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Fluxon modes in stacked Josephson junctions: The role of linear modes

S. Madsen* and N. F. Pedersen†
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Plasma modes in stacked Josephson junctions are easily understood analytically from a linearization of the
coupled sine-Gordon equation describing the system. We demonstrate here by numerical methods that the
analytically derived symmetries of the plasma modes are carried over to the fluxon modes. Using this fact we
are, with a few exceptions, able to predict and construct a full family of Josephson fluxon modes without using
numerical methods. The nature of the locking mechanism needed to create the technologically important
in-phase fluxon modes is discussed.
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I. INTRODUCTION

Fluxon dynamics in high-temperature cuprate superc
ductors is a topic of considerable interest in recent ye
One of the motivations has been the potential for appli
tions both for high-frequency electronics and for large-sc
devices, and here the BSCCO family of superconductors
been particularly investigated.1–7 In both cases the fluxon
dynamics of the Josephson fluxons are particularly impor
to understand. As examples we mention that for electro
applications understanding the mechanisms that lead to
phase fluxon motion in the different layers is essential, a
for power applications it is of utmost interest to understa
why the magnetic flux is pinned only at lower temperatu
in BSCCO material.

The dynamics of Josephson fluxons in a stack ofN
copper-oxide planes are governed by a system ofN coupled
sine-Gordon equations that are extremely nonlinear a
apart from the simplest cases, only understandable by
merical methods. For initial conditions with at most o
fluxon in each layer, we demonstrate below that a family
fluxon modes can be easily predicted from the symmetrie
the plasma modes, which are easily obtained analytic
from a linearization of the system ofN coupled sine-Gordon
equations. A few exceptions to the predictions exist and w
be discussed separately.

We note that for BSCCO material, well-defined samp
can be made and microwave measurements on both pla
and fluxon excitations can be done.8

The paper is organized in the following way. In Sec. II w
introduce the inductively coupled Josephson-junction mo
leading to the coupled sine-Gordon system. The plas
modes are derived analytically in Sec. III. In Sec. IV w
attempt to understand analytically for the simplest nontriv
case,N53, the nature of the locking mechanism leading
in-phase motion of the fluxons in the different layers. In S
V we show by numerical simulations thatN fluxon modes
with at most one fluxon in each layer can be predicted by
symmetries of theN plasma modes obtained analytically. F
nally a summary with the most important results conclud
the paper.

II. THEORY

The geometry of the system under consideration
sketched in Fig. 1.
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Assuming identical parameters for the layers, the eq
tions for a stack withN11 superconducting layers andN
insulating layers can be written in the compact form9

J5S21wxx , ~1!

where thei th element ofw,w i , is the gauge-invariant phas
difference across insulating layeri, and theN3N coupling
matrix S has the following form:

S5S 1 S

S 1 S

S 1 S

� � �

D , ~2!

with Sbeing the coupling parameter between the layers. T
vectorJ is the current in thez direction, and has the follow-
ing components:

Ji5w tt
i 1aw t

i1sinw i2g i , ~3!

where thea term is a dissipative term, andg i is the bia-
current in thei th junction in thez direction. We will in this
paper only consider the case whereg i56g j .

Here Eqs.~1!–~3! have been written in appropriately no
malized units. Spacex is normalized to the Josephson pe
etration depthlJ5A\/2em0Jcd8 and timet is normalized to
the inverse plasma frequencyv0

215A\C/2eJc, where the
symbols have their usual meaning. Using these units the c

FIG. 1. The geometry of the stacked junctions. Black layers
insulators.
©2004 The American Physical Society07-1
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stants for damping,a, bias current,g i , and layer-to-layer
coupling,S, all come out in dimensionless units. See Ref.
for details.

It is well known that the system can be solved analytica
for the simplest casea5g i5S50; a particularly important
solution is the familiar 2p kink, often referred to as a soli
ton:

w i~x,t !54 tan21 expS s i
x2v i t2x0

i

A12~v i !2 D , ~4!

wheres i561 and (1) corresponds to a soliton and (2) to
an antisoliton.v i is the soliton velocity andx0

i is the position
at t50. It is worth noting that for both low-Tc artificial
Josephson stacks and for high-Tc BSCCO-like systems real
istic values of the three parameters are small,9 i.e., 0<a
<0.2, 0<ug i u<1, and20.5,S<0. Due to this fact, per-
turbation theory often works well for these systems.11,12 For
the superconducting systems discussed here, a soliton
~Josephson! fluxon containing one quantum of magnetic flu
Correspondingly, an antisoliton corresponds to an antiflux

To completely define the dynamical state of the syste
Eqs. ~1! should be supplemented with boundary conditio
The boundary conditions depend on the geometry of the
tem; the geometry depicted in Fig. 1 is described by
following boundary conditions:

wx
i ~2L/2,t !5wx

i ~L/2,t !50, i 51, . . . ,N. ~5!

These boundary conditions are often referred to as reflec
because when a fluxon collides with the boundary, it can
reflected as an antifluxon.13

Other types of boundary conditions are also possible.
important example is the annular geometry giving rise
periodic boundary conditions. These are frequently used
numerical simulations, because they simulate somewh
Josephson junction of infinite length. In this work we alwa
use the reflective boundary conditions in our numeri
simulations, but assume infinite length in the analytical c
culations. It should also be noted that the annular geomet
also of experimental interest.14,15

III. THE PLASMA MODES

The plasma modes, or the small-signal limit, of the s
tem ~1! have been derived previously in Refs. 5 and 16–
We will here quickly review the derivation. Let us start b
assuming that we have no loss term, i.e.,a50, and thatw i

can be written in the following form:

w i5ai cos~kx2vt !1sin21g i . ~6!

Assuming that the amplitudesai!1, i.e.,w i is a small oscil-
lation around the equilibrium valuew0

i defined by w0
i

5sin21 g i, we can then expand the sinwi term in Ji , and
obtain the linerarized form of the full system, Eq.~1!:

Sa5
k2

v22A12g2
a[lma, ~7!
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where we have used the fact that (g i)25(g j )2[g2. The ex-
pressionA12g2 is called the~square of the! bias-dependen
plasma frequency, which is usually denoted byvp , i.e., vp

2

5A12g2.
Equation~7! is just a normal eigenvalue equation, and w

can find both the eigenvalueslm and the eigenvectorsam .
They are given by18

am
i 5A 2

N11
sinS i ~N2m11!p

N11 D ,

~8!

lm5122ScosS mp

N11D , m51, . . . ,N.

Using Eqs.~7! and ~8!, we getN dispersion relations

v25A12g21cm
2 k2, ~9!

wherecm is the group velocity of the mode, defined as

cm[ lim
k→`

dv

dk
5

1

A122ScosS mp

N11
D

. ~10!

We have now found that there areN different plasma modes
in the N stacked Josephson junctions, each satisfying a
ferent dispersion relation and each moving with a differe
velocity. We also know the exact form of the plasma osc
lations, which is trivial to write down. We will do this any
way, because we shall use it later:

Am
i ~x,t !5A 2

N11
sinS i ~N2m11!p

N11 D cos~kx2vt !.

~11!

IV. BUNCHED MODE OF THE 3 JUNCTION STACK

Before proceeding to the fluxon modes of the coup
long Josephson junction we will look into the mechanisms
bunching by considering the simplest nontrivial case,N
53. This in-phase mode is particularly interesting for ele
tronics applications such as generation of microwa
power.20 We will in the following take the bias currents to b
equal, i.e.,g15g25g3.

Let us first write down the equations explicitly:

J15
1

122S2
@wxx

1 2Swxx
2 1S2~wxx

3 2wxx
1 !#,

J25
1

122S2
@wxx

2 2S~wxx
1 1wxx

3 !#, ~12!

J35
1

122S2
@wxx

3 2Swxx
2 1S2~wxx

1 2wxx
3 !#.

It is easy to see from the symmetry of the equations tha
solution withw15w3 is possible, so we will try to find such
a solution. If the mode is bunched, there is not much diff
7-2



t

is

l
be
re

om

de
e

n

d
t
-

f
ill

ar

illa-

the
-
o
cay

w-
of

ent

n the
s to

n we
l dif-
with
for

ple,

to
be

e
xon
en
that

de
so
l

are

l
ted

FLUXON MODES IN STACKED JOSEPHSON . . . PHYSICAL REVIEW B69, 064507 ~2004!
ence between layers 1 and 2 either, which leads us to
following ansatzon the phases:

w15w1dw5w3,
~13!

w25w2kdw,

wherek is some, yet, unknown constant anddw represents a
~small! difference between the solutions. Introducing th
into Eqs.~12! yields the following equations:

J15
1

122S2
@~12S!wxx1~11kS!dwxx#,

J25
1

122S2
@~122S!wxx2~k12S!dwxx#. ~14!

Now by using that sin(w1dw)'sinw1dw cosw and calculat-
ing the differenceJ12J2, we get the following equation:

dw tt1adw t1cos~w!dw

5
1

~11k!~122S2!

3@Swxx1„112S1~11S!k…dwxx#. ~15!

This equation is coupled to an equation forw, and a genera
solution of these two coupled equations will probably
quite complicated. But we may look at the solution whe
sinw5wxx50. If the solution forw is some form of a 2p
kink, then this corresponds to looking at solutions away fr
the center, located atx5vt1x0. Doing this, we end up with
the following differential equation fordw:

dwjj2
1

v22
112S1~11S!k

~11k!~122S2!

~avdwj2dw!50, ~16!

where we have introduced the self-coordinatej defined by
j5x2vt2x0. If we restrict ourselves to the intervalj,0,
the solution of this type of equation has an exponential
caying term and an exponential growing term. The expon
tial growing term contradicts our assumption thatdw is small
and is discarded. The nature of the remaining term depe
on the magnitude ofv2. Thus, if

v2.
112S1~11S!k

~11k!~122S2!
, ~17!

we get an oscillating solution~discarding terms of secon
order and higher ina). From Ref. 21 we know that we ge
oscillations~Cherenkov radiation! above the lower character
istic velocity,c251/A12A2S, so by equating the left-hard
side and the right-hand side in Eq.~17! and insertingv
5c2, we can determinek, and we findk5A2. It is inter-
esting to note that we also getA2 when we take the ratio o
the amplitudes for the in-phase mode of the plasma osc
tions in layers 1 and 2, i.e.,A3

2/A3
15A2. Thus the relative

amplitudes of oscillating parts of the fluxon solution are c
06450
he

-
n-

ds

a-

-

ried over from the plasma oscillations, but the phase osc
tions are antiphase to lock the fluxons.22

Summarizing the characteristics of the bunched state,
amplitude in layer 2 is aboutA2 times bigger than the am
plitude in layers 1 and 3, and the oscillations in the tw
layers are antiphase and exponentially decaying with a de
constantk given by k5av/2(v22c2

2 ). Finally, the angular
frequencyv of the oscillations is given byv51/Av22c2

2 .
Explicitly, we have forj,0 andv.c2,

dw5ekj
„A1cos~vj!1A2 sin~vj!…, ~18!

whereA1 andA2 are some unknown constants. A plot sho
ing the above formula together with a numerical solution
the full system can be seen in Fig. 2.

It is also worth noting that almost the same argum
applies to the 2 junction stack~except we getk51). But
here it does not represent the bunched state, because i
bunched state of the 2 junction stack, which correspond
the ansatz~13!, the phases are exactly equal, i.e.,w15w2. So
the method in that case rather shows what happens whe
have the bunched state, and then introduces some smal
ference between the two layers. The system responds
antiphase oscillations trying to preserve fluxon locking,
example, ifw2 were trapped in a local minimum ofw1. Sev-
eral authors have investigated this scenario, see, for exam
Ref. 22.

The role of the oscillations discussed forN53 ~and partly
for N52) are generic for the locking mechanism leading
in-phase fluxon motion. We note that the method should
usable for the casesN.3 also, but for the lack of space, w
do not discuss this here. Nevertheless, the in-phase flu
motion for N53 shows the close correspondence betwe
the fluxon modes and the corresponding plasma modes
can be obtained analytically.

FIG. 2. Plot showing a numerical solution of the bunched mo
of the 3 junction stack which clearly shows the oscillating tail. Al
plotted is the analytical expression, Eq.~18!, and the exponentia
decay curve is shown separately. The constantsA1 and A2 have
been fitted numerically. Parameters in the numerical solution
a50.1, g520.48, v51.13, andS520.2. w3 is not shown, be-
cause it is indistinguishable fromw1. We see that the analytica
expression fits well away from the fluxon center, which is expec
from the assumptions made in the derivation of Eq.~18!.
7-3
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FIG. 3. Illustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction sta
unnatural biasing. The top plots are mode 1 (g152g2) and the bottom plots are mode 2 (g15g2). The rightmost figures are the trajectorie
of the fluxons. Parameters area50.1, S520.2, g520.2 ~top!, 20.44 ~bottom!, andv50.75 ~top!, 1.07 ~bottom!.
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We also note from Eq.~11! for theN53 system~with the
bias currents we have chosen in this section! that in addition
to the in-phase plasma oscillations there are two ot
plasma modes. Both of these are characterized by antip
plasma oscillations. As we will discuss in the following se
tion, this symmetry will suggest antiphase fluxon modes w
little interaction and no antiphase oscillating tails. This w
be demonstrated numerically in the following section.

V. NUMERICAL SIMULATIONS

In this section we will look numerically at a relationsh
between the plasma modes and the fluxon modes. We
first consider what we shall call ‘‘unnatural biasing.’’ This
the case whereg i can be6g j . We refer to this as ‘‘unnatu-
ral,’’ because it is hard, if not impossible, to realize this in
experimental setup forN.2. For N52 it has been done
experimentally, see Ref. 23. After this, we will focus o
‘‘natural biasing’’ (g i5g j ) and go into considerably mor
detail, because this is of greater practical interest. The res
presented in this section should be regarded as ‘‘experim
tal’’ numerical observations and not as exact results.

For the 2 junction stack, there are two plasma modes:~a!
the antiphase oscillations and~b! the in-phase oscillations
Following Ref. 23, there are, however, more fluxon mod
than two. If the bias current has the same direction in b
junctions, then there are~i! an in-phase fluxon-fluxon mod
with characteristic velocityc1 and ~ii ! an antiphase fluxon
antifluxon mode with characteristic velocityc2. If the bias
current has opposite directions in the two junctions~see
Refs. 23 and 19!, there are in addition~iii ! an in-phase
fluxon-antifluxon mode with characteristic velocityc2 and
~iv! an antiphase fluxon-fluxon mode with characteristic
locity c1. The latter is not discussed, but~i!–~iii ! are shown
in Figs. 3 and 4.

We will now investigate two types of mappings of the tw
06450
r
se

-
h

ill

lts
n-

s
h

-

plasma modes into the four fluxon modes. First, we cho
the bias current as it suits our needs and next we chang
the natural way of choosing the bias current. We will in t
two following sections also see what happens when the m
ping is generalized toN.2.

A. Unnatural biasing

For the 2 junction stack, we can map the two plas
modes into two in-phase fluxon modes. We thus state tha
antiphase plasma oscillations map into the in-phase flux
antifluxon mode~iii ! and the in-phase plasma oscillation
map into the in-phase fluxon-fluxon mode~i!. This requires
us to choose the bias current in different ways for the t
modes, i.e., in opposite directions for~iii ! and in same direc-
tions for ~i!. We will expect the velocities of the two mode
to be smaller than the characteristic velocity for each mo
We know this is true from Ref. 23. The mapping is illustrat
in Fig. 3. Note that the plasma oscillations in this and
other plots have been multiplied by 3 in order to show th
more clearly.

The above illustrates the mapping for the 2 junction sta
We will generalize this, so that a mode consists of at m
one fluxon~or antifluxon! in each junction, and the polarity
of the fluxons is determined by the relative phases of
plasma oscillations. To be more precise, we use the follow
scheme to generate the fluxon/antifluxon configuration
modem:29 ~a! am

i .0, junction i contains a fluxon;~b! am
i

,0, junction i contains an antifluxon;~c! am
i 50, junction i

has no 2p phase shift, and the velocity of the fluxons
modem should be in the interval@0,cm#, becausecm is the
maximum velocity of the mode.

Next, we choose the bias current such that it drives all
fluxons and antifluxons in the same direction. One may
that we ‘‘fit’’ the bias current to suit our need for in-phas
fluxon/antifluxon motion. The careful reader will here noti
7-4
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FIG. 4. Illustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction stack with
biasing. The top plots are mode 1 and the bottom plots are mode 2. The rightmost figures are the trajectories of the fluxons. Para
a50.1, S520.2, g520.3 ~top!, 20.44 ~bottom!, andv50.87 ~top!, 1.07 ~bottom!.
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that for the highest mode (m5N), where all solitons have
the same polarity, this unnatural way of choosing the b
current actually becomes the natural way. We will, nevert
less, refer to this way of choosing the bias current as unn
ral, although it is only unnatural inN21 modes out of a tota
of N modes.

As we have already seen, these kinds of modes are
sible in the 2 junction stack. We have carried this further, a
found solutions according to the above construction o
mode for a stack with up to seven junctions.

To search for a given mode, we have used a stand
procedure to solve the coupled non-linear equations~1!. The
equations have been discretized in thex direction by a sym-
metric second-order finite-difference method, and the~large
number of! resulting coupled ordinary differential equation
have then been solved with a fifth-order Runge-Ku
method with error estimation valid to fourth order. Th
boundary conditions have been taken to be of the reflec
type, Eq.~5!.

In order to find the modes, we constructed an init
fluxon configuration using the above scheme. We cho
some values ofa, ugu, L, andS and observed how the con
figuration evolved in time. If we did not find a satisfacto
steady-state solution, we then tried to change the bias cu
ugu, while holding a, L, and S fixed. We started with the
lowest-order mode, and a low value ofugu. From knownIV
curves of small stacks we know that the modes will proba
only exist for some finite range ofugu, and that the lowes
value of ugu where a mode is stable is increasing with t
mode number.13 This is why we begin searching for the low
est mode to get an idea of whatugu we can use to find the
mode. Also, the soliton velocity is increasing with the mo
number, so it is also fair to assume that we must increase
bias current to achieve this.
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We have been able to find all the modes, but with so
minor discrepancies, which we will now point out. For sta
sizes of more than three junctions, we have observed tha
modes with the highest mode numberm5N, the outer junc-
tions are switching to the McCumber curve~finite voltage!,
but everything else is as expected. We will comment more
these modes in the section with natural biasing. In addition
this, we have found four other modes, which also on
showed the expected behavior if some of the junctions
switched to finite voltage. We observed the following,
addition to the switchedm5N modes.

N m Expected Found

4 3 ↑↑↓↓ ↑MM↓
6 4 ↑↑↓↓↑↑ ↑M↓↓M↑
6 5 ↑↑↑↓↓↓ ↑↑MM↓↓
7 5 ↑↑↓↓↓↑↑ ↑↑M↓M↑↑

where↑ meansam
i .0, ↓ meansam

i ,0, andM means that
the junction has switched to the McCumber curve. Junct
number 1 is the leftmost arrow in each row, and the junct
number is increasing as we move to the right. The res
were calculated withS520.2 anda50.1, but we have also
tried other values, and believe it to be valid for a wide ran
of parameters.

We thus see that the scheme predicts, rather reliabl
number of different fluxon configurations.

B. Natural biasing

For the case of natural biasing, it was recently propose
Ref. 24 that there also, in this case, could exist a relations
between the linear modes and the fluxon modes of a Jos
7-5
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FIG. 5. The plasma oscillations and the soliton modes of the 3 junction stack with natural biasing. We see that the scheme al
through for the 3 junction stack. The middle parts have no fluxon in the middle layer, thus only the first and second layers are pres
trajectories plot. Parameters for the figures area50.1, S520.2, g520.2 ~top!, 20.375~middle!, 20.44~bottom!, andv50.79~top!, 0.89
~middle!, 1.12 ~bottom!.
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son stack. For a 2 junction stack it was noted that the a
tiphase plasma oscillations with characteristic velocityc2

could correspond to the mode~ii ! which has an antiphas
fluxon motion, and the in-phase plasma oscillations w
characteristic velocityc1 could correspond to the mode wit
in-phase fluxon motion~i!. The similarity of the plasma os
cillations and the soliton mode is illustrated in Fig. 4 for t
2 junction stack. For the antiphase mode in Fig. 4,
smaller peak is not a fluxon but the trace of the fluxon in
other junctions. This was also observed in Ref. 9.

We note that this behavior is expected if we assume
relationship proposed in Sec. V A. The relative polarities
the fluxons are the same as in Sec. V A, so the only dif
ence is the bias current. If the bias current is chosen to be
same in all junctions, then fluxons and antifluxons will
driven in different directions. It is therefore expected that
a 2 junction stack modem51 will translate into fluxons
moving in an antiphase pattern, i.e., we get the situation~ii !
discussed in the beginning of this section.

We will in this section try to elaborate on the propos
from Ref. 24 by searching for similar modes in stacks w
more than two junctions. The procedure is simply to see
there is a soliton mode which corresponds to a given pla
mode. The idea is to generalize the observation by Ref. 2
the 2 junction stack. To be more precise, there should ex
steady-state soliton configuration in modem, where the rela-
tive polarities are chosen according to the scheme in S
V A. We should expect that solitons should move in an an
phase manner with antisolitons, since the bias current dr
them in opposite directions. Finally, the velocityv of the
fluxons shoulda priori belong to the interval@0,cm#. We do
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not expect the upper bound to be exactly valid, because
known even for the one-junction case that, when exami
carefully, it does not hold exactly.

We have already seen in Fig. 4 that the 2 junction sta
behaves just as proposed. In Fig. 4 we have also includ
plot of the trajectories of the fluxons. These are found n
merically by determining the position of a fluxon in layeri
by finding the lowest value ofw t

i . In order to get the value a
good as possible, without too large a number ofx-mesh
points, we had to approximate the shape ofw t around the
minimum by a second-order polynomiad. Doing this at se
eral times and plotting the positions as a function of time,
end up with the rightmost plot in Fig. 4. It is easy to see t
fluxon motion of the two modes in this type of plot.

After being encouraged by the 2 junction stack we, na
rally, analyzed the 3 junction stack. The 3 junction stack h
been investigated by several groups,22,25–27 since it repre-
sents the lowest-order nontrivial system. For the expec
in-phase fluxon mode, the fluxon-plasma relations were
cussed perturbatively in the preceding section.

The results from the 3 junction stack is presented in F
5. This figure shows that the lowest mode~top! has the
plasma oscillations of layers 1 and 3 in-phase and laye
antiphase with layers 1 and 3. We have then found a sol
mode where layers 1 and 3 are moving together and lay
is moving in an antiphase manner with these two layers. T
magnitude of the velocity of the solitons is the same, name
v50.79 for the parameters used in the figure. This velocity
indeed in the range@0,c1# where, from Eq.~10!, c1'0.88
whenS520.2.
7-6
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FIG. 6. Top plots are the plasmaoscillations of the second mode of the 4 junction stack with natural biasing. The bottom-left p
the phasesf i of this mode and the bottom-right is for the trajectories of the solitons. Parameters for the plots area50.1, g520.35, S
520.2, and the velocity isv50.92.
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Although the present paper is considered as an empi
observation of a plasma mode–fluxon mode relationship,
note that a careful calculation of the trajectory in the t
right of Fig. 5 shows that thew2 velocity is slightly different
from the w1 and w3 velocity, and may even exceed thec1
velocity. Such subtleties~mostly not visible to the naked eye!
are sometimes observed, but beyond the empirical scop
the present paper.

The second mode of the 3 junction stack is seen as
middle plots of Fig. 5. Here the plasma oscillations tell
that we should look for a soliton mode where layers 1 an
are moving in antiphase and layer 2 contains no soliton. T
is indeed found, and we get the magnitude of the veloci
of the solitons in layers 1 and 3 to bev50.89, which is well
belowc2 whenS520.2, and therefore in the desired rang

The third mode predicted by the proposal was also fou
and it is the well known and very desirable in-phase mode
the 3 junction stack, which was also discussed in Sec. IV
is shown in the bottom plots of Fig. 5. We again find that t
mode conforms to the proposal, and that the velocity is in
desired range.

A very interesting question is now how well the propos
predicts the soliton modes when there are more than t
junctions. We have found that it can predict most of t
fluxon modes, but not all. We will here just explain the on
which deviate from the proposed behavior. It must be no
though, that in the nonpredicted modes the basic symme
of the plasma modes are still preserved.

For the 4 junction stack we find that the second mo
deviates from what is expected. From the plasma oscillati
we would expect that layers 1 and 4 should bunch and
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should layers 2 and 3. This is also true, but we would a
expect that layers 1 and 4 are antiphase with respect to la
2 and 3, which is not what we observed. Instead, we find t
all the layers are, more or less, bunched. Layers 1 and 4
moving together very closely and so are layers 2 and
which are also moving a little behind layers 1 and 4. A
solitons are moving with the same velocity, which is in t
desired interval@0,c2#. The mode can be seen in Fig. 6.

We have also found that the fourth mode of the 4 junct
stack deviates from the expected behavior, which was a
noted in Sec. V A. This is the mode which should be tota
bunched, but we find that the solitons in the two outer lay
have disappeared, and instead the layers have switched t
McCumber curve (w t;g/a). Although there is no soliton in
the outer layers, we still have an image in the outer lay
from the solitons in the middle layers. This means thatwx

i

looks more or less like there is a soliton in all the layers,
can be seen in Fig. 7. Interest in this mode is usually due
the fact that it can be used as a microwave oscillator, wh
we get pulses at the edges when the solitons arrive. Th
pulses depend on the voltage across the junction, whic
proportional tow t . Judging from Fig. 7, it should not matte
that much if the outer layers have switched to the McCum
curve, because the pulsed microwave output is of the s
order. For cases similar to Fig. 7 we have confirmed fr
numerical simulations of the available total power from
the junctions that this is indeed the case.28

We have summarized our results in Table I. For up to
junction stack we discuss in Table I the validity of our initi
proposal that it is possible to predict a family of fluxo
7-7
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FIG. 7. The top four plots arefx of the fourth mode of the 4 junction stack with natural biasing together with the plasma oscillatio
this mode. We see that it is hard to tell that there is no soliton present in the first and fourth layers fromfx . The bottom plot is the
trajectories of the ‘‘solitons.’’ Parameters for the plots area50.1, g520.54, S520.2, and the velocity isv51.17.
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modes by just looking at the analytical expression of
plasma modes. We note that we use a different short-h
notation than in the preceding section. We do this to emp
size the fluxon motion and not the fluxon polarity.

In this generic prediction scheme, an upward point
plasma excitation leads to a fluxon, a downward point
plasma excitation leads to an antifluxon, and zero-amplit
plasma excitation leads to no fluxon.

In Table I the horizontal direction gives the number
junctions in the stack,N, and the vertical direction gives th
order of the mode, with mode 1 always being the clean
tiphase mode and modeN being the in-phase mode~at least
for the plasma excitation!. In each square, the right-hand sid
shows the plasma-mode prediction and the left part sh
the fluxon-mode obtained from numerical simulations. T
06450
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g
g
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s
e

trivial case N51, which has both a plasma mode and
fluxon mode in agreement with the prediction, has be
omitted in Table I.

Moving horizontally, we see in the first set of squares t
predicted antiphase fluxon modes with every fluxon mov
in opposite direction to that in the neighboring layer. If w
follow the squares in the direction of the diagonal, t
plasma-mode prediction method suggests in-phase flu
modes. This is also found, except for higherN. Here the two
outer layer fluxons are replaced by a similar looking pu
~in-phase with the other fluxons! but on top of the voltage
corresponding to the McCumber curve. A different value
the layer-to-layer couplingS could presumably convert th
outer pulses back to clean fluxon pulses; however, as
cussed above, the predicted pulse geometry is preserved
7-8
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FLUXON MODES IN STACKED JOSEPHSON . . . PHYSICAL REVIEW B69, 064507 ~2004!
TABLE I. Summary of what we have found with natural biasing. An arrow means a fluxon, a line means no fluxon, a dashed lin
the layer is on the McCumber curve, a dashed arrow means McCumber with a clear image of a fluxon,3 means that something isnot
according to the proposal,M means that some layers have switched to the McCumber curve but otherwise okay, andA means that everything
is according to the proposal. The arrows to the left of the symbols,A, M and3, show the mode we have found, and the ones to the r
show the mode according to the proposal. A small horisontal shift between arrows implies that the fluxon distance~away from the
boundaries! in x space is greater thanlJ , and no spacing means that the distance is much smaller thanlJ .
064507-9
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TABLE I. ~Continued!.
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the change is not essential for the total power output from
in-phase pulses, as we have confirmed in numer
simulations.28

Even the squares with crosses, which indicate discrep
cies, show that the numerically obtained fluxon mode ha
majority of the features in common with the prediction fro
the linear plasma modes.

We note that the plasma modes and fluxon modes h
not only their geometry in common, but also their veloci
For the plasma modes this velocity is easily obtained ana
cally, or can be taken from the dispersion relation. Find
the same approximate velocity in the fluxon modes just c
firms the validity of our prediction.

We point out that our method should be applicable a
for more complicated modes, for example, with more th
06450
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n-
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ve
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one fluxon in each layer, or if the stack is subject to
in-plane magnetic field.

VI. CONCLUSION

We have considered a stack of inductively coupled
sephson junctions with particular emphasis on the sym
tries of the plasma modes, which can be derived analytica
We demonstrated empirically, by numerical methods, that
properties of the fluxon modes can be rather reliably p
dicted from the symmetries of the plasma modes. This
lowed us to numerically find a family of soliton modes, usin
only knowledge from the plasma modes. Other authors no
that the plasma modes enter the soliton modes in the form
Cherenkov radiation. As a side result, we were able to c
culate the decay profile of this radiation analytically.
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