
PHYSICAL REVIEW B 69, 073310 ~2004!
Slow spin relaxation in two-dimensional electron systems with antidots
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We report a Monte Carlo investigation of the effect of a lattice of antidots on spin relaxation in two-
dimensional electron systems. The spin relaxation time is calculated as a function of geometrical parameters
describing the antidot lattice, namely the antidot radius and the distance between their centers. It is shown that
spin polarization relaxation can be efficiently suppressed by the chaotic spatial motion due to the antidot lattice.
This phenomenon offers a new approach to spin coherence manipulation in spintronics devices.
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A number of semiconductor devices based on manip
tion of electron spin, generally referred to as spintronic
vices, have been proposed and simulated.1–21 Experimental
work toward implementation of some of them has been
tiated recently.22,23 In these devices the electron spin cont
is accomplished primarily by the spin-orbit interaction
Once injected into a semiconductor, the electrons’ spin
larization will be eventually lost by various relaxatio
mechanisms. Understanding these mechanisms, as we
development of methods of spin coherence manipulation,
of considerable current interest.

The antidot arrays in semiconductor heterostructures w
a two-dimensional electron gas~2DEG! have been a mode
system that allowed the study of chaotic classical dynam
in condensed-matter physics.24–39The typical spacing of an
tidots,a*2000 Å, is larger than the Fermi wavelength of t
2DEG, which allows us to treat the electron spatial mot
semiclassically.38 Various interesting phenomena have be
observed in antidot lattices in magnetic fields, includi
quenching of the Hall effect,26,27 Altshuler-Aronov-Spivak
oscillations,28,29 commensurability peaks in
magnetoresistance,30–32 and fine oscillations around them.33

Moreover, this system has been considered as an experi
tal realization of the theoretical model of Sinai billiard.39 In
this work, we report an investigation ofspin dynamics in
such a system.

We propose to use a two-dimensional electron system
example, 2DEG in a heterostructure, with a lattice of antid
in spintronic device engineering. In the ideal case, electr
move semiclassically in a plane containing reflecting di
~antidots! of radiusr , centered at the sites of a square latt
with lattice spacinga, as shown in Fig. 1~a!. A lattice of
antidots can be formed when, e.g., a periodic array of ho
is etched into the top layers of a semiconductor heterost
ture by means of conventional nanofabrication. Based on
perimental results, e.g., Refs. 40–42 we consider
D’yakonov-Perel’~DP! mechanism43,44 to be the dominant
spin relaxation channel. Using a Monte Carlo simulati
scheme originally proposed in Refs. 17 and 18, we calcu
the electron spin relaxation time due to the DP mechani
for varying the spacinga between the antidot centers, th
antidot radiusr , and the strength of the spin-orbit intera
tion. We have discovered an interesting pattern of dep
dence of the spin relaxation time on the geometrical par
eters of the antidot lattice. These results are presented be
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Moreover, we propose to use this system in future spintro
devices, for example as a new method for coherence con
in a spin field-effect transistor.

The DP relaxation results from spin-orbit interactio
which causekW -dependent splitting of the spin states in t
conduction band for a wave vectorkWÞ0. This spin splitting
can be regarded as an effective magnetic field inducing
cession of the electron spin polarization vector,SW , with an-
gular frequencyVW . The quantum-mechanical evolution o
the electron spin polarization vector, defined in a stand
way via the single-electron density matrixr,45

SW 5Tr~rsW !, ~1!

wheresW is the Pauli-matrix vector corresponding to the ele
tron spin, can be described by the equation of mot
dSW /dt5VW 3SW .45 Within the semiclassical approximation, th
electrons are treated as classical particles, except that
kinetic energies are determined by the semiconductor en
bands, most commonly in the effective-mass approximat
We assume that the electrons move along trajectories, w
are defined by bulk scattering events~scattering on phonons
impurities, etc.! and by scatterings on antidotes. Momentu
scattering reorients the direction of the precession axis, m
ing the orientation of the effective magnetic field random a
trajectory-dependent, thus leading to average spin relaxa
~dephasing!. Making the trajectory more random/chaot
may actually suppress relaxation, similarly to motional n
rowing in nuclear magnetic resonance.46

There are two sources of spin-orbit coupling in tw
dimensional heterostructures: the inversion asymmetry of
confining potential and the lack of inversion symmetry of t

FIG. 1. ~a! The antidot lattice.~b! Elastic reflection of an elec-
tron from an antidot.
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crystal lattice ~such as in zinc-blende-lattice semicondu
tors!. The first mechanism yields the Rashba spin-or
coupling,47

HR5a\21~sxpy2sypx!, ~2!

wherea is a constant andpW is the momentum of the electro
confined in two-dimensional geometry. The second sourc
the spin-orbit coupling yields the Dresselhaus interactio48

We restrict our consideration to the Rashba spin-orbit c
pling, because even in zinc-blende semiconductors it is p
sible to suppress the Dresselhaus coupling by the approp
heterostructure growth protocols.49

The angular frequency corresponding to the Rashba c
pling can be expressed asVW 5hnW 3 ẑ, where h
52am* \22, m* is the effective electron mass,nW is the
electron velocity, and theẑ axis is perpendicular to the
2DEG. The spin of a particle moving ballistically over
distance 1/h will rotate by the anglew51. The angle of the
spin rotation per mean free path,LP , is given by Dw
5LPh. Within the Monte Carlo simulation algorithm, elec
tron space motion is considered to be along classical~linear!
trajectories interrupted by the bulk scattering events or
scattering off the antidote boundaries. Our modeling invol
spin-independent bulk scattering processes, which could
caused, e.g., by phonon scatterings or impurities.

For the sake of simplicity, the scattering due to su
events is assumed to be elastic and isotropic, i.e., the m
nitude of the electron velocity is conserved in the scatteri
while the final direction of the velocity vector is random
selected. The time scale of the bulk scattering events
then be fully characterized by a single rate parameter,18 the
momentum relaxation timetp . It is connected to the mea
free path byLp5unW utp . HereunW u is the mean electron veloc
ity. We will assume that at the initial moment of time th
spins of the electrons are polarized in theẑ direction. We
calculate^SW & as a function of time by averaging over a
ensemble of electrons. The spin relaxation time is evalua
by fitting the time dependence of^SW & to an exponential de
cay. The calculations reported in this paper were done
dimensionless units. An example of connection of dime
sionless units to a real heterostructure parameter set is g
below. The detailed description of the Monte Carlo simu
tion method used can be found in Ref. 18

The time dependence of^SW & was calculated for an en
semble of 105 electrons, for each value of the antidot radi
and the lattice spacing. In Fig. 2, we plot an example of
electron trajectory obtained in the simulation. It is assum
that the antidot lattice is perfectly reflecting: the electr
motion is allowed only in the regions between the antido
We use the elastic boundary conditions as shown in Fig. 1~b!.
An important property of the electron trajectory exemplifi
in Fig. 2 is that it tends to become chaotic. Figure 3 sho
the time dependence of the average spin polarization for
ferent antidote radii. This time dependence illustrates that
behavior of the spin polarization is approximately expon
tial, apart from a small initial interval, with a small superim
posed noisy component arising in the Monte Carlo simu
07331
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tion procedure. In the small initial interval, the diffusiv
regime of the electron spatial motion and spin rotation is
yet established.18

The main results of our Monte Carlo simulations are p
sented in Figs. 4 and 5. Figure 4 shows the spin relaxa
time ts extracted from the time dependence of^SW &, as a
function of the antidot radiusr , at fixed selected values o
the antidot center spacing,a. The electron spin relaxation
time as a function of the spacing between the antidot cent
at fixed values of the aspect ratio,r /a, is presented in Fig. 5
The common feature of all the curves in Fig. 4 is that t
spin relaxation time increases with decreasinga and with
increasingr . All the curves in Fig. 4 start at the same valu
at r 50, corresponding to the absence of the antidot latt
The spin relaxation time is the shortest in this case, beca
it is determined only by the bulk scattering events. W
increasing the antidot radius, the rate of electron scatte
by the antidots increases as well, which results in more
quent random-walk-like motion of the polarization vector
the spin-vector space and, consequently, in slower relaxa
The same mechanism explains the increase of the spin re
ation time with a decrease of the lattice spacing, observe

FIG. 3. Time dependence of the spin polarization for differe
antidote radii.

FIG. 2. Example of an electron trajectory when antidots
almost touching each other.
0-2
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Fig. 5. It follows from the data shown in Fig. 5 that a si
nificant ~severalfold! increase of the spin relaxation time ca
be obtained when the distance between the antidot circ
ferences is less than the electron mean free path.

Let us consider the data presented in Fig. 4 in det
Dependence of the spin relaxation time onr , can be classi-
fied in three different regimes. For smallr , the dependence i
not exponential. Increase of the electron spin relaxation t
in this regime is most pronounced for smalla; see the top
curve in Fig. 4. Next there follows the regime when ther
dependence of the spin relaxation time is approximately
ponential,ts;eg(a)(r /a); see the straight line fits in Fig. 4
This dependence is valid over almost half of the range
change of the antidot radius, approximately for 0.1,r /a
,0.35. The quantityg(a) decreases with increasinga. For
largerr , we observe the transition to nonexponential beh
ior or possibly to an exponential behavior with a differe

FIG. 4. ~Color online! Electron spin relaxation timets as a
function of the antidot radius, for different spacing between
antidots, withhLp50.2. The straight lines are the fitted expone
tials; tp is the momentum relaxation time. The spin relaxation tim
has finite values atr 50.5a.

FIG. 5. ~Color online! Relaxation time at fixedr /a, as a func-
tion of the spacing between the antidot centers.
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slope. We have also compared these results with the re
of a Monte Carlo simulation made with the assumption
‘‘rough’’ antidots, for which we choose randomly, i
@2p/2,p/2# from the radial direction, the angle of motion o
an electron after scattering from an antidot. As illustrated
Fig. 4, the spin relaxation time is then only slightly long
than the spin relaxation time with the same system par
eters for the reflecting antidots and has almost the same
pendence on the antidot radius. This increase in the s
relaxation time likely arises from additional randomizatio
of the electron spatial trajectory by ‘‘rough’’ scatterin
events.

The calculations presented in this paper have been m
for a particular value of the parameterDw5LPh50.2. Such
a particular value corresponds to small spin-rotation ang
per free flight time. This specific value ofLPh is realizable
in physical systems. For example, considering the antid
lattice based on an InAs/AlSb quantum well witha'0.6
310211 eV m, m* 50.04me ,50 and Lp530 nm, we obtain
LPh50.19. For different values ofLPh, the electron spin
relaxation time shows a similar qualitative behavior. Detai
results of these investigations will be reported elsewhere

Spin relaxation control by the antidot lattice can be us
in future spintronic devices. Spin polarization can be p
served, and its relaxation rate controlled, by changing
geometrical parameters of the 2DEG. An efficient cont
over the spin relaxation time can be achieved by an arra
circular metal gates located under the 2DEG. The anti
lattice in such a system can be created and controlled by
gate potential. This idea can be used, for example, in e
neering of spin field-effect transistors that utilize gate cont
over the spin relaxation time in 2DEG.16

In conclusion, we studied relaxation of the electron sp
in a 2DEG with the antidot lattice. Monte Carlo simulatio
results indicate that the D’yakonov-Perel’ relaxation mec
nism in such a system can be efficiently suppressed by
antidot lattice. Spin polarization relaxation time was calc
lated as a function of the antidot radius and antidot-cen
lattice spacing. It was observed that in some range of
parameters, the electron spin relaxation time as a functio
radius at fixed lattice spacing can be described by an ex
nential law. While quantitative description of the obtain
dependences requires further work, qualitatively the mec
nism of suppression of the spin relaxation in a 2DEG with
antidot lattice can be described as follows. An addition
mechanism of scattering of the electrons by the antidots, a
correspondingly, the reduction of the electron mean f
path, and the chaotic nature of the spatial trajectory, lea
rapid changes in the effective spin-orbit ‘‘magnetic field
experienced by the electron spin. Therefore, the spin r
tions become random-walk-like. For each electron, then,
overall spin drift from the original polarization direction i
actually reduced. Since in our semiclassical description
DP relaxation results from averaging over an ensemble
electrons, it is actually suppressed when each electron’s
drifts less from the original direction. In summary, the co
sidered experimentally realizable system offers new w
to achieve long electron spin relaxation times in spintron
devices.
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