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Tests of a ladder of density functionals for bulk solids and surfaces

Viktor N. Staroverov and Gustavo E. Scuseria
Department of Chemistry, Rice University, Houston, Texas 77005, USA

Jianmin Tao and John P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
(Received 4 September 2003; revised manuscript received 13 November 2003; published 13 Febryary 2004

The local spin-density approximatighSDA) and the generalized gradient approximati@GA) of Per-
dew, Burke, and Ernzerhd@PBE) are fully non-empirical realizations of the first two rungs of “Jacob’s ladder”
of exchange-correlation density functionals. The recently proposed non-empirical meta-GGA of Tao, Perdew,
Staroverov, and Scuser{@PS$S, featuring the kinetic energy density as an additional local ingredient, com-
pletes the third rung. A hierarchy of these functionals, complemented by the meta-GGA of Perdew, Kurth,
Zupan, and Blah&PKZB), is tested in self-consistent Gaussian-type orbital calculations of equilibrium lattice
constants, bulk moduli, and cohesive energies for 18 solids, and in studies of the jellium surface energy. The
ascent of the ladder generally results in better performance, although most of the improvement for bulk solids
occurs in the transition from LSDA to PBE. For the jellium surface energy, PBE is less accurate than LSDA,
but PKZB and TPSS are more accurate. We support the idea that most of the error of these functionals for bulk
solids arises in the description of core—valence interaction, by demonstrating that it can be removed through
adjustment of the corresponding term in the equation of state. Overall, TPSS gives the best description of solids
and surfaces, as it was found to do for molecules in earlier work.
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. INTRODUCTION €i™(n,,n).% Of several existing form;'° the Perdew—

Kohn-Sham(KS) spin-density functional theoty” treats  wang parametrizatidrof this function, which satisfies many
the kinetic and classical Coulomb components of the elecgxact constraints, has been chosen here.
tronic energy exactly. The remaining contribution, the GGA functionals retain most of the correct features of the
exchange—correlation energy, must be approximated as |85pA and greatly advance the accuratgspecially for mo-
functional of the ground-state electron densitiegr) and |ecular binding energies, which are severely overestimated
ni(r). Since the dependence &,J[n;,n ;] on ni(r) and py L SDA. Semi-empirical GGAs are fitted to reproduce par-
n(r) does not have to be explicit, the list of local ingredi- ticular sets of experimental data, while non-empirical ap-
ents of E,. may contain not only,(r) and their derivatives proximations avoid optimized parameters in favor of satisfy-
vn,(r), V?n,(r), etc., but also quantities that are indirectly ing exact constraints. The non-empirical GGA of Perdew,
determined by the densities. Such quantities, normally conBurke, and Ernzerhdf (PBE) is the most complete embodi-
structed from the KS orbitals, include the kinetic energy denment of the second rung of Jacob’s ladder. Although the PBE
sity, 7,(r)=3%;|V#7(r)|?, and the exact exchange. Ingre- GGA is not always as accurate for molectfess some semi-
dients other than the density do more than just enhancempirical GGAs(e.g., BLYP*19, it incorporates more exact
flexibility; they are necessary if the approximation is to sat-properties and thus is more universal in applicabifttfzhe
isfy known exact constraints dg,[n;,n;]. PBE has two different derivations leading to the same GGA:

The type of local ingredients oE,Jn;,n,] forms the one based upon exact properties of the exchange—correlation
basis for the “Jacob ladder” classification of density func- energy?> and one based upon exact properties of the
tional approximations.The ascent of the ladder consists in exchange—correlation hoté.The latter derivation also pro-
embedding increasingly complex ingredients and exact propduces the Perdew—Wang 199PW91) GGA}’ which is
erties intoE,{n;,n,]. At a certain point, functionals de- typically very close to PBE.
signed in this manner are bound to achieve satisfactory ac- Meta-GGAs strive to improve upon the GGA by employ-
curacy. ing the kinetic energy density,(r) as an indicatdf of one-

The lower three rungs of the ladder are, in ascending orelectron regions ofi,(r) and forcing the correlation energy
der, the local spin-density approximatighSDA), which  density to vanish there. The presencergfr) also enables
employs onlyn,, the generalized gradient approximation one to reproduce gradient expansions of exchange and cor-
(GGA), whose ingredients are, and Vn,, and the meta- relation energies for slowly varying densities through higher
GGA (MGGA), which makes use of,, (or V2n,) in addi-  orders inV than is possible in the GGA. Given expectations
tion to the GGA ingredients. The LSDA is exact for a uni- of a high return from these new constraints, it came as a
form electron gas and agreeably accurate for systems whesgirprise that the meta-GGA of Perdew, Kurth, Zupan, and
the electron density does not vary too fast, such as solid8laha® (PKZB) proved less accurate than PBE for all mo-
Since the exchange component of the LSDA is known exiecular properties except atomization enerdfed:?! The
actly, the design of the ultimate LSDA requires only an ac-problems of PKZB have been identified and corrected in the
curate parametrization of the correlation energy per electrometa-GGA approximation of Tao, Perdew, Staroverov, and
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Scuseri& (TPSS, which essentially completes the meta-

GGA rung of Jacob’s ladder. Other meta-GGAs have also FYCA(n,Vn,7)=1+k—

been proposed recenfly;?® but, except for VSX& and

KCIS?"** they have not been tested extensively and somgherex is a complicated function of variables Vn, andr,

have yet to be implemented self-consistently. which has different forms in PKZB and TPSS. When using
'I_'he LSDA a_nd the non-emplrlcal_ PBE and TP_SS arecq (1), Vn and 7 in Egs. (3) and (5) must be scaled by a

“universal” functionals based upon universal constraints andactor of 2 just like the density.

limits. Recent molecular tesfsrevealed an impressive in- Correlation components of the LSDA, PBE, PKZB, and

crease in accuracy in the order LSBEARBE<TPSS for at-  Tpsg functionals are not resolved into spin-up and spin-

omization energies and a more moderate improvement fogown components. The LSDA correlation is simply
vibrational frequencies and hydrogen-bond properties; for

other properties, the order is generally LSBRBE _
~TPSS. Moreover, TPSS was found to match and occasion- Es™n,,n 1= J- nes™(n; ,n)dqr, (7)
ally exceed in accuracy the best semi-empirical and hybrid

GGA functionals.

The LSDA as well as many GGAs and meta-GGAs wer
tested for twelve bulk solids and for jellium surfaces b
Kurth, Perdew, and Blah&.They found that semi-empirical
functionals fitted to chemical data typically did not perform
even as well as LSDA. The best results were obtained with EEBE[W '”i]:f ne-®n,,n,,vn,,vn)d%, (8)
functionals that were exact in the uniform-density limit and
had no(LSDA, PBE) or one(PKZB) empirical parameter. In
this work, we continue tests of the LSDA—-PBE—-TPSS Iad—Where
der and focus on periodic systems and jellium surfaces. The PBE  _unif
PKZB functional, as a predecessor to TPSS, is also included € =€ (np,n)+H(N;,N;,Vn;,Vn)). ©)
for comparison.

(6)

1+x/k’

where n=n,;+n; . As indicated earlier, we used the
®perdew—Wang parametrization f@ﬁ”'f(nT,nl). The PBE
Y correlation has the forf

HereH is a gradient correction to the LSDA correlation. The
functionH is such thatH=0 if n (r)=const.
ll. DESCRIPTION OF THE FUNCTIONALS Both PKZB and TPSS are based upon self-correlation cor-

The exchange components of the four functionals of thections to PBE. The PKZB correlation is given'by
ladder are evaluated by the spin-scaling relafion

Ex[nTanL]:% Ex[znT]+% Ex[znl]r (1)
_ _ . _ EEKZB[nT,nL]zf ne.°Sn;,n;,vn;,vn))
where E,[n] is the corresponding functional for a spin-
unpolarized system. In the case of LSDA,

ELSPA n]= f nel™(n)dqr, ®) PR
A x| 1+cC —(1+C)
where e2"(n) = — (3/47)(37?n)? is the exact LSDA ex- DR
change energy per particle. For the PBE GEA, o

E)F(’BE[n]=f neX™(n)FPE%n, vn)d®r, (3)

’TW 2
T—”) n,e-°n,,0Vn,0 ¢ dir,

x 2
(o8

whereF°5n,Vn) is an enhancement factor given by

(10)
FP8n,Vn)=1+k— TR (4)
1+ psx whererV=|Vn,|%/8n,, is the WeizSeker kinetic energy den-
in which s=|Vn|/2n(372n)'3 is a dimensionless density Sity andC is a(non-empirical constant.
gradient, whilex and x are non-empirical constants. Finally, the TPSS correlation is given By
The exchange components of the PZ@nd TPS% Wi
_ T

meta-GGAs can be both represented by EIPSS[”T *”L]:J ne‘r:evPKZB{l_'_dE(r:evPKZB( _) }d3r,

(11

EQ”GGA[n]=f ne"(n)FY®A(n,vn,n)d.  (5)
where 7V=|Vn|?/8n, d is a constant, and¢®""*“® is the
The enhancement factor is revised PKZB correlation energy per particle,
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M 2 TABLE I. Satisfaction(Yes/No of selected exact constraints by
eEeVPKZBz EEBE(nT n;,Vn,n)) 1+C(§,§)(7) } approximate exchange—correlation functionals.
W 2 n Constraint LSDA PBE PKZB TPSS
—[1+C(£, )] — =
[ (¢ §)]< 1') ; n Global properties
E, <0 Y Y Y Y
xmax e£®5n,,0,Vn,,0),e-85n; ,n;,Vn, ,Vn))]. E:so v v N v
(12)  E=0if fn(r)d¥=1 N N Y \4
E,.=—Dfn*3(r)d3r2 Y Y  YNP Y
Note that, in TPSSC is a function of the spin polarization E,.=EL"", n,,n,=const Y Y Y Y
{=(n;—n))/n and a variableé=|V¢{|/2(3m°n)Y2 C(£,€)  E,=—U[n]if fn(r)d®r=1° N N N YN
is designed to makEIfSTnT ,n,] properly independent of  Highest order inV for ESFA® 0 0 4 4
(0=]¢|=0.7) in the low-density limif? The max() function  Highest order inv for EGEA® 0 2 2 2
: revPKZB : H H
appearf1 in Eq(12) to ensure thak, is strictly negative Spin and density scalilg
everywhere. Edn;.n =33, El2n,]" Y Y Y Y
As shown in Table I, the two meta-GGA functionals gen- EXEnT],:%]\E Z[n]”i‘“ L2n;] v v v v
erally satisfy more constraints than their predecessors. ThlgX » X i
\ In>AE{n], A>1 Y Y Y Y
breakthrough in performance from PKZB to TPSS has been i
. ; ; RPN, lim, ..Efn,]>—o] N Y Y Y
attributedo the satisfaction of the constrainb(r) finite . e o v v v v
at the nucleus.” Note that PBE, PKZB, and TPSS all reducd™ 0% "EdM] j
to LSDA for a uniform densitythis is one of the most basic '!mH*Ex[”XAP_mJ. N N N N
requirements for approximate density functionals in applica—'!thOEx[ni]>_OO . Y Y Y Y
tions to solids while such common functionals as My -=Edny]>—=' N Y Y Y
BLYP,**1B3LYP® and VSXCGdo not. Besides, in the low-  Asymptotic behavior
density (strong-interaction limit, TPSS recoverd PKZB vy (r)——1h, r—o N N N N
which is very accurafé for a spin-unpolarized density, while vy(r) finite at the nucleus Y N N YK
LSDA and PBE are severely wrong because of their self-vc(r) finite at the nucleus % N YN YN

interaction error in the correlation part.

8The Lieb—Oxford bound(Refs. 17, 35h 1.44<D<1.68 (or
<1.6358—Ref. 3&
lil. BULK SOLIDS by for exchange, N for exchange—correlation.
A. Methodology “Cancellation of spurious electrostatic self-interaction energy in
. . ) one-electron systems&l[n]=3/d3r fn(r)n(r’)/|r—r'| d3".
Our test set includes four basic types of crystalline sysw ). 2 one-electron exponential density.

tgms: 4 r;alr_] group metalki, Na, K A.‘I)’ 5|§dem|c0n|ductors €The highest correct order in the gradient expansion approximation
(diamond, Si,3-SiC, Ge, GaA} 5 ionic solids(NaCl, NaF, (GEA) for slowly-varying densities. The true GEA is known to

LiCl, LiF, MgO), and 4 ”a”S'“Q” mgtaIéCu, Rh, Pd, Ag fourth order inV for exchanggRef. 37 and to second order for
All 18 solids were calculated in their normal crystal struc- correlation(Ref. 38,
tures(as indicated in Table Jland non-magnetic states. "Two of the three fourth-order terms are also reprodug®ef. 19.

The electron (;Iensi'Fy in a crys_tql Is appfoxir_nately a Super‘i'Uniform scaling of the densityn,(r)=\3n(Ar); non-uniform
position of atomic or ionic densities, so localized Gaussmn-sca“ng:n);(x,yyz):)\n(AX’y’Z). See Ref. 39 for a review.

type orbitals(GTO) centered at the nuclei are well suited for ny.ied in Ref. 31.
such systems. The problem with GTO basis sets developef i eq in Ref. 40.
for atomic and molecular calculations is that they have difiy. i ed in Ref. 41.
fuse functiongby which we mean GTOs with exponents of «
less than 0.05-0.10, depending on the structure type an
lattice constant Such functions decay very slowly with dis-
tance and thereby slow down dramatically the evaluation ofvith double-zeta quality GTO valence basis sets optimized
Coulomb contributions to the total energy. Normally, diffuse for bulk metals*® Note that the ECPs absorb some relativis-
functions have to be removed and the exponents of the reic effects. Our final selection of basis sets is documented in
maining valence functions reoptimized. For many non-Table Il. No auxiliary basis sets for the charge density were
metals, molecular basis sets do not have diffuse functionased.

and are already adapted for the crystalline phase. In particu- All calculations on solids were performed self-
lar, we found that the standard 6-31G* basis remains practieonsistently using a development version of th&USSIAN

cal for C(diamond, Si, and SiC, while Ge can be calculated program>! The implementation of periodic boundary condi-
with an even larger 6-311G* basi$No relativistic effects tions (PBC) in the GAUSSIAN program has been described in
were included in the all-electron calculations. For Rh, Pddetail before’? In this approach, all terms contributing to the
and Ag we used the LANL effective core potentfSIEECP), KS Hamiltonian are evaluated in real space, including the
which replace 28 core electronigAr]3d!%), in combination infinite Coulomb summations, which are calculated with the

for one- and spin-compensated two-electron densities.
for one-electron densities.
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TABLE II. Gaussian-type basis sets used for calculations of thehere. In our experience, a self-consistent PBC meta-GGA
bulk solids. The number of contracted GTOs of each type is indi-calculation requires about the same computer time as GGA
cated in square brackets. Cartesian basis sets use all six componegi$ most machines.

of d-functions; “pure” basis sets excludetype combinations We estimated the equilibrium lattice constaagsand bulk

(detdy2tdyz). moduli By at T=0 K by calculating the total energy per unit

i _ cell at 7-10 points in the rangé,+5% (whereV, is the
Solid Structure type Basis set equilibrium unit cell volumg fitting the data to an analytic
Li A2 (bco [4s,3p,1d] (pure? equation of statéEOS E(V), and differentiating the latter.
Na A2 (bco) [5s,3p,1d] (CartesiaiP Unit cell volumes are r_elate_d to the Iattice_constants as fol-
K A2 (bcd [6s,4p,1d] (Cartesia)f lows: V=a3%4 (fcc, cubic, dlgmqnd, and zmcblende struc-
Al Al (fcc) [6s,3p,1d] (Cartesiaif tures; V=a®%/2 (bco. The equilibrium bulk modulus is given
C A4 (diamond 6-31G* (Cartesian by
Si A4 (diamond 6-31G* (Cartesian dp 42E
SiC B3 (zincblende 6-31G* (Cartesiah Bo=B|y_y. =—V-— =V— (13

i * 0 V=VYo dv 2

Ge A4 (diamond 6-311G* (pure v=v, AV,
GaAs B3(zincblendg [6s,5p, 2d]/6-311G* (pure® °
NaCl B1 (cubic) [6s, 4p, 1d]/6-311G* (pure® Also of interest is the first pressure derivative of the bulk
NaF B1 (cubi [6s,4p,1d]/6-311G* (pure® modulus at equilibrium
LiCl B1 (cubio [4s,3p,1d]/6-311G* (puréf dB
LiF B1 (cubig [4s,3p,1d]/6-311G* (puref Bl_d_P . (14
MgO B1 (cubig [4s,3p,1d]/[4s,3p,1d] (pure® V=V,
Cu Al (fco) [6s,5p,2d] (pure” _ _
Rh Al (fco) ECP{4s,4p,2d] (pure' . We compared two forms of thE(V) fL_lncthn: _the tradi-
Pd A1 (fcc) ECP{4s,4p,2d] (pure' t|ona!32hélgurn§ghan EO% and the “stabilized Jelllum“(SJ) .
Ag Al (fco) ECP{4s,4p,2d] (pure EOS’**°Unlike the Murnaghan EQOS, the SJEOS is theoreti-

%Reference 42.
bReference 43.
‘Reference 44.

4The basis set for Ga is from Ref. 45.

cally motivated(by the picture of a weak local electron-ion
pseudopotential It is also realistic over a larger range \¢f
than prior equations of staté The SJEOS has been applied
not only to metal®®* but even to actinide oxidés.

For present purposes, it is convenient to cast the Mur-

6-311G* basis with modifications for Na: exponents of the two haghan EOS in the form

outer primitives functions were multiplied by 6, the contraction of B

two p functions was resolved into primitives, and the two oyger BoV B (1_ E) + (E) 1_ 1

functions were eliminated. By(B;—1)| ! \Y \Y

f6-311G* basis with modifications for Li: exponents of the two (15
gomerSpf””C“O”S were multiplied by 6. whereEy,=E(V,). A nonlinear fit to Eq.(15) produces pa-
Reference 46. rametersV,, By, B;, andE, directly.

MAll-electron basis of Ref. 47. The second from lagtexponent is The stabilized jellium equation of stat6JEOS is
0.610 for LSDA, 0.596 for all other methods.

ILANL effective core potentia{Ref. 48 with the GTO basis of Ref. Vo
49. E(V) =a V

E(V)= +Eg,

2/3
t+y

1/3
+w. (16

0
AN Y
Equation(16) has a very physical form. For a uniform elec-
tron gas, th&/~ 2 term mimics the kinetic energy, the /3
term the exchange energgnd the Madelung energy, if any
and theV° term the correlation energy. The * term mimics

aid of the fast multipole methotf, expanded and imple-
mented for Gaussian orbitafsand periodic systems with
arbitrary unit cells® Reciprocal space integration for metals

takes advantage of a recently developed methodology fGfe first-order effect of the pseudopotential core repulsion in

these case¥. The number ofk points employed is suffi- 5 gimple metal. A linear fit to the SIEOS yields parameters
ciently large to achieve convergence in all types of sollds,asz aVy, ,85=,8V2/3, o= ,yV1/3, andw, from which

typically ranging from 50Qfor semiconductopsto as many 0
as 6300(for metals. +8%2-3a 3
Both LSDA and GGA are explicit functionals of the den- Vo=| — Pt VP o7s , (179
sity. The meta-GGA makes use of the kinetic energy density Vs
7,(r) and, therefore, is only an implicit functional of.(r).

The implicit dependence poses no fundamental problem and O:w, (17b)
can be treated strictly within the KgS scheme by the opti- Vo

mized effective potential methad:>® Alternatively, self-

consistent calculations witk-dependent functionals can use B,= 1082+ 505+ 16y (170
the approach of Neumaret al.® which we have followed 27BoVo ’
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Eo=a+B+ v+ w. (17d) TABLE IlI. Equilibrium lattice constantgA) of the 18 test sol-
ids at 0 K calculated from the SJEOS of Ed6). The Murnaghan

Cohesive eneraies. were evaluated as the difference be- EOS of Eq.(15) yields identical results within the reported number
g1 of decimal places. Experimenta} values are from Ref. 6@.i) and

twe_en the total ""T“ice energy per atom at. the equi!ibriumRef' 69(Na, K, Al, NaCl, NaF, LiCl, LiF, MgQ. The rest are based
Iattlce C_onstan(.usmg the SJEOSand the spm-ur_westrlcted on room temperature values corrected toThe0 limit using linear
(e, Sp'n'p0|,anze)j ground-state energy of the 'S,Olated f”u' thermal expansion coefficients from Ref. 70. The numbers in paren-
om(s). The difference was corrected for zero-point motioneses refer to experimental values with an estimate of the zero-
effects by subtracting the zero-point enef@PE) estimated  point anharmonic expansion subtracted dlihe calculated values
from the Debye temperaturédp of the solid €zpe  are precise to within 0.001 A for the given basis sets, although

= 2kg®p).% Experimental values 0 were taken from  basis-set incompleteness limits the accuracy to one less)digit.
Ref. 66; for SiC, we used the theoretical estim&dg

=1232 K (at 0 K) of Ref. 67. Solid agso” afPE  aff?®  gPss Expt.
Li 3.383 3453 3512 3475 3.40¥45)
B. Results Na 4049 4199 4305 4233 4.22310
1. Lattice constants K 5.093 5.308 5.494 5.362 52@5212

4.008 4.063 4.040 4.035 4.082020
3.544 3.583 3.592 3.583 3.587556
5.426 5.490 5.475 5.477 5.430423

The equilibrium lattice constants calculated by fitting A
E(V) to the SJEOS were found to agree with the correspond-_.
ing Murnaghan EOS values at least to the third decimal )

place. As seen from the mean erfor.e) in Table Ill, LSDA SiC 4.351 4401 4404 4392 4.38849
underestimates and PKZB overestimates equilibrium lattice®® 5.633 5765 5729 5731 5.65%46
constants for all 18 solids without exception. PBE and TPSSCaAS 5592 5726 5698 5702 5.688%43
produce mixed result, but clearly tend toward overestima-NacCl 5.471 5.698 5801 5.696 5.58%580
tion. Judging by either the mean absolute efrora.e) orthe ~ NaF 4505 4700 4764 4706 4.68%99
mean absolute relative errém.a.r.e), PKZB is the worst  LiCl 4.968 5148 5220 5113 5.1(%090
performer for the lattice structure, while TPSS is the best.LiF 3.904 4.062 4109 4.026 4.010987
For LSDA and PBE, our GTO results are in a very good MgO 4.156 4242 4265 4224 4.2@7197
agreement with the linearized augmented plane-wave calcuCu 3.530 3.636 3.616 3.593 3.68%99
lations of the equilibrium unit cell volumes reported by Rh 3.791 3.871  3.844  3.846 3.198793
Kurth et al* For PKZB, the agreement is not so perfétie  Pd 3851 3950 3.928 3.917 3.88B7)
largest deviation of 0.2 A is observed for NaCpossibly Ag 3.997 4130 4.101 4.076  4.089069
because the PKZB values of Kurét al. are based on PBE m.e. —0.069 0.052 0.078 0.039
orbitals and densities, while our PKZB calculations are fully (&) (—0.059 (0.063 (0.089 (0.050
self-consistent. mae. 0069 0057 0078  0.040

The experimental lattice constants contain a small contri-(4) (0.058 (0.064 (0.089 (0.050
bution from zero-point anharmonic expansion which is not ., 4 e. 1.55 1.25 1.65 083
included in our density functional calculations and is tradi- (%) (1.31) (140 (192 (107

tionally neglected in solid state studies. This effect may be
estimated from Eq(A6) of Ref. 62,

layered solids like graphité,although they might be able to
Aag 1AV, 3 L ks®p 19 describe the equilibrium bond lengths of rare gas dimef3.
ag 3 V0_16(1 )BOVO'

2. Bulk moduli

The experimentah, shown in parentheses in Table lll have  The equilibrium bulk moduli estimated from fits to the
this estimate subtracted odin Eq. (18), we used experi- pmurnaghan EOS and SJEOS are summarized in Table IV.
mentalay, By, and®p, along with the theoreticdd] >°val-  The SJEOS predicts slightly higher values than the Mur-
ues from Table Y. The corresponding error statistics are alsonaghan equation, but regardless of which EOS was uged,
shown in parentheses. With this correction, the lattice conPBE bulk moduli are roughly twice as accurate as those from
stants of our test set of solids behave like the bond lengths dfSDA,; (ii) neither PKZB nor TPSS succeeds in improving
our test set of moleculé (which make the corresponding upon PBE forB, values.
correction: LSDA and TPSS have about the same mean ab- When assessing the performance of approximate density
solute error; PBE is slightly and PKZB is substantially lessfunctionals for bulk moduli, one should keep in mind the
accurate then TPSS, with too-long lattice constants or bonébllowing. According to Table Ill, theoretical equilibrium
lengths. unit cell volumes can deviate from experiment by as much as

On the first three rungs of the density functional ladder,5%. Since the bulk modulus is evaluated at the theoretical
exchange—correlation interaction occurs only through denv, an error inV, translates into an even larger errorBg.
sity overlap. Thus these rungs are not expected to provide lmasmuch as LSDA, PBE, PKZB, and TPSS are very good
good description of lattice constants in van der Waals-boun@dpproximations for the exchange—correlation energy of the
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TABLE IV. Equilibrium bulk moduli (GP3 of the 18 test solids at 0 K calculated from equations of stHeand(16). The third section
lists bulk moduli corrected by Eq21). Experimental values, also for 0 K, are from Ref. (£4), Ref. 75(Na, extrapolated to 0 KRef. 76
(K), Ref. 77(Al), Ref. 78(C), Ref. 69(Si, Ge, GaAg Ref. 79(SiC, 298 K, Ref. 80(NaCl, NaF, LiC), Ref. 81(LiF), Ref. 82(MgO), Ref.
83 (Cu), Ref. 84(Rh), Ref. 85(Pd), and Ref. 86(Ag).

Murnaghan EOS SJEOS Corrected SJEOS

Solid BI(SSDA B(F)’BE B(F)’KZB BSPSS BIGSDA BE’BE B(F)’KZB BEPSS EIC_)SDA ESBE EEKZB 'B‘gpsg EXpt

Li 14.7 13.6 13.2 13.2 14.7 13.7 13.2 13.2 13.2 13.3 13.8 13.2 13.0
Na 9.1 7.7 7.4 7.3 9.2 7.8 7.4 7.3 7.3 7.5 8.0 7.4 75
K 4.6 3.8 3.5 3.6 4.6 3.8 35 3.6 4.0 4.1 4.1 4.2 3.7
Al 81.8 76.2 88.9 84.7 82.5 76.8 894 85.2 78.9 81.4 90.6 85.7 79.4
C 454 422 418 417 458 426 422 421 443 436 438 431 443
Si 95.1 88.6 94.6 91.5 95.6 89.0 94.9 91.9 95.1 95.6 99.4 96.8 99.2
SiC 224 207 211 211 225 209 212 213 223 221 225 223 225
Ge 75.7 62.8 67.9 66.2 75.9 63.0 68.1 66.4 73.8 74.3 76.1 74.5 75.8
GaAs 81.1 68.0 71.6 70.0 81.3 68.1 71.8 70.1 75.4 75.3 76.7 75.1 75.6
NacCl 32.2 23.7 215 22.9 325 23.9 21.6 23.0 27.0 27.7 27.5 26.6 26.6
NaF 62.8 47.3 443 437 63.3 47.7 445 440 533 541 546 506 514
LiCl 41.8 32.7 29.8 34.1 42.0 32.9 30.0 34.3 34.6 34.8 34.7 34.6 354
LiF 86.8 65.4 65.0 66.5 87.5 65.9 65.4 67.2 72.4 71.7 76.4 69.1 69.8
MgO 182 161 159 168 183 162 160 169 171 170 172 173 165
Cu 188 150 161 171 192 153 163 173 161 164 167 170 142
Rh 303 239 248 257 309 243 253 262 304 289 284 294 269
Pd 235 177 184 200 240 180 187 203 222 215 211 223 195
Ag 149 106 115 127 153 107 117 129 126 125 126 131 109
m.e.(GP3a 131 -74 —-45 -17 147 -63 -34 -05 55 4.1 5.5 5.4
m.a.e.(GPa 13.7 8.4 8.4 8.4 15.1 7.6 7.8 8.2 6.6 6.0 6.2 7.7 ---
m.a.r.e.(%) 15.2 7.1 8.0 7.6 16.2 6.8 7.8 7.5 5.1 5.0 6.3 59 ...
valence electrons in most solids, errors in lattice constant and - 118+10yx,
bulk moduli probably arig€ from inadequacies of the de- 1=m- (22

scription of core—valence exchange—correlation interaction. - _

Alchagirov et al® reasoned that, since the core—valence in- As seen from Table IV, the spread Bf, values predicted

teraction within a pseudopotential picture is built into the by various functionals is much smaller than the spreal of

electron-ion pseudopotential represented by the fistlj  values obtained from the _original SJECS fpr all solids except

term of Eq.(16), the error ina, and B, can be reduced by Al As aresult, tr_]e statistics of deviations is nearly the same

modifying this term’s prefactor: for all four functionals. It should also be remembered that

uncertainties in experimental bulk moduli are much greater

5 ~ [V, V)23 than in lattice constants and can easily be as large as 10%. In
E(V)= a( V V) +

fact, whenever the corrected functional-averagedvalue
differs appreciably from experiment, the theoretical estimate
may be more accurate. In Table 1V, systematic deviations of

By from experiment are observed only for the transition met-
als (Cu, Rh, Pd, Ag However, since the basis sets used for
these metals are the least flexible in the group, the discrep-
ancy is probably due to basis set effects rather than experi-
mental errors. Another possibility is that the discrepancy be-
tween corrected SJEOS and experimeniy for the
transition metals may arise from a failure of the underlying
picture of a weak local electron—ion pseudopotential. If the
four transition metals are excluded from the test set, the cor-

1/3

Vo ~
+ w,

+8 tikva (19

wherea is adjusted to mak®= —dE/dV vanish at the ex-
perimental equilibrium unit cell voluma&/= Vg™, The latter
condition gives

2%+ ¥X§
3 1

a=—

(20

where xo=(V§*®1V) 3. Combining Eqgs.(13), (14), (19),
and (20), we obtain the corrected bulk modufs

responding mean absolute errors B values fall to 1.5
B.=— 2 ﬁ Y (21) (LSDA), 2.2 (PBB), 2.7 (PKZB), and 2.5 GP4TPSS; the
0 gvgXpt xg Xo mean absolute relative errors become 2.5%, 3.0%, 4.7%, and

3.0%, respectively.

and its pressure derivative The pressure derivative of the bulk modulus at equilib-
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TABLE V. Dimensionless pressure derivatives of the bulk moduli at equilibrium for the 18 test solids at
0 K calculated from fits to Eqg15) and (16). The third section list8, values corrected by Eq22).

Murnaghan EOS SJEOS Corrected SJEOS

Solid BIiSDA BEBE BEKZB B'JI:PSS BlisoA BJF-’BE BEKZB B':IL'PSS NB'iSDA ETBE NBfKZB EIPSS

Li 336 335 3.34 3.30 3.33 334 333 3.32 3.33 334 333 332
Na 3.79 361 332 3.49 3.80 362 332 353 3.80 362 332 353
K 3.88 338 3.15 3.75 3.88 340 3.14 3.76 3.89 340 313 3.75
Al 459 443 437 450 456 453 426 4.37 458 451 426 4.37
C 3.69 380 382 383 371 378 382 381 3.71 378 382 381
Si 413 418 382 3.93 4.09 4.18 3.89 4.00 4.09 416 3.89 4.00
SiC 3.81 395 394 4.00 3.84 398 398 4.01 3.84 397 397 4.01
Ge 473 477 479 478 476 481 480 4.80 477 472 473 474
GaAs 446 445 450 4.42 448 447 453 4.42 451 444 451 4.40
NaCl 480 4.74 422 482 471 476 424 473 482 468 4.19 4.65
NaF 444 417 416 4.21 449 419 4.07 4.25 456 4.16 4.04 4.22
LiCl 433 437 432 448 433 431 425 438 438 430 422 438
LiF 438 431 4.16 4.46 432 420 413 440 438 418 411 4.39
MgO 392 385 381 3.78 390 385 381 387 390 385 380 387
Cu 482 469 459 454 477 4.67 4.47 4.56 487 464 4.46 457
Rh 499 494 517 5.07 501 515 521 512 502 501 511 5.03
Pd 528 561 547 533 537 546 538 533 546 528 526 524
Ag 545 535 520 5.36 551 545 528 5.26 5,75 529 521 525

rium, By, has also been calculated. The results are presentgfbn energie$? For Si, 0UI’8|65DA agrees with that of Ref. 91,

in Table V, not as a test of the ladder but for completenessyhile for Ge our nonrelativistic cohesive energy is 0.2 eV
The table shows the differences among the functionals angigher than the relativistic LSDA value of Ref. 91. PBE,
among the equations of state. The reasonable agreement pkzB, and TPSS are much more accurate with an error av-
B, between the Murnaghan EOS and SJEOS is a conseraging 3%. Although the performance improves slightly in

quence of the fact that both have been fitted in a very narrowhe order PKZB< TPSS<PBE, our test set is insufficient to
range ofV aboutV,. The values in Table V can be used with pronounce this trend to be true in general.

the SJEOS to predict the pressite —dE/dV over a wide
range of volumes in these solids. IV. JELLIUM SURFACE ENERGY

3. Cohesive energies Jellium, a system of electrons neutralized by a uniform
Calculations of cohesive energiesof with GTO basis ~POSitive background of density=3/4arr, wherers is the

§ets can be prob]ematic. Diffuse functions, normally prgsent TABLE VI. Cohesive energieteV/atom) of 8 selected solids at

n mole_cular basis sets, cause an enormous slowdown in th?K, corrected for zero-temperature motion effects. Experimental
evaluation of Coulomb terms in periodic systems, and havgajyes are based on zero-temperature enthalpies of formation
to be removed. On the other hand, a basis set without dIﬁUS&fHB) of the crystals and gaseous atoms taken from RefGa$
functions is inadequate for isolated atoms. Thus, we can rexnd Ref. 89all others.

liably report cohesive energies only for those solids that were

computed with full molecular basis sets: C, Si, SiC, and Ge.  Solid gbSPA gPBE  gPKZB G IPSS Expt.
It has been argued that since diffuse functions have a smatf
effect on the total energy of the solid, they can be dispenseft 883 ve62 714 712 737
with in PBC calculations and then restored in the calculatior®! 526 450 439 436 462
of atomic energies. We believe that the use of different basiSiC 725 625 5.98 6.02  6.37
sets for atoms and solids is best avoided for metals and senfke 4.72 3.82 3.58 3.78  3.87
conductors, but is acceptable for the cations of ionic soliddNaCl 3.58 3.16 3.15 3.18 3.31
which are relatively insensitive to the presence of diffuseNaF 4.50 3.96 3.81 3.87 3.93
functions. In this manner, we have computed cohesive enet-Cl 3.88 3.41 3.33 341 3.55
gies for the four alkali halides after restoring the Li and NaLiF 5.02 4.42 4.25 4.32 4.40
basis sets to the original 6-311G*. m.e. (eV/atom 0.70 —-0.04 -0.22 -0.17

As seen in Table VI, LSDA overbinds crystals by roughly m.a.e.(eV/atom 0.70 0.11 0.22 0.17
15%, which is nearly as large as the relative LSDA overbind-m a.r.e.(%) 14.4 24 4.9 35

ing error reported for the G2 test $&of molecular atomiza-
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TABLE VII. Surface exchange and exchange—correlation enefgiggcnt) for jellium computed using
LSDA-xc orbitals and densities. Non-TPSS values are from Ref. 11. Exact x values are from Ref. 92.
“Exact” xc values are from Ref. 93.

Exchange Exchange—correlation
rs (bOhI’) O'!ZSDA U’EBE O_)F(’KZB O'IPSS a_ixact O_I;§DA )F(’CBE )F(’é(ZB ;I('ESS Ig’ssh ;((e:xact"

2.00 3037 2438 2578 2553 2624 3354 3265 3402 3380 3387 3413
2.07 2674 2127 2252 2231 2296 2961 2881 3002 2985 2992 3015
2.30 1809 1395 1484 1469 1521 2019 1962 2048 2035 2040 2060
2.66 1051 770 825 817 854 1188 1152 1205 1198 1202 1214
3.00 669 468 505 497 526 764 743 779 772 775 781
3.28 477 318 346 341 364 549 533 560 556 558 563
4.00 222 128 142 141 157 261 252 266 266 268 268
5.00 92 40 47 47 57 111 107 113 113 114 113
6.00 43 12 15 15 22 53 52 55 55 56 54
m.e. (erg/cr) 184 -81 -25 -34 ... -25 -59 -6 —-13 -10
m.a.e. (erglcd) 184 81 25 34 ... 25 59 6 14 11
m.a.r.e.(%) 36.7 16.7 8.6 94 ... 2.1 4.9 0.6 1.1 1.1

Seitz radius, is a simplified model for a bulk simple metal Table VII shows that surface exchange energigsare
like Na or Al. Termination of the positive background at the overestimated by LSDA, the error ranging from 16%r at
planex=0 defines the jellium model of a metal surface, with =2 bohr to almost 100% at,=6 bohr(the typical range of
the background filling the half-space<0. The surface en- valence—electron bulk densitie$?BE values are better, but
ergy o is the energy per unit area needed to make such a cuatvershoot the needed correction to LSDA. PKZB and TPSS
through bulk jellium. The exchange—correlation contribu-values are best.
tion, Approximate surface exchange—correlation energigs
are typically better due to a cancellation of error between
w exchange and correlation. LSDA values are accurate but tend
chzf N(X)[ €xc(X) — ex =) ]dX, (23)  to be a little too low. PBE produces still lower and less
o accurate values, while PKZB, and TPSS produce higher and
: . . . more accurate values in comparison with LSDA. The too-
is typically several times bigger than the total surface energY,.w PBE values seem to aride® from the use in PBE of a

The first self-consistent calculations for the jellium sur- go0n 4 orger gradient coefficient for the exchange energy

Eg@g:’/g:esﬁggrttﬁg Zial‘c?r;%lﬁggnﬁ(j?T;’]';h.'n"me LSDfA' . that is too large in magnitude. This gradient coefficient is
’ . ne JeliUM SUNace 1S.orected in PKZB and TPSS. It is only at the meta-GGA

not known, 'Fhe magnitude of the exacf; Is SF'” a matter of rung of Jacob’s ladder that one can have the correct second-
debate. yanous mert?EOdS have begn applied, such as Watder gradient coefficient for exchange and also an accurate
vector mtgerr%(glano ; the Fermi hyperg?etted chain 5 .count of the linear response of a uniform denity*
approxmatlo » and dl_fféJ%smn Monte Carlo. More e The hybrid TPSSTPSSh surface xc energy given in the
cently, Pitarke and Eguiluz calculatedoy,= o+ og for jel- - pon itimate column of Table VII is defined by
lium with the random phase approximatigRPA), which
provided exactr, and approximater, values. Yan, Perdew,
and Kurth?® estimatedo,, beyond RPA by including a GGA Txe o oy ot a0, (24)
“short-range” correction to RPA. We believe that this is the
best estimate of., and will take it to be “exact” here. This wherea,=0.10 is an empirical parameter determined in Ref.
estimate agrees closely with several others, including 80 from a fit to atomization energies of molecules. The
“long-range” wave vector interpolation correction to TPSSho,, are only marginally better than the TPSS values.
GGA 8 surface energies extract@drom diffusion Monte  (Because of the difficulty of evaluating exact exchange for
Carlo calculations for jellium spheres of increasing radfis, solid metals, we have not tested TPSSh for bulk sglids.
and an exchange—correlation kernel correction to KPA. Surface energies for real met&fshave been calculated
(For earlier studies of jellium spheres, see Ref.)102 and measured, but the measurements do not seem accurate

Using a modified jellium surface cod® we have evalu- enough to discriminate among the functionals tested here.
ated LSDA, PBE, PKZB, and TPS&, and o, (see Table The correction to the LSDA or PBE surface energy of jellium
VII). Equation(15) of Ref. 99 can be used to interpolate or can be transferré®®~1%to real surfaces, and is relevant to
extrapolate thers dependence ofr,.. All calculations in  other properties such as vacancy formafféi® and
both tables use the LSDA-xc orbitals and densities, sincadhesiof’® energies. The TPSS functional should enable re-
self-consistency effects beyond LSDA are small. liable direct calculations of such properties.

075102-8



TESTS OF A LADDER OF DENSITY FUNCTIONAE . .. PHYSICAL REVIEW B 69, 075102 (2004

V. CONCLUSIONS stantial errors in the valence—valence interaction.

For the jellium surface energy, PBE is less accurate than
LSDA, but PKZB and TPSS are more accurate. Overall,
TPSS gives the best description of solids and surfaces, as it

In agreement with earlier studiésyve find that the PBE
GGA is a significant improvement over LSDA for most bulk
?’?:Jgsp:r?gg“géAﬁgemg:jogﬁzs ,g\rrﬂg]n;h;eps) Er?eigéofl}::s\_/vas fc_)und to do for molecules in earlier wc?ﬂdn p_articular,
tionals of Jacob’s ladder TPSS has the best agreement wi}%e thlnk_that TPSS should be good for situations that are
experiment for lattice coﬁstants Although convergence WitHntermedlate _betv_veen molecules and ?'0'(659" c_:luster)s

. ; : ; ; and for combinations of botfe.g., chemical reactions on a
respect to basis set remains to be studied, neither PKZB n Liid surface
TPSS appear to be more accurate than PBE for bulk modul
and cohesive energies. The TPSS functional corrects the
main PKZB error—overestimation of lattice constants for
ionic and, to a lesser extent, metallic crystals.

We have also supported the idea that most of the error of V.N.S. thanks John E. Jaffe for supplying the basis sets for
LSDA, PBE, PKZB and TPSS for bulk solids arises in alkali metals. J.T. is grateful to Luis M. Almeida for provid-
the description of core—valencénot valence—valenge ing the inputs for jellium surface calculations. V.N.S. and
interaction®” by demonstrating that it can be removed G.E.S. acknowledge support from the National Science
through adjustment of the corresponding term in the equatiofoundation under Grant No. CHE-99-82156 and the Welch
of state. On the other hand, functionals that are not exadfoundation. J.T. and J.P.P. were supported by NSF Grant No.
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