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Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations
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The quantum magnetic oscillations are studied for planar condensed-matter systems with a linear, Dirac-like
spectrum of quasiparticle excitations. We derive analytical expressions for magnetic oscillations~de Haas–van
Alphen effect! in the density of states, thermodynamic potential, magnetization, and chemical potential both for
zero and finite temperatures, and in the presence of scattering from impurities. We discuss also a possibility of
using magnetic oscillations for detection of a gap that may open in the spectrum of quasiparticle excitations
due to a nontrivial interaction between them.
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I. INTRODUCTION

Magnetic oscillations~MO! in metals1 proved to be a
powerful tool for investigation of the shape of their Ferm
surface. The oscillations of magnetization were predicted
Landau in 1930.2 The experimental discovery of MO cam
soon: Shubnikov and de Haas~SdH! found oscillations of
electrical conductivity in Bi crystals, and later de Haas a
van Alphen~dHvA! discovered the oscillations of magne
zation. Despite more than 70 years old history of MO th
continue to attract attention of both experimentalists a
theorists. The recent experimental studies are mostly focu
on quasi-two-dimensional~quasi-2D! organic conductors and
superconductors~for a review, see e.g., Ref. 3!. The ultimate
hope is that better understanding of the 2D and quasi
organic systems can also contribute into the studies of h
temperature superconductors that have a similar laye
structure. As suggested recently in Ref. 4, dHvA experim
can be used as a probe to detect band- and/or an
dependent gap amplitudes of type-II superconductors.

It turns out that these experimental advances demand
further development of the MO theory. While MO observ
in 3D metals are well described by Lifshits-Kosevich5 ~LK !
~for dHvA effect! and Adams-Holstein6 ~for SdH effect!
theories, there is no commonly accepted and used theor
MO in 2D and quasi-2D materials.7 As discussed in Ref. 7
there are two essential features of dHvA effect in 2D c
that differ it from 3D case.

~1! The sharp sawtoothlike shape of the oscillations s
in the low-temperatureT!vL and high-purityG!vL re-
gions. Here,vL is the distance between Landau levels andG
is the width of Landau’s levels due to impurity scattering

~2! Due to the Landau quantization of the 2D kinetic e
ergy in the magnetic field, both the density of electronsn and
the chemical potentialm cannot be fixed simultaneously a
the magnetic field is changed. Depending on the phys
situation, two extreme limits are usually considered.

~i! The limit of fixed and field independent chemical p
tential m, which can be represented by a grand canon
ensemble. This corresponds to the case originally studie
Lifshits and Kosevich5 in 3D.

~ii ! The limit of fixed density of carriersn, in which a
strong dependence of the chemical potentialm on the mag-
0163-1829/2004/69~7!/075104~22!/$22.50 69 0751
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netic field has to be taken into account by considering
equation form that leads to the chemical-potential oscill
tions. This equation is crucial in 2D case even for the la
Fermi energy,eF@vL , since despite smallness of the chem
cal potential shift,dm;vL, due to the magnetic field com
pared toeF , it can change the phase of the magnetizat
MO @in 3D the oscillating partdm;vL(vL /eF)1/2, so that
for eF@vL it does not alter the MO with a high accuracy#.
Nevertheless, under certain conditions discussed in Ref
and 8 the oscillations of the chemical potential are small a
one may still assume that the chemical potentialm coincides
with the Fermi energyeF as in the limit~i!.

On the other hand, in condensed-matter systems wi
linear, ‘‘relativistic’’ spectrum of quasiparticle excitations
the conditions favorable for MO seem to persist to rath
small magnetic fields and high temperatures.9 This is particu-
larly true for 2D systems with the Dirac quasiparticle spe
trum.

There is a wide variety of planar condensed-matter s
tems that in the low-energy limit have a linear dispersion l
of the quasiparticle excitations. In particular, the studies
high-temperature cuprate superconductors inspired a big
terest in the so-called nodal excitations that are the gap
fermion excitations associated with zeros of the gap functi
Depending on the physical origin of the gap, one can c
sider rather different physical situations that are in gene
described by different theoretical models. For example, if
gap opens due to the anisotropic electron-hole pairing, wh
is one of the possible states of the electron system wit
half-filled band and nested Fermi surface, this correspond
a 2D orbital antiferromagnet~OAF! or staggered flux
state.10–12

There is a consensus that the superconducting stat
cuprates has ad-wave superconducting energy gap, wi
nodes along the diagonals of the Brillouin zone.13 A linear-
ization of the Bogolyubov spectrum of quasiparticles arou
four nodes on the Fermi surface leads to another realiza
of gapless fermion excitations. Although from physical po
of view the OAF state seems to be more complicated t
the d-wave superconducting state, because the forme
characterized by nonzero local currents violating tim
reversal and translational symmetries, the Dirac descrip
of OAF state turns out to be simpler since an external e
©2004 The American Physical Society04-1
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tromagnetic field enters into the theory in the same way a
QED211.

Carbon-based materials, e.g., pyrolytic graphite and
bon nanotubes, present one more example of the planar
tems with the relativistic dispersion law.14–16 From an ex-
perimental point of view these materials are probably
most promising because the quality of available samples
ready allows one to observe SdH effect17,18 and to study
quantum effects that are due to a high magnetic field19 ~see
Ref. 20 for a review!.

The relativistic theories in an external magnetic field ha
been the subject of research in quantum-field theory
many years~for reviews see Ref. 21!. The extraction of MO
from the general expressions presents a rather subtle
interesting problem that was investigated in Refs. 22–
However these studies of the MO in QED are mostly co
centrated on the field-theoretical aspects.

The purpose of the present paper is to make a system
study of the MO in QED211 devoting special attention to th
link with planar condensed-matter systems and to quant
that are particularly important for condensed-matter the
e.g., density of states~DOS!, thermodynamic potential, an
magnetization. To make the theory more realistic we a
include into the model the effect of scattering from impu
ties, by considering Landau levels with field an
temperature-independent width.

We begin by presenting in Sec. II three 2D models m
tioned above that can be studied using the same effec
relativistic Lagrangian written in Sec. II D in the presence
an external magnetic field. The Green’s function necess
for subsequent calculations is introduced in Sec. III, and
DOS oscillations are studied in Sec. IV both with and wit
out scattering from impurities. The general representation
the thermodynamic potential in terms of the DOS and its l
to the corresponding nonrelativistic potential are conside
in Sec. V. In Sec. VI we derive the expression for the th
modynamic potential atT50 in the absence of impuritie
with explicitly extracted MO~the calculational details and a
alternative representation for the thermodynamic potentia
terms of the generalizedz function are given in Appendixe
A and B!. In Sec. VI A and at the end of Sec. VIII C w
discuss a possibility of detecting a gap that may open in
spectrum of one of the systems discussed above. The an
cal expression for the magnetization atT50 in the absence
of impurities written in terms of Bernoulli polynomials i
given in Sec. VII. In Sec. VIII we generalize the resu
obtained in the previous sections to the presence of imp
ties ~Secs. VIII A and VIII B with the calculational details
presented in Appendix C! and in Sec. VIII C for nonzero
temperature. In Conclusions, Sec. IX, we give a conc
summary of the obtained results.

II. MODEL

There are many planar condensed-matter models tha
the low-energy sector can be reduced to QED211 form, and
here we briefly describe some of them underlining the m
assumptions leading to the Dirac-like form of the effecti
Hamiltonians.
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A. Hamiltonian of d-density-wave state

Due to dx22y2 momentum dependence of the gap in t
OAF states it is also calledd-density-wave~DDW! state.27

The mean-field phenomenological Hamiltonian describ
this state can be written as12,28

HDDW5 (
s5↑,↓

E
RBZ

d2k

~2p!2
xs

†~k!@«~k!s32m Î

2D~k!s2#xs~k!, ~2.1!

where the spinors

xs~k!5S cs~k!

cs~k1Q!
D , xs

†~k!5~cs
†~k!cs

†~k1Q!!

~2.2!

are composed from creation and annihilation operat
cs

†(k) and cs(k) for momentumk and spins, the single-
particle energy is «(k)522t(coskxa1coskya), with t
being the hopping parameter,m is the chemical potential
D(k)5(D0/2)(coskxa2coskya) is the d-density-wave gap,
andQ5(p/a,p/a) is the wave vector at which the density
wave ordering takes place. The integral is over the redu
Brillouin zone~RBZ! ands i are Pauli matrices. Throughou
the paper\5c5kB51 units are chosen, unless stated e
plicitly otherwise.

This Hamiltonian describes the excitations with the sp
trum E(k)52m6A«2(k)1D2(k). Linearizing the spec-
trum about the four nodesNi5(6p/2a,6p/2a) with i
51, . . . ,4 at half filling (m50) one obtainsE(k)52m
6AvF

2kx
21vD

2 ky
2, where the Fermi velocity calculated fo

half filling, vF5u]«(k)/]kuk5Nu52A2ta, the DDW gap ve-
locity vD5u]D(k)/]kuk5Nu5 1/A2 D0a, and the momenta
kx andky are given in the local nodal coordinate system~see
Fig. 2 of Ref. 28!.

Using this linearized spectrum and inserting the vec
potential in a way that preserves the charge conservation
the original Hamiltonian~2.1!, one can arrive29 at the follow-
ing Dirac Lagrangian describing the quasiparticles in the
cinity of one of the nodes, e.g.,Ni 515(p/2a,p/2a),

L5x̄s
i ~x!i g̃nDnxs

i ~x!, x5~ t,r !, ~2.3!

wherex̄s
i (x)5xs

i†(x)s1 is the Dirac conjugated spinor,i la-
bels the nodeNi , the covariant derivativesDn are

Dn55
\] t2 ieA0~x!, n50,

vFF\]x2 i
e

c
A1~x!G , n51,

vDF\]y2 i
e

c
A2~x!G , n52,

~2.4!

and theg matrices are

g̃n5~s1 ,2 is2 ,is3!, $g̃m,g̃n%52Î 2gmn,

gmn5diag~1,21,21!, m,n50,1,2. ~2.5!
4-2
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The chemical potentialm can be introduced in the Lagrang
ian ~2.3! by choosingA05m/e and the sum over the spi
components in Eq.~2.3! can be regarded as an addition
flavor index.

In 211 dimensions, there are two inequivalent repres
tations of Dirac algebra~see, e.g., Ref. 30!:

ĝ05s3 , ĝ15 is1 , ĝ25 is2 , ~2.6a!

ĝ052s3 , ĝ152 is1 , ĝ252 is2 , ~2.6b!

which correspond to right- and left-handed coordinate s
tems. As one can check, ourg matrices~2.5! correspond to
the representation~2.6b! if one makes a unitary transforma
tion x̂15Ux1, ĝm5Ug̃mU21, with U5(1/2)(Î 22 is1
2 is21 is3) Since the physical properties of the system d
pend only on the algebra that these matrices obey, one
directly work with the more commonly used representat
~2.6! instead of Eq.~2.5!.

Dealing with Eq. ~2.3! one should not forget that a
physical quantities involve the summation over the fo
nodes present in the original Hamiltonian~2.1!. In fact, only
two neighboring nodes, e.g.,Ni 515(p/2a,p/2a) and Ni 52
5(p/2a,2p/2a) are nonequivalent in RBZ, and the corr
sponding local nodal coordinate systems are related to e
other by parity transformation (kx ,ky)→(kx ,2ky) with the
simultaneous interchangevF↔vD . Thus the sum over non
equivalent nodes can be taken into account by doub
spinors

Ys5S cs
1

cs
2 D ~2.7!

and using the reducible representation ofg matrices,gm

5(s3 ,is1 ,is2) ^ s3,

g05S s3 0

0 2s3
D , g15S is1 0

0 2 is1
D ,

g25S is2 0

0 2 is2
D , ~2.8!

with the following Lagrangian density:

L5Ȳs~x!ignDnYs~x!. ~2.9!

B. Hamiltonian of d-wave superconducting state

In contrast to the hypothetical DDW state,d-wave super-
conductivity (dSC) is observed in cuprat
superconductors.13 It can be described by th
Bogolyubov—de Gennes~BdG! Hamiltonian

HBdG5E d2rC†~ t,r !t3F«S 2 i“2t3

e

c
A~r ! D2mGC~ t,r !

2E d2r 1E d2r 2@D†~ t,r1 ;r2!C†~ t,r1!t2C~ t,r2!

1C†~ t,r1!t1C~ t,r2!D~ t,r1 ;r2!#, ~2.10!
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whereC andC†5(c↑
† ,c↓) are the standard Nambu spinor

«(p) is the single-particle energy,t65(t16 i t2)/2, and
D(t,r1 ;r2) is the bilocal gap operator the Hermitian conj
gate of which includes the transpose in the functional sen
i.e.,D†(t,r1 ;r2)[@D(t,r2 ;r1)#* . The nontrivial dependence
of D(t,r1 ;r2) on the relative coordinater12r2 is supposed
to described-wave pairing state. Further simplification of th
pairing term of Eq.~2.10! is possible if one assumes that th
amplitude of the pairing term is a constant with respect tt
and the center-of-mass coordinateR5(r11r2)/2. For cu-
prates this assumption may well be justified even above
critical temperatureTc . Below Tc in the vortex state this
assumption corresponds to neglecting vortex core contr
tions and considering pure ‘‘phase vortices.’’ Since we d
with the amplitude of the bilocal complex fieldD(t,r1 ,r2), it
is natural to consider also its phaseu(t,R). There are, how-
ever, some subtleties in writing the continuum version of
pairing term of Eq.~2.10! in an explicitly gauge invariant
form that can be solved by choosing an appropriate form
the differential operator forD̂ ~see Refs. 31 and 32!. Since
we look for the low-energy quasiparticle excitations ne
four gap nodes, we write the linearized Hamiltonian for o
of these nodes as~see, e.g., Refs. 28 and 31!

HdSC5C†~x!F ivFt3S ]x2 i
e

c
t3AxD1 ivDt1eiu(x)/2]ye

iu(x)/2

1 ivDt2e2 iu(x)/2]ye
2 iu(x)/2GC~x!, ~2.11!

wherevF is the Fermi velocity andvD5u]D(k)/]kuk5Nu is
the gap velocity defined by the slope of the superconduc
gapD(k). Both velocities are calculated in the nodal poin
on the true Fermi surface of the system, but not at half filli
as for the DDW case. The linearization puts restrictions
the domain of validity of the Hamiltonian~2.11! which, how-
ever, remains rather wide.33

Finally, introducing the Dirac conjugated spinorh̄ i

5C i†t2 we can obtain from the Hamiltonian~2.11! a La-
grangian similar to Eq.~2.3!, but with the vector potentia
that couples only with thevF term. Again making, if neces
sary, a unitary transformation, one can combine spinorsh i

originating from two opposite nodes into one fou
component spinor.

Thus in the absence of the field the low-lying quasipa
cle excitations in thedSC are described by the relativist
dispersion law

E~k!56AvF
2kx

21vD
2 ky

2, ~2.12!

where the momentakx and ky are given in the local noda
coordinate system. Experimental values ofvF and vD for
cuprates can be found in Ref. 34, for example, the value
vF;2.53105 m/s and the anisotropy of the Dirac con
vF /vD varies between 10 and 20 depending on doping
compound.

There are two important differences between DDW a
dSC Hamiltonians. Making a gauge transformation that
moves the phase from the last term of Eq.~2.11!, we observe
4-3
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that quasiparticles in superconductor do not couple simpl
the vector potentialA corresponding to the magnetic fie
B5“3A, but to the supercurrent“u2(2e/\c)A, whereu
is the phase of the superconducting order parameter.
difference between DDW anddSC cases leads to a concl
sion that in an external magnetic field the nodal quasipa
cles of DDW state form Landau levels,35 while in dSC state
Landau levels are strongly mixed.36 Nevertheless, we pre
senteddSC Hamiltonian~2.11! here due to its practical im
portance, and the fact that the simplified physical pict
based on the Landau levels37,38 may become relevant fo
higher energies39 and can be regarded as the first approxim
tion to a more complicated case of the vortex state ind-wave
superconductors.

The second difference comes from the fact that for DD
state chemical potentialm is explicitly present in the La-
grangian~2.3!, while for dSC state it was absorbed in th
definition of the Fermi velocityvF on the Fermi surface. The
origin of this difference can be traced back to the differe
structures of the Hamiltonians~2.1! and~2.10!. One can also
say that indSC state the chemical potential of nodal qua
particles is zero, so that when the applied field is changed
corresponding Landau levels~even if they were formed! can-
not cross the chemical potential and produce dHvA effec37

C. Layered graphite

The semimetallic energy band structure of a sin
graphene sheet has the conduction and valencep bands with
the energy dispersion40

E~kx ,ky!56tA114cos
A3kxa

2
cos

kya

2
14cos2

kya

2
.

~2.13!

Here t'3 eV, a5A3aCC52.46 Å is the lattice constant o
two-dimensional graphite, whereaCC is the distance betwee
two nearest carbon atoms. These two bands touch each
and cross the Fermi level in six K points located at t
corners of the hexagonal 2D Brillouin zone, but on
two of them, for example,K5(2p/a)(1/A3,1/3) andK 8
5(2p/a)(0,2/3) are inequivalent due to the periodicity
the Brillouin zone. The low-energy excitations can be stud
by taking the continuum limita→0 at any two independen
K points labeled asj 51,2. They have a linear dispersio
Ek56vFk, with vF5(A3/2)ta'9.73105 m/s. These exci-
tations can be formally described by a pair of tw
component~Weyl! spinorsc j s , which are composed of th
Bloch states residing on the two different sublattices of
biparticle hexagonal lattice of the graphene sheet. T
Hamiltonian describing these excitations, for example, in
point K coincides with the free Dirac one.14,16

H5 (
s5↑,↓

E d2k

~2p!2
c̄1s~ t,k!~ ḡ1kx1ḡ2ky!c1s~ t,k!,

~2.14!

where the momentumk5(kx ,ky) is already given in a loca
coordinate system associated with a chosen K point,c̄1s
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† ḡ0 and ḡ0,1,25(s3 ,is2 ,2 is1). This representation o

ḡ matrices can be mapped in the representation~2.6a! by
using a unitary transformation withU5(1/A2)(Î 1 is3).
Since the local coordinate system for the pointK 8 is related
to the system associated with the pointK by a parity trans-
formation, these two spinors can be again combined in
four-component Dirac spinorCs5(c1s ,c2s). The number
of spin componentsN has to be regarded as an adjusta
parameter andN52 corresponds to the physical case. F
nally, the Lagrangian density of noninteracting quasipartic
reads

L05 (
s51

N

vFC̄s~ t,r !S ig0~] t1 im!

vF
2 ig1]x

2 ig2]yDCs~ t,r !, ~2.15!

where C̄s5Cs
†g0 and 434 g matrices are either

(s3 ,is3 ,2 is1) ^ s3 ~Ref. 41! or can be taken from the uni
tary equivalent representation~2.8!.14,42Since the terms with
]x,y in Eq. ~2.15! originate from the usual kinetic term of th
tight-binding Hamiltonian, vector potentialA can be inserted
in the Lagrangian~2.15! using a minimal coupling prescrip
tion. Finally we note that the three-dimensional version
the Dirac Hamiltonian~2.14! was used in Ref. 9 to describ
an unusual magnetoresistance in the two doped cha
genides Ag21dSe and Ag21dTe.

D. Model relativistic Lagrangian

As we have seen, many models of planar condens
matter systems result in the Dirac-type form of the effect
low-energy theory. Thus as a starting point of the pres
paper we choose the following Lagrangian:

L5c̄ i~ igmDm2D!c i , m50,1,2, ~2.16!

whereDm5]m2 ieAm is the covariant derivative,c̄ i[c i
†g0

is the Dirac conjugated spinor, and the vector potential
the external magnetic fieldB perpendicular to the plane i
taken in the symmetric gauge

A5S 2
B

2
x2 ,

B

2
x1D . ~2.17!

The nonzero chemical potentialm will also be taken into
account by choosingA05m/e, in the energy-momentum
space this corresponds to a shiftingv→v1m. We assume
that the fermions carry an additional flavor indexi
51, . . . ,N which can be used to calculate the sum ov
equivalent nodes in the case ofdSC case and to sum over th
spin components in the cases of DDW and graphite. In
~2.16! we have already set the velocitiesc5vF5vD5vD

51, so that we consider the ‘‘isotropic Dirac cone.’’ When
is needed they can be restored according to the prescrip
discussed in Refs. 29 and 43. The Diracg matrices are taken
in the reducible four-component representation and t
obey the Clifford ~Dirac! algebra gmgn1gngm52Î 4gmn.
4-4
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The explicit form of theg matrices is given in Eq.~2.8! and
the symmetry properties of the Lagrangian with reduci
four-dimensional representation are discussed, for exam
in Refs. 30,42 and 44. We have also included a mass~gap!
term D in the Lagrangian~2.16!. The physical origin of this
gap depends on the underlying system we consider. For
ample, it is well known that an external magnetic field is
strong catalyst in generating such a gap for Dirac fermi
~the phenomenon of magnetic catalysis!.44 Usually the open-
ing of the gap marks an important transition which occurs
the system. In particular, in the case of pyrolytic graphite
poor screening of the Coulomb interaction may lead to ex
tonic instability resulting in the opening of the gap in th
electronic spectrum and manifesting itself through the on
of an insulating charge-density wave~see e.g., Refs. 41 an
42!. There are, however, many obstacles in experimental
tection of such a gap, so that in the context of the MO stud
we consider in Secs. VI A and VIII C a possibility for it
detection using dHvA and SdH effects.

A full theory of MO should also include the Zeeman i
teraction term which leads to a spin factor in the LK formu
Here, however, we neglect this term motivated by the f
that for the relativistic spectrum the MO may become o
servable for the relatively low fields when the spin splitti
is still small. If necessary, the Zeeman term can be ad
explicitly both to the original Hamiltonian~2.1! and the La-
grangian~2.16!.

III. SPECTRAL FUNCTION OF DIRAC QUASIPARTICLES
IN AN EXTERNAL FIELD

The Green’s function of Dirac fermions described by t
Lagrangian~2.16! in an external field given by the vecto
potential~2.17! reads

S~x2y!5expS ieE
y

x

AldzlD S̃~x2y!, ~3.1!

where S̃ is the translation invariant partS̃ of the Green’s
function. Its derivation using the Schwinger proper-tim
method and decomposition over Landau-level poles has b
discussed in many papers~see, e.g., Refs. 29,44 and 45!, so
that here we begin with the spectral function associated w
the translationary invariant partS̃ of the Green’s function,

A~v,p!5
1

2p i
@S̃A~v2 i0,p!2S̃R~v1 i0,p!#, ~3.2!

where the retarded,S̃R, and advanced,S̃A, Greens’ functions
are written in the energy-momentum representation. T
spectral function decomposed over Landau levels reads43

A~v,p!5expS 2
p2

ueBu D (n50

`

~21!n

3F ~g0Mn1D! f 1~p!1 f 2~p!

2Mn
d~v2Mn!

1
~g0Mn2D! f 1~p!2 f 2~p!

2Mn
d~v1Mn!G ,

~3.3!
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whereMn5AD212eBn and

f 1~p!52FP2LnS 2
p2

ueBu D2P1Ln21S 2
p2

ueBu D G ,
f 2~p!54~p1g11p2g2!Ln21

1 S 2
p2

ueBu D , ~3.4!

with P65@16sgn(eB) ig1g2#/2 being projectors andLn ,
Ln

1 Laguerre’s polynomials (L21
1 [0). In what follows, for

convenience, we takeeB.0. The chemical potentialm, as
mentioned above, has to be taken into account via the s
v→v1m.

In contrast to the nonrelativistic Landau levels with t
energiesEn5(e\B/mc)(n1 1

2 ) ~herem is the effective mass
of the carriers!, in the relativistic problem with zero gapD
the energies areEn5A(e\vFv2 /c)B2n, n50,1, . . . ,
where we restored all parameters (v2[vF ,vD or vD depend-
ing on the model we consider! to show explicitly the differ-
ences. For the nonrelativistic problem the distance betw
Landau levels coincides with the cyclotron frequencyvc
5e\B/(mc), so thatvc(K);1.35B(T)me /m, whereme is
the electron mass, while for the relativistic problem the c
responding energy scale, characterizing the distance betw
Landau levels, is

vL5A\vFv22eB

c
~K!54.206

31024Av2

vF
vF~m/s!AB~T!, ~3.5!

wherevF is given in m/s. For example, choosingme /m51
we estimate thatvc;(1K)B(T), but this value can be in-
creased by using metals such as Bi with a large ratiome /m.
Making the estimate for the relativistic case with a rath
small vF523105 m/s andvF /v2520, which are typical
values of the parameters for the DDW model, we obt
vL;18 K•AB(T) which shows that in the systems with th
linear dispersion law the quantum condition favorable
MO persists to rather high temperatures and small field9

Moreover, repeating the estimate for the Fermi velocity
graphite, vF59.73105 m/s, we obtain even largervL

;(400 K)AB(T). We note that since the Zeeman term h
the same magnitude asvc , it is indeed small compared to
vL and can be safely neglected.

In order to consider the MO for a more realistic case, o
should introduce the effect of quasiparticle scattering t
results in aDingle factor in the expression for the amplitud
of MO. In general, this can be done by considering dres
fermion propagators that include the self-energyS(v) due to
the scattering from impurities. Up to now the problem
scattering from impurities in the presence of a magnetic fi
does not have yet a satisfactory solution. Therefore, here
choose the case of constant widthG5G(v50)5
2ImSR(v50)51/(2t), t being a mean free time of quas
particles, so that thed-like quasiparticle peaks correspondin
to the Landau levels in Eq.~3.2! acquire a Lorentzian shape
4-5
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d~v6Mn!→ 1

p

G

~v6Mn!21G2
. ~3.6!

Such a broadening of Landau levels with a constanG
was found to be a rather good approximation valid in n
very strong magnetic fields.1,46 Definitely, the treatment of
disorder in the presence of the magnetic field in such a s
plified manner should be considered as only the first s
until further progress in this problem is achieved~in connec-
tion with this, see, Ref. 47!. The technical advantage of th
approximationG5const is that one can first consider dHv
oscillations withd-like Landau levels atT50 and only af-
terwards introduce the effect of level broadening due to
finite temperature and quasiparticle scattering convolu
the final results with the appropriate distribution functio
~see, Refs. 1 and 48 and Sec. V!. However, this simplifica-
tion is only valid if all Landau levels have the same width

IV. OSCILLATIONS OF DENSITY OF STATES

We begin with the calculation of the quasiparticle dens
of states~DOS! D0(e) in the absence of scattering (G50)
which is expressed in terms of the spectral function~3.3! as

D0~e!5E
B

d2p

~2p!2
tr@g0A~e,p!#, ~4.1!

where the domain of integrationB is chosen to preserve th
volume of the original Brillouin zone. We also assume th
the summation over spin states that are identical in the
sence of Zeeman term is included in the definition of trace
D(e). This, as mentioned above, can be done by taking
appropriate value ofN.

Evaluating the trace and expanding the limits of integ
tion over momenta tò , we get the DOS as the sum ofd
functions of Landau’s level energies:

D0~e!5
NeB

2p Fd~e2D!1d~e1D!12(
n51

`

@d~e2Mn!

1d~e1Mn!#G . ~4.2!

The fact that the original Brillouin zone has a finite volum
can be taken into account later using the finite limits of
tegration if necessary and/or by implying that the DOSD(e)
is multiplied by the factoru(L2ueu), whereL is the band-
width.

The broadening of Landau levels due to the scatterin
taken into account according to the prescription given by
~3.6!. It is easy to see that this prescription corresponds to
convolution of the density of statesD0(e) with the Lorentz
distributionPG(v)5G/@p(v21G2)#:

D~e!5E
2`

`

dvPG~v2e!D0~v!, E
2`

`

dvPG~v!51.

~4.3!
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In fact, instead of the Lorentz distribution any other norm
ized probability distribution can be used1 in order to intro-
duce phenomenologically the energy-level width. In wh
follows we shall use the Lorentz distribution which allow
analytical calculations. Physically, the Lorentz distributi
corresponds to an extremely strong disorder since all m
ments of this distribution diverge. The quasiparticle DOS
the Fermi surface can be obtained by evaluating Eq.~4.3! for
e5m. Eq. ~4.2! can be also rewritten as

D0~e!5
NeBueu

p Fd~e22D2!12(
n51

`

d~e22D222eBn!G
5

NeB

2p
sgn~e!

d

de Fu~e22D2!

12(
n51

`

u~e22D222eBn!G , ~4.4!

where u is the step function. Note thatNeB/(2p) is the
density of the Landau levels. Using the Poisson summa
formula

1

2
F~0!1 (

n51

`

F~n!

5E
0

`

F~x!dx12Re(
k51

` E
0

`

F~x!e2p ikxdx,

~4.5!

we find the sum over the Landau levels

(
n51

`

u~e22D222eBn!5u~e22D2!F 2
1

2
1

e22D2

2eB

1 (
k51

` sinS pk
e22D2

eB D
pk

G .

~4.6!

Substituting now the last expression in Eq.~4.4! we obtain
the final expression for the DOS with zero broadening t
can be written in three equivalent forms

D0~e!5
N

2p
sgn~e!

d

de H u~e22D2!F e22D2

12eB(
k51

`
1

pk
sinS pk~e22D2!

eB D G J ~4.7a!

5
N

2p
sgn~e!

d

de H u~e22D2!Fe22D2

1
2eB

p
tan21XcotS p~e22D2!

2eB D CG J ~4.7b!
4-6
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5
N

2p
sgn~e!

d

de H u~e22D2!Fe22D222eB B1S e22D2

2eB D G J .

~4.7c!

The summation in Eq.~4.7b! was done using the formula

(
n51

`
sin~pnx!

n
5tan21S sin~px!

12cos~px! D , ~4.8!

and Eq. ~4.7c! is written using the Bernoulli polynomial
Bn(x) periodically continued beyond the interval@0,1#:

Bn~x!52
2n!

~2p!n (
k51

`
1

kn
cosS 2pkx2

np

2 D , n>2,

0<x<1; n51, 0,x,1. ~4.9!

In fact, all the Bernoulli polynomials we dealt with in thi
paper depend on the fractional part mod@x# of their argument
x, i.e.,Bn(mod@x#) ~here mod@x# is a shorthand notation fo
x modulo 1, i.e., mod@x#5x2@x#, where@x# is the largest
integer satisfying@x#<x). In what follows, for brevity we
omit the sign mod@ # and write simplyBn(x).

A. DOS in the presence of scattering

Now we turn to calculating DOS in the presence of t
impurity scattering rateG using convolution~4.3!. Since
D0(e) is an even function ofe, the expression forD(e) can
be written as follows:

D~e!5
N

p2
ImH ~e1 iG!F E

0

L2/eB dx

x1z

1
2

pE0

` dx

~x1z!2
tan21S cot

px

2 D G J , ~4.10a!

x5
v22D2

eB
, z5

D22~e1 iG!2

eB
, ~4.10b!

where we used Eq.~4.7b! for D0(e), representedPG as
PG(e6v)52Im(e6v1 iG)21 and integrated by parts t
obtain the second term in square brackets in Eq.~4.10a!. We
also put an explicit cutoffL associated with the bandwidt
in the first integral describing nonoscillating part of DOS.

It is easy to calculate that

ImF ~e1 iG!E
0

L2/eB dx

x1zG5G ln
L2

A~e22D22G2!214e2G2

1etan21
2eG

D21G22e2
. ~4.11!

The second integral in Eq.~4.10! denoted asI can be calcu-
lated if we take into account that the functio
tan21

„cot(px/2)… is periodic with the periodx52, so that we
can write
07510
I 5
2

pE0

` dx

~x1z!2
tan21S cot

px

2 D
5

2

p (
k50

` E
2k

2k12 dx

~x1z!2
tan21S cot

px

2 D
5

2

p (
k50

` E
0

2 dx

~x12n1z!2
tan21S cot

px

2 D
5

1

2E0

1

dx~122x!z~2,x1z/2!, ~4.12!

wherez(s,x) is the generalized zeta function and we us
also that tan21(cot(px/2))5(p/2)(12x) for 0,x,2. The
last integral is evaluated using the properties ofz function

E
0

1

dxz~2,x1z!5
1

z
, E

0

1

dx xz~2,x1z!5C~11z!2 ln z,

~4.13!

so that we finally get

I 52cS z

2D1 ln
z

2
2

1

z
. ~4.14!

Thus, we express the DOS in terms of the digamma func
c,

D~e!5
N

p2 H G ln
L2

2eB
2ImF ~e1 iG!S cS D22~e1 iG!2

2eB D
1

eB

D22~e1 iG!2D G J , ~4.15!

or in equivalent form

D~e!5
N

p2
G ln

L2

2eB
1

NeB

p2

d

de
ImF lnGS D22~e1 iG!2

2eB D
1

1

2
lnS D22~e1 iG!2

2eB D G . ~4.16!

It is evident that the DOS oscillations are contained in thec
function when the real part of its argument becomes ne
tive. They can be extracted in explicit form using the re
tionship

c~2z!5c~z!1
1

z
1pcot~pz!. ~4.17!

Hence we get
4-7
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cS D22~e1 iG!2

2eB D5cS D22~e1 iG!2

2eB D @u~e22D22G2!1u~D21G22e2!#

5RecS ue22D22G2u22i eG

2eB D2 i sgn~e22D22G2!ImcS ue22D22G2u22i eG

2eB D
1u~e22D22G2!F 2eB

e22D22G212i eG
1pcotp

e22D22G212i eG

2eB G , ~4.18!
m
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so that Eq.~4.15! is rewritten as

D~e!5
N

p2 H GF ln
L2

2eB
2RecS ue22D22G2u22i eG

2eB D
2

eBue22D22G2u

~e22D22G2!214e2G2G1e sgn~e22D22G2!

3F ImcS ue22D22G2u22i eG

2eB D
1

2eBeG

~e22D22G2!214e2G2G1pu~e22D22G2!

3
esinh~2peG/eB!2Gsin@p~e22D22G2!/eB#

cosh~2peG/eB!2cos@p~e22D22G2!/eB#
J .

~4.19!

For smallG the main contribution comes from the last ter
in Eq. ~4.19!, thus DOS in the presence ofG can be repre-
sented in the form similar to Eq.~4.7a!:

D~e!5
N

2p
sgn~e!

d

de H u~e22D22G2!F e22D22G2

12eB(
k51

`
1

pk
sin

pk~e22D22G2!

eB

3expS 2
2pkueuG

eB D G J . ~4.20!

Using now the formula

(
k51

`
1

k
e2ktsinkx5tan21

sinx

et2cosx
, t.0, ~4.21!

one can check that the last term in Eq.~4.19! is recovered. It
is evident that oscillating part of DOS is contained in t
sum overk in Eq. ~4.20!.

B. DOS in limiting cases

Since the final expressions for DOS, Eq.~4.15!, and es-
pecially Eq.~4.19! are rather lengthy, it is useful to consid
a few simple limiting cases and compare them with
07510
e

known results. First of all, it is easy to obtain from Eq.~4.15!
that in the limit of zero fieldB50 the DOS becomes

D~e!5
N

p2 FG ln
L

AG21~e2D!2
1G ln

L

AG21~e1D!2

1ueuS p

2
1tan21

e22D22G2

2ueuG D G , ~4.22!

and forD50, after restoring the prefactor 1/(vFvD) with the
velocitiesvF andvD , it reduces to the DOS derived in Re
49.

As follows from Eq.~4.19!, the DOS at zero energy but i
the finite field is given by

D~0!5
NG

p2 F ln
L2

D21G2
2CS D21G2

2eB D1 ln
D21G2

2eB

2
eB

D21G2G . ~4.23!

The first term of Eq.~4.23! is nothing else but the zero en
ergy DOS~4.22! in the absence of the magnetic field. Th
behavior of the DOS~4.23! can be now studied in variou
asymptotical regimes. For example, forD50 andG→0 we
find

D~0!5
N

p2 FeB

G
1G ln

L2

2eBG , ~4.24!

i.e., DOS is enhanced in the presence of the magnetic fie
G2!eB. In the opposite limiteB!G2 we have

D~0!5
NG

p2 F ln
L2

G2
1

~eB!2

3G4 G . ~4.25!

On the other hand, forDÞ0 andG→0 we obtain

D~0!5
NG

p2 F ln
L2

2eB
2CS D2

2eBD2
eB

D2G , ~4.26!

so that nonzero gap regularizesG→0 divergence, which is
present in Eq.~4.24!.
4-8



io

s

-
t
e
tr
r

m

th

id
on

sid-
en
is-

as a

olu-

in

the

ver-

MAGNETIC OSCILLATIONS IN PLANAR SYSTEMS . . . PHYSICAL REVIEW B 69, 075104 ~2004!
V. REPRESENTATION FOR THERMODYNAMIC
POTENTIAL

A. General expressions

All thermodynamic quantities such as the magnetizat
M and the number of electronsN can be found from the
grand thermodynamic potentialV, which in the relativistic
case~see Refs. 25 and 44! can be written using the DOS a
follows:

V~T,m!52TE
2`

`

deD~e!lnS 2 cosh
e2m

2T D , ~5.1!

with the DOSD(e) given by Eq.~4.3!. We assume every
where that the volume~area! of the system is unity, so tha
Eq. ~5.1! corresponds to the thermodynamic potential p
unit volume. It is convenient to separate the vacuum con
bution atT50, m50 in the thermodynamic potential. Fo
that we write

V~T,m!52TE
2`

`

de D~e!@ ln~e(e2m)/2T

1e(m2e)/2T!@u~e!1u~2e!##

52
1

2E2`

`

de D~e!~e2m!sgn~e!2T

3E
2`

`

de D~e!@ ln~11e(m2e)/T!u~e!

1 ln~11e(e2m)/T!u~2e!# ~5.2!

or, using the evenness of the functionD(e),

V~T,m!52E
0

`

de eD~e!2TE
2`

`

de D~e!@ ln~11e(m2e)/T!

3u~e!1 ln~11e(e2m)/T!u~2e!#. ~5.3!

The first~divergent! term in the last expression is the vacuu
energy while the second one~convergent! is due to contribu-
tions of real quasiparticle excitations.

At zero temperatureT50, we thus have

V~0,m!5V~0,m50!1E
0

umu
de D~e!~e2umu!

[V0~0!1Ṽ0~m!. ~5.4!

It is easy to see that the density of states is related to
thermodynamic potential at zero temperature,

D~m!52
d2V~T50,m!

dm2
. ~5.5!

As was already mentioned, the constant Landau-level w
approximation appears to be a very useful simplificati
viz., instead of calculating the potential~5.1! with GÞ0, one
can start from the potentialVT ,
07510
n

r
i-

e

th
,

VT~m!52TE
2`

`

deD0~e!lnS 2 cosh
e2m

2T D , ~5.6!

where D0(e) is the DOS with zero level broadening (G
50). Then the potentialV at finite G is obtained by convo-
luting VT(m) with the distribution functionPG(v). The
statement that the level broadening is equivalent to con
ering the distribution of the chemical potentials was prov
in Ref. 48, and we adopt here its derivation for the relativ
tic thermodynamic potential Eq.~5.1!. Indeed, if the levels
are broadened, then the density of states is obtained
convolution ofD0(e) with the probability distributionPG(e)
of energiese:

V~T,m!52TE
2`

`

dvde PG~v2e! D0~v!lnS 2 cosh
e2m

2T D
52TE

2`

`

dvde PG~v!D0~e!lnS 2 cosh
e2v2m

2T D
52TE

2`

`

dvde PG~v2m!D0~e!lnS 2 cosh
e2v

2T D
5E

2`

`

dv PG~v2m!VT~v!, ~5.7!

where the potentialVT(m) is given by Eq.~5.6!. If several
damping effects occur together, the corresponding conv
tions have to be carried out successively~the order is not
essential!.

The effect of finite temperature can also be included
this scheme by choosing the distribution functionPT(z),
which describes the temperature line broadening, equal to
negative derivative of the Fermi function, i.e.,

PT~z!52
]nF~z!

]z
5

1

4T cosh2
z

2T

. ~5.8!

We now show that the thermodynamic potential, Eq.~5.6!,
can be obtained as the convolution ofV0(m) with the distri-
bution functionPT given by Eq.~5.8!:

VT~m!5E
2`

`

dvPT~v2m!V0~v!. ~5.9!

Since the vacuum contribution does not change under a
aging over thermal andG distributions, it is enough to prove
this fact for the finite partṼT(m). Performing integration by
parts we obtain

ṼT~m!52TE
2`

`

deD~e!@ ln~11e(m2e)/T!u~e!

1 ln~11e(e2m)/T!u~2e!#

52E
2`

`

de f F~e!E
0

e

dx sgn~x!D~x!, ~5.10!

where f F(e) is the relativistic thermal distribution function
4-9
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f F~e!5
u~e!

11e~e2m!/T
1

u~2e!

11e~m2e!/T
, ~5.11!

which is also used in semiconductor physics. Integrating
parts for the second time, we obtain

ṼT~m!5E
2`

` ]nF~e2m!

]e
W~e!de, ~5.12!

where

W~e!5E
0

e

dx sgn~x!E
0

x

dy sgn~y!D~y!. ~5.13!

Since

2
]nF~e!

]e
5

1

4T cosh2e/2T
→d~e!, T→0, ~5.14!

we find that

W~m!52Ṽ0~m!, ~5.15!

hence

ṼT~m!5E
2`

`

de S 2
]nF~e2m!

]e D Ṽ0~e!. ~5.16!

The common effect of level broadening due to both tempe
ture and damping effects can be written as successive
volutions

V~T,m!5E
2`

`

dv8dvPG~v82m!PT~v2v8!V0~v!.

~5.17!

Hence for calculating thermodynamic quantities we need
know only the thermodynamic potentialV0(v) at zero tem-
perature and zero width of levels that is directly expres
via the DOSD0(e), Eq. ~4.7!. Thus the knowledge of zeroT
~and zeroG if the Landau levels have the same width! DOS
is completely sufficient to write down the finiteT thermody-
namic potential.

B. Link with nonrelativistic thermodynamic potential and
equation for chemical potential

We start from the expression for the nonrelativistic th
modynamic potential~see, e.g., Ref. 1!

VNR~T,m!52TE
2`

`

deD~e!ln~11e(m2e)/T! ~5.18!

expressed in terms of the DOSD(e) for original nonrelativ-
istic tight-binding Hamiltonians considered in Sec. II. Due
the complexity of the tight-binding spectrum, this DOS ca
not be found explicitly forBÞ0 and the only property of the
DOS we need is that it is an even function ofe.

The derivative of the thermodynamic potential~5.18! with
respect to the chemical potentialm,
07510
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2
]VNR~T,m!

]m
5E

2`

`

deD~e!nF~e2m!5n, ~5.19!

determines the density of carriersn in nonrelativistic many-
body theory as a function ofT, B, andm. On the other hand
one can consider Eq.~5.19! as an equation form as a func-
tion of T, B, andn, which is typical for studies in a canonica
ensemble. In Eq.~5.19! nF(v)51/@exp(v/T)11# is the usual
Fermi function. AtT50, m50, Eq. ~5.19! gives the density
of particles for a half-filled band,

n05E
2`

`

deD~e!u~2e!, ~5.20!

so that the deviation of the particle density fromn0 is due to
a finite temperature and nonzero chemical potential.

It is convenient to redefine the thermodynamic poten
in order to have an explicit proportionality ofm to the den-
sity of free carriers. Thus we introduce

V8~T,m!5VNR~T,m!1mn052E
2`

`

deD~e!@T ln~1

1e(m2e)/T!2mu~2e!#. ~5.21!

Inserting 15u(e)1u(2e) before the logarithm, the last ex
pression is rewritten in the form

V8~T,m!52E
0

`

de eD~e!2TE
2`

`

deD~e!@ ln~1

1e(m2e)/T!u~e!1 ln~11e(e2m)/T!u~2e!#,

~5.22!

where the first term gives the energy due to the half-fil
zone. As is seen,V8(T,m) acquires the form of a relativistic
thermodynamic potential@compare with Eq.~5.3!#. Its de-
rivative with respect tom,

r52
]V8~T,m!

]m
5E

2`

`

deD~e!@nF~e2m!u~e!

2@12nF~e2m!#u~2e!#

52
1

2E2`

`

deD~e!tanh
e2m

2T
~5.23!

determines the charge density of carriers or carrier imb
ance,r (r[n2n05n12n2 , wheren1 andn2 are the den-
sities of ‘‘electrons’’ and ‘‘holes’’, respectively! as a function
of T andB at fixedm. Note that nowr50 atm50 and there
is a symmetry with respect to the transformationm→2m
andr→2r. In the present paper, however, we will most
use the canonical ensemble interpretation of Eq.~5.23!, viz.,
as the equation form as a function ofT andB at fixedr.

VI. ZERO-TEMPERATURE THERMODYNAMIC
POTENTIAL

The zero-temperature thermodynamic potential is giv
by Eq. ~5.4!, and for calculation of its vacuum contributio
V0(0) we refer to Appendix A. The thermodynamic pote
4-10
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tial with vacuum energyV0(0) subtracted is given by th
second term of Eq.~5.4!:

Ṽ0~m!5E
0

umu
deD0~e!~e2umu!, ~6.1!

where the DOS forG50 case is given by Eq.~4.7!. In what
follows we choose for definitenessm.0. CalculatingṼ0(m)
~see Appendix B for the detail! we obtain that it can be
represented as a sum of regular and oscillating terms,

Ṽ0~m!5V reg~m!1Vosc~m!, ~6.2!

with V reg(m) expressed in terms of generalizedz function,

V reg~m!52
N

2p
u~m2D!F1

3
m~m223D2!2DeB

2~2eB!3/2zS 2
1

2
,11

D2

2eBD G ~6.3!

and

Vosc~m!5
N~eB!3/2

2p
u~m2D!

3 (
k51

`
1

~pk!3/2
@J1~pkv !cos~pkw!

1J2~pkv !sin~pkw!#, ~6.4!

where the monotonic functionsJ1,2 are defined by Eq.~B5!.
Writing the last expression forVosc(m) we introduced new
variables

w5
m22D2

eB
, v5

m2

eB
. ~6.5!

For small fields,eB!m2, we can use the asymptotic expa
sion ~B7! for J1 ,J2 and representVosc in terms of periodi-
cally continued Bernoulli polynomials defined in Eq.~4.9!:

Vosc~m!5
N~eB!2

p3/2m
u~m2D!

3 (
n50

`
G~n11/2!Bn12~w/2!

~n12!! S 2eB

m2 D n

.

~6.6!

In particular, keeping the first few terms in the expansion
have

Vosc~m!.
N~eB!2

2pm
u~m2D!FB2S w

2 D1
eB

3m2
B3S w

2 D
1

~eB!2

4m4
B4S w

2 D G , ~6.7!

where the explicit expressions for the Bernoulli polynomi
B1–B4 are
07510
e

B1~x!5x21/2, B2~x!5x22x11/6,

B3~x!5x323x2/21x/2,

B4~x!5x422x31x221/30. ~6.8!

The terms oscillating with a magnetic field@Eqs. ~6.6! and
~6.7!# represent small corrections to the nonoscillating par
the thermodynamic potential@Eq. ~6.3!# at eB!m2. Never-
theless, sinceVosc contains fast oscillating functions of th
variable (m22D2)/2eB, after differentiating it over the mag
netic field, the magnetizationM52]V/]B acquires a large
oscillating part~see Sec. VII and Figs. 1 and 2!.

A. The period of oscillations and its dependence onD
for fixed µ

As it follows from the expressions~6.4! and ~6.6!, the
frequency of oscillations of the thermodynamic potential
equal tow/25(m22D2)/2eB. Therefore their perioddB sat-
isfies the relationship

FIG. 1. The magnetizationM ~in K/T cm2 calculated forN
51) as a function of inverse fieldB21 for three different values of
chemical potential and D5T5G50. We use eB
→(200 K2)B(T).

FIG. 2. The magnetizationM ~in K/T cm2 calculated forN
51) as a function of inverse fieldB21 for three different values of
the gapD and for T5G50. We useeB→(104 K2)B(T) and m
5200 K that are typical for graphite.
4-11
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dB

B
5

2eB

m22D2
→

vL
2

m22D2
, dB!B, ~6.9!

wherevL is defined in Eq.~3.5!. Using the estimate ofvL
for the DDW model made below, Eq.~3.5!, we obtain that
for D50, m5100 K, andB51 T, the period of oscillation
dB50.032 T, which is clearly within the detectable range
dHvA oscillation experiments and close to the estimatedB
'0.05 T made in Ref. 35.

Repeating this estimate withB51 T for graphite withm
5200 K andD50, we getdB54 T, which is very close to
the observed value for period of the SdH oscillations in t
material.18 However, so large a value ofdB clearly violates
the conditiondB!B implied to obtain Eq.~6.9!, and for the
case of graphite the period of MO is given by a more ac
rate expression

U 1

eBi
2

1

eBi 11
U5 2

m22D2
5

2p

A
, ~6.10!

whereBi andBi 11 are the values of the magnetic field in tw
adjacent minima. In particular, for graphite again using
an estimatem5200 K andD50 we obtainu1/Bi21/Bi 11u
58 T21. Writing the last equality in Eq.~6.10!, we intro-
duced the area of an extremal cross section of the Fe
surface,A5p(m22D2), as it is usually done. Thus, contrar
to conventional systems with quadratic dispersion law a
the period of MO;1/m, the period of MO in the system
with linear dispersion~for D50) is ;1/m2 as seen in Fig. 1

Making above estimates we have assumed everyw
thatD50. However, as it is clear from Eqs.~6.9! and~6.10!,
the opening of the gapD increases the period of MO. In
particular, for graphite even a rather small value ofD, e.g.,
D<1022m, would produce a sizable;0.04 T change in the
period of MO. The effect of the gap opening on the oscil
tions of the magnetization is shown in Fig. 2. This figure w
obtained using the values of the parameters typical for gra
ite ~see the caption!. As one can see, the gap opening p
duces an observable change in the period of MO. Thus
method can be useful to test the realization of magnetic
talysis phenomenon44 in graphite~see Ref. 42! when the ex-
ternal magnetic field can induce the opening of an insula
gapD(B) in the relativistic spectrum of quasiparticle excit
tions. The crucial condition for the observation of thedB
increase caused by the gap opening is that the chemica
tential m itself does not change50 as the gapD opens. For-
mally this condition corresponds to considering fixedm in
the grand canonical ensemble. However, if the experime
setup corresponds to the fixed carrier imbalancer, one can
see from Eqs.~8.3! and~8.4! below that the entire differenc
m22D252puru/N adjusts to the strength of the applie
field, so that the period of MO remains unchanged, mak
the gap detection impossible. Nevertheless, as we discu
the end of Sec. VIII C, there is still a possibility of the ga
detection if simultaneously with a frequency the amplitu
of dHvA oscillations is measured.
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As pointed out in Ref. 35, the estimate ofdB is not suf-
ficient for the detectability of dHvA effect. In addition w
should calculate the magnetization and estimate the ma
tude of its oscillations.

VII. MAGNETIZATION

The magnetizationM in the direction perpendicular to th
plane should be calculated in the canonical ensemble,
we need the Helmholtz free energy which is related to
thermodynamic potential as

F~r,B!5V~m~r,B!,B!1m~r,B!r. ~7.1!

Then

M r~r,B!52
]F~r,B!

]B
52

]V~m,B!

]B U
m5m(r,B)

5Mm~m~r,B!,B!, ~7.2!

whereMm is the magnetization obtained in the grand cano
cal ensemble at constantm,

Mm~m,B!52
]V~m,B!

]B U
m5const

, ~7.3!

and we used that]V(m,B)/]m52r. Formally, the magne-
tization calculated in the canonical ensemble has the s
form as the magnetization calculated in the grand canon
ensemble, but we have to take into account oscillations om
in the system with fixedr. In the present paper we restric
ourselves in what follows by studying MO in the limitvc
!eF , so that for fixedr, as shown in Sec. VIII A, one can
neglect the oscillations ofm(B).

The thermodynamic potential consists of the sum of th
terms: the vacuum energy~A4!, regular~6.3! and oscillating
~6.4! parts. We begin with the calculation of the part of th
magnetization which is due to the vacuum energy, Eq.~A4!.

As one could see from Eq.~5.22!, this energy correspond
to the energy of the half-filled zone. Thus this case is a
interesting from physical point of view.12 Considering first
the limit D50, we obtain from Eq.~A5! that the magnetiza-
tion

M ~D50,m50!52
3Nz~3/2!

4A2p2
e3/2AB ~7.4!

~note the diamagnetic character of the vacuum contribu
in magnetization!. The ;AB dependence of the magnetiz
tion at m50 implies that the susceptibilityx5]M /]B
}B21/2 diverges at zero field raising a question about
stability of a homogeneous state described by effective
grangian~2.16!. As discussed in Refs. 12 and 35 in the ca
of the OAF ~DDW! this instability disappears if a couplin
between layers is included, or if finite temperature and
chemical potential is included. The instability is also r
moved in the presence of the nonzero gapD. Indeed, using
the asymptotics for zeta function
4-12
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z~s,11a!'
a12s

s21
2

1

2as
1

s

12a11s
~7.5!

for a@1, we obtain from Eq.~A4! that

M ~D,m50!52
Ne

6p

eB

D
, eB!D2. ~7.6!

Thus the opening of the gap removes the singularity aB
50 in the susceptibility.

Now we turn to the casem.D when in addition to the
vacuum contribution two more terms appear in the therm
dynamic potential, the regularV reg(m) and oscillating
Vosc(m) parts, that atT50 are given by Eqs.~6.3! and~6.4!.
As one can easily see, form.D field dependent terms in Eq
~6.3! coincide with the corresponding terms in the vacuu
energy~A4! up to a sign, so that their total contribution
the magnetization is zero. Therefore, only the oscillat
term of the thermodynamic potential given by Eq.~6.4! con-
tributes to the magnetization.

In the small-field limit,eB!m2, differentiating the poten-
tial ~6.6! we obtain

M ~D,m!52
Nemu~m2D!

2p3/2 (
n50

`
G~n11/2!

~n11!! FBn12S w

2 D
2Bn11S w

2 Dw

2 G S 2eB

m2 D n11

, ~7.7!

where we used the relation]Bn(z)/]z5nBn21(z). Equation
~7.7! is the generalization to the relativistic spectrum of t
formula for the magnetization obtained by Shoenberg.1 For
example, keeping first few terms in the expansion~7.7! we
have

M ~D50,m!5
Nem

2p FB1S v
2D2

3

2

eB

m2
B2S v

2D2
1

2

e2B2

m4
B3S v

2D
1OS e3B3

m6 D G , ~7.8!

where the explicit expressions for the Bernoulli polynomi
are given in Eq.~6.8!. We recall that the Bernoulli polyno
mials used here depend on the fractional part of their ar
ment so that magnetization is oscillating function with t
perioddB given by Eq.~6.9! and weakly varying amplitude
The dependence of the magnetization on the inverse
B21 is presented in Figs. 1 and 2 computed on the basi
Eq. ~7.7!. The dependenceM (B21) has a clear sawtoothlike
shape showing that, for the considered range of the par
eters, it is indeed convenient to represent the oscillation
terms of the Bernoulli polynomials.
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VIII. INFLUENCE OF IMPURITIES AND TEMPERATURE
ON MAGNETIC OSCILLATIONS

A. Thermodynamic potential Ṽ„µ… and equation for µ in the
presence of scattering

To obtain the equation for the chemical potential it
convenient to use the DOS expressed as in Eq.~4.16!, which
allows one to write down the thermodynamic potential~6.1!,
including the effect of impurity scattering, as

Ṽ0~m!52
Nm2

2p2
G ln

L2

2eB

2
NeB

p2 E
0

m

deImF ln GS D22~e1 iG!2

2eB D
1

1

2
lnS D22~e1 iG!2

2eB D G . ~8.1!

Correspondingly, Eq.~5.23! for the carrier imbalance atT
50 and finiteG takes the form

r52
]Ṽ0~m!

]m
5

Nm

p2
G ln

L2

2eB

1
NeB

p2
ImF ln GS D22~m1 iG!2

2eB D
1

1

2
lnS D22~m1 iG!2

2eB D G . ~8.2!

For small G!m,D, one can derive from Eq.~8.2! a more
simple expression

eF
25m21

2eB

p

3tan21
sin@2p~m22D2!/~2eB!#

exp@2pmG/~eB!#2cos@2p~m22D2!/~2eB!#
,

m2.D2, ~8.3!

where we have introduced the Fermi energyeF , counted
from the edge of the gapD, by means of the relation
(N/2p)(eF

22D2)5r. Note that Eq.~8.3! can also be derived
directly from the relationshipr5*0

mdeD0(e) and Eq.~4.20!
using the sum~4.21!.

In general, as mentioned in the Introduction, both fixedm
and fixedr cases are possible. For example, fixingm in Eq.
~8.2! one can study the oscillations of the carrier imbalancr
as a function of the fieldB. Equation~8.3! can be considered
as the relativistic analog of the corresponding relation
tween m and eF in nonrelativistic case.7 One can deduce
formal ‘‘nonrelativistic’’ limit from Eq. ~8.3! if one defines
the nonrelativistic Fermi energyeF(nr)5pr/ND and corre-
sponding nonrelativistic chemical potentialm5mnr1D and
considermnr!D. This nonrelativistic limit is, in fact, irrel-
evant for MO considered in the present paper, because ‘‘r
4-13
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tivistic’’ theory studied here emerges as an effective the
for nonrelativistic models described in Sec. II, so that it
meaningless to consider its nonrelativistic limit.

On the other hand, for the magnetization the case o
fixed carrier imbalancer is more natural, and therefore o
cillations of the chemical potential have to be taken in
account by solving Eq.~8.3! for m(B). Generally, this non-
linear equation cannot be solved analytically without furth
approximations, but foreF

2@eB the second term in Eq.~8.3!
represents a small correction to the constant value of
chemical potential so that we obtain by iterations an appro
mate solution

m25eF
22

2eB

p

3tan21
sin@2p~eF

22D2!/~2eB!#

exp@2peFG/~eB!#2cos@2p~eF
22D2!/~2eB!#

.

~8.4!

It is plotted in Fig. 3 for the model parameters typical f
graphite. As expected, these oscillations have sawtooth
shape, and the sharpness of the teeth depends on the va
G. One can also anticipate that the relative amplitude of
oscillations decreases as the Fermi energyeF increases and
the fieldB decreases. This is indeed seen in Fig. 3. Yet in
the chemical-potential oscillations are rather strong even
large eF , due to the particular form of Eq.~8.3!, that turns
out to be different from its 3D counterpart.

In spite of the smallness of the second term in Eq.~8.4!, it
is important to take into account the difference ofm andeF
in the arguments of oscillating functions~in the magnetiza-
tion, for example! in 2D, because it alters the phase of osc
lations. The difference can be neglected if the additional c

FIG. 3. The chemical potential (m/eF)2 as a function of inverse
field B21 for three different values of the Fermi energyeF , G
50.5 K, andT5D50. We useeB→(104 K2)B(T).
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dition 2pmG*eB is valid ~see discussion about th
importance of the chemical-potential oscillations in Ref.!.
This problem, however, is beyond the scope of the pres
work.

B. Thermodynamic potential Vosc„µ… and magnetizationM osc

in the presence of scattering

We return now to the oscillating part of the thermod
namic potential~6.1! including the effect of impurity scatter
ing. The oscillating part can be written~see Appendix C for
details! as

Vosc~m,G!5
N~eB!3/2

2p
u~m22D22G2!

3 (
k51

`
1

~pk!3/2
@J1~pkv,pkg!cos~pkw!

1J2~pkv,pkg!sin~pkw!#, ~8.5!

where the functions of two argumentsJ1~p,r! and J2(p,r )
that generalize the functionsJ1 andJ2 defined in Eq.~B5!,
are defined in Eq.~C4! and the variablesw, u, andg are

w5
m22D22G2

eB
, u5

D21G2

eB
, g5

G2

eB
. ~8.6!

Note that the variablew ~and alsou) that was defined in Sec
VI by Eq. ~6.5! is redefined in the presence of scattering
accordance with Eq.~8.6!. As before the frequency of MO is
given by w/2, so that it would diminish in the presence
impurities if we considered the fixedm case. This decreas
of the MO frequency for fixedm is specific for the presen
relativistic model, while in the nonrelativistic case the M
frequency remains intact even in the presence of impurit
The origin of the difference between relativistic and nonr
ativistic cases can be traced back to the difference in z
field DOS for these cases.

For G,AeB!m keeping the leading term in asymptot
expansions~C8! and ~C9! @this is the first term in Eq.~C8!
only#, we obtain from Eq.~8.5! ~omitting u function!

Vosc~m,G!5
N~eB!2

2pm (
k51

`
cos~pkw!

~pk!2

3expS 22pk
mG

eBD , m.0. ~8.7!

It is easy to check that forG50 Eq. ~8.7! reduces to the
expression that follows directly from Eq.~6.4! if one substi-
4-14
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tutes the first term of the expansion~B7!, J1(p)'1/Ap. This
comparison with Eq.~6.4! allows one to identify in Eq.~8.7!
the Dingle factor

RD~k,m!5expS 22pk
mG

eBD , ~8.8!

which describes reduction of the amplitude of thekth har-
monic due to the electron scattering. As is seen, the fi
amount of impurities leads to smoothing of the oscillatio
The factor~8.8! is a generalization of the Dingle harmon
damping

RD
NR~k!}expS 22pk

G

vc
D ~8.9!
o

-
to

o

o
s
hi
LK
s

he
a

07510
te
.

for the nonrelativistic case, usually written in terms of t
nonrelativistic cyclotron frequencyvc . Comparing Eqs.
~8.8! and ~8.9!, one can notice two facts. First one alrea
discussed in Sec. III, viz., in the relativistic caseRD can be
larger than it would be for the nonrelativistic case for t
same field form&mvFv25vL

2/(2vc), so that the condition
for the observation of MO in the relativistic case is less str
In particular, for graphite this condition remains valid fo
m&mevF

2'63104 K. Second, further increase ofm makes
MO unobservable, contrary to the nonrelativistic case, wh
RD does not depend on the chemical potentialm.

Calculating the magnetization~7.3! and keeping only
dominant terms, we obtain from Eq.~8.7!
Mosc52
N~m22D22G2!

2pm (
k51

`
sin~pkw!

pk
e22pkmG/eB52

N~m22D22G2!

2pm

3tan21
sin@2p~m22D22G2!/~2eB!#

exp@2pmG/~eB!#2cos@2p~m22D22G2!/~2eB!#
, ~8.10!
is.
where in the second equality we used Eq.~4.21!. We will
show now that the oscillating part of the magnetizationMosc
is directly related to the oscillating part of the chemical p
tential.

Comparing the result, Eq.~8.10!, for Mosc with the solu-
tion for chemical potential~8.4!, one can notice that the os
cillating part of the magnetization is directly proportional
the oscillating part ofm2:

Mosc5
N~eF

22D2!

4eBeF
~m2!osc5

pr

2eB

~m2!osc

eF
~8.11!

@this is obvious if one neglects small termsG2 in the trigo-
nometric functions in Eq.~8.10!#. This proportionality can be
in fact seen when Fig. 3~plotted for finiteG) is compared
with Figs. 1 and 2~plotted for G50). Note that unlike the
nonrelativistic case7 the magnetization is proportional t
mosc

2 , notmosc. If the ratioseF
2/eB and 2pmG/eB are small,

the oscillating part of the chemical potential under trigon
metric functions in Eq.~8.10! leads to additional frequencie
in the Fourier spectrum of the magnetization. In its turn t
changes the harmonics amplitudes compared with the
like formula, Eq.~8.10!. In the nonrelativistic case this wa
demonstrated in Ref. 8, 50, and 51.

C. Calculation of Vosc„µ… for TÅ0

Now we consider the effect of finite temperature on t
oscillations of the thermodynamic potential that can be c
-

-

s
-

l-

culated from the zero-temperature potential~8.5! using the
convolution property, Eq.~5.9!. For that it is convenient to
rewrite the expression~8.5! in the form

Vosc~m,G!52
N~eB!3/2

2p3/2
u~m22D22G2!) (

k51

`
1

~pk!3/2

3ImFe2
ip
4 E

0

` dt e2 i (pkv)t1 ipkg/t

At~ t11!
e2 ipkwG ,

~8.12!

where we used that the functionsJ1(p,r ) andJ2(p,r ) can be
represented as2Im and Re parts of the same function

ApJ1~p,r !52ImE
0

` dt e2pt2r /t

At~ t1 i !
,

ApJ2~p,r !5ReE
0

` dt e2pt2r /t

At~ t1 i !
, ~8.13!

and rotated the integration contour to the imaginary ax
Hence
4-15
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Vosc~T,m,G!52
N~eB!3/2

2p3/2 (
k51

`
1

~pk!3/2

3ImF e2 ip/4E
0

` dt eipkg/t

At~ t11!
E

2`

` de

4T cosh2
e2m

2T

u~e22D22G2!expS 2
i tpke2

eB
2 ipk

e22D22G2

eB D G .

~8.14!

At low temperaturesT→0, after making a shifte→e1m and changing the variable of integratione→2Te, the integral over
e gives ~neglectingT2 term in the exponent!

E
2`

` de

cosh2e
e2( ipk/eB)(t11)4Tme52E

0

` de

cosh2e
cosS 4Tm~ t11!pk

eB
e D5

4p2kTm~ t11!

eBsinh
2p2kTm~ t11!

eB

, ~8.15!

where we used the formula~3.982.1! from Ref. 52. We obtain

Vosc~T,m,G!52
N~eB!1/2Tm

Ap
u~m22D22G2!(

k51

`
1

~pk!1/2

3ImF e2 ip/4e2 ipkwE
0

` dt

At
e2( ipktm2/eB)1( ipkg)/t)

1

sinh
2p2kTm~ t11!

eB
G . ~8.16!
t

io

am

i-
Nonoscillating factor in the integrand has a maximum at
50, thus we can take sinh evaluated att50 while the re-
maining integral overt is evaluated by means of Eqs.~C6!
and ~C7!. We finally get~omitting againu function!

Vosc~T,m,G!5NeBT(
k51

`
cos~pkw!

pk

1

sinh
2p2kTm

eB

3expF22pk
mG

eBG
5

N~eB!2

2pm (
k51

`
cos~pkw!

~pk!2
RT~k,m!RD~k,m!,

~8.17!

where we introduced thetemperature amplitude factor

RT~k,m!5
2p2kTm/~eB!

sinh
2p2kTm

eB

, ~8.18!

which is a relativistic equivalent of the temperature reduct
factor of the famous LK formula. Clearly, sinceRT(k,m)
→1 for T→0, Eq.~8.17! reduces to Eq.~8.7!, and for finite
T the thermal broadening causes a reduction of the MO
07510
n

-

plitude with respect toT50 case. This becomes more ev
dent if we consider the limitB→0, so that the function
1/sinh@2p2kTm/(eB)#;exp@22p2kTm/(eB)#. Comparison of
this exponent with Eq.~8.8! allows one to introduce the

FIG. 4. The magnetizationM ~in K/T cm2 calculated forN
51) as a function of inverse fieldB21 for three different values of
the chemical potential. We useeB→(104 K2)B(T), G50.5 K, T
55 K, andD50.
4-16



tte
ec

a

q

t
to
er

-
lity

on
so
th
li
e
b
b
e

us-
d as
sly

an

on
nly
era-
ods

ry.
K

l-
alue

in
po-
tiv-
at-
ns

be

ribe

y-

ls.
ase
mit
e

in

ce
.
in
i-

sed
rum
ial

re-
se
ru-

MAGNETIC OSCILLATIONS IN PLANAR SYSTEMS . . . PHYSICAL REVIEW B 69, 075104 ~2004!
Dingle temperature

TD5
G

p
, ~8.19!

so that a reduction of amplitude due to quasiparticle sca
ing from impurities can be interpreted as leading to an eff
tive rise of a temperature from true temperatureT to T
1TD , i.e., as if the system could not be cooled below
minimal temperatureTD . Note that while the Dingle factors
~8.8! and~8.9! are different, the value ofTD itself is the same
for relativistic and nonrelativistic cases. Comparing E
~8.17! with the corresponding expression~15! for Vosc in 2D
from Ref. 7 ~this expression contains also a spin factorRs
which is not considered in our work!, one can notice tha
relativistic and nonrelativistic cases differ only by the fac
(21)k that appears due to the presence of the zero en
E05vc/2 for the nonrelativistic Landau levels.

It is seen from Eq.~8.17! that the conditions for observa
tion of dHvA oscillations can be formulated as an inequa
for the strength of magnetic field

m22D2

2
*eB*max$2p2Tm,2p2TDm%. ~8.20!

The first inequality is necessary in order to have at least
oscillation. It implies physically that the field must not be
high that all fermions are in the lowest Landau level, i.e.,
filling factor has to be bigger than one. The second inequa
guarantees that the amplitude of oscillations is not expon
tially suppressed, and for that the magnetic field must
strong enough to make spacing between Landau levels
ger or of the order of the thickness of the thermal layer tim
the Fermi energy.

FIG. 5. The magnetizationM ~in K/T cm2 calculated forN
51) as a function of inverse fieldB21 for three different values of
the chemical potential. We useeB→(104 K2)B(T), G50.5 K, T
515 K, andD50.
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The dependence of the magnetization~7.3! on B21 is ob-
tained by differentiation of Eq.~8.17! and the results of nu-
merical computations are shown in Figs. 4 and 5. They ill
trate the above-mentioned facts that the MO are smoothe
the temperature and/or the chemical potential rise. Obviou
the increase ofG gives the same result. Moreover, one c
clearly see the damping of dHvA amplitude as the fieldB
decreases. It is known that the damping of dHvA oscillati
amplitude as a function of several parameters is commo
used to extract system parameters such as Dingle temp
ture and the effective electron mass. However, these meth
of analysis depend on the applicability of the LK theo
Assuming that the relativistic generalization of the L
theory considered here is valid at least forvL!eF , we sug-
gest that, using Eqs.~8.10! and ~8.17!, one can extract both
the value ofm from the damping and the difference,m2

2D2 from the frequency of dHvA oscillations. The know
edge of these two parameters allows one to obtain the v
of the gapD even for the fixed carrier imbalancer.

IX. CONCLUSIONS

In this paper we have studied magnetic oscillations
thermodynamic quantities such as DOS, thermodynamic
tential, and magnetization in planar systems with the rela
istic Dirac-like spectra for quasiparticle excitations. The
tention was mainly paid to the regime, where the calculatio
in canonical~fixed r) and grand canonical~fixed m) en-
sembles give equivalent results. Our main results can
summarized as follows.

~1! We have obtained analytical expressions that desc
MO in the DOS given by Eqs.~4.7! and~4.19! for zero width
G50 ~no impurities! and Eq.~4.20! for finite width G for
Landau’s levels.

~2! For G50, we have expressed the MO in thermod
namic potential, Eq.~6.6!, and magnetization, Eq.~7.7!, as a
series in the periodically continued Bernoulli polynomia
This representation turns out to be useful for the 2D c
when the oscillations have sawtoothlike shape. In the li
vL!m it is sufficient to consider only first few terms of th
series.

~3! For finite impurity scattering rateG and temperature
we have obtained the thermodynamic potential~8.17! and
represented it in terms of the Dingle factorRD , Eq. ~8.8!,
and the temperature amplitude factorRT , Eq. ~8.18!, as it is
usually done in Lifshits-Kosevich theory. The spin factorRs
can be calculated similarly if the Zeeman term is included
the model.

~4! For finite G, we have derived also Eq.~8.2! for the
chemical potential. Its solution for fixed carrier imbalan
exhibits oscillations ofm as a function of the magnetic field
It is shown that the oscillating part of the magnetization is
fact directly proportional to the oscillating part of the chem
cal potential~more precisely, to (m2)osc).

~5! On the basis of obtained formulas, we have discus
the possibility to detect a gap that may open in the spect
of the Dirac-like quasiparticle excitations due to a nontriv
interaction between them.

One of the possible and necessary extensions of our
sults would be to study magnetic oscillations for the ca
when the consideration within the canonical ensemble is c
4-17
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cial, i.e., in the regime where the oscillations of the chemi
potential described by Eq.~5.23! at fixed r (eF) cannot be
neglected. The necessity of such an extension emerges
the fact that the oscillations ofm become important for
2pmG&eB which is exactly the condition~8.20! for having
large amplitude of the MO.

Another important extension would be to consider M
analytically in the transport quantities such as electrical
thermal conductivities. These oscillations were in fact se
in the numerical results presented in Ref. 29, but analyt
results can be useful for comparison with t
experiments.17,18 While for dHvA effect the conditionr
5const is more natural, it is plausible that SdH effect can
measured under conditionm5const. This, as we have dis
cussed in the paper, can be used for an experimental o
vation of the gapD, especially if the gap depends on th
applied field,D5D(B).

All above-mentioned problems can be treated analytic
due to the fact that the broadening of Landau levels ha
Lorentzian shape and the impurity scattering rateG ~the
width of this distribution! is assumed to be field and tem
perature independent. In fact, both these assumptions ca
questioned, in particular for 2D systems with a linear disp
sion. For example, the validity of the first assumption for 2
systems is now discussed in the literature~see Refs. in Ref.
8!. While the second assumption may well be valid in t
low-field regime, it is necessary to investigate its domain
validity and probably to consider also the dependenceG(B)
Ref. 47 to access the high-field regime.
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APPENDIX A: CALCULATION OF VACUUM ENERGY
V0„µÄ0,B…

As mentioned above, the vacuum contribution does
change under averaging over thermal andG distributions, so
it is sufficient to calculate it atT50 and in the absence o
impurities. We calculate the vacuum term using the den
of states in the form of Eq.~4.2!,

V0~m50,B!52E
0

`

deeD0~e!52
NeB

2p FD12(
n51

`

MnG .

~A1!

The sum over the Landau levels is divergent and to calcu
it we use the representation

1

as
5

1

G~s!
E

0

`

dtts21e2at ~A2!
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to write

V0~m50,B!52
NeB

2pG~21/2!
E

0

` dt

t3/2
e2tD2

3F112(
n51

`

e22eBtG
5

N

4p3/2E1/L2

` dt

t5/2
e2tD2

eBtcoth~eBt!,

~A3!

where we introduced the ultraviolet cutoffL as the band-
width. The integral can be evaluated through the generali
z function

V0~m50,B!52
N

2p FLD2

Ap
1DeB1~2eB!3/2

3zS 2
1

2
,

D2

2eB
11D G1OS 1

L D , ~A4!

where the term;L3 which does not depend onD andB is
omitted. The last expression coincides with the vacuum
ergy computed in the second paper in Ref. 44. Setting in
~A4! D50 and using the identityz(21/2,1)5z(21/2)5
2(1/4p)z(3/2) we obtain

V0~m50,B,D50!5
Nz~3/2!

2A2p2
~eB!3/2. ~A5!

To compare Eq.~A5! with Eq. ~15! of Ref. 12 and Eq.~10!
of Ref. 35, one should restore the prefactor 1/(vFvD) with
the velocitiesvF , vD and express them via the parametert
andD0 as done below Eq.~2.1!. Note that the ground stat
energy increases with applied magnetic field, indicating d
magnetism.

APPENDIX B: CALCULATION OF Ṽ0„µ…

Substituting Eq.~4.7a! in Eq. ~6.1! and integrating by
parts we obtain

Ṽ0~m!52
N

2pE0

m

deu~e22D2!F e22D2

12eB(
k51

`
1

pk
sin

pk~e22D2!

eB G
[V0

(1)~m!1V0
(2)~m!, ~B1!

where

V0
(1)~m!52

N

6p
u~m2D!~m2D!2~m12D! ~B2!

and
4-18
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V0
(2)~m!52

NeB

p
u~m2D!(

k51

`
1

pkED

m

desin
pk~e22D2!

eB

52
N~eB!3/2

2p
u~m2D!(

k51

`
1

pkE0

w dxsin~pkx!

Ax1u
.

~B3!

Writing the last expression forV0
(2)(m) we introduced new

variablesw defined in Eq.~6.5! andu5D2/(eB).
To extract explicitly the oscillations in the variablew we

rewrite the integral in Eq.~B3! as

E
0

w dxsin~pkx!

Ax1u
5E

0

w

dxsin~pkx!
1

Ap
E

0

` dt

At
e2t(x1u)

5
1

pAk
F E

0

` dt e2t(pku)

At~ t211!

2E
0

` dt e2t(pkv)

At~ t211!
cos~pkw!

2E
0

` dt Ate2t(pkv)

t211
sin~pkw!G , ~B4!

where v is defined in Eq.~6.5!. The integrals in the las
equation can be expressed in terms of the degenerate h
geometric functionC:

ApJ1~p!5E
0

` dt e2tp

At~ t211!
52ImE

0

` dt e2tp

At~ t1 i !

52Ap ImF i 21/2CS 1

2
,
1

2
; ip D G

52Ap ImFAp CS 1,
3

2
; ip D G ,

ApJ2~p!52
]

]p
@ApJ1~p!#5E

0

` dt Ate2tp

t211

5ReE
0

` dt e2tp

At~ t1 i !
5Ap ReFAp CS 1,

3

2
; ip D G ,

~B5!

where we used also the relationship52

C~a,b;z!5z12bC~a2b11,22b;z!. ~B6!

One can readily see that the integralsJ1 ,J2 are monotonic
functions of their arguments and have the followi
asymptotic expansions:

J1~p!5
1

Ap
(
n50

`
~21!nG~2n11/2!

p2n11/2
,

07510
er-

J2~p!5
1

Ap
(
n50

`
~21!nG~2n13/2!

p2n13/2
. ~B7!

Thus for regular part of the potential we obtain

V reg~m!52
N

6p
u~m2D!~m2D!2~m12D!

2
N~eB!3/2

2p
u~m2D!(

k51

`
J1~pku!

~pk!3/2
, ~B8!

while the oscillating part takes the form~6.4! written in Sec.
VI. Equation ~B8! and ~6.4! were also derived in Ref. 24
using a different approach.53 The sum in Eq.~B8! can be
evaluated through the generalizedz function in the following
way:

(
k51

`
J1~pku!

~pk!3/2
5

1

Ap
(
k51

`
1

~pk!3/2E0

` dt e2pkut

At~ t211!

5
1

Ap
E

0

` dt e2ut

At
(
k51

`
1

t21~pk!2

5
1

2Ap
E

0

`

dt t23/2e2utS cotht2
1

t D
5223/2zS 2

1

2
,11

u

2D2u1/22
2

3
u3/2,

~B9!

which finally results in Eq.~6.3!.
The oscillating partVosc(m) of the thermodynamic po-

tential can be also represented in terms of the generalizez
function. For that one should use G(n1a)
5*0

`dssn1a21e2s and perform summation overn by means
of the formula

(
n50

`
xn

n!
Bn~y!5

xexy

ex21
, uxu,2p, ~B10!

we obtain

(
n52

`
G~n1a!Bn~y!

n!
xn

5E
0

`

ds sa21e2sFsx esxy

esx21
212sxB1~y!G . ~B11!

Using now the formula52

E
0

` xn21e2mxdx

12e2bx
5

1

bn
G~n!zS n,

m

b D , Rem.0,Ren.0,

~B12!

we find
4-19
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Vosc~m!52
Nm3

2p
u~m2D!H S 2eB

m2 D 3/2

zS 2
1

2
,11

m2

2eB

2modFm22D2

2eB G D1
2

3
2

2eB

m2

3S modFm22D2

2eB G2
1

2D J . ~B13!

This expression involves a dependence on the nonanaly
fractional part mod@(m22D2)/2eB#. In terms of the integer
part @(m22D2)/2eB# the total thermodynamic potential~a
regular plus oscillating parts! can be written as25

Ṽ0~m!52
NeB

p
u~m2D!H mFm22D2

2eB G
1A2eBzS 2

1

2
,11

D2

2eB
1Fm22D2

2eB G D
1

m2D

2
2A2eBzS 2

1

2
,11

D2

2eBD J . ~B14!

The last two terms are in fact canceled by the zero chemi
potential ~vacuum! part of the thermodynamic potentia
Equation~A4! ~for m.D).

In fact, the expression~B14! can be obtained much easi
if one uses Eq.~4.2! and writes Eq.~6.4! as

Ṽ0~m!52
NeB

2p
S m2D1 (

n50

[(m22D2)/2eB]

~m2Mn!D .

~B15!

Using now the formula for the generalized zeta function

z~z,v1k!5z~z,v !2 (
n50

k21

~n1v !2z ~B16!

one immediately arrives at Eq.~B14!. However, the oscillat-
ing property ofṼ0(m) is not so transparent in Eq.~B14! as it
is in Eqs.~6.4! and ~6.6!. On the other hand, the expressio
for Ṽ0(m) through the generalizedz function is convenient
for studying large field behavior. Indeed, foreB@D2,m2

2D2 we find from Eq.~B14! that in this limit

Ṽ0~m!.2
NeB

2p
u~m2D!~m2D!, ~B17!

which is precisely the contribution due to the lowest Land
level which is the only one to survive in the high-field limi
Also, as is seen from Eq.~B14!, the oscillating term~first z
function in curve brackets! is necessary to take into accou
even in the high-field regime in order to cancel (eB)3/2 term
and obtain the correct linear term forṼ0(m).

APPENDIX C: CALCULATION OF Vosc„µ… IN THE
PRESENCE OF SCATTERING

It turns out that due to the bad convergence of the in
grals such as~5.7! and Eq.~5.17! with the Lorentzian distri-
bution PG(v) this calculation can be done more easily if w
07510
al

l-

u

-

directly substitute the DOS~4.20! in Eq. ~6.1! and generalize
the calculation made in Sec. VI. Choosing again for defin
nessm.0, for the oscillating part of the thermodynam
potential, we have

Vosc~m,G!52
NeB

p
u~m22D22G2!

3 (
k51

`
1

pkEAD21G2

m

desin
pk~e22D22G2!

eB

3expS 2
2pkueuG

eB D
52

N~eB!3/2

2p
u~m22D22G2!

3 (
k51

`
1

pkE0

wdxsin~pkx!

Ax1u

3exp~22pkAg~x1u!!, ~C1!

where the variablesw, u, and g are defined in Eq.~8.6!.
Using the representation

e2z

z
5

1

2Ap
E

0

` dt e2t2
z2

4t

t3/2
, ~C2!

we can perform the integration overx to get

E
0

w dxsin~pkx!

Ax1u
exp@22pkAg~x1u!#

5
1

pAk
E

0

` dt

At~ t211!
e2pkg/t@e2t(pku)

2cos~pkw!e2t(pkv)2tsin~pkw!e2t(pkv)#,

~C3!

where the variablev5m2/eB is the same as in Eq.~6.5!.
Hence the oscillating part of the thermodynamic poten
can be written~omitting the monotonic term related to th
first term in square brackets of the last expression! in the
final form ~8.5! using the functions of two argumentsJ1~p,r!
andJ2(p,r ),

ApJ1~p,r !5E
0

` dt e2tp2r /t

At~ t211!
,

ApJ2~p,r !52
]

]p
@ApJ1~p,r !#5E

0

` dt At e2tp2r /t

t211
.

~C4!

As is seen, the functionsJ1(p,r ),J2(p,r ) are monotonic
functions of their variables.

For large values of the parameterp we can obtain
asymptotic expansion of the functionsJ1(p,r ),J2(p,r )
4-20
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changing the variablet→t/p and expanding then the de
nominator in powers ofp, we get

ApJ1~p,r !5 (
n50

`
~21!n

p2n11/2E0

` dt e2t2rp/t

t22n11/2

52(
n50

`

~21!nS r

pD n11/4

K2n11/2~2Arp !,

~C5!

where we used the formula for the representation of the M
donald function

Kn~2z!5
zn

2 E0

` dt e2t2z2/t

tn11
, Rez2.0, uargzu,

p

2
.

~C6!

and the relationK2n(z)5Kn(z). Since for half integer val-
ues of the indexn
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