (B6)
_ _ _ Using now the formul?
One can readily see that the integrdlsJ, are monotonic
functions of their arguments and have the following vlemmxdy 1
asymptotic expansions: f ﬁ_g_r(y)g(v %) Reu>0,Rev>0,
0 —-e v
Iuip)= 1 i —1)"T(2n+1/2) (B12)
1P \/; h=0 p2n+1/2 ! we find
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NP 2eB\ ¥ 1 2 directly substitute the DO84.20 in Eq. (6.1) and generalize
Qosdp)=— 2—0(M—A){ ( ) g( §,1+ 26B the calculation made in Sec. VI. Choosing again for definite-
m e nessu>0, for the oscillating part of the thermodynamic
2 A2 potential, we have
ne=A . 2 2eB
M9 2eB || "3 2 NeB .,
QOSC(MYF):_Te(M —A°=T%)
ui—A% 1
Xm0 e | T 2) [ (B13) .S fﬂ o (AP T?)
. L . k=1 wKJaZi12 sl eB
This expression involves a dependence on the nonanalytical
fractional part mof(u2—A?)/2eB]. In terms of the integer 2ak|e|T
part [ (u?— A?)/2eB] the total thermodynamic potentih X T T eB
regular plus oscillating parntsan be written &
( )3/2
NeB }LZ_AZ :_—Q(MZ_AZ_FZ)
- 2
Qo(p)= 0= A) | —5R
wdxsin(mkx)
AZ ,U,Z_AZ X J— S
+x/2€B§( 2eB+ W) kgl K)o X+ U
A2 X exp — 27k y(X+u)), (C1
—\2eB¢ 1+ — B1
2e B)] (B14 where the variablesy, u, and y are defined in Eq(8.6).
The last two terms are in fact canceled by the zero chemicaIL-JSIng the representation
potential (vacuum part of the thermodynamic potential 2
Equation(A4) (for u>A). « dte "7
In fact, the expressiofB14) can be obtained much easier - = 2\/—f 7 (C2

if one uses Eq(4.2) and writes Eq(6.4) as

B NeB (12— A2)/2B] we can perform the integration overto get
Do(u)=-5-|m-a+ 2 (p=My)].
(B15) W AXSINTRY) e — 2k (X 1]
Using now the formula for the generalized zeta function 0 NX+u
k—1

e kalt[ e—t(ﬂ'ku)

g(z,v+k)=g(z,u)—n}:,0(n+v)—z (B16)

_ 1 fw dt

mkJo \t(t2+1)
one immediately arrives at E¢B14). However, the oscillat- B ke 1) tin ke (ko)
ing property ofQ)o() is not so transparent in E6B14) as it cog mkw)e sin(wkw)e 1,
is in Egs.(6.4) and(6.6). On the other hand, the expression (C3
for (Nlo(,u) through the generalized function is convenient
for studying large field behavior. Indeed, feB>A2 u?
—A? we find from Eq.(B14) that in this limit

where the variabler = u?/eB is the same as in Eq6.5).

Hence the oscillating part of the thermodynamic potential

can be written(omitting the monotonic term related to the

~ first term in square brackets of the last expressionthe
Qo(p)== 55— 0(p=2)(n=A), (B17)  final form (8.5) using the functions of two argumends(p, ")

which is precisely the contribution due to the lowest LandawandJ2(p.r),

level which is the only one to survive in the high-field limit. tp—rht

Also, as is seen from EqB14), the oscillating tern{first £ \/;J (p.r)= = dte

function in curve brackejds necessary to take into account Ji(t2+1)
even in the high-field regime in order to canceB)®? term
and obtain the correct linear term fo¥y(u). = dtJte Pt

J
ﬁJz<p,r>=—%[ﬁal<p.r>]=Jo )

APPENDIX C: CALCULATION OF Q,s{p) IN THE (C4)

PRESENCE OF SCATTERING . . .
As is seen, the functiond,(p,r),J>(p,r) are monotonic

It turns out that due to the bad convergence of the intefunctions of their variables.
grals such a$5.7) and Eq.(5.17) with the Lorentzian distri- For large values of the parametgr we can obtain
bution Pr(w) this calculation can be done more easily if we asymptotic expansion of the functiond;(p,r),J.(p,r)
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changing the variablé—t/p and expanding then the de-
nominator in powers op, we get

o0 (_1)n © dteftfrp/t
\/;Jl(pvr):nzo p2n+1/2f0 t—2n+1/2
% r n+1/4
:ano (—l)”(a) Kans 1223Tp),

(CH

where we used the formula for the representation of the Mac-

donald function

dt eftfzzlt

,  Re®>0, |argz|<z.
tV+l 2

(C6)

and the relatiorK _,(z) =K,(z). Since for half integer val-
ues of the index

z' (=
r<v(22>=5f0

PHYSICAL REVIEW B 69, 075104 (2004

™ " (n+k)!
Kn+l/2(z):\/;e gom

[see Eq(8.468 in Ref. 52, we obtain for the first few terms
in the expansion

1 1 3
4p?

W

(C7)

Ju(p.r)= e 27,

4
1+2rp+ §rp)

p—e.

(C9
Similarly, for J, we get

Jrapr=23, (-1 ¢

)n+3/4

Kant3227rp)

11 1/15 15
+(rp)3’2) e 2™ pooo, (C9
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