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Density-fluctuation-mediated superconductivity
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We compare predictions of the mean-field theory of superconductivity for metallic systems on the border of

a density instability for cubic and tetragonal lattices. The calculations are based on the parameterization of an
effective interaction arising from the exchange of density fluctuations and assume that a single band is relevant
for superconductivity. The results show that for comparable model parameters, density-fluctuation-mediated
pairing is more robust in quasi-two dimensions than in three dimensions, and that the robustness of pairing
increases gradually as one goes from a cubic structure to a more and more anisotropic tetragonal structure. We
also find that the robustness of density-fluctuation-mediated pairing can depend sensitively on the incipient
ordering wave vector. We discuss the similarities and differences between the mean-field theories of supercon-
ductivity for density mediated and magnetically mediated pairing.
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[. INTRODUCTION correct order of magnitude of the superconducting and super-
fluid transition temperaturd@ . when the model parameters

Soon after the development of the BQ®ef. 1) theory of are inferred from experiments in the normal state of the
superconductivity it was realized that Cooper instabilitiesabove systems. There is growing evidence that the magnetic
could arise not only from the exchange of phonons, but alsinteraction model may be relevant to other materials on the
from overscreening of the Coulomb interaction in a modelborder of magnetism.

Fermi liquid without ion dynamics. Due to the sharpness of In our previous work’ we focussed on clarifying the
the Fermi surface, the generalized spin and charge suscepgeneral features of the magnetic interaction model. The latter
bilities exhibit Friedel oscillations in space. Kohn and may be relevant to understanding the superconductivity re-
Luttinger argued that oscillations of a similar origin can cently discovered, for example, on the border of antiferro-
show up in the effective interaction between quasiparticlesmagnetism in systems such as cubic GelRef. 8 and its
Keeping all diagrams up to second order in a model baréetragonal counterpart CeRRBI(Ref. 9 and on the border of
fermion-fermion interaction, they also found an induced atferromagnetism in UGg!®° URhGe!! and Zrzn,.1?

traction which does not rely on the presence of the Friedel In contrast to the conventional phonon-mediated interac-
oscillations. They demonstrated that it was possible in printion, which is usually taken to be local in space but nonlocal
ciple to construct an anisotropic Cooper state that samplesh time, the magnetic interaction is nonlocal in both space
mainly the attractive regions of the effective pairing interac-and time. The nonlocality in space leads to anisotropic pair-
tion. ing states whose nature can be acutely sensitive to details of

The Kohn-Luttinger model applies where the susceptibili-the lattice and electronic structure, and the form of the qua-
ties or response functions are adequately represented by te#article interaction . For simplicity, in Refs. 5—7 we con-
bare Lindhard function for a homogeneous electron gas fosidered only a simple cubic or tetragonal crystal structure, a
which the oscillations are weak and hence the calculated sisingle tight-binding energy band and a magnetic interaction
perconducting transition temperatufgsturn out to be typi- treated at the mean-field level.
cally well below the experimentally accessible range. As a One crucial aspect of the magnetic interaction is the vec-
charge or spin instability is approached, however, we expedbr nature of the spin degree of freedom. At first sight it
the corresponding response function and its real space attratight appear that the longitudinal and transverse phonons
tive regions to become enhanced. Provided that it is possibldat mediate the usual lattice interaction would be analogous
to match the Cooper pair state to the attractive regidps, to the longitudinal and transverse spin fluctuations that me-
may rise to the experimentally accessible range. An extendiate the magnetic interaction. However, the latter interaction
sion of the Kohn-Luttinger theory would naturally lead to depends on the relative spin orientation of the interacting
spin dependent quasiparticle interactions. Current models gfarticles and hence has a different sign and magnitude for the
magnetically mediated superconductivity focus on such magspin-singlet and spin-triplet Cooper states. By contrast, the
netic interactions which are expected to dominate on the boreonventional phonon-mediated interaction is oblivious to the
der of magnetic long-range order. spin degree of freedom of the quasiparticles.

It has been shown that this magnetic interaction treated at One of the consequences is that on the border of ferro-
the mean-field level can produce anomalous normal-statmagnetism, the magnetic interaction is typically only attrac-
properties and superconducting instabilities to anisotropic¢ive in the spin-triplet channel. In that case, only the longi-
pairing states. It correctly predicted the symmetry of thetudinal spin fluctuations contributing to pairing while all
Cooper state in the copper oxide superconduttarsl is three contribute to the self-interaction that tends to be pair
consistent with spin-triplep-wave pairing in superfluidHe  breaking. This disadvantage can be mitigated in systems with
(for a recent review see, e.g., Ref). Dne also gets the strong magnetic anisotropy in that the effect of the transverse
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spin fluctuations on the self-interaction would be suppressednd point is believed to exist at low temperatures or may be
while the strength of the pairing interaction arising from lon- just suppressed.

gitudinal spin fluctuations need not be reduced. By contrast

to isotropic magnetic pairing in the spin-triplet channel, in Il. MODEL

conventional phonon mediated superconductivity and in Wi id ivarticles i imple tet | latti
magnetic pairing in the spin-singlet channel, all modes con- € consider guasiparticles In a simpie tetragonal latlice

tribute both to the pairing and to the self-interaction effects.descnbed by a dispersion relation

We have also found that for t_he m_o_del (_:0n5|dered in Refs. €,= —2t[cog py) +cog p,) + a;Cogp,) |
5-7 the robustness of magnetic pairing increases gradually
as one goes from a cubic to a more and more anisotropic —4t'[ coq py)cog py) + a;cog py)cog p,)
tetragonal structure under otherwise similar conditions. This
is due to the increase with growing anisotropy of the density +a;c08py)cosp;)] 2.1

of states of both the qUﬂSipartiCleS and of the magnetic ﬂUG\]\”th hopp|ng matrix elements andt’. a; represents the
tuations that mediate the quasiparticle interaction. Similag|ectronic structure anisotropy along thalirection. a,=0

: ; : 13 . . . .
findings were reported by Aritat al.~ As one expects and corresponds to the two-dimensioriaD) square lattice while
calculations presented in this paper show that this result cag, =1 corresponds to the 3D cubic lattice. For simplicity, we
ries over to other pairing mechanisms treated at the sam@easure all lengths in units of the respective lattice spacing.

level of approximation as in Refs. 5-7. N In order to reduce the number of independent parameters, we
To further our understanding of the conditions favorableggke t'=0.45 and a band filling facton=1.1 as in our

to robust pairing it would seem natural to carry out similaragylier work®=?

types of analysis of superconductivity on the border of other The effective interaction between quasiparticles is taken
types of instabilities. We consider the possibility of pairing to pe the induced density-density interaction and is defined in
near instabilities signaled by the divergence of a particle dengerms of a coupling constarg and a generalized density
sity response function. This could include in principle struc-sysceptibility, which is assumed to have a simple analytical

tural instabilities characterized by the softening of phonongorm consistent with the symmetry of the lattice,
in some regions of the Brillouin zone. The induced interac-

tion produced by these soft phonons, in contrast to conven-

1 XoKd
tional phonons, is nonlocal in space. Therefore, one could X(q,w)zN— 2 , (2.2
expect some similarities to the magnetic pairing problem 9o o K2 A(Q) — i w
studied in Refs. 5-7 7(q)

A density response function may also be expected to be ) )
strongly enhanced on the border of a charge density Wav@/hereK. and «g are.the gorrelatlon wave vectors or inverse
(CDW) transition, a stripe instability and an— y or valence correlathn Iengths_ in units of the Iatt!ce spacing in the basal
instability. The appropriate density response function may b®lane, with and without strong density correlations, respec-
expected to become large at a wave vector near the Brillouifively- The functionA(q), in Eq. (2.2), is defined as
zone boundary for a CDW, at small but finite wave vectors
for stripes and at zero wave vector near the y transition A(Q)=(4+2ag) —2[ €05 x— Qo) +COL Ay~ qoy)

(at which the structure of the unit cell remains the same, but + a4cog 0,— oz) ] (2.3
its volume changes

We note that if the density transition happens to bewhereay parameterizes the density anisotropy=0 corre-
strongly first order, the appropriate density response functiogPonds to quasi-2D density correlations amg=1 corre-
and hence the associated quasiparticle interaction may not Is@onds to 3D density correlations. The sum in E42) is
sufficiently enhanced to lead to an observable superconduc@ver all the symmetry related vectagg, with N, the num-
ing phase. This is particularly relevant to the- y transition  ber of such vectors. In the following, we only explicitly write
commonly found in heavy fermion systems, which is similarone of the vectors. It should be understood that when we say
to the liquid-gas transition, in that it is of first order except atthat the incipient wave vector is, for examptg=[ 7/4,0],
the critical end point. When the latter is at a temperature wellt is implied that the density response function peaks at the

above the expected temperature scale for pairing, the efoyr wave vector§ = /4,0],[0,= 7/4]. The parameten(q)

hanced density fluctuations associated with dhey transi- i Eq. (2.2) is defined as
tion are unlikely to produce superconductivity. In the tem-
perature region near the critical end point when density n(a):TDFan (2.4)

fluctuations are strong, superconductivity would be sup-

pressed by thermal fluctuations, while in the low-temperature -,

regime the density fluctuations are too weak because of the U = (4+2aq)=2[cosqy) FCogqy) F adcos{qz)],(z 5
strong first order character of the density transition. This '

could explain the absence of superconductivity in C&Ni whereTp is a characteristic density fluctuation temperature.
where the critical end point is around room temperature, buln Eg. (2.4), the exponenh=1 if the density fluctuations are
the existence of superconductivity in CeSip and  such that the total density is conserved a0 otherwise.
CeCuyGe, at high pressures where a corresponding criticaWe note that the pole of the density response function Eqg.
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(2.2) is purely imaginary and therefore the density fluctua-to consider the limitjy=0, for simplicity we taken=1 as in
tions we consider are overdamped. This is believed to applhe case of the magnetic interaction.

on the border of CDW, stripe and valence instabilities, but

not typically for lattice density fluctuations for which the

poles of the density response must have a nonnegligible real IV. RESULTS

component. The latter would require the inclusion obh% A. Quasi 2D: gy=[#, ] and [#/m,0] with m=1, 2, 4

term with real coefficient in the denominator of EG.2). he di ionl di /
In addition to the induced density interaction, we include The dimensionless parame_ters a’_[ our disposagg/t, .
Tpr/t, kg, andx. For comparison with results of our earlier

an on-site Coulomb repulsidnIn the largel limit, the Coo- o )
per pair state vanishes when the interacting quasiparticles at¥2rk for the case of the magnetic interaction, we takg

on the same site and thus conventional isotrepive pair- = 2t/3 and kg=12. In 2D, thisTpe corresponds to about
ing is excluded. Therefore, we do not consider in this papeft000 K for a bandwidth of 1 eV, while our choice &f is a
the conventional phonon exchange pairing mechanism.  representative value. We note thefl «* represents the den-
We note that in the corresponding problem of magneticsity susceptibility enhancement factor, analogous to the
pairing the effective interaction is repulsive when the twoStoner factor in the case of the magnetic interaction.
interacting quasiparticles are on the same site in the spin- The results of our numerical calculations of the mean-
singlet channel. It is, however, attractive in the spin-tripletfield critical temperaturd as a function ofg®x,/t and of
channel, but this is irrelevant since the required spatial antix® is shown in Fig. 1 forqo=[,7] in which the Cooper
symmetry of the pair state means that the two quasiparticlegair state hasl,, symmetry. The nodal lines of this state in
have zero probability of occupying the same site simultateal space are illustrated in Fig(al, which also depicts the
neously. static density interaction seen by one of the quasiparticles
A complete description of the model, the Eliashberg equagiven that the other is at the origin. For values of the dimen-
tions for the superconducting transition temperature and theionless coupling paramete®y,/t corresponding to the

method of solution can be found in the appendix. random phase approximatiqof order 10, T, is found to
drop very rapidly as one goes away from the instability, i.e.,
Ill. COMPARISON OF THE DENSITY AND MAGNETIC with increasingx”.
PAIRING INTERACTIONS The corresponding plots for the casegg=[/m,0],

_ ~ wherem=1, 2 and 4 are shown in Fig. 2, 3, and 4. In

_ Our assumed form of the density response function igontrast to the casgo=[, 7], the next-nearest-neighbor
similar to that of the generalized magnetic susceptibility useghteraction forq,=[,0] is repulsive. This requires nodal
in our previous papers. However, there is a crucial differenc§nes along the diagonal, and hence the . instead ofd,

in that the effective magnetic interaction depends on the relasymmetry. As shown in Fig.(@), the neareyst-neighbor nter-
tive orientation of the spins of the two quasiparticles throughyction vanishes for the special cagg=[7,0] and the lead-
the factor o, - o, In the spin-singlet state the expectationjng attraction comes from third-nearest-neighbors. This ex-
value of e, - ; gives a factor of -3. When the interaction is pjains why pairing is not as robust in this case compared
oscillatory in real space, this sign change leads to an intekgith the caseyo=[,7].

change of attractive and repulsive regions. Since one must ag seen from Figs. @ and 4a), the strength of the
choose a pair state in which the quasiparticles mainly samplgearest-neighbor attraction increases s gets smaller,
the attractive region of the interaction, the sign inversionyhich correlates with the increased robustness af

implies a change in the symmetry of the Cooper pair state as ag g, decreases the density interaction can also be attrac-
illustrated in Figs. (a) a_nd 2a) for the cases of incipient e for other pairing states. In order to avoid the on-site
ordering wave vectorgo=[, ] and[7,0] in a square lat-  cqylomb interaction, one could use tdg, state since the
tice. For the case of smatj,, where the oscillations are next-nearest-neighbor interaction is attractive for sufficiently
essentially irrelevant in our model, the density interaction isgyq) Qo. But since thed,2_,. state picks the nearest-

L N . . K2

attractive in real space for both the spin-singlet and spinygighnor attraction, which is éominant, it is expected to be
triplet states, but the magnetic interaction is attractive solely,q tayored state. For smaj}, the density interaction is also
for the spin-triplet state for which the expectation value of 34 active in the spin-triplet channel for g or p, Cooper

oy 0y is +1. i ) ... state. This state picks two out of the four nearest-neighbor
In our model for the generalized magnetic susceptibility 5ractive sites, instead of all four for thig. 2 state. How-
we have assumed that the overall magnetization is conserv er, thep, or p, state also picks the attra)(l:tion on all four
’ X y

and hencey(q) vanishes ag|—0. This leads to greater in- next-nearest-neighbor sites where the_2 state vanishes.
coherent scattering for a nearly ferromagnetic than antiferrott s thus not immediately obvious in that case which of the
magnetic metal, and hence to a reductiorTgbn the border  two pairing states has the highet. Figure 5 shows the

of ferromagnetism. If the fluctuations of the density aregliahsberg superconducting transition temperature one ob-
qU?Silocal as in some models of valence ﬂUCtuatilanhEn tains for the Spin-trip]epx and spin_sing|edx27y2 states as a
7(q) does not vanish at smaf|. This corresponds to the function of the correlation wave vecta® for g2y, /t=10.
casen=0 in Eq.(2.4). If qq is sufficiently far away from the The plot shows thadl,._,2 is the favored case and we have
origin in the Brillouin zone, the precise value afis not  found this to be true for the range of valueskdfandg?y, /t
expected to affect the calculatéd. Since we are not going studied in this paper.
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FIG. 1. (a) Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at tlraamkegith by
a cros$ for an incipient ordering wave vectap,=|[ 7, 7]. The sites are colored black if the interaction is repulsive and light gray if it is
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed line indicates
the nodal lines of thel,, Cooper state(b) and (c) show the Eliashberd./Tpg for a quasi-two-dimensional system as a function of the
coupling constang?x,/t (b) and correlation wave vector® (c) for the choiceTpr=2t/3 andx3=12.

B. Quasi 3D: qy=[m,m, 7], qo=[#/4,0,0] neighbor in the former case rather than next-nearest-neighbor

The results of the numerical calculations in 3D are showrfS in the latter case. Fop=[, 7, 7], pairing is less robust
in Figs. 6 and 7 fog=[ m, 7, 7] in thed,, Cooper state and I 3D than for thg corresponding quasi-2D case shown in
qo=[/4,0,0 in the d,2_,2 Cooper state, respectively. The Fig. 1 for all coupling constants. In the cagg=[/4,0,0],
pairing for qo=[/4,0,0] is more robust than forqgq pairing is more robust in quasi-2D cadeg. 4) than in the
=[] since the dominant attraction comes from nearesgorresponding 3D case for weak to intermediate coupling. At

064517-4



DENSITY-FLUCTUATION-MEDIATED SUPERCONDUCTIVITY PHYSICAL REVIEW B69, 064517 (2004

Quasi 2D ; q, = [,0] Quasi 2D ; q, = [n,0]
0.060 . . . 0.06
K =0.25 (b)
~~~~~~~ -« = 0.50
0.040 | 0.04 | .
w w
[=) [a)
|_
\Q
B =
0.020 0.02 | i
0.000 : = .
0 20 ,40 60 80 0.00 0 1
9/t

FIG. 2. (a) Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at tlraamkegith by
a cros$ for an incipient ordering wave vectap=[ 7,0]. The sites are colored black if the interaction is repulsive and light gray if it is
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed line indicates
the nodal lines of thel,2_,» Cooper state(b) and(c) show the Eliashberd./Tp for a quasi-two-dimensional system as a function of the
coupling constang?x,/t (b) and correlation wave vector® (c) for the choiceTpr=2t/3 andx3=12.

strong coupling, however, pairing is more robust in 3D, butare shown in Figs. 8 and 9 for representative values of the
coupling constantg®y,/t in the 20—60 range are less physi- parametersc® and g?x,/t. The results reported in Secs. A
cally realistic. and B above correspond to the quasi-2D case«y=0 and

to the 3D casey,;=ay=1.

For qo=[, 7, 7], shown in Fig. 8, we find thal. in-
creases gradually and monotonically as the system becomes
more and more anisotropic in the density interaction. We also

The calculated’, as a function of the electronic and den- note that the effect of the electronic anisotropy is much less
sity response anisotropy parametetsand aq, respectively, pronounced. In the case of an incipient ordering wave vector

C. Crossover from 3D to quasi 2D: Tetragonal lattice with g
=[m,m,m], qu=[n/4,0,0
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FIG. 3. (a) Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at ttraankgith by
a cros$ for an incipient ordering wave vectap=[ 7/2,0]. The sites are colored black if the interaction is repulsive and light gray if it is
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed line indicates
the nodal lines of thel,>_,» Cooper state(b) and(c) show the Eliashberd /Ty for a quasi-two-dimensional system as a function of the
coupling constang?,/t (b) and correlation wave vectar® (c) for the choiceTpr=2t/3 andx3=12.

qo=[/4,0,0], Fig. 9 shows thaT is maximum for an an- V. DISCUSSION

isotropy parametewy between 0 and 1, namely, for an an- A. Role of real space oscillations in the quasiparticle
isotropic albeit not quasi 2D in the density interaction. Also interaction

note that in theqy=[w/4,0,0] case, T, depends more

strongly on the electronic anisotropy parametgrthan for When the wave vectoq, at which the density response
Qo=[m,m,m]. function is a maximum lies near the Brillouin zone boundary
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FIG. 4. (a) Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at tlraamkegith by
a cros$ for an incipient ordering wave vectaop=[ 7/4,0]. The sites are colored black if the interaction is repulsive and light gray if it is
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed line indicates
the nodal lines of thel,2_,» Cooper state(b) and(c) show the Eliashberd./Tp for a quasi-two-dimensional system as a function of the
coupling constant)®y,/t (b) and correlation wave vecta® (c) for the choiceTpe=2t/3 and K(Z):].Z.

the quasiparticle interaction has short-range real-space oscil- In the density interaction channel, the dominant attraction
lations. As a consequence, the robustness of the pairing deemes from the next-nearest-neighbor sites and is typically
pends sensitively on whether one can construct a Cooper painuch weaker than the dominant nearest-neighbor attraction
state from quasiparticle states near the Fermi surface sudbr spin-singlet magnetic pairing for the same wave vector
that given one quasiparticle is located at the origin, the probgy=[ m,7]. This explains why for this wave vectgp, pair-
ability of finding the second one in regions where the inter-ing is not as robust for the density interaction as for the
action is repulsive is minimized. For the cagg=[m, 7], magnetic interaction under otherwise similar conditions.

this forces us to consider a Cooper state with nodes along the One might think that if there were a wave vectgrsuch
principal (x andy) axes[see Fig. 1a)]. that the interaction is attractive at the nearest-neighbor sites,
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FIG. 5. Comparison of the Eliahsbefg /Ty for a quasi-two- 3D ; q, = [r,7,7]
dimensional system with incipient ordering wave vectqg 0.08
=[n/4,0] in the spin-singled,._,2 versus spin-triplep, Cooper )
state. The model parameters used in the calculationg%yg/t (b) — szo/t=60
=10, Tpg=2t/3 andx3=12.  p\ 9, %o/t =30
----- gx/t=20
0.06 | a0
one could achieve pairing in the density channel to the same . . - @xt=5
degree of robustness as in the spin-singlet magnetic channel
for qo=[m,7]. A potential candidate wave vector @}
=[,0] since by rotating the wave vector one would rotate -
the oscillation pattern in real space. However, the oscillations |:° 0.04 1
one obtains via Eq(2.2) are superpositions of oscillations —

running along the x and y directions coming from the sym-
metry related components with wave vectdrs,0] and

[0,77]. These oscillations perfectly cancel at the odd sites 0.02 |
[see Fig. 2a)], and in particular at nearest-neighbor sites.
The dominant attraction arises from the third nearest neigh-

bors, and thus contrary to naive expectations the case with . . > -

go=[m,0] leads to even weaker pairing than witly S T~

=[,m]. Note that for the corresponding spin-singlet mag- 0'000.0 05 10 15 20
netic pairing forqe=[ 7,0], because of the inversion of the K

sign of the interaction due to the spin factot- o5, the

. . FIG. 6. (@ and(b) show the spin-singled,, Eliashbergl./Tpg
dominant attraction would now come from the next-nearests, ., three-dimensional system with incipient ordering wave vector

neighbor sit_es. In this case, pa_liring would be more robust ”EI0=[7T,7T,7T:| in as a function of the coupling constaghy/t (2)
th_e magnetic than in the density Channgl d@,':[ﬂ"o]' but and correlation wave vectot? (b) for the choiceTp=2t/3 and
still not as favorable as the magnetic spin singlet channel f°F<§:12.
qQo=[m,7].
The robustness of density pairing for the simple tetragonal o .
lattice is optimized forg, close to the Brillouin zone center  BY contrast to the case of the magnetic interaction where

since in that case the interaction at all neighboring sites i§he most robust pairing was shown in our previous Wdek
maximally attractive[see Fig. 4a)]. In order to avoid the arise forqo=[, ], in the density channel our results indi-
on-site Coulomb repulsion, the pairing state which is thecate that the optimal case is fgp near the Brillouin zone
solution of the gap equatiofsee the appendixanishes at center. Since the symmetry of the Cooper state is the same in
the origin and its symmetry is of the form,, py, dy,, or  both cases, this would suggest that, within the Eliashberg
dy2_y2 . Since thed,2_,2 state has maximum amplitude at approximation, still stronger pairing should arise when the
nearest-neighbor sites, it has the highEst system is on the border of both a magnetic instability wgigh
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3D ; q, = [r,/4,0,0]

q=lmmm] 5 k- =025:g 3o/t =10

0.20
0.15 |
= 010 F
l_O
0.05 |
FIG. 8. Spin-singletl,, EliashbergT./Tpg as a function of the
density and electronic anisotropy parametets and «; respec-
0.00 0 tively. @g=a;=0 corresponds to the 2D limit whileey=a;=1
corresponds to an isotropic 3D system. The incipient ordering wave
vector is qo=[m,, 7], and the other model parameters are
=0.25, g%xo/t=10, Tpr=2t/3, andx3=12.
3D ; q, = [W/4,0,0] g°xo DF “o
0.25 . . . materials is that the critical end point of the latter instability
o) o'/t = 60 lies at unusually low temperatures or is incipient, which
~~~~~ 91 /t=130 means that density fluctuations are expected to be important
S gZxo/t=20 ] in the temperature regime where superconductivity is ob-
) T 9 x/t=10 served. Since the two instabilities do not occur at the same
T gkt= 5 pressure one would expect that near the magnetic instability
the pairing would be dominated by the magnetic channel and
0.15 | as the pressure is increased that it would cross over to a
u regime dominated by the density channel.
= When the two instabilities are sufficiently widely sepa-
= 0.10 \\\ rated, one might expect to see two distinct superconducting
- \\ "~ 1
N N
N AN h, 2
\\ qo = [7/4,0,0] ; k2 =025;¢ Xo/t=10
AN \\\ \"
0.05 | N
AN \\\ \‘\\\
N >~ T
0.00 R o T,/ T
0.0 10 20 3.0 4.0 ¢ “BE
X

FIG. 7. (@ and (b) show the spin-singlet,2_,> Eliashberg
T./Tpe for a three-dimensional system with incipient ordering
wave vectoigy=[ 7/4,0,0 in as a function of the coupling constant
9°xo0/t (@ and correlation wave vectot? (b) for the choiceTpg
=2t/3 andk3=12.

near[,7] and a density instability with lowgy. In that
case, the two pairing mechanisms would reinforce each othe:
rather than compete. FIG. 9. Spin-singletl,2_,> EliashbergT,/Tp as a function of

This observation may be very relevant to the supercone density and electronic anisotropy parameteyanda, , respec-
ductivity in f-electron compounds such as CeSy and tively. ay=a,=0 corresponds to the 2D limit whilerg=a,=1
CeCuyGe,. In these systems the superconductivity extendgorresponds to an isotropic 3D system. The incipient ordering wave
over a region in pressure containing both an antiferromagvector is q,=[#/4,0,0,, and the other model parameters are
netic and a valence instability. What is special about these-0.25, g?x,/t=10, Tp=2t/3, andx3=12.

Density anisotropy ) N
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D

2
Va Id (]
‘ é; C/ Va C/ 7
FIG. 10. The pairing potential fay,=[ 7,7, 7] seen by a qua- FIG. 11. The pairing potential fayg=[ 7/4,0,0] seen by a qua-

siparticle in a spin-singled,, Cooper pair state given that the other siparticle in a spin-singletl,2_,2 Cooper pair state given that the
quasiparticle is at the origitmarked by a crogsThe figure depicts  other quasiparticle is at the origiimarked by a crogs The figure

the evolution of the potential as one goes from a cubic to a tetragdepicts the evolution of the potential as one goes from a cubic to a
onal lattice by varying the parametery. Closed circles denote tetragonal lattice by varying the parametgr. Open circles denote
repulsive sites and open circles attractive ones. The size of thattractive sites. The size of the circle is a measure of the strength of
circle is a measure of the strength of the interaction. The nodaihe interaction. The nodal plane of tg_ 2 state is represented by
planes of thed,, state are represented by the shaded region. the shaded region.

domes, one centered near the magnetic instability and th@es from four@t[ = =/4,0],[0,= w/4]) in stritly 2D to six
other near the density instability. A double domed supercon(@t [ 7/4,0,0,[0,= 7/4,0],[0,0.= 7/4]) for ay>0. Other
ducting temperature-pressure phase diagram has in fact befian that, our model potential varies smoothly with the te-
observed in CeGBi, and CeCyGe, system&®® and in tragonal distortion, parameterized ky; in Figs. 10 and 11,
CeNi,Ge,.1” Some of these experimental findings have beerNd itis clear that this effect grows gradually with increasing
interpreted in terms of the effects of magnetic and valenc&€Paration between the basal planes. In our Eliashberg calcu-
fluctuationst® lations, mass renormalization effects, which tend to suppress
The overall scale off, is set by the characteristic tem- Tc. @lSO increase as one goes to a more and more anisotropic
perature of magnetic and density fluctuations which tends t§"yStal structure. Our results thus depend on the interplay
be below 100 K in the aboviesystems. One way to increase between the strengths of the pairing interaction and mass
the value ofT, is to increase these characteristic temperafénormalization, and the fact that the maximd in the
tures. This could be achieved by looking for analogoust@s€do=[/4,0,0 occurs for anisotropic but not quasi-2D
d-metal systems with broader electron bands. The antiferrg3yStems reflects the delicate balance between these opposing
magnetic and stripe fluctuations in the cuprates may be aff€cts. The above given phase space argument is similar to
example where magneticand density fluctuation® with that used to explain the increased robustness of magnetic

high-characteristic temperature scales reinforce to produdg@ifing with increasing lattice anisotropy and, hence, as an-
high-temperature superconductivity. ticipated in Ref. 7, carries over to other pairing mechanisms

treated at the one-loop mean-field level. Another potential
benefit of going to a more anisotropic crystal structure is the
narrowing of the electronic band and the associated increase
The numerical results show that the robustness of densitiy the electronic density of states. Our results show that in
mediated superconductivity increases gradually and monahe case ofj,=[ 7,7, 7] and the model parameters consid-
tonically as one goes from a cubic to a more anisotropicred, this does not play the dominant role. However, for an
tetragonal structure fajo=[ 7,7, 7] and thafT is optimum incipient ordering wave vectay,=[ 7/4,0,0], the increase in
for an anisotropic albeit not quasi-2D system fgp  the electronic density of states with increased lattice anisot-
=[/4,0,0]. One can partly understand this result by lookingropy plays a more important role. This effect could also be
at the evolution of the density interaction in real space withsensitive to details of the electronic and crystal structure not
increasing anisotropy as illustrated qualitatively in Figs. 10considered here.
and 11 forqg=[, 7, 7] and qo=[/4,0,0), respectively. The calculations presented in this paper and in our previ-
We see that the attraction in the basal plane gets enhanced @gs work'’ show that, in the majority of cases considered,
one goes from the cubic to a more anisotropic tetragonathe lattice anisotropy increases the robustness of magnetic
lattice. This enhancement is the consequence of the increaa@d density pairing in the mean-field approximation. Super-
of the phase space of soft density fluctuations as one goesnducting phase fluctuations which are not included in this
from a cubic to a quasi-2D structure. Note that fg§  approximation may be expected to suppr@ssin the 2D
=[/4,0,0), the model pairing potential is not continuous at limit. Therefore, in practice, one would think that the most
agq=0 since the number of peaks of the density responséavorable case for magnetic or density pairing is that of

B. Role of crystalline anisotropy
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strong, but not extreme, anisotropy where the effect of theped for systems on the border of magnetism can be trans-
superconducing phase fluctuations are typically weak. This ifated to describe systems on the border of density instabili-
to be contrasted with the effect of order parameter fluctuaties. A striking feature of the model we have considered is
tions on magnetic and density transitions that can be large ithat the most robust pairing is obtained in the spin-singlet
metals even in 3D and more so in 2D. In the case of thej,._,» Cooper state on the border of both the density and
density transition, even a small lattice anisotropy and thespin instabilities. However, crucially the wave vectgy at
resulting increase in the order parameter fluctuations ca@nhich the response function is most enhanced is different in
lower the critical end point significantly. By weakening the the two cases. Density fluctuations give rise to the highest
first-order transition at low temperatures, this would enhancguperconducting’, for g, near the center of the Brillouin
the density fluctuations that mediate the pairing on the bordefone while magnetic pairing is strongest fqg=[,].
of the density instability and lead to a superconductingwhile it is possible to construct a Cooper pair state that
phase. samples mainly the most attractive regions of the density and

The importance of crystalline anisotropy in enhancing themagnetic interaction fog,=[ 7, ], the attraction is weaker
superconducting . on the border of antiferromagnetism has in the density channel because the minimum separation of
been dramatically demonstrated in going from the simpléne two interacting particles is larger in thg, state for the
cubic system Celn(Ref. § to the related tetragonal com- density interaction than in thé,._,2 state for the magnetic
pounds CeMlg (Ref. 9 whereM =Co, Rh, and Ir, as cor- jnteraction[Fig. 1(a)]. For low q,, however, the density in-
rectly anticipated by our earlier model calculations of mag-teraction is mostly attractive provided that the particles are
netic pairing>~’ not on the same sitEFig. 4@] and thus the most favored

In addition to an antiferromagnetic instability at relatively siate isd,2_,2 in which the two interacting particles can take
low pressure, Celnis also thought to have a strongly first advantage of the strong nearest-neighbor attraction.
order a— v transition at high pressurés Superconductivity It would seem that the same argument could apply to the
is only observed in a narrow range of pressure and tempergow ¢, magnetic interaction. However, in contrast to the den-
ture around the antiferromagnetic quantum critical point. Besity interaction which has the same sign in the spin-singlet
cause of the wide separation in pressure between the magnd spin-triplet channels, the magnetic interaction depends
netic and density transitions and the strongly first ordelon the relative spin orientation of the two interacting par-
nature of the latter, one would expect the observed supercoficies and thus has a different sign for the two cases. Mag-
ductivity to be magnetically mediated. In the tetragonal commetic pairing in the spin-singlet state is only possible if the
pounds CeMIp, however, superconductivity is observed rea| space interaction has sufficiently short-wavelength oscil-
over a wide range of pressures. Were @f y transition |ations. Therefore, wheq, is near the center of the Brillouin
present in these compounds, the critical end point would b@one magnetic pairing in the spin-singlet state is not possible
expected to be at much lower temperatures than in{#le  put is allowed in principle in the spin-triplet state for which
to the role of anisotropy as discussed above. This woulghe magnetic interaction has the opposite sign. However,
result in stronger density fluctuations in the neighborhood Of'nagnetic pairing in this state has the disadvantage that only
the a«— vy instability. Could this be another example where the exchange of spin fluctuations polarized along the direc-
antiferromagnetic and low|, density fluctuations both con- tion of the interacting spins, i.e., the longitudinal fluctuations
tribute to the attractive pairing interaction in tg 2 Coo-  contribute to the particle interaction. For a spin rotationally
per state? This would explain the unusually wide extent ofnvariant system, both the longitudinal and transverse spin
the superconducting domes observed in these materials. fluctuations contribute to pairing only for a spin-singlet Coo-

It would not be surprising that such a density transitionper state. For the model considered in Refs .5—7 this effect
has not been reported because we expect its signature to hssults in much weaker pairing on the border of ferromag-
weak. Moreover, it is likely to be observable as a well-netism (,=0) than antiferromagnetism witty,=[ 7, 7].
defined transition only over a very narrow range in pressure Another disadvantage of being on the border of ferromag-
in the temperature-pressure phase diagram and would requifetism is that for otherwise similar conditions the suppres-
very careful examination pressure scans at fixed temperasion of T, due to the self-interaction arising from the ex-

tures in order to detect . change of magnetic fluctuations is stronger than in the
corresponding case on the border of antiferromagnetism.
VI. OUTLOOK This disadvantage can be mitigated in systems with strong

magnetic anisotropy in that the effect of the transverse mag-

One can expect that the total effective interaction betweemnetic fluctuations on the self-interaction would be suppressed
particles in a strongly correlated electron system to be veryhile the strength of the pairing interaction arising from the
complex. The interaction will clearly depend on the chargelongitudinal magnetic fluctuations need not be reduced. This
but also more generally on the spin and current carried by theay apply in systems with strong spin-orbit interactions or in
particles. The border of a density or spin or current instabilthe spin-polarized state close to the border of ferromag-
ity is characterized by strongly enhanced order-parameteretism.
fluctuations and it is therefore plausible that the dominant These argumerit§ have stimulated a new search for evi-
interaction channel is mediated by the density, spin, or curdence of superconductivity on the border of itinerant electron
rent fluctuations, respectively. ferromagnetism in cases where spin anisotropy is expected to

In this paper we have shown how the framework devel-be pronounced, such as UG&his search has proved fruit-
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ful because it led to the first observation of the coexistence of At first sight, our results seem to imply that anisotropic
superconductivity and itinerant electron ferromagnetism informs of superconductivity should be a generic property of
UGe, (Ref. 10 and shortly thereafter in ZrZznRef. 12 and  systems on the border of density and magnetic instabilities. It
URhGe!? may seem surprising therefore that there are still relatively
In the preceding section and in Figs. 10 and 11 we gavéew observations of this phenomenon. In addition to the sen-
simple arguments to explain how the pairing effect of thesitivity of T to details of the system as discussed above, in
interactions are strengthened by a tetragonal distortion in ounany cases the multiplicity of bands and lattice structure
model. However, the same effects also contribute to an emay be unfavorable for pairing to such an extent that
hanced self-interaction which acts to suppréss The rela- quenched disorder may completely suppress superconductiv-
tive importance of the pair-forming and pair-breaking effectsity. An illustration of this latter point is the dramatic collapse
of the effective interaction cannot be inferred solely from theof the spin-triplet superconducting. in Sr,RuG, in the
above physical picture for the density channel and the analgresence of Al impurity concentrations as low as 0%%.
gous arguments given in Ref. 7 for the magnetic channelAnother factor that may explain the absence of superconduc-
The numerical calculations show that for most cases considivity is the common occurrence of first order rather than
ered here and in Ref. 7 the pair-forming effects dominate. continuous magnetic as well as density instabilities. Our re-
A most striking manifestation of the interplay between thesults show that in many cases one has to be close to the
pair-forming and pair-breaking tendency of both the densityinstability. A first order transition may make this region of
and magnetic interactions is the breakdown of the McMillan-the phase diagram inaccessible.
style expression fof ;. This was noted in Refs. 5-7 and has  The results of the mean-field calculations presented here
been interpreted in Ref. 22 in terms of the important roleand in our earlier papers show that robust pairing can occur
played by the incoherent part of the Green function which isgn both density and magnetic channels under suitable condi-
ignored in the simplest treatments, but is included in theions. Therefore, it would seem that one should not favor one
present and earlier work where the full momentum and fremechanism over another in the search for new examples of
quency dependence of the self-energy is taken into accouniigh-temperature superconductivity. This conclusion may
In this and our earlier work we deliberately avoided mod-turn out to be incorrect when corrections to the one-loop
eling a specific system since our main goal is to gain insightsnean-field calculations are taken into account. In contrast to
into the nature of the pairing problem on the border of athe conventional electron-phonon pairing theory where cor-
density and spin instabilities. We have focussed on underections to the Eliashberg value ©f are small, it has been
standing trends and certain general factors affecting the raargued for many yeaf$ that this may not be the case for
bustness of the pairing mechanism. Even the simplest modetgher types of pairing mechanisms.
considered display surprising sensitivity to factors such as It has been shown that the mean-field approximation of
the nature of the instability, the wave vectgy at which it the kind we have considered here qualitatively breaks down
occurs, the total spin of the Cooper pair, details of the elecin a half-filled Hubbard model in 2D which is a Mott insu-
tronic and lattice structure as well as the form of the relevantator with long-range antiferromagnetic order at absolute
response function. Therefore, one should exercise caution irero. This breakdown has been interpreted in terms of the
making quantitative comparisons between the results of oueffect of thermal magnetic fluctuations in the renormalized
calculations and experiment. classical regimé&’ Thermal density fluctuations near Peirels
In particular, our model may not apply to situations whereCDW transition in 2D also lead to qualitative changes to the
there is a large, local in space, contribution to the dynamicaélectronic spectrum that are not captured in the present
response function. This would not contribute to the pairingmodel?®
interaction for anisotropic Cooper states, but could greatly Recent nonperturbative calculations have shown that dy-
enhance the self-interaction effect that is pair breaking. Thisiamical fluctuations even at the Gaussian level are sufficient
could for instance greatly increase the sensitivityTgfto ~ to cause a breakdown of the present mean-field model for
lattice anisotropy as observed in CeMIsystems and to the sufficiently smallx2.2° In this and our earlier work on the
correlation length () characterizing the relevant response magnetic interaction model, we had to solve the Eliashberg
function as indirectly seen in the strong pressure dependenegjuations for the superconducting transition temperaiyre
of T in, for example, Celn Such a local contribution to the for very many choices of model parameters. Even with the
magnetic response function has been observed in heavy fdpest numerical algorithms, this is only practically feasible,
mion systemg3 especially in 3D, if the overall scale of the.'s obtained is
The results of the calculations would be very sensitive tarather high(say of the order of 0.1t Our choice of the char-
the particular choice of the wave vector dependence of thactersitic density-fluctuation temperaturéyr=2t/3 (or
response function. In cases where it falls offgiiaster than  spin-fluctuation temperatur€sg=2t/3 in our earlier work
in our model, the response is appreciably enhanced in was therefore dictated by such considerations. We now
smaller portion of the Brillouin zone and one would then know?® that for these values afyg (or Tsg) and the range of
expect the effect of the density or magnetic interaction on th@ther model parameters considered here and in our earlier
thermal, transport and superconducting properties to be rgapers that vertex corrections are important. Our results are
duced. This could explain the surprisingly weak effects omevertheless useful if interpreted in the following way. We
these properties of the CDW fluctuations in systems such asxpect, and have checked in a number of casist the
NbSe.?* trends inT./Tpg (or T./Tsp) are weakly dependent on the
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absolute scale of the characteristic temperatirgs and  whereN is the number of allowed wave vectors in the Bril-
Tse. Therefore the conclusions drawn from our calculationdouin zone and the carrier densipy,(q,7) is given by

are expected to remain qualitatively correct for smaller val-
ues of Ty or Tgg and hencdl ., values for which the mean-
field theory of superconductivity is likely to be more accu-
rate.

It has generally been believed that the most importan&nd p(d,7)=Z=,p,(d,7). The quasiparticle dispersion rela-
factor in determining the applicability of Migdal’s theorem is tion €, is defined in Eq(2.1), u denotes the chemical po-
the form and parameters entering the relevant fluctuatiotential, 3 the inverse temperaturg? the coupling constant
spectrum. Therefore, a surprising finding was that in theand zp,“;,g and ¢, , are Grassmann variables. We measure
range of model parameters studied in Ref. 29, the vertefemperatures, frequencies, and energies in the same units.
corrections to the Eliashberg self-energy led to qualitativelyOur effective density interaction consists of an induced part,
different electron spectral functions for a coupling to mag-the last term in Eq(Al), and a local on-site Coulomb repul-
netic and density fluctuations with identical fluctuation spec-sion, the second term in EGAL).
tra. In those calculations, it was found that the corrections to The retarded generalized susceptibiljyq,») that de-
the Eliashberg theory enhanced the magnetic interaction, bfines the effective interaction, E¢A1), is defined in Eq.
suppressed the density interaction. This effect can readily be.2).
seen at the two-loop level. The density-fluctuation propagator on the imaginary axis,

The contribution of the transverse magnetic fluctuationsy(q,iv,) is related to the imaginary part of the response
to the first order vertex correction is opposite in sign to thatfunction Imy(q,w), Eq.(2.2), via the spectral representation
of longitudinal ones and dominates. On the other hand, in the
density channel one has essentially only “longitudinal” fluc- . *=dw IMmx(q,w)
tuations, which as in the magnetic case suppress the interac- x(Qivg)=— J_w T o
tion at this level of approximation. It is also known that the
two fluctuation exchange processes lead to the enhancemera gety(q,iv,) to decay as 1lﬁ asv,—, as it should, we
of the spin-singlet magnetic pairing interactiiwhile de-  introduce a cutofiwy and take Iny(q,w)=0 for v=wy. A
tailed calculations off; beyond the single-fluctuation ex- natural choice for the cutoff imy= 7(q) «2.

change approximation have yet to be carried out, the above Tpe Eliashberg equations for the critical temperafyé

findings suggest that spin-singlet'magr?e.tic pairing may tl%"ihe Matsubara representation reduce, for the effective action
out to be more robust than density pairing under otherwisgq (A1), to

equivalent conditions.

p(r(q,T)E% U 0o T W, o(T) (A2)

(A3)

.
S(piwn) =075 2 2 x(p—Kiwg—iQ)G(k,ify)
Q, k
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APPENDIX —111G(k,iQy)[*®(k,iQp)
We consider quasiparticles on a cubic or tetragonal lattice. A(M)=1-T=T, (A6)

We assume that the dominant interaction is in the denSi%hereE(p iw,) is the quasiparticle self-energ@(p.iw,)
] n 1 n

c_hannel and postplate the_follqwmg low-energy effective aCie one-particle Green’s function ade(p,iw,) the anoma-
tion for the following quasiparticles:

lous self-energy. The Hartree terms coming from the on-site
Coulomb repulsion and induced density interaction have
B + been absorbed in the definition of the chemical potential,
Sert= 2 fo A7y o T+ €p— 1) hp o 7) which is adjusted to give an electron densitynef 1.1. N is
P the total number of allowed wave vectors in the Brillouin
I B Zone. EquationA6) has been written for spin-singlet Coo-
N > f drp(q,7)p (—q,7) per pairs. In the spin-triplet channel, the sign and coefficient
a0 of the termg?x(p—k,iw,—i€Q,) remains unchanged. The
9° B B , , on-site Coulomb interactioh in Eq. (A6) can be ignored
—mE fo deo d7’x(q,7—7")p(q,7)p(—=0q,7")  since in the for spin-triplet Cooper pairs, the amplitude
q for the two particles to be on the same site simultaneously
(A1)  vanishes.
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The momentum convolutions in EqeA4) and (A6) are  ara frequencies at each stage of the renormalization proce-
carried out with a fast Fourier Transform algorithm on adure, starting with an initial temperatufB,=0.4t in two
128x 128 lattice for calculations in two dimensions and 48dimensions and =0.6 in three dimensions and cutdfi.

X 48x 48 lattice for three-dimensional calculations. The fre-~30t. The renormalization group acceleration technique re-
quency sums in both the self-energy and linearized gap equatricts one to a discrete set of temperaturég>T,
tions are treated with the renormalization group technique of>T, . . .. Thecritical temperature at which(T)=1 in Eq.
Pao and Bicker&' We have kept between 8 and 16 Matsub-(A6) is determined by linear interpolation.
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