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Tests of a ladder of density functionals for bulk solids and surfaces

Viktor N. Staroverov and Gustavo E. Scuseria
Department of Chemistry, Rice University, Houston, Texas 77005, USA

Jianmin Tao and John P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
~Received 4 September 2003; revised manuscript received 13 November 2003; published 13 February 2004!

The local spin-density approximation~LSDA! and the generalized gradient approximation~GGA! of Per-
dew, Burke, and Ernzerhof~PBE! are fully non-empirical realizations of the first two rungs of ‘‘Jacob’s ladder’’
of exchange-correlation density functionals. The recently proposed non-empirical meta-GGA of Tao, Perdew,
Staroverov, and Scuseria~TPSS!, featuring the kinetic energy density as an additional local ingredient, com-
pletes the third rung. A hierarchy of these functionals, complemented by the meta-GGA of Perdew, Kurth,
Zupan, and Blaha~PKZB!, is tested in self-consistent Gaussian-type orbital calculations of equilibrium lattice
constants, bulk moduli, and cohesive energies for 18 solids, and in studies of the jellium surface energy. The
ascent of the ladder generally results in better performance, although most of the improvement for bulk solids
occurs in the transition from LSDA to PBE. For the jellium surface energy, PBE is less accurate than LSDA,
but PKZB and TPSS are more accurate. We support the idea that most of the error of these functionals for bulk
solids arises in the description of core–valence interaction, by demonstrating that it can be removed through
adjustment of the corresponding term in the equation of state. Overall, TPSS gives the best description of solids
and surfaces, as it was found to do for molecules in earlier work.

DOI: 10.1103/PhysRevB.69.075102 PACS number~s!: 71.15.Mb, 71.15.Ap, 61.50.Ah, 62.20.Dc
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I. INTRODUCTION
Kohn-Sham~KS! spin-density functional theory1–4 treats

the kinetic and classical Coulomb components of the e
tronic energy exactly. The remaining contribution, t
exchange–correlation energy, must be approximated a
functional of the ground-state electron densitiesn↑(r ) and
n↓(r ). Since the dependence ofExc@n↑ ,n↓# on n↑(r ) and
n↓(r ) does not have to be explicit, the list of local ingred
ents ofExc may contain not onlyns(r ) and their derivatives
¹ns(r ), ¹2ns(r ), etc., but also quantities that are indirect
determined by the densities. Such quantities, normally c
structed from the KS orbitals, include the kinetic energy d
sity, ts(r )5 1

2 ( i u¹f i
s(r )u2, and the exact exchange. Ingr

dients other than the density do more than just enha
flexibility; they are necessary if the approximation is to s
isfy known exact constraints onExc@n↑ ,n↓#.

The type of local ingredients ofExc@n↑ ,n↓# forms the
basis for the ‘‘Jacob ladder’’ classification of density fun
tional approximations.5 The ascent of the ladder consists
embedding increasingly complex ingredients and exact p
erties intoExc@n↑ ,n↓#. At a certain point, functionals de
signed in this manner are bound to achieve satisfactory
curacy.

The lower three rungs of the ladder are, in ascending
der, the local spin-density approximation~LSDA!, which
employs onlyns , the generalized gradient approximatio
~GGA!, whose ingredients arens and ¹ns , and the meta-
GGA ~MGGA!, which makes use ofts ~or ¹2ns) in addi-
tion to the GGA ingredients. The LSDA is exact for a un
form electron gas and agreeably accurate for systems w
the electron density does not vary too fast, such as so
Since the exchange component of the LSDA is known
actly, the design of the ultimate LSDA requires only an a
curate parametrization of the correlation energy per elec
0163-1829/2004/69~7!/075102~11!/$22.50 69 0751
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unif(n↑ ,n↓).6 Of several existing forms,7–10 the Perdew–

Wang parametrization9 of this function, which satisfies man
exact constraints, has been chosen here.

GGA functionals retain most of the correct features of t
LSDA and greatly advance the accuracy,11 especially for mo-
lecular binding energies, which are severely overestima
by LSDA. Semi-empirical GGAs are fitted to reproduce p
ticular sets of experimental data, while non-empirical a
proximations avoid optimized parameters in favor of satis
ing exact constraints. The non-empirical GGA of Perde
Burke, and Ernzerhof12 ~PBE! is the most complete embod
ment of the second rung of Jacob’s ladder. Although the P
GGA is not always as accurate for molecules13 as some semi-
empirical GGAs~e.g., BLYP14,15!, it incorporates more exac
properties and thus is more universal in applicability.11 The
PBE has two different derivations leading to the same GG
one based upon exact properties of the exchange–correl
energy,12 and one based upon exact properties of
exchange–correlation hole.16 The latter derivation also pro
duces the Perdew–Wang 1991~PW91! GGA,17 which is
typically very close to PBE.

Meta-GGAs strive to improve upon the GGA by emplo
ing the kinetic energy densityts(r ) as an indicator18 of one-
electron regions ofns(r ) and forcing the correlation energ
density to vanish there. The presence ofts(r ) also enables
one to reproduce gradient expansions of exchange and
relation energies for slowly varying densities through high
orders in¹ than is possible in the GGA. Given expectatio
of a high return from these new constraints, it came a
surprise that the meta-GGA of Perdew, Kurth, Zupan, a
Blaha19 ~PKZB! proved less accurate than PBE for all m
lecular properties except atomization energies.11,20,21 The
problems of PKZB have been identified and corrected in
meta-GGA approximation of Tao, Perdew, Staroverov, a
©2004 The American Physical Society02-1
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Scuseria22 ~TPSS!, which essentially completes the met
GGA rung of Jacob’s ladder. Other meta-GGAs have a
been proposed recently,23–28 but, except for VSXC25 and
KCIS,27,29 they have not been tested extensively and so
have yet to be implemented self-consistently.

The LSDA and the non-empirical PBE and TPSS a
‘‘universal’’ functionals based upon universal constraints a
limits. Recent molecular tests30 revealed an impressive in
crease in accuracy in the order LSDA,PBE,TPSS for at-
omization energies and a more moderate improvement
vibrational frequencies and hydrogen-bond properties;
other properties, the order is generally LSDA,PBE
'TPSS. Moreover, TPSS was found to match and occas
ally exceed in accuracy the best semi-empirical and hyb
GGA functionals.

The LSDA as well as many GGAs and meta-GGAs we
tested for twelve bulk solids and for jellium surfaces
Kurth, Perdew, and Blaha.11 They found that semi-empirica
functionals fitted to chemical data typically did not perfor
even as well as LSDA. The best results were obtained w
functionals that were exact in the uniform-density limit a
had no~LSDA, PBE! or one~PKZB! empirical parameter. In
this work, we continue tests of the LSDA–PBE–TPSS la
der and focus on periodic systems and jellium surfaces.
PKZB functional, as a predecessor to TPSS, is also inclu
for comparison.

II. DESCRIPTION OF THE FUNCTIONALS

The exchange components of the four functionals of
ladder are evaluated by the spin-scaling relation31

Ex@n↑ ,n↓#5 1
2 Ex@2n↑#1 1

2 Ex@2n↓#, ~1!

where Ex@n# is the corresponding functional for a spin
unpolarized system. In the case of LSDA,

Ex
LSDA@n#5E nex

unif~n!d3r , ~2!

where ex
unif(n)52(3/4p)(3p2n)1/3 is the exact LSDA ex-

change energy per particle. For the PBE GGA,12

Ex
PBE@n#5E nex

unif~n!Fx
PBE~n,¹n!d3r , ~3!

whereFx
PBE(n,¹n) is an enhancement factor given by

Fx
PBE~n,¹n!511k2

k

11ms2/k
, ~4!

in which s5u¹nu/2n(3p2n)1/3 is a dimensionless densit
gradient, whilem andk are non-empirical constants.

The exchange components of the PKZB19 and TPSS22

meta-GGAs can be both represented by

Ex
MGGA@n#5E nex

unif~n!Fx
MGGA~n,¹n,t!d3r . ~5!

The enhancement factor is
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MGGA~n,¹n,t!511k2

k

11x/k
, ~6!

wherex is a complicated function of variablesn, ¹n, andt,
which has different forms in PKZB and TPSS. When usi
Eq. ~1!, ¹n and t in Eqs. ~3! and ~5! must be scaled by a
factor of 2 just like the density.

Correlation components of the LSDA, PBE, PKZB, an
TPSS functionals are not resolved into spin-up and sp
down components. The LSDA correlation is simply

Ec
LSDA@n↑ ,n↓#5E nec

unif~n↑ ,n↓!d3r , ~7!

where n5n↑1n↓ . As indicated earlier, we used th
Perdew–Wang parametrization forec

unif(n↑ ,n↓). The PBE
correlation has the form12

Ec
PBE@n↑ ,n↓#5E nec

PBE~n↑ ,n↓ ,¹n↑ ,¹n↓!d3r , ~8!

where

ec
PBE5ec

unif~n↑ ,n↓!1H~n↑ ,n↓ ,¹n↑ ,¹n↓!. ~9!

HereH is a gradient correction to the LSDA correlation. Th
function H is such thatH50 if ns(r )5const.

Both PKZB and TPSS are based upon self-correlation c
rections to PBE. The PKZB correlation is given by19

Ec
PKZB@n↑ ,n↓#5E H nec

PBE~n↑ ,n↓ ,¹n↑ ,¹n↓!

3F 11CS (
s

ts
W

(
s

ts

D 2G2~11C!

3(
s

S ts
W

ts
D 2

nsec
PBE~ns,0,¹ns,0!J d3r ,

~10!

wherets
W5u¹nsu2/8ns is the Weizsa¨cker kinetic energy den-

sity andC is a ~non-empirical! constant.
Finally, the TPSS correlation is given by22

Ec
TPSS@n↑ ,n↓#5E nec

revPKZBF11dec
revPKZBS tW

t D 3Gd3r ,

~11!

where tW5u¹nu2/8n, d is a constant, andec
revPKZB is the

revised PKZB correlation energy per particle,
2-2
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ec
revPKZB5ec

PBE~n↑ ,n↓ ,¹n↑ ,¹n↓!F11C~z,j!S tW

t D 2G
2@11C~z,j!#S tW

t D 2

(
s

ns

n

3max@ec
PBE~ns,0,¹ns,0!,ec

PBE~n↑ ,n↓ ,¹n↑ ,¹n↓!#.

~12!

Note that, in TPSS,C is a function of the spin polarization
z5(n↑2n↓)/n and a variablej5u¹zu/2(3p2n)1/3. C(z,j)
is designed to makeExc

TPSS@n↑ ,n↓# properly independent ofz
(0&uzu&0.7) in the low-density limit.32 The max() function
appears in Eq.~12! to ensure thatec

revPKZB is strictly negative
everywhere.

As shown in Table I, the two meta-GGA functionals ge
erally satisfy more constraints than their predecessors.
breakthrough in performance from PKZB to TPSS has b
attributed22to the satisfaction of the constraint ‘‘vx(r ) finite
at the nucleus.’’ Note that PBE, PKZB, and TPSS all redu
to LSDA for a uniform density~this is one of the most basi
requirements for approximate density functionals in appli
tions to solids!, while such common functionals a
BLYP,14,15B3LYP,33 and VSXC25do not. Besides, in the low
density ~strong-interaction! limit, TPSS recovers32 PKZB
which is very accurate34 for a spin-unpolarized density, whil
LSDA and PBE are severely wrong because of their s
interaction error in the correlation part.

III. BULK SOLIDS

A. Methodology

Our test set includes four basic types of crystalline s
tems: 4 main group metals~Li, Na, K, Al!, 5 semiconductors
~diamond, Si,b-SiC, Ge, GaAs!, 5 ionic solids~NaCl, NaF,
LiCl, LiF, MgO!, and 4 transition metals~Cu, Rh, Pd, Ag!.
All 18 solids were calculated in their normal crystal stru
tures~as indicated in Table II! and non-magnetic states.

The electron density in a crystal is approximately a sup
position of atomic or ionic densities, so localized Gaussi
type orbitals~GTO! centered at the nuclei are well suited f
such systems. The problem with GTO basis sets develo
for atomic and molecular calculations is that they have d
fuse functions~by which we mean GTOs with exponents
less than 0.05–0.10, depending on the structure type
lattice constant!. Such functions decay very slowly with dis
tance and thereby slow down dramatically the evaluation
Coulomb contributions to the total energy. Normally, diffu
functions have to be removed and the exponents of the
maining valence functions reoptimized. For many no
metals, molecular basis sets do not have diffuse functi
and are already adapted for the crystalline phase. In par
lar, we found that the standard 6-31G* basis remains pra
cal for C ~diamond!, Si, and SiC, while Ge can be calculate
with an even larger 6-311G* basis.50 No relativistic effects
were included in the all-electron calculations. For Rh, P
and Ag we used the LANL effective core potentials48 ~ECP!,
which replace 28 core electrons~@Ar#3d10), in combination
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with double-zeta quality GTO valence basis sets optimiz
for bulk metals.49 Note that the ECPs absorb some relativ
tic effects. Our final selection of basis sets is documente
Table II. No auxiliary basis sets for the charge density w
used.

All calculations on solids were performed sel
consistently using a development version of theGAUSSIAN

program.51 The implementation of periodic boundary cond
tions ~PBC! in the GAUSSIAN program has been described
detail before.52 In this approach, all terms contributing to th
KS Hamiltonian are evaluated in real space, including
infinite Coulomb summations, which are calculated with t

TABLE I. Satisfaction~Yes/No! of selected exact constraints b
approximate exchange–correlation functionals.

Constraint LSDA PBE PKZB TPSS

Global properties
Ex,0 Y Y Y Y
Ec<0 Y Y N Y
Ec50 if *n(r )d3r 51 N N Y Y
Exc>2D*n4/3(r )d3r a Y Y YN b Y
Exc5Exc

LSDA , n↑ ,n↓5const Y Y Y Y
Ex52U@n# if *n(r )d3r 51c N N N YNd

Highest order in¹ for Ex
GEA e 0 0 2f 4

Highest order in¹ for Ec
GEA e 0 2 2 2

Spin and density scalingg

Ex@n↑ ,n↓#5
1
2 Ss5↑↓Ex@2ns#h Y Y Y Y

Ex@nl#5lEx@n# i Y Y Y Y
Ec@nl#.lEc@n#, l.1i Y Y Y Y
liml→`Ec@nl#.2` j N Y Y Y
liml→0l21Ec@nl#.2` j Y Y Y Y
liml→`Ex@nl

x #.2` j N N N N
liml→0Ex@nl

x #.2` j Y Y Y Y
liml→`Ec@nl

x #.2` j N Y Y Y

Asymptotic behavior
vx(r )→21/r , r→` N N N N
vx(r ) finite at the nucleus Y N N YNk

vc(r ) finite at the nucleus Y N YNl YNl

aThe Lieb–Oxford bound~Refs. 17, 35!. 1.44,D,1.68 ~or
,1.6358—Ref. 36!.

bY for exchange, N for exchange–correlation.
cCancellation of spurious electrostatic self-interaction energy
one-electron systems:U@n#5

1
2 *d3r *n(r )n(r 8)/ur2r 8u d3r 8.

dY for a one-electron exponential density.
eThe highest correct order in the gradient expansion approxima
~GEA! for slowly-varying densities. The true GEA is known t
fourth order in¹ for exchange~Ref. 37! and to second order fo
correlation~Ref. 38!.

fTwo of the three fourth-order terms are also reproduced~Ref. 19!.
gUniform scaling of the density:nl(r )5l3n(lr ); non-uniform
scaling:nl

x(x,y,z)5ln(lx,y,z). See Ref. 39 for a review.
hDerived in Ref. 31.
iDerived in Ref. 40.
jDerived in Ref. 41.
kY for one- and spin-compensated two-electron densities.
lY for one-electron densities.
2-3
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aid of the fast multipole method,53 expanded and imple
mented for Gaussian orbitals54 and periodic systems55 with
arbitrary unit cells.56 Reciprocal space integration for meta
takes advantage of a recently developed methodology
these cases.57 The number ofk points employed is suffi-
ciently large to achieve convergence in all types of soli
typically ranging from 500~for semiconductors! to as many
as 6300~for metals!.

Both LSDA and GGA are explicit functionals of the de
sity. The meta-GGA makes use of the kinetic energy den
ts(r ) and, therefore, is only an implicit functional ofns(r ).
The implicit dependence poses no fundamental problem
can be treated strictly within the KS scheme by the op
mized effective potential method.58,59 Alternatively, self-
consistent calculations witht-dependent functionals can us
the approach of Neumannet al.,60 which we have followed

TABLE II. Gaussian-type basis sets used for calculations of
bulk solids. The number of contracted GTOs of each type is in
cated in square brackets. Cartesian basis sets use all six compo
of d-functions; ‘‘pure’’ basis sets excludes-type combinations
(dx21dy21dz2).

Solid Structure type Basis set

Li A2 ~bcc! @4s,3p,1d# ~pure!a

Na A2 ~bcc! @5s,3p,1d# ~Cartesian!b

K A2 ~bcc! @6s,4p,1d# ~Cartesian!b

Al A1 ~fcc! @6s,3p,1d# ~Cartesian!c

C A4 ~diamond! 6-31G* ~Cartesian!
Si A4 ~diamond! 6-31G* ~Cartesian!
SiC B3 ~zincblende! 6-31G* ~Cartesian!
Ge A4 ~diamond! 6-311G* ~pure!
GaAs B3~zincblende! @6s,5p,2d]/6-311G* ~pure!d

NaCl B1 ~cubic! @6s, 4p, 1d#/6-311G* ~pure!e

NaF B1 ~cubic! @6s,4p,1d#/6-311G* ~pure!e

LiCl B1 ~cubic! @4s,3p,1d#/6-311G* ~pure!f

LiF B1 ~cubic! @4s,3p,1d#/6-311G* ~pure!f

MgO B1 ~cubic! @4s,3p,1d#/@4s,3p,1d] ~pure!g

Cu A1 ~fcc! @6s,5p,2d] ~pure!h

Rh A1 ~fcc! ECP-@4s,4p,2d# ~pure!i

Pd A1 ~fcc! ECP-@4s,4p,2d# ~pure!i

Ag A1 ~fcc! ECP-@4s,4p,2d# ~pure!i

aReference 42.
bReference 43.
cReference 44.
dThe basis set for Ga is from Ref. 45.
e6-311G* basis with modifications for Na: exponents of the tw
outer primitives functions were multiplied by 6, the contraction o
two p functions was resolved into primitives, and the two outep
functions were eliminated.

f6-311G* basis with modifications for Li: exponents of the tw
outersp functions were multiplied by 6.

gReference 46.
hAll-electron basis of Ref. 47. The second from lastsp exponent is
0.610 for LSDA, 0.596 for all other methods.

iLANL effective core potential~Ref. 48! with the GTO basis of Ref.
49.
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calculation requires about the same computer time as G
on most machines.

We estimated the equilibrium lattice constantsa0 and bulk
moduli B0 at T50 K by calculating the total energy per un
cell at 7–10 points in the rangeV065% ~whereV0 is the
equilibrium unit cell volume!, fitting the data to an analytic
equation of state~EOS! E(V), and differentiating the latter
Unit cell volumes are related to the lattice constants as
lows: V5a3/4 ~fcc, cubic, diamond, and zincblende stru
tures!; V5a3/2 ~bcc!. The equilibrium bulk modulus is given
by

B05BuV5V0
52V

dP

dVU
V5V0

5V
d2E

dV2U
V5V0

. ~13!

Also of interest is the first pressure derivative of the bu
modulus at equilibrium

B15
dB

dPU
V5V0

. ~14!

We compared two forms of theE(V) function: the tradi-
tional Murnaghan EOS61 and the ‘‘stabilized jellium’’~SJ!
EOS.62,63Unlike the Murnaghan EOS, the SJEOS is theore
cally motivated~by the picture of a weak local electron-io
pseudopotential!. It is also realistic over a larger range ofV
than prior equations of state.62 The SJEOS has been applie
not only to metals62,64 but even to actinide oxides.65

For present purposes, it is convenient to cast the M
naghan EOS in the form

E~V!5
B0V

B1~B121! FB1S 12
V0

V D1S V0

V D B1

21G1E0 ,

~15!

whereE05E(V0). A nonlinear fit to Eq.~15! produces pa-
rametersV0 , B0 , B1, andE0 directly.

The stabilized jellium equation of state~SJEOS! is

E~V!5aS V0

V D1bS V0

V D 2/3

1gS V0

V D 1/3

1v. ~16!

Equation~16! has a very physical form. For a uniform ele
tron gas, theV22/3 term mimics the kinetic energy, theV21/3

term the exchange energy~and the Madelung energy, if any!,
and theV0 term the correlation energy. TheV21 term mimics
the first-order effect of the pseudopotential core repulsion
a simple metal. A linear fit to the SJEOS yields paramet
as5aV0 , bs5bV0

2/3, gs5gV0
1/3, andv, from which

V05S 2
bs1Abs

223asgs

gs
D 3

, ~17a!

B05
18a110b14g

9V0
, ~17b!

B15
108a150b116g

27B0V0
, ~17c!

e
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E05a1b1g1v. ~17d!

Cohesive energies«0 were evaluated as the difference b
tween the total lattice energy per atom at the equilibri
lattice constant~using the SJEOS! and the spin-unrestricte
~i.e., spin-polarized! ground-state energy of the isolated a
om~s!. The difference was corrected for zero-point moti
effects by subtracting the zero-point energy~ZPE! estimated
from the Debye temperatureQD of the solid («ZPE
5 9

8 kBQD).62 Experimental values ofQD were taken from
Ref. 66; for SiC, we used the theoretical estimateQD
51232 K ~at 0 K! of Ref. 67.

B. Results

1. Lattice constants

The equilibrium lattice constants calculated by fittin
E(V) to the SJEOS were found to agree with the correspo
ing Murnaghan EOS values at least to the third decim
place. As seen from the mean error~m.e.! in Table III, LSDA
underestimates and PKZB overestimates equilibrium lat
constants for all 18 solids without exception. PBE and TP
produce mixed result, but clearly tend toward overestim
tion. Judging by either the mean absolute error~m.a.e.! or the
mean absolute relative error~m.a.r.e.!, PKZB is the worst
performer for the lattice structure, while TPSS is the be
For LSDA and PBE, our GTO results are in a very go
agreement with the linearized augmented plane-wave ca
lations of the equilibrium unit cell volumes reported b
Kurth et al.11 For PKZB, the agreement is not so perfect~the
largest deviation of 0.2 Å is observed for NaCl!, possibly
because the PKZB values of Kurthet al. are based on PBE
orbitals and densities, while our PKZB calculations are fu
self-consistent.

The experimental lattice constants contain a small con
bution from zero-point anharmonic expansion which is n
included in our density functional calculations and is tra
tionally neglected in solid state studies. This effect may
estimated from Eq.~A6! of Ref. 62,

Da0

a0
5

1

3

DV0

V0
5

3

16
~B121!

kBQD

B0V0
. ~18!

The experimentala0 shown in parentheses in Table III hav
this estimate subtracted out.@In Eq. ~18!, we used experi-
mentala0 , B0, andQD along with the theoreticalB̃1

TPSSval-
ues from Table V#. The corresponding error statistics are a
shown in parentheses. With this correction, the lattice c
stants of our test set of solids behave like the bond length
our test set of molecules30 ~which make the correspondin
correction!: LSDA and TPSS have about the same mean
solute error; PBE is slightly and PKZB is substantially le
accurate then TPSS, with too-long lattice constants or b
lengths.

On the first three rungs of the density functional ladd
exchange–correlation interaction occurs only through d
sity overlap. Thus these rungs are not expected to provid
good description of lattice constants in van der Waals-bo
07510
d-
l

e
S
-

t.

u-

i-
t
-
e

-
of

-

d

r,
-
a
d

layered solids like graphite,71 although they might be able to
describe the equilibrium bond lengths of rare gas dimers.72,73

2. Bulk moduli

The equilibrium bulk moduli estimated from fits to th
Murnaghan EOS and SJEOS are summarized in Table
The SJEOS predicts slightly higher values than the M
naghan equation, but regardless of which EOS was used~i!
PBE bulk moduli are roughly twice as accurate as those fr
LSDA; ~ii ! neither PKZB nor TPSS succeeds in improvin
upon PBE forB0 values.

When assessing the performance of approximate den
functionals for bulk moduli, one should keep in mind th
following. According to Table III, theoretical equilibrium
unit cell volumes can deviate from experiment by as much
5%. Since the bulk modulus is evaluated at the theoret
V0, an error inV0 translates into an even larger error inB0.
Inasmuch as LSDA, PBE, PKZB, and TPSS are very go
approximations for the exchange–correlation energy of

TABLE III. Equilibrium lattice constants~Å! of the 18 test sol-
ids at 0 K calculated from the SJEOS of Eq.~16!. The Murnaghan
EOS of Eq.~15! yields identical results within the reported numb
of decimal places. Experimentala0 values are from Ref. 68~Li ! and
Ref. 69~Na, K, Al, NaCl, NaF, LiCl, LiF, MgO!. The rest are based
on room temperature values corrected to theT50 limit using linear
thermal expansion coefficients from Ref. 70. The numbers in pa
theses refer to experimental values with an estimate of the z
point anharmonic expansion subtracted out.~The calculated values
are precise to within 0.001 Å for the given basis sets, althou
basis-set incompleteness limits the accuracy to one less digit.!

Solid a0
LSDA a0

PBE a0
PKZB a0

TPSS Expt.

Li 3.383 3.453 3.512 3.475 3.477~3.451!
Na 4.049 4.199 4.305 4.233 4.225~4.210!
K 5.093 5.308 5.494 5.362 5.225~5.212!
Al 4.008 4.063 4.040 4.035 4.032~4.020!
C 3.544 3.583 3.592 3.583 3.567~3.556!
Si 5.426 5.490 5.475 5.477 5.430~5.423!
SiC 4.351 4.401 4.404 4.392 4.358~4.349!
Ge 5.633 5.765 5.729 5.731 5.652~5.646!
GaAs 5.592 5.726 5.698 5.702 5.648~5.643!
NaCl 5.471 5.698 5.801 5.696 5.595~5.580!
NaF 4.505 4.700 4.764 4.706 4.609~4.594!
LiCl 4.968 5.148 5.220 5.113 5.106~5.090!
LiF 3.904 4.062 4.109 4.026 4.010~3.987!
MgO 4.156 4.242 4.265 4.224 4.207~4.197!
Cu 3.530 3.636 3.616 3.593 3.603~3.596!
Rh 3.791 3.871 3.844 3.846 3.798~3.793!
Pd 3.851 3.950 3.928 3.917 3.881~3.877!
Ag 3.997 4.130 4.101 4.076 4.069~4.064!
m.e. 20.069 0.052 0.078 0.039 •••

~Å! ~20.058! ~0.063! ~0.089! ~0.050! •••

m.a.e. 0.069 0.057 0.078 0.040 •••

~Å! ~0.058! ~0.064! ~0.089! ~0.050! •••

m.a.r.e. 1.55 1.25 1.65 0.83 •••

~%! ~1.31! ~1.40! ~1.92! ~1.07! •••
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TABLE IV. Equilibrium bulk moduli ~GPa! of the 18 test solids at 0 K calculated from equations of state~15! and~16!. The third section
lists bulk moduli corrected by Eq.~21!. Experimental values, also for 0 K, are from Ref. 74~Li !, Ref. 75~Na, extrapolated to 0 K!, Ref. 76
~K!, Ref. 77~Al !, Ref. 78~C!, Ref. 69~Si, Ge, GaAs!, Ref. 79~SiC, 298 K!, Ref. 80~NaCl, NaF, LiCl!, Ref. 81~LiF!, Ref. 82~MgO!, Ref.
83 ~Cu!, Ref. 84~Rh!, Ref. 85~Pd!, and Ref. 86~Ag!.

Murnaghan EOS SJEOS Corrected SJEOS

Solid B0
LSDA B0

PBE B0
PKZB B0

TPSS B0
LSDA B0

PBE B0
PKZB B0

TPSS
B̃0

LSDA B̃0
PBE B̃0

PKZB B̃0
TPSS Expt.

Li 14.7 13.6 13.2 13.2 14.7 13.7 13.2 13.2 13.2 13.3 13.8 13.2 13
Na 9.1 7.7 7.4 7.3 9.2 7.8 7.4 7.3 7.3 7.5 8.0 7.4 7.5
K 4.6 3.8 3.5 3.6 4.6 3.8 3.5 3.6 4.0 4.1 4.1 4.2 3.7
Al 81.8 76.2 88.9 84.7 82.5 76.8 89.4 85.2 78.9 81.4 90.6 85.7 79
C 454 422 418 417 458 426 422 421 443 436 438 431 44
Si 95.1 88.6 94.6 91.5 95.6 89.0 94.9 91.9 95.1 95.6 99.4 96.8 9
SiC 224 207 211 211 225 209 212 213 223 221 225 223 22
Ge 75.7 62.8 67.9 66.2 75.9 63.0 68.1 66.4 73.8 74.3 76.1 74.5 7
GaAs 81.1 68.0 71.6 70.0 81.3 68.1 71.8 70.1 75.4 75.3 76.7 75.1 7
NaCl 32.2 23.7 21.5 22.9 32.5 23.9 21.6 23.0 27.0 27.7 27.5 26.6 2
NaF 62.8 47.3 44.3 43.7 63.3 47.7 44.5 44.0 53.3 54.1 54.6 50.6 5
LiCl 41.8 32.7 29.8 34.1 42.0 32.9 30.0 34.3 34.6 34.8 34.7 34.6 35
LiF 86.8 65.4 65.0 66.5 87.5 65.9 65.4 67.2 72.4 71.7 76.4 69.1 69
MgO 182 161 159 168 183 162 160 169 171 170 172 173 16
Cu 188 150 161 171 192 153 163 173 161 164 167 170 14
Rh 303 239 248 257 309 243 253 262 304 289 284 294 26
Pd 235 177 184 200 240 180 187 203 222 215 211 223 19
Ag 149 106 115 127 153 107 117 129 126 125 126 131 10
m.e. ~GPa! 13.1 27.4 24.5 21.7 14.7 26.3 23.4 20.5 5.5 4.1 5.5 5.4 •••

m.a.e.~GPa! 13.7 8.4 8.4 8.4 15.1 7.6 7.8 8.2 6.6 6.0 6.2 7.7 •••

m.a.r.e.~%! 15.2 7.1 8.0 7.6 16.2 6.8 7.8 7.5 5.1 5.0 6.3 5.9 •••
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valence electrons in most solids, errors in lattice constant
bulk moduli probably arise87 from inadequacies of the de
scription of core–valence exchange–correlation interact
Alchagirov et al.62 reasoned that, since the core–valence
teraction within a pseudopotential picture is built into t
electron-ion pseudopotential represented by the first (V21)
term of Eq.~16!, the error ina0 andB0 can be reduced by
modifying this term’s prefactor:

Ẽ~V!5ãS V0

V D1bS V0

V D 2/3

1gS V0

V D 1/3

1ṽ, ~19!

whereã is adjusted to makeP̃52dẼ/dV vanish at the ex-
perimental equilibrium unit cell volume,V5V0

expt. The latter
condition gives

ã52
2bx01gx0

2

3
, ~20!

where x05(V0
expt/V0)1/3. Combining Eqs.~13!, ~14!, ~19!,

and ~20!, we obtain the corrected bulk modulus62

B̃052
2

9V0
exptS b

x0
2

1
g

x0
D ~21!

and its pressure derivative
07510
nd

n.
-

B̃15
11b110gx0

3~b1gx0!
. ~22!

As seen from Table IV, the spread ofB̃0 values predicted
by various functionals is much smaller than the spread ofB0
values obtained from the original SJEOS for all solids exc
Al. As a result, the statistics of deviations is nearly the sa
for all four functionals. It should also be remembered th
uncertainties in experimental bulk moduli are much grea
than in lattice constants and can easily be as large as 10%
fact, whenever the corrected functional-averagedB̃0 value
differs appreciably from experiment, the theoretical estim
may be more accurate. In Table IV, systematic deviations
B̃0 from experiment are observed only for the transition m
als ~Cu, Rh, Pd, Ag!. However, since the basis sets used
these metals are the least flexible in the group, the disc
ancy is probably due to basis set effects rather than exp
mental errors. Another possibility is that the discrepancy
tween corrected SJEOS and experimentalB0 for the
transition metals may arise from a failure of the underlyi
picture of a weak local electron–ion pseudopotential. If t
four transition metals are excluded from the test set, the
responding mean absolute errors ofB̃0 values fall to 1.5
~LSDA!, 2.2 ~PBE!, 2.7 ~PKZB!, and 2.5 GPa~TPSS!; the
mean absolute relative errors become 2.5%, 3.0%, 4.7%,
3.0%, respectively.

The pressure derivative of the bulk modulus at equil
2-6
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TABLE V. Dimensionless pressure derivatives of the bulk moduli at equilibrium for the 18 test soli
0 K calculated from fits to Eqs.~15! and ~16!. The third section listsB1 values corrected by Eq.~22!.

Murnaghan EOS SJEOS Corrected SJEOS

Solid B1
LSDA B1

PBE B1
PKZB B1

TPSS B1
LSDA B1

PBE B1
PKZB B1

TPSS
B̃1

LSDA B̃1
PBE B̃1

PKZB B̃1
TPSS

Li 3.36 3.35 3.34 3.30 3.33 3.34 3.33 3.32 3.33 3.34 3.33 3.
Na 3.79 3.61 3.32 3.49 3.80 3.62 3.32 3.53 3.80 3.62 3.32 3
K 3.88 3.38 3.15 3.75 3.88 3.40 3.14 3.76 3.89 3.40 3.13 3
Al 4.59 4.43 4.37 4.50 4.56 4.53 4.26 4.37 4.58 4.51 4.26 4.
C 3.69 3.80 3.82 3.83 3.71 3.78 3.82 3.81 3.71 3.78 3.82 3
Si 4.13 4.18 3.82 3.93 4.09 4.18 3.89 4.00 4.09 4.16 3.89 4
SiC 3.81 3.95 3.94 4.00 3.84 3.98 3.98 4.01 3.84 3.97 3.97 4
Ge 4.73 4.77 4.79 4.78 4.76 4.81 4.80 4.80 4.77 4.72 4.73 4
GaAs 4.46 4.45 4.50 4.42 4.48 4.47 4.53 4.42 4.51 4.44 4.51 4
NaCl 4.80 4.74 4.22 4.82 4.71 4.76 4.24 4.73 4.82 4.68 4.19 4
NaF 4.44 4.17 4.16 4.21 4.49 4.19 4.07 4.25 4.56 4.16 4.04 4
LiCl 4.33 4.37 4.32 4.48 4.33 4.31 4.25 4.38 4.38 4.30 4.22 4.
LiF 4.38 4.31 4.16 4.46 4.32 4.20 4.13 4.40 4.38 4.18 4.11 4
MgO 3.92 3.85 3.81 3.78 3.90 3.85 3.81 3.87 3.90 3.85 3.80 3
Cu 4.82 4.69 4.59 4.54 4.77 4.67 4.47 4.56 4.87 4.64 4.46 4
Rh 4.99 4.94 5.17 5.07 5.01 5.15 5.21 5.12 5.02 5.01 5.11 5
Pd 5.28 5.61 5.47 5.33 5.37 5.46 5.38 5.33 5.46 5.28 5.26 5
Ag 5.45 5.35 5.20 5.36 5.51 5.45 5.28 5.26 5.75 5.29 5.21 5
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rium, B1, has also been calculated. The results are prese
in Table V, not as a test of the ladder but for completene
The table shows the differences among the functionals
among the equations of state. The reasonable agreeme
B1 between the Murnaghan EOS and SJEOS is a co
quence of the fact that both have been fitted in a very nar
range ofV aboutV0. The values in Table V can be used wi
the SJEOS to predict the pressureP52dE/dV over a wide
range of volumes in these solids.

3. Cohesive energies

Calculations of cohesive energies («0) with GTO basis
sets can be problematic. Diffuse functions, normally pres
in molecular basis sets, cause an enormous slowdown in
evaluation of Coulomb terms in periodic systems, and h
to be removed. On the other hand, a basis set without dif
functions is inadequate for isolated atoms. Thus, we can
liably report cohesive energies only for those solids that w
computed with full molecular basis sets: C, Si, SiC, and G
It has been argued that since diffuse functions have a s
effect on the total energy of the solid, they can be dispen
with in PBC calculations and then restored in the calculat
of atomic energies. We believe that the use of different ba
sets for atoms and solids is best avoided for metals and s
conductors, but is acceptable for the cations of ionic so
which are relatively insensitive to the presence of diffu
functions. In this manner, we have computed cohesive e
gies for the four alkali halides after restoring the Li and N
basis sets to the original 6-311G*.

As seen in Table VI, LSDA overbinds crystals by rough
15%, which is nearly as large as the relative LSDA overbin
ing error reported for the G2 test set90 of molecular atomiza-
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tion energies.22 For Si, our«0
LSDA agrees with that of Ref. 91

while for Ge our nonrelativistic cohesive energy is 0.2 e
higher than the relativistic LSDA value of Ref. 91. PBE
PKZB, and TPSS are much more accurate with an error
eraging 3%. Although the performance improves slightly
the order PKZB,TPSS,PBE, our test set is insufficient to
pronounce this trend to be true in general.

IV. JELLIUM SURFACE ENERGY

Jellium, a system of electrons neutralized by a unifo
positive background of densityn̄53/4pr s

3 , wherer s is the

TABLE VI. Cohesive energies~eV/atom! of 8 selected solids a
0 K, corrected for zero-temperature motion effects. Experime
values are based on zero-temperature enthalpies of forma
(D fH0

+ ) of the crystals and gaseous atoms taken from Ref. 88~Ge!
and Ref. 89~all others!.

Solid «0
LSDA «0

PBE «0
PKZB «0

TPSS Expt.

C 8.83 7.62 7.14 7.12 7.37
Si 5.26 4.50 4.39 4.36 4.62
SiC 7.25 6.25 5.98 6.02 6.37
Ge 4.72 3.82 3.58 3.78 3.87
NaCl 3.58 3.16 3.15 3.18 3.31
NaF 4.50 3.96 3.81 3.87 3.93
LiCl 3.88 3.41 3.33 3.41 3.55
LiF 5.02 4.42 4.25 4.32 4.40
m.e. ~eV/atom! 0.70 20.04 20.22 20.17 •••

m.a.e.~eV/atom! 0.70 0.11 0.22 0.17 •••

m.a.r.e.~%! 14.4 2.4 4.9 3.5 •••
2-7
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TABLE VII. Surface exchange and exchange–correlation energies~erg/cm2) for jellium computed using
LSDA-xc orbitals and densities. Non-TPSS values are from Ref. 11. Exact x values are from Re
‘‘Exact’’ xc values are from Ref. 93.

Exchange Exchange–correlation

r s ~bohr! sx
LSDA sx

PBE sx
PKZB sx

TPSS sx
exact sxc

LSDA sxc
PBE sxc

PKZB sxc
TPSS sxc

TPSSh sxc
‘‘exact’’

2.00 3037 2438 2578 2553 2624 3354 3265 3402 3380 3387 34
2.07 2674 2127 2252 2231 2296 2961 2881 3002 2985 2992 30
2.30 1809 1395 1484 1469 1521 2019 1962 2048 2035 2040 20
2.66 1051 770 825 817 854 1188 1152 1205 1198 1202 12
3.00 669 468 505 497 526 764 743 779 772 775 78
3.28 477 318 346 341 364 549 533 560 556 558 56
4.00 222 128 142 141 157 261 252 266 266 268 26
5.00 92 40 47 47 57 111 107 113 113 114 113
6.00 43 12 15 15 22 53 52 55 55 56 54
m.e. (erg/cm2) 184 281 225 234 ••• 225 259 26 213 210 •••

m.a.e. (erg/cm2) 184 81 25 34 ••• 25 59 6 14 11 •••

m.a.r.e.~%! 36.7 16.7 8.6 9.4 ••• 2.1 4.9 0.6 1.1 1.1 •••
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Seitz radius, is a simplified model for a bulk simple me
like Na or Al. Termination of the positive background at th
planex50 defines the jellium model of a metal surface, w
the background filling the half-spacex,0. The surface en-
ergys is the energy per unit area needed to make such a
through bulk jellium. The exchange–correlation contrib
tion,

sxc5E
2`

`

n~x!@exc~x!2exc~2`!#dx, ~23!

is typically several times bigger than the total surface ene
The first self-consistent calculations for the jellium su

face were reported by Lang and Kohn94 within the LSDA.
However, since the exact solution for the jellium surface
not known, the magnitude of the exactsxc is still a matter of
debate. Various methods have been applied, such as w
vector interpolation,95 the Fermi hypernetted chai
approximation,96 and diffusion Monte Carlo.97 More re-
cently, Pitarke and Eguiluz92 calculatedsxc5sx1sc for jel-
lium with the random phase approximation~RPA!, which
provided exactsx and approximatesc values. Yan, Perdew
and Kurth93 estimatedsxc beyond RPA by including a GGA
‘‘short-range’’ correction to RPA. We believe that this is th
best estimate ofsxc , and will take it to be ‘‘exact’’ here. This
estimate agrees closely with several others, including
‘‘long-range’’ wave vector interpolation correction t
GGA,98 surface energies extracted99 from diffusion Monte
Carlo calculations for jellium spheres of increasing radius100

and an exchange–correlation kernel correction to RPA101

~For earlier studies of jellium spheres, see Ref. 102!.
Using a modified jellium surface code,103 we have evalu-

ated LSDA, PBE, PKZB, and TPSSsx and sxc ~see Table
VII !. Equation~15! of Ref. 99 can be used to interpolate
extrapolate ther s dependence ofsxc . All calculations in
both tables use the LSDA-xc orbitals and densities, si
self-consistency effects beyond LSDA are small.
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Table VII shows that surface exchange energiessx are
overestimated by LSDA, the error ranging from 16% atr s
52 bohr to almost 100% atr s56 bohr~the typical range of
valence–electron bulk densities!. PBE values are better, bu
overshoot the needed correction to LSDA. PKZB and TP
values are best.

Approximate surface exchange–correlation energiessxc
are typically better due to a cancellation of error betwe
exchange and correlation. LSDA values are accurate but
to be a little too low. PBE produces still lower and le
accurate values, while PKZB, and TPSS produce higher
more accurate values in comparison with LSDA. The to
low PBE values seem to arise11,98 from the use in PBE of a
second-order gradient coefficient for the exchange ene
that is too large in magnitude. This gradient coefficient
corrected in PKZB and TPSS. It is only at the meta-GG
rung of Jacob’s ladder that one can have the correct sec
order gradient coefficient for exchange and also an accu
account of the linear response of a uniform density.12,104

The hybrid TPSS~TPSSh! surface xc energy given in th
penultimate column of Table VII is defined by

sxc
TPSSh5sxc

TPSS1ax~sx
exact2sx

TPSS!, ~24!

whereax50.10 is an empirical parameter determined in R
30 from a fit to atomization energies of molecules. T
TPSShsxc are only marginally better than the TPSS value
~Because of the difficulty of evaluating exact exchange
solid metals, we have not tested TPSSh for bulk solids.!

Surface energies for real metals105 have been calculated
and measured, but the measurements do not seem acc
enough to discriminate among the functionals tested h
The correction to the LSDA or PBE surface energy of jelliu
can be transferred106–108 to real surfaces, and is relevant
other properties such as vacancy formation107,109 and
adhesion108 energies. The TPSS functional should enable
liable direct calculations of such properties.
2-8
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V. CONCLUSIONS

In agreement with earlier studies,11 we find that the PBE
GGA is a significant improvement over LSDA for most bu
solid properties. The progress from the PBE GGA to
TPSS meta-GGA is moderate. Among the four tested fu
tionals of Jacob’s ladder, TPSS has the best agreement
experiment for lattice constants. Although convergence w
respect to basis set remains to be studied, neither PKZB
TPSS appear to be more accurate than PBE for bulk mo
and cohesive energies. The TPSS functional corrects
main PKZB error—overestimation of lattice constants
ionic and, to a lesser extent, metallic crystals.

We have also supported the idea that most of the erro
LSDA, PBE, PKZB and TPSS for bulk solids arises
the description of core–valence~not valence–valence!
interaction,87 by demonstrating that it can be remove
through adjustment of the corresponding term in the equa
of state. On the other hand, functionals that are not ex
in the uniform-density limit, such as BLYP, can make su
s

tt

e
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stantial errors in the valence–valence interaction.
For the jellium surface energy, PBE is less accurate t

LSDA, but PKZB and TPSS are more accurate. Over
TPSS gives the best description of solids and surfaces,
was found to do for molecules in earlier work.30 In particular,
we think that TPSS should be good for situations that
intermediate between molecules and solids~e.g., clusters!
and for combinations of both~e.g., chemical reactions on
solid surface!.
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