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Density-fluctuation-mediated superconductivity

P. Monthoux and G. G. Lonzarich
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 24 September 2003; published 27 February 2004!

We compare predictions of the mean-field theory of superconductivity for metallic systems on the border of
a density instability for cubic and tetragonal lattices. The calculations are based on the parameterization of an
effective interaction arising from the exchange of density fluctuations and assume that a single band is relevant
for superconductivity. The results show that for comparable model parameters, density-fluctuation-mediated
pairing is more robust in quasi-two dimensions than in three dimensions, and that the robustness of pairing
increases gradually as one goes from a cubic structure to a more and more anisotropic tetragonal structure. We
also find that the robustness of density-fluctuation-mediated pairing can depend sensitively on the incipient
ordering wave vector. We discuss the similarities and differences between the mean-field theories of supercon-
ductivity for density mediated and magnetically mediated pairing.
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I. INTRODUCTION

Soon after the development of the BCS~Ref. 1! theory of
superconductivity it was realized that Cooper instabilit
could arise not only from the exchange of phonons, but a
from overscreening of the Coulomb interaction in a mo
Fermi liquid without ion dynamics. Due to the sharpness
the Fermi surface, the generalized spin and charge susc
bilities exhibit Friedel oscillations in space. Kohn an
Luttinger2 argued that oscillations of a similar origin ca
show up in the effective interaction between quasipartic
Keeping all diagrams up to second order in a model b
fermion-fermion interaction, they also found an induced
traction which does not rely on the presence of the Frie
oscillations. They demonstrated that it was possible in p
ciple to construct an anisotropic Cooper state that sam
mainly the attractive regions of the effective pairing intera
tion.

The Kohn-Luttinger model applies where the susceptib
ties or response functions are adequately represented b
bare Lindhard function for a homogeneous electron gas
which the oscillations are weak and hence the calculated
perconducting transition temperaturesTc turn out to be typi-
cally well below the experimentally accessible range. A
charge or spin instability is approached, however, we exp
the corresponding response function and its real space at
tive regions to become enhanced. Provided that it is poss
to match the Cooper pair state to the attractive regionsTc
may rise to the experimentally accessible range. An ex
sion of the Kohn-Luttinger theory would naturally lead
spin dependent quasiparticle interactions. Current model
magnetically mediated superconductivity focus on such m
netic interactions which are expected to dominate on the
der of magnetic long-range order.

It has been shown that this magnetic interaction treate
the mean-field level can produce anomalous normal-s
properties and superconducting instabilities to anisotro
pairing states. It correctly predicted the symmetry of t
Cooper state in the copper oxide superconductors3 and is
consistent with spin-tripletp-wave pairing in superfluid3He
~for a recent review see, e.g., Ref. 4!. One also gets the
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correct order of magnitude of the superconducting and su
fluid transition temperatureTc when the model parameter
are inferred from experiments in the normal state of
above systems. There is growing evidence that the magn
interaction model may be relevant to other materials on
border of magnetism.

In our previous work5–7 we focussed on clarifying the
general features of the magnetic interaction model. The la
may be relevant to understanding the superconductivity
cently discovered, for example, on the border of antifer
magnetism in systems such as cubic CeIn3 ~Ref. 8! and its
tetragonal counterpart CeRhIn5 ~Ref. 9! and on the border of
ferromagnetism in UGe2,10 URhGe,11 and ZrZn2.12

In contrast to the conventional phonon-mediated inter
tion, which is usually taken to be local in space but nonlo
in time, the magnetic interaction is nonlocal in both spa
and time. The nonlocality in space leads to anisotropic p
ing states whose nature can be acutely sensitive to detai
the lattice and electronic structure, and the form of the q
siparticle interaction . For simplicity, in Refs. 5–7 we co
sidered only a simple cubic or tetragonal crystal structure
single tight-binding energy band and a magnetic interact
treated at the mean-field level.

One crucial aspect of the magnetic interaction is the v
tor nature of the spin degree of freedom. At first sight
might appear that the longitudinal and transverse phon
that mediate the usual lattice interaction would be analog
to the longitudinal and transverse spin fluctuations that m
diate the magnetic interaction. However, the latter interact
depends on the relative spin orientation of the interact
particles and hence has a different sign and magnitude for
spin-singlet and spin-triplet Cooper states. By contrast,
conventional phonon-mediated interaction is oblivious to
spin degree of freedom of the quasiparticles.

One of the consequences is that on the border of fe
magnetism, the magnetic interaction is typically only attra
tive in the spin-triplet channel. In that case, only the lon
tudinal spin fluctuations contributing to pairing while a
three contribute to the self-interaction that tends to be p
breaking. This disadvantage can be mitigated in systems
strong magnetic anisotropy in that the effect of the transve
©2004 The American Physical Society17-1
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spin fluctuations on the self-interaction would be suppres
while the strength of the pairing interaction arising from lo
gitudinal spin fluctuations need not be reduced. By cont
to isotropic magnetic pairing in the spin-triplet channel,
conventional phonon mediated superconductivity and
magnetic pairing in the spin-singlet channel, all modes c
tribute both to the pairing and to the self-interaction effec

We have also found that for the model considered in R
5–7 the robustness of magnetic pairing increases gradu
as one goes from a cubic to a more and more anisotr
tetragonal structure under otherwise similar conditions. T
is due to the increase with growing anisotropy of the den
of states of both the quasiparticles and of the magnetic fl
tuations that mediate the quasiparticle interaction. Sim
findings were reported by Aritaet al.13 As one expects and
calculations presented in this paper show that this result
ries over to other pairing mechanisms treated at the s
level of approximation as in Refs. 5–7.

To further our understanding of the conditions favora
to robust pairing it would seem natural to carry out simi
types of analysis of superconductivity on the border of ot
types of instabilities. We consider the possibility of pairin
near instabilities signaled by the divergence of a particle d
sity response function. This could include in principle stru
tural instabilities characterized by the softening of phono
in some regions of the Brillouin zone. The induced intera
tion produced by these soft phonons, in contrast to conv
tional phonons, is nonlocal in space. Therefore, one co
expect some similarities to the magnetic pairing probl
studied in Refs. 5–7

A density response function may also be expected to
strongly enhanced on the border of a charge density w
~CDW! transition, a stripe instability and ana2g or valence
instability. The appropriate density response function may
expected to become large at a wave vector near the Brillo
zone boundary for a CDW, at small but finite wave vecto
for stripes and at zero wave vector near thea2g transition
~at which the structure of the unit cell remains the same,
its volume changes!.

We note that if the density transition happens to
strongly first order, the appropriate density response func
and hence the associated quasiparticle interaction may n
sufficiently enhanced to lead to an observable supercond
ing phase. This is particularly relevant to thea2g transition
commonly found in heavy fermion systems, which is simi
to the liquid-gas transition, in that it is of first order except
the critical end point. When the latter is at a temperature w
above the expected temperature scale for pairing, the
hanced density fluctuations associated with thea2g transi-
tion are unlikely to produce superconductivity. In the te
perature region near the critical end point when den
fluctuations are strong, superconductivity would be s
pressed by thermal fluctuations, while in the low-temperat
regime the density fluctuations are too weak because of
strong first order character of the density transition. T
could explain the absence of superconductivity in CeN14

where the critical end point is around room temperature,
the existence of superconductivity in CeCu2Si2 and
CeCu2Ge2 at high pressures where a corresponding criti
06451
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end point is believed to exist at low temperatures or may
just suppressed.

II. MODEL

We consider quasiparticles in a simple tetragonal latt
described by a dispersion relation

ep522t@cos~px!1cos~py!1a tcos~pz!#

24t8@cos~px!cos~py!1a tcos~px!cos~pz!

1a tcos~py!cos~pz!# ~2.1!

with hopping matrix elementst and t8. a t represents the
electronic structure anisotropy along thez direction. a t50
corresponds to the two-dimensional~2D! square lattice while
a t51 corresponds to the 3D cubic lattice. For simplicity, w
measure all lengths in units of the respective lattice spac
In order to reduce the number of independent parameters
take t850.45t and a band filling factorn51.1 as in our
earlier work.5–7

The effective interaction between quasiparticles is tak
to be the induced density-density interaction and is define
terms of a coupling constantg and a generalized densit
susceptibility, which is assumed to have a simple analyt
form consistent with the symmetry of the lattice,

x~q,v!5
1

Nq0

(
q0

x0k0
2

k21D~q!2 i
v

h~ q̂!

, ~2.2!

wherek andk0 are the correlation wave vectors or inver
correlation lengths in units of the lattice spacing in the ba
plane, with and without strong density correlations, resp
tively. The functionD(q), in Eq. ~2.2!, is defined as

D~q!5~412ad!22@cos~qx2q0x!1cos~qy2q0y!

1adcos~qz2q0z!# ~2.3!

wheread parameterizes the density anisotropy.ad50 corre-
sponds to quasi-2D density correlations andad51 corre-
sponds to 3D density correlations. The sum in Eq.~2.2! is
over all the symmetry related vectorsq0, with Nq0

the num-
ber of such vectors. In the following, we only explicitly writ
one of the vectors. It should be understood that when we
that the incipient wave vector is, for example,q05@p/4,0#,
it is implied that the density response function peaks at
four wave vectors@6p/4,0#,@0,6p/4#. The parameterh(q̂)
in Eq. ~2.2! is defined as

h~ q̂!5TDFq̂n ~2.4!

q̂25~412ad!22@cos~qx!1cos~qy!1adcos~qz!#,
~2.5!

whereTDF is a characteristic density fluctuation temperatu
In Eq. ~2.4!, the exponentn51 if the density fluctuations are
such that the total density is conserved andn50 otherwise.
We note that the pole of the density response function
7-2
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~2.2! is purely imaginary and therefore the density fluctu
tions we consider are overdamped. This is believed to ap
on the border of CDW, stripe and valence instabilities,
not typically for lattice density fluctuations for which th
poles of the density response must have a nonnegligible
component. The latter would require the inclusion of av2

term with real coefficient in the denominator of Eq.~2.2!.
In addition to the induced density interaction, we inclu

an on-site Coulomb repulsionI. In the largeI limit, the Coo-
per pair state vanishes when the interacting quasiparticles
on the same site and thus conventional isotropics-wave pair-
ing is excluded. Therefore, we do not consider in this pa
the conventional phonon exchange pairing mechanism.

We note that in the corresponding problem of magne
pairing the effective interaction is repulsive when the tw
interacting quasiparticles are on the same site in the s
singlet channel. It is, however, attractive in the spin-trip
channel, but this is irrelevant since the required spatial a
symmetry of the pair state means that the two quasiparti
have zero probability of occupying the same site simu
neously.

A complete description of the model, the Eliashberg eq
tions for the superconducting transition temperature and t
method of solution can be found in the appendix.

III. COMPARISON OF THE DENSITY AND MAGNETIC
PAIRING INTERACTIONS

Our assumed form of the density response function
similar to that of the generalized magnetic susceptibility u
in our previous papers. However, there is a crucial differe
in that the effective magnetic interaction depends on the r
tive orientation of the spins of the two quasiparticles throu
the factors1•s2. In the spin-singlet state the expectatio
value ofs1•s2 gives a factor of -3. When the interaction
oscillatory in real space, this sign change leads to an in
change of attractive and repulsive regions. Since one m
choose a pair state in which the quasiparticles mainly sam
the attractive region of the interaction, the sign invers
implies a change in the symmetry of the Cooper pair stat
illustrated in Figs. 1~a! and 2~a! for the cases of incipien
ordering wave vectorsq05@p,p# and@p,0# in a square lat-
tice. For the case of smallq0, where the oscillations are
essentially irrelevant in our model, the density interaction
attractive in real space for both the spin-singlet and sp
triplet states, but the magnetic interaction is attractive so
for the spin-triplet state for which the expectation value
s1•s2 is 11.

In our model for the generalized magnetic susceptibi
we have assumed that the overall magnetization is conse
and henceh(q̂) vanishes asq→0. This leads to greater in
coherent scattering for a nearly ferromagnetic than antife
magnetic metal, and hence to a reduction ofTc on the border
of ferromagnetism. If the fluctuations of the density a
quasilocal as in some models of valence fluctuations,18 then
h(q̂) does not vanish at smallq. This corresponds to the
casen50 in Eq.~2.4!. If q0 is sufficiently far away from the
origin in the Brillouin zone, the precise value ofn is not
expected to affect the calculatedTc . Since we are not going
06451
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to consider the limitq050, for simplicity we taken51 as in
the case of the magnetic interaction.

IV. RESULTS

A. Quasi 2D: q0Ä†p,p‡ and †pÕm,0‡ with mÄ1, 2, 4

The dimensionless parameters at our disposal areg2x0 /t,
TDF /t, k0, andk. For comparison with results of our earlie
work for the case of the magnetic interaction, we takeTDF

52t/3 and k0
2512. In 2D, thisTDF corresponds to abou

1000 K for a bandwidth of 1 eV, while our choice ofk0
2 is a

representative value. We note thatk0
2/k2 represents the den

sity susceptibility enhancement factor, analogous to
Stoner factor in the case of the magnetic interaction.

The results of our numerical calculations of the mea
field critical temperatureTc as a function ofg2x0 /t and of
k2 is shown in Fig. 1 forq05@p,p# in which the Cooper
pair state hasdxy symmetry. The nodal lines of this state
real space are illustrated in Fig. 1~a!, which also depicts the
static density interaction seen by one of the quasipartic
given that the other is at the origin. For values of the dime
sionless coupling parameterg2x0 /t corresponding to the
random phase approximation~of order 10!, Tc is found to
drop very rapidly as one goes away from the instability, i.
with increasingk2.

The corresponding plots for the casesq05@p/m,0#,
where m51, 2 and 4 are shown in Fig. 2, 3, and 4.
contrast to the caseq05@p,p#, the next-nearest-neighbo
interaction forq05@p,0# is repulsive. This requires noda
lines along the diagonal, and hence thedx22y2 instead ofdxy
symmetry. As shown in Fig. 2~a!, the nearest-neighbor inter
action vanishes for the special caseq05@p,0# and the lead-
ing attraction comes from third-nearest-neighbors. This
plains why pairing is not as robust in this case compa
with the caseq05@p,p#.

As seen from Figs. 3~a! and 4~a!, the strength of the
nearest-neighbor attraction increases asq0 gets smaller,
which correlates with the increased robustness ofTc .

As q0 decreases the density interaction can also be att
tive for other pairing states. In order to avoid the on-s
Coulomb interaction, one could use thedxy state since the
next-nearest-neighbor interaction is attractive for sufficien
small q0. But since thedx22y2 state picks the neares
neighbor attraction, which is dominant, it is expected to
the favored state. For smallq0, the density interaction is also
attractive in the spin-triplet channel for apx or py Cooper
state. This state picks two out of the four nearest-neigh
attractive sites, instead of all four for thedx22y2 state. How-
ever, thepx or py state also picks the attraction on all fou
next-nearest-neighbor sites where thedx22y2 state vanishes
It is thus not immediately obvious in that case which of t
two pairing states has the highestTc . Figure 5 shows the
Eliahsberg superconducting transition temperature one
tains for the spin-tripletpx and spin-singletdx22y2 states as a
function of the correlation wave vectork2 for g2x0 /t510.
The plot shows thatdx22y2 is the favored case and we hav
found this to be true for the range of values ofk2 andg2x0 /t
studied in this paper.
7-3



it is
e indicates
he

P. MONTHOUX AND G. G. LONZARICH PHYSICAL REVIEW B69, 064517 ~2004!
FIG. 1. ~a! Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at the origin~marked by
a cross! for an incipient ordering wave vectorq05@p,p#. The sites are colored black if the interaction is repulsive and light gray if
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed lin
the nodal lines of thedxy Cooper state,~b! and ~c! show the EliashbergTc /TDF for a quasi-two-dimensional system as a function of t
coupling constantg2x0 /t ~b! and correlation wave vectork2 ~c! for the choiceTDF52t/3 andk0

2512.
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B. Quasi 3D: q0Ä†p,p,p‡, q0Ä†pÕ4,0,0‡

The results of the numerical calculations in 3D are sho
in Figs. 6 and 7 forq05@p,p,p# in thedxy Cooper state and
q05@p/4,0,0# in the dx22y2 Cooper state, respectively. Th
pairing for q05@p/4,0,0# is more robust than forq0
5@p,p,p# since the dominant attraction comes from near
06451
n

t

neighbor in the former case rather than next-nearest-neig
as in the latter case. Forq05@p,p,p#, pairing is less robust
in 3D than for the corresponding quasi-2D case shown
Fig. 1 for all coupling constants. In the caseq05@p/4,0,0#,
pairing is more robust in quasi-2D case~Fig. 4! than in the
corresponding 3D case for weak to intermediate coupling
7-4
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FIG. 2. ~a! Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at the origin~marked by
a cross! for an incipient ordering wave vectorq05@p,0#. The sites are colored black if the interaction is repulsive and light gray if
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed lin
the nodal lines of thedx22y2 Cooper state.~b! and~c! show the EliashbergTc /TDF for a quasi-two-dimensional system as a function of t
coupling constantg2x0 /t ~b! and correlation wave vectork2 ~c! for the choiceTDF52t/3 andk0

2512.
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strong coupling, however, pairing is more robust in 3D, b
coupling constantsg2x0 /t in the 20–60 range are less phys
cally realistic.

C. Crossover from 3D to quasi 2D: Tetragonal lattice with q0
Ä†p,p,p‡, q0Ä†pÕ4,0,0‡

The calculatedTc as a function of the electronic and de
sity response anisotropy parametersa t andad , respectively,
06451
tare shown in Figs. 8 and 9 for representative values of
parametersk2 and g2x0 /t. The results reported in Secs.
and B above correspond to the quasi-2D casea t5ad50 and
to the 3D casea t5ad51.

For q05@p,p,p#, shown in Fig. 8, we find thatTc in-
creases gradually and monotonically as the system beco
more and more anisotropic in the density interaction. We a
note that the effect of the electronic anisotropy is much l
pronounced. In the case of an incipient ordering wave vec
7-5
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FIG. 3. ~a! Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at the origin~marked by
a cross! for an incipient ordering wave vectorq05@p/2,0#. The sites are colored black if the interaction is repulsive and light gray if
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed lin
the nodal lines of thedx22y2 Cooper state.~b! and~c! show the EliashbergTc /TDF for a quasi-two-dimensional system as a function of t
coupling constantg2x0 /t ~b! and correlation wave vectork2 ~c! for the choiceTDF52t/3 andk0

2512.
n-
so

e
ry
q05@p/4,0,0#, Fig. 9 shows thatTc is maximum for an an-
isotropy parameterad between 0 and 1, namely, for an a
isotropic albeit not quasi 2D in the density interaction. Al
note that in theq05@p/4,0,0# case, Tc depends more
strongly on the electronic anisotropy parametera t than for
q05@p,p,p#.
06451
V. DISCUSSION

A. Role of real space oscillations in the quasiparticle
interaction

When the wave vectorq0 at which the density respons
function is a maximum lies near the Brillouin zone bounda
7-6
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FIG. 4. ~a! Static pairing potential seen by a quasiparticle in a square lattice given that the other quasiparticle is at the origin~marked by
a cross! for an incipient ordering wave vectorq05@p/4,0#. The sites are colored black if the interaction is repulsive and light gray if
attractive. The size of the circles represents, on a logarithmic scale, the absolute value of the static pairing potential. The dashed lin
the nodal lines of thedx22y2 Cooper state.~b! and~c! show the EliashbergTc /TDF for a quasi-two-dimensional system as a function of t
coupling constantg2x0 /t ~b! and correlation wave vectork2 ~c! for the choiceTDF52t/3 andk0

2512.
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ites,
the quasiparticle interaction has short-range real-space o
lations. As a consequence, the robustness of the pairing
pends sensitively on whether one can construct a Cooper
state from quasiparticle states near the Fermi surface
that given one quasiparticle is located at the origin, the pr
ability of finding the second one in regions where the int
action is repulsive is minimized. For the caseq05@p,p#,
this forces us to consider a Cooper state with nodes along
principal (x andy) axes@see Fig. 1~a!#.
06451
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In the density interaction channel, the dominant attract
comes from the next-nearest-neighbor sites and is typic
much weaker than the dominant nearest-neighbor attrac
for spin-singlet magnetic pairing for the same wave vec
q05@p,p#. This explains why for this wave vectorq0, pair-
ing is not as robust for the density interaction as for t
magnetic interaction under otherwise similar conditions.

One might think that if there were a wave vectorq0 such
that the interaction is attractive at the nearest-neighbor s
7-7
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one could achieve pairing in the density channel to the sa
degree of robustness as in the spin-singlet magnetic cha
for q05@p,p#. A potential candidate wave vector isq0

5@p,0# since by rotating the wave vector one would rota
the oscillation pattern in real space. However, the oscillati
one obtains via Eq.~2.2! are superpositions of oscillation
running along the x and y directions coming from the sy
metry related components with wave vectors@p,0# and
@0,p#. These oscillations perfectly cancel at the odd si
@see Fig. 2~a!#, and in particular at nearest-neighbor site
The dominant attraction arises from the third nearest ne
bors, and thus contrary to naive expectations the case
q05@p,0# leads to even weaker pairing than withq0
5@p,p#. Note that for the corresponding spin-singlet ma
netic pairing forq05@p,0#, because of the inversion of th
sign of the interaction due to the spin factors1•s2, the
dominant attraction would now come from the next-neare
neighbor sites. In this case, pairing would be more robus
the magnetic than in the density channel forq05@p,0#, but
still not as favorable as the magnetic spin singlet channe
q05@p,p#.

The robustness of density pairing for the simple tetrago
lattice is optimized forq0 close to the Brillouin zone cente
since in that case the interaction at all neighboring site
maximally attractive@see Fig. 4~a!#. In order to avoid the
on-site Coulomb repulsion, the pairing state which is
solution of the gap equation~see the appendix! vanishes at
the origin and its symmetry is of the formpx , py , dxy , or
dx22y2 . Since thedx22y2 state has maximum amplitude
nearest-neighbor sites, it has the highestTc .

FIG. 5. Comparison of the EliahsbergTc /TDF for a quasi-two-
dimensional system with incipient ordering wave vectorq0

5@p/4,0# in the spin-singletdx22y2 versus spin-tripletpx Cooper
state. The model parameters used in the calculations areg2x0 /t
510, TDF52t/3 andk0

2512.
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By contrast to the case of the magnetic interaction wh
the most robust pairing was shown in our previous work5 to
arise forq05@p,p#, in the density channel our results ind
cate that the optimal case is forq0 near the Brillouin zone
center. Since the symmetry of the Cooper state is the sam
both cases, this would suggest that, within the Eliashb
approximation, still stronger pairing should arise when t
system is on the border of both a magnetic instability withq0

FIG. 6. ~a! and~b! show the spin-singletdxy EliashbergTc /TDF

for a three-dimensional system with incipient ordering wave vec
q05@p,p,p# in as a function of the coupling constantg2x0 /t ~a!
and correlation wave vectork2 ~b! for the choiceTDF52t/3 and
k0

2512.
7-8
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DENSITY-FLUCTUATION-MEDIATED SUPERCONDUCTIVITY PHYSICAL REVIEW B69, 064517 ~2004!
near @p,p# and a density instability with lowq0. In that
case, the two pairing mechanisms would reinforce each o
rather than compete.

This observation may be very relevant to the superc
ductivity in f-electron compounds such as CeCu2Si2 and
CeCu2Ge2. In these systems the superconductivity exten
over a region in pressure containing both an antiferrom
netic and a valence instability. What is special about th

FIG. 7. ~a! and ~b! show the spin-singletdx22y2 Eliashberg
Tc /TDF for a three-dimensional system with incipient orderi
wave vectorq05@p/4,0,0# in as a function of the coupling constan
g2x0 /t ~a! and correlation wave vectork2 ~b! for the choiceTDF

52t/3 andk0
2512.
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er
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e

materials is that the critical end point of the latter instabil
lies at unusually low temperatures or is incipient, whi
means that density fluctuations are expected to be impor
in the temperature regime where superconductivity is
served. Since the two instabilities do not occur at the sa
pressure one would expect that near the magnetic instab
the pairing would be dominated by the magnetic channel
as the pressure is increased that it would cross over
regime dominated by the density channel.

When the two instabilities are sufficiently widely sep
rated, one might expect to see two distinct superconduc

FIG. 8. Spin-singletdxy EliashbergTc /TDF as a function of the
density and electronic anisotropy parametersad and a t respec-
tively. ad5a t50 corresponds to the 2D limit whilead5a t51
corresponds to an isotropic 3D system. The incipient ordering w
vector is q05@p,p,p#, and the other model parameters arek2

50.25, g2x0 /t510, TDF52t/3, andk0
2512.

FIG. 9. Spin-singletdx22y2 EliashbergTc /TDF as a function of
the density and electronic anisotropy parametersad anda t , respec-
tively. ad5a t50 corresponds to the 2D limit whilead5a t51
corresponds to an isotropic 3D system. The incipient ordering w
vector is q05@p/4,0,0#, and the other model parameters arek2

50.25, g2x0 /t510, TDF52t/3, andk0
2512.
7-9
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domes, one centered near the magnetic instability and
other near the density instability. A double domed superc
ducting temperature-pressure phase diagram has in fact
observed in CeCu2Si2 and CeCu2Ge2 systems15,16 and in
CeNi2Ge2.17 Some of these experimental findings have be
interpreted in terms of the effects of magnetic and vale
fluctuations.18

The overall scale ofTc is set by the characteristic tem
perature of magnetic and density fluctuations which tend
be below 100 K in the abovef systems. One way to increas
the value ofTc is to increase these characteristic tempe
tures. This could be achieved by looking for analogo
d-metal systems with broader electron bands. The antife
magnetic and stripe fluctuations in the cuprates may be
example where magnetic3 and density fluctuations19 with
high-characteristic temperature scales reinforce to prod
high-temperature superconductivity.

B. Role of crystalline anisotropy

The numerical results show that the robustness of den
mediated superconductivity increases gradually and mo
tonically as one goes from a cubic to a more anisotro
tetragonal structure forq05@p,p,p# and thatTc is optimum
for an anisotropic albeit not quasi-2D system forq0
5@p/4,0,0#. One can partly understand this result by looki
at the evolution of the density interaction in real space w
increasing anisotropy as illustrated qualitatively in Figs.
and 11 for q05@p,p,p# and q05@p/4,0,0#, respectively.
We see that the attraction in the basal plane gets enhanc
one goes from the cubic to a more anisotropic tetrago
lattice. This enhancement is the consequence of the incr
of the phase space of soft density fluctuations as one g
from a cubic to a quasi-2D structure. Note that forq0
5@p/4,0,0#, the model pairing potential is not continuous
ad50 since the number of peaks of the density respo

FIG. 10. The pairing potential forq05@p,p,p# seen by a qua-
siparticle in a spin-singletdxy Cooper pair state given that the oth
quasiparticle is at the origin~marked by a cross!. The figure depicts
the evolution of the potential as one goes from a cubic to a tet
onal lattice by varying the parameterad . Closed circles denote
repulsive sites and open circles attractive ones. The size of
circle is a measure of the strength of the interaction. The no
planes of thedxy state are represented by the shaded region.
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goes from four~at @6p/4,0#,@0,6p/4#) in stritly 2D to six
~at @6p/4,0,0#,@0,6p/4,0#,@0,0,6p/4#) for ad.0. Other
than that, our model potential varies smoothly with the
tragonal distortion, parameterized byad in Figs. 10 and 11,
and it is clear that this effect grows gradually with increasi
separation between the basal planes. In our Eliashberg ca
lations, mass renormalization effects, which tend to supp
Tc , also increase as one goes to a more and more anisot
crystal structure. Our results thus depend on the interp
between the strengths of the pairing interaction and m
renormalization, and the fact that the maximumTc in the
caseq05@p/4,0,0# occurs for anisotropic but not quasi-2
systems reflects the delicate balance between these opp
effects. The above given phase space argument is simila
that used to explain the increased robustness of magn
pairing with increasing lattice anisotropy and, hence, as
ticipated in Ref. 7, carries over to other pairing mechanis
treated at the one-loop mean-field level. Another poten
benefit of going to a more anisotropic crystal structure is
narrowing of the electronic band and the associated incre
in the electronic density of states. Our results show tha
the case ofq05@p,p,p# and the model parameters consi
ered, this does not play the dominant role. However, for
incipient ordering wave vectorq05@p/4,0,0#, the increase in
the electronic density of states with increased lattice ani
ropy plays a more important role. This effect could also
sensitive to details of the electronic and crystal structure
considered here.

The calculations presented in this paper and in our pre
ous work6,7 show that, in the majority of cases considere
the lattice anisotropy increases the robustness of magn
and density pairing in the mean-field approximation. Sup
conducting phase fluctuations which are not included in t
approximation may be expected to suppressTc in the 2D
limit. Therefore, in practice, one would think that the mo
favorable case for magnetic or density pairing is that

g-

he
al

FIG. 11. The pairing potential forq05@p/4,0,0# seen by a qua-
siparticle in a spin-singletdx22y2 Cooper pair state given that th
other quasiparticle is at the origin~marked by a cross!. The figure
depicts the evolution of the potential as one goes from a cubic
tetragonal lattice by varying the parameterad . Open circles denote
attractive sites. The size of the circle is a measure of the streng
the interaction. The nodal plane of thedx22y2 state is represented b
the shaded region.
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DENSITY-FLUCTUATION-MEDIATED SUPERCONDUCTIVITY PHYSICAL REVIEW B69, 064517 ~2004!
strong, but not extreme, anisotropy where the effect of
superconducing phase fluctuations are typically weak. Th
to be contrasted with the effect of order parameter fluct
tions on magnetic and density transitions that can be larg
metals even in 3D and more so in 2D. In the case of
density transition, even a small lattice anisotropy and
resulting increase in the order parameter fluctuations
lower the critical end point significantly. By weakening th
first-order transition at low temperatures, this would enha
the density fluctuations that mediate the pairing on the bo
of the density instability and lead to a superconduct
phase.

The importance of crystalline anisotropy in enhancing
superconductingTc on the border of antiferromagnetism h
been dramatically demonstrated in going from the sim
cubic system CeIn3 ~Ref. 8! to the related tetragonal com
pounds CeMIn5 ~Ref. 9! whereM5Co, Rh, and Ir, as cor-
rectly anticipated by our earlier model calculations of ma
netic pairing.5–7

In addition to an antiferromagnetic instability at relative
low pressure, CeIn3 is also thought to have a strongly fir
ordera2g transition at high pressures.20 Superconductivity
is only observed in a narrow range of pressure and temp
ture around the antiferromagnetic quantum critical point. B
cause of the wide separation in pressure between the m
netic and density transitions and the strongly first or
nature of the latter, one would expect the observed super
ductivity to be magnetically mediated. In the tetragonal co
pounds CeMIn5, however, superconductivity is observe
over a wide range of pressures. Were ana2g transition
present in these compounds, the critical end point would
expected to be at much lower temperatures than in CeIn3 due
to the role of anisotropy as discussed above. This wo
result in stronger density fluctuations in the neighborhood
the a2g instability. Could this be another example whe
antiferromagnetic and lowq0 density fluctuations both con
tribute to the attractive pairing interaction in thedx22y2 Coo-
per state? This would explain the unusually wide extent
the superconducting domes observed in these materials

It would not be surprising that such a density transiti
has not been reported because we expect its signature
weak. Moreover, it is likely to be observable as a we
defined transition only over a very narrow range in press
in the temperature-pressure phase diagram and would re
very careful examination pressure scans at fixed temp
tures in order to detect it.21

VI. OUTLOOK

One can expect that the total effective interaction betw
particles in a strongly correlated electron system to be v
complex. The interaction will clearly depend on the char
but also more generally on the spin and current carried by
particles. The border of a density or spin or current insta
ity is characterized by strongly enhanced order-param
fluctuations and it is therefore plausible that the domin
interaction channel is mediated by the density, spin, or c
rent fluctuations, respectively.

In this paper we have shown how the framework dev
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oped for systems on the border of magnetism can be tr
lated to describe systems on the border of density insta
ties. A striking feature of the model we have considered
that the most robust pairing is obtained in the spin-sing
dx22y2 Cooper state on the border of both the density a
spin instabilities. However, crucially the wave vectorq0 at
which the response function is most enhanced is differen
the two cases. Density fluctuations give rise to the high
superconductingTc for q0 near the center of the Brillouin
zone while magnetic pairing is strongest forq05@p,p#.
While it is possible to construct a Cooper pair state t
samples mainly the most attractive regions of the density
magnetic interaction forq05@p,p#, the attraction is weake
in the density channel because the minimum separation
the two interacting particles is larger in thedxy state for the
density interaction than in thedx22y2 state for the magnetic
interaction@Fig. 1~a!#. For low q0, however, the density in-
teraction is mostly attractive provided that the particles
not on the same site@Fig. 4~a!# and thus the most favore
state isdx22y2 in which the two interacting particles can tak
advantage of the strong nearest-neighbor attraction.

It would seem that the same argument could apply to
low q0 magnetic interaction. However, in contrast to the de
sity interaction which has the same sign in the spin-sing
and spin-triplet channels, the magnetic interaction depe
on the relative spin orientation of the two interacting pa
ticles and thus has a different sign for the two cases. M
netic pairing in the spin-singlet state is only possible if t
real space interaction has sufficiently short-wavelength os
lations. Therefore, whenq0 is near the center of the Brillouin
zone magnetic pairing in the spin-singlet state is not poss
but is allowed in principle in the spin-triplet state for whic
the magnetic interaction has the opposite sign. Howe
magnetic pairing in this state has the disadvantage that
the exchange of spin fluctuations polarized along the dir
tion of the interacting spins, i.e., the longitudinal fluctuatio
contribute to the particle interaction. For a spin rotationa
invariant system, both the longitudinal and transverse s
fluctuations contribute to pairing only for a spin-singlet Co
per state. For the model considered in Refs .5–7 this ef
results in much weaker pairing on the border of ferroma
netism (q050) than antiferromagnetism withq05@p,p#.

Another disadvantage of being on the border of ferrom
netism is that for otherwise similar conditions the suppr
sion of Tc due to the self-interaction arising from the e
change of magnetic fluctuations is stronger than in
corresponding case on the border of antiferromagneti
This disadvantage can be mitigated in systems with str
magnetic anisotropy in that the effect of the transverse m
netic fluctuations on the self-interaction would be suppres
while the strength of the pairing interaction arising from t
longitudinal magnetic fluctuations need not be reduced. T
may apply in systems with strong spin-orbit interactions or
the spin-polarized state close to the border of ferrom
netism.

These arguments5,6 have stimulated a new search for ev
dence of superconductivity on the border of itinerant elect
ferromagnetism in cases where spin anisotropy is expecte
be pronounced, such as UGe2. This search has proved fruit
7-11
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P. MONTHOUX AND G. G. LONZARICH PHYSICAL REVIEW B69, 064517 ~2004!
ful because it led to the first observation of the coexistenc
superconductivity and itinerant electron ferromagnetism
UGe2 ~Ref. 10! and shortly thereafter in ZrZn2 ~Ref. 12! and
URhGe.11

In the preceding section and in Figs. 10 and 11 we g
simple arguments to explain how the pairing effect of t
interactions are strengthened by a tetragonal distortion in
model. However, the same effects also contribute to an
hanced self-interaction which acts to suppressTc . The rela-
tive importance of the pair-forming and pair-breaking effe
of the effective interaction cannot be inferred solely from t
above physical picture for the density channel and the an
gous arguments given in Ref. 7 for the magnetic chan
The numerical calculations show that for most cases con
ered here and in Ref. 7 the pair-forming effects dominate

A most striking manifestation of the interplay between t
pair-forming and pair-breaking tendency of both the dens
and magnetic interactions is the breakdown of the McMilla
style expression forTc . This was noted in Refs. 5–7 and h
been interpreted in Ref. 22 in terms of the important r
played by the incoherent part of the Green function which
ignored in the simplest treatments, but is included in
present and earlier work where the full momentum and
quency dependence of the self-energy is taken into acco

In this and our earlier work we deliberately avoided mo
eling a specific system since our main goal is to gain insig
into the nature of the pairing problem on the border o
density and spin instabilities. We have focussed on un
standing trends and certain general factors affecting the
bustness of the pairing mechanism. Even the simplest mo
considered display surprising sensitivity to factors such
the nature of the instability, the wave vectorq0 at which it
occurs, the total spin of the Cooper pair, details of the e
tronic and lattice structure as well as the form of the relev
response function. Therefore, one should exercise cautio
making quantitative comparisons between the results of
calculations and experiment.

In particular, our model may not apply to situations whe
there is a large, local in space, contribution to the dynam
response function. This would not contribute to the pair
interaction for anisotropic Cooper states, but could grea
enhance the self-interaction effect that is pair breaking. T
could for instance greatly increase the sensitivity ofTc to
lattice anisotropy as observed in CeMIn5 systems and to the
correlation length (1/k) characterizing the relevant respon
function as indirectly seen in the strong pressure depend
of Tc in, for example, CeIn3. Such a local contribution to the
magnetic response function has been observed in heavy
mion systems.23

The results of the calculations would be very sensitive
the particular choice of the wave vector dependence of
response function. In cases where it falls off inq faster than
in our model, the response is appreciably enhanced
smaller portion of the Brillouin zone and one would th
expect the effect of the density or magnetic interaction on
thermal, transport and superconducting properties to be
duced. This could explain the surprisingly weak effects
these properties of the CDW fluctuations in systems suc
NbSe2.24
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At first sight, our results seem to imply that anisotrop
forms of superconductivity should be a generic property
systems on the border of density and magnetic instabilitie
may seem surprising therefore that there are still relativ
few observations of this phenomenon. In addition to the s
sitivity of Tc to details of the system as discussed above
many cases the multiplicity of bands and lattice struct
may be unfavorable for pairing to such an extent th
quenched disorder may completely suppress supercondu
ity. An illustration of this latter point is the dramatic collaps
of the spin-triplet superconductingTc in Sr2RuO4 in the
presence of Al impurity concentrations as low as 0.1%25

Another factor that may explain the absence of supercond
tivity is the common occurrence of first order rather th
continuous magnetic as well as density instabilities. Our
sults show that in many cases one has to be close to
instability. A first order transition may make this region
the phase diagram inaccessible.

The results of the mean-field calculations presented h
and in our earlier papers show that robust pairing can oc
in both density and magnetic channels under suitable co
tions. Therefore, it would seem that one should not favor o
mechanism over another in the search for new example
high-temperature superconductivity. This conclusion m
turn out to be incorrect when corrections to the one-lo
mean-field calculations are taken into account. In contras
the conventional electron-phonon pairing theory where c
rections to the Eliashberg value ofTc are small, it has been
argued for many years26 that this may not be the case fo
other types of pairing mechanisms.

It has been shown that the mean-field approximation
the kind we have considered here qualitatively breaks do
in a half-filled Hubbard model in 2D which is a Mott insu
lator with long-range antiferromagnetic order at absol
zero. This breakdown has been interpreted in terms of
effect of thermal magnetic fluctuations in the renormaliz
classical regime.27 Thermal density fluctuations near Peire
CDW transition in 2D also lead to qualitative changes to
electronic spectrum that are not captured in the pres
model.28

Recent nonperturbative calculations have shown that
namical fluctuations even at the Gaussian level are suffic
to cause a breakdown of the present mean-field model
sufficiently smallk2.29 In this and our earlier work on the
magnetic interaction model, we had to solve the Eliashb
equations for the superconducting transition temperatureTc
for very many choices of model parameters. Even with
best numerical algorithms, this is only practically feasib
especially in 3D, if the overall scale of theTc’s obtained is
rather high~say of the order of 0.1t!. Our choice of the char-
actersitic density-fluctuation temperatureTDF52t/3 ~or
spin-fluctuation temperatureTSF52t/3 in our earlier work!
was therefore dictated by such considerations. We n
know29 that for these values ofTDF ~or TSF) and the range of
other model parameters considered here and in our ea
papers that vertex corrections are important. Our results
nevertheless useful if interpreted in the following way. W
expect, and have checked in a number of cases,5 that the
trends inTc /TDF ~or Tc /TSF) are weakly dependent on th
7-12
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DENSITY-FLUCTUATION-MEDIATED SUPERCONDUCTIVITY PHYSICAL REVIEW B69, 064517 ~2004!
absolute scale of the characteristic temperaturesTDF and
TSF . Therefore the conclusions drawn from our calculatio
are expected to remain qualitatively correct for smaller v
ues ofTDF or TSF and henceTc , values for which the mean
field theory of superconductivity is likely to be more acc
rate.

It has generally been believed that the most import
factor in determining the applicability of Migdal’s theorem
the form and parameters entering the relevant fluctua
spectrum. Therefore, a surprising finding was that in
range of model parameters studied in Ref. 29, the ve
corrections to the Eliashberg self-energy led to qualitativ
different electron spectral functions for a coupling to ma
netic and density fluctuations with identical fluctuation sp
tra. In those calculations, it was found that the correction
the Eliashberg theory enhanced the magnetic interaction
suppressed the density interaction. This effect can readil
seen at the two-loop level.

The contribution of the transverse magnetic fluctuatio
to the first order vertex correction is opposite in sign to t
of longitudinal ones and dominates. On the other hand, in
density channel one has essentially only ‘‘longitudinal’’ flu
tuations, which as in the magnetic case suppress the inte
tion at this level of approximation. It is also known that th
two fluctuation exchange processes lead to the enhance
of the spin-singlet magnetic pairing interaction.30 While de-
tailed calculations ofTc beyond the single-fluctuation ex
change approximation have yet to be carried out, the ab
findings suggest that spin-singlet magnetic pairing may t
out to be more robust than density pairing under otherw
equivalent conditions.
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APPENDIX

We consider quasiparticles on a cubic or tetragonal latt
We assume that the dominant interaction is in the den
channel and postulate the following low-energy effective
tion for the following quasiparticles:

Se f f5(
p,a

E
0

b

dtcp,a
† ~t!~]t1ep2m!cp,a~t!

1
I

N (
q
E

0

b

dtr↑~q,t!r↓~2q,t!

2
g2

2N (
q
E

0

b

dtE
0

b

dt8x~q,t2t8!r~q,t!r~2q,t8!

~A1!
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whereN is the number of allowed wave vectors in the Br
louin zone and the carrier densityrs(q,t) is given by

rs~q,t![(
p

cp1q,s
† ~t!cp,s~t! ~A2!

and r(q,t)5(srs(q,t). The quasiparticle dispersion rela
tion ep is defined in Eq.~2.1!, m denotes the chemical po
tential, b the inverse temperature,g2 the coupling constan
and cp,s

† and cp,s are Grassmann variables. We measu
temperatures, frequencies, and energies in the same u
Our effective density interaction consists of an induced p
the last term in Eq.~A1!, and a local on-site Coulomb repu
sion, the second term in Eq.~A1!.

The retarded generalized susceptibilityx(q,v) that de-
fines the effective interaction, Eq.~A1!, is defined in Eq.
~2.2!.

The density-fluctuation propagator on the imaginary ax
x(q,inn) is related to the imaginary part of the respon
function Imx(q,v), Eq. ~2.2!, via the spectral representatio

x~q,inn!52E
2`

1`dv

p

Imx~q,v!

inn2v
. ~A3!

To getx(q,inn) to decay as 1/nn
2 asnn→`, as it should, we

introduce a cutoffv0 and take Imx(q,v)50 for v>v0. A
natural choice for the cutoff isv05h(q̂)k0

2.
The Eliashberg equations for the critical temperatureTc in

the Matsubara representation reduce, for the effective ac
Eq. ~A1!, to

S~p,ivn!5g2
T

N (
Vn

(
k

x~p2k,ivn2 iVn!G~k,iVn!

~A4!

G~p,ivn!5
1

ivn2~ep2m!2S~p,ivn!
~A5!

L~T!F~p,ivn!5
T

N (
Vn

(
k

@g2x~p2k,ivn2 iVn!

2I #uG~k,iVn!u2F~k,iVn!

L~T!51→T5Tc ~A6!

whereS(p,ivn) is the quasiparticle self-energy,G(p,ivn)
the one-particle Green’s function andF(p,ivn) the anoma-
lous self-energy. The Hartree terms coming from the on-
Coulomb repulsion and induced density interaction ha
been absorbed in the definition of the chemical potent
which is adjusted to give an electron density ofn51.1. N is
the total number of allowed wave vectors in the Brillou
Zone. Equation~A6! has been written for spin-singlet Coo
per pairs. In the spin-triplet channel, the sign and coeffici
of the termg2x(p2k,ivn2 iVn) remains unchanged. Th
on-site Coulomb interactionI in Eq. ~A6! can be ignored
since in the for spin-triplet Cooper pairs, the amplitu
for the two particles to be on the same site simultaneou
vanishes.
7-13
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The momentum convolutions in Eqs.~A4! and ~A6! are
carried out with a fast Fourier Transform algorithm on
1283128 lattice for calculations in two dimensions and
348348 lattice for three-dimensional calculations. The fr
quency sums in both the self-energy and linearized gap e
tions are treated with the renormalization group technique
Pao and Bickers.31 We have kept between 8 and 16 Matsu
v

,

h

.L

e
P
-

et

n

06451
-
a-
f

-

ara frequencies at each stage of the renormalization pr
dure, starting with an initial temperatureT050.4t in two
dimensions andT050.6t in three dimensions and cutoffVc
'30t. The renormalization group acceleration technique
stricts one to a discrete set of temperaturesT0.T1
.T2 . . . . Thecritical temperature at whichL(T)51 in Eq.
~A6! is determined by linear interpolation.
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