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Fluxon modes in stacked Josephson junctions: The role of linear modes
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Plasma modes in stacked Josephson junctions are easily understood analytically from a linearization of the
coupled sine-Gordon equation describing the system. We demonstrate here by numerical methods that the
analytically derived symmetries of the plasma modes are carried over to the fluxon modes. Using this fact we
are, with a few exceptions, able to predict and construct a full family of Josephson fluxon modes without using
numerical methods. The nature of the locking mechanism needed to create the technologically important
in-phase fluxon modes is discussed.
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I. INTRODUCTION Assuming identical parameters for the layers, the equa-
tions for a stack withN+1 superconducting layers ardl

Fluxon dynamics in high-temperature cuprate superconinsulating layers can be written in the compact form
ductors is a topic of considerable interest in recent years.

One of the motivations has been the potential for applica- J=S"1¢, (1)
tions both for high-frequency electronics and for large-scale _

devices, and here the BSCCO family of superconductors hashere theith element ofe, ¢', is the gauge-invariant phase
been particularly investigatéd’ In both cases the fluxon difference across insulating layerand theNx N coupling
dynamics of the Josephson fluxons are particularly importantatrix S has the following form:

to understand. As examples we mention that for electronic

applications understanding the mechanisms that lead to in- 1 S

phase fluxon motion in the different layers is essential, and

for power applications it is of utmost interest to understand S— S 1S @)
why the magnetic flux is pinned only at lower temperatures S 1 S '

in BSCCO material.

The dynamics of Josephson fluxons in a stack Nof
copper-oxide planes are governed by a systerd obupled
sine-Gordon equations that are extremely nonlinear an
apart from the simplest cases, only understandable by n
merical methods. For initial conditions with at most one
fluxon in each layer, we demonstrate below that a family of o Y
fluxon modes can be easily predicted from the symmetries of J=eytaptsing —v, ()
the plasma modes, which are easily obtained analytically . o - _
from a linearization of the system &f coupled sine-Gordon Where thea term is a dissipative term, ang! is the bia-
equations. A few exceptions to the predictions exist and willcurrent in theith junction in thez direction. We will in this
be discussed separately. paper only consider the case where= + /.

We note that for BSCCO material, well-defined samples Here Eqgs(1)—(3) have been written in appropriately nor-
can be made and microwave measurements on both plasmzalized units. Space is normalized to the Josephson pen-
and fluxon excitations can be dohe. etration depth\ ;= \#/2euJ°d’ and timet is normalized to

The paper is organized in the following way. In Sec. Il we the inverse plasma frequen(zyglz JACI2e F¥, where the

introduce the inductively coupled Josephson-junction modelsympols have their usual meaning. Using these units the con-
leading to the coupled sine-Gordon system. The plasma

modes are derived analytically in Sec. Ill. In Sec. IV we
attempt to understand analytically for the simplest nontrivial
case,N=3, the nature of the locking mechanism leading to
in-phase motion of the fluxons in the different layers. In Sec.
V we show by numerical simulations that fluxon modes
with at most one fluxon in each layer can be predicted by the
symmetries of thé\ plasma modes obtained analytically. Fi-
nally a summary with the most important results concludes
the paper. \

d/vith Sbeing the coupling parameter between the layers. The
LY_ectorJ is the current in the direction, and has the follow-
Ing components:

Il. THEORY =12 =L

The geometry of the system under consideration is FIG. 1. The geometry of the stacked junctions. Black layers are
sketched in Fig. 1. insulators.
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stants for dampinge, bias current,y', and layer-to-layer where we have used the fact that \°= (y/)2=y?. The ex-
coupling,S, all come out in dimensionless units. See Ref. 10pressiony/1— y? is called the(square of thebias-dependent

for details. plasma frequency, which is usually denoteddyy, i.e., w,zj
Itis well known that the system can be solved analytically— /17— 2,
for the simplest case=y'=S=0; a particularly important Equation(7) is just a normal eigenvalue equation, and we
solution is the familiar zr kink, often referred to as a soli- can find both the eigenvalues, and the eigenvectora,,.
ton: They are given b¥?
i » X=v't=Xg 2 _[iN-mtL)7
o' (X,t)=4tan “exp o W , (4) an= N+lo|n NT1 ,

. ()
wheres'=+1 and (+) corresponds to a soliton ane-{ to mar
an antisolitons' is the soliton velocity anet; is the position An=1-2Scog 77 m=1....N.
at t=0. It is worth noting that for both low-; artificial . ) ) _
Josephson stacks and for hih-BSCCO-like systems real- USing Eas.(7) and(8), we getN dispersion relations
istic values of the three parameters are stakk., O<a w2=\/1——'y2+ Cfnkz, )

<0.2, 0<|y'|<1, and—0.5<S=<0. Due to this fact, per-
turbation theory often works well for these systethE For  wherec,, is the group velocity of the mode, defined as
the superconducting systems discussed here, a soliton is a

(Josephsonfluxon containing one quantum of magnetic flux. - do 1

Correspondingly, an antisoliton corresponds to an antifluxon. Cp= lim E: . (10
To completely define the dynamical state of the system, koo \/ mar

Egs. (1) should be supplemented with boundary conditions. 1_28005<m

The boundary conditions depend on the geometry of the sys- .
tem; the geometry depicted in Fig. 1 is described by théVe have now found that there akedifferent plasma modes

following boundary conditions: in the N stacked Josephson junctions, each satisfying a dif-
ferent dispersion relation and each moving with a different
e (—LIR2H)=¢l(L2t)=0, i=1,... N. (5)  velocity. We also know the exact form of the plasma oscil-

lations, which is trivial to write down. We will do this any-
These boundary conditions are often referred to as reflectivevay, because we shall use it later:
because when a fluxon collides with the boundary, it can be

reflected as an antifluxori. i 2 [i(N=-m+1)m

Other types of boundary conditions are also possible. An ~ Am(X1)= "\ 77Sin N+ 1 cogkx—wt).
important example is the annular geometry giving rise to (11)
periodic boundary conditions. These are frequently used in
numerical s_imul.ations,. per_:ause they simulate somewhat a IV. BUNCHED MODE OF THE 3 JUNCTION STACK
Josephson junction of infinite length. In this work we always
use the reflective boundary conditions in our numerical Before proceeding to the fluxon modes of the coupled
simulations, but assume infinite length in the analytical caldong Josephson junction we will look into the mechanisms of
culations. It should also be noted that the annular geometry isunching by considering the simplest nontrivial casé,

also of experimental intere&t® =3. This in-phase mode is particularly interesting for elec-
tronics applications such as generation of microwave
Ill. THE PLASMA MODES power?® We will in the following take the bias currents to be

equal, i.e..yt=y?= >
The plasma modes, or the small-signal limit, of the sys- et us first write down the equations explicitly:
tem (1) have been derived previously in Refs. 5 and 16-19.
We will here quickly review the derivation. Let us start by
assuming that we have no loss term, i®=0, and thaty' Jt [ @ Sixt (@ @]

- _ 2

can be written in the following form: 1-2s

i=al cogkx—wt)+sin 1y 6 1

? s w ) ’)/ © J2:1_282[¢>2<X_S(¢>1<x+ §D>3<x)]7 (12
Assuming that the amplitudes<1, i.e.,¢' is a small oscil-
lation around the equilibrium valuepy defined by ¢y 1
il y Y
=sin - v', we can then expand the sthterm inJ', and 3= 3 502 +2(ol — 031,
obtain the linerarized form of the full system, Ed): 1—252[%X Boct S0 €]
K2 It is easy to see from the symmetry of the equations that a
Sa=———a=\,a (77 solution with¢'=¢*® is possible, so we will try to find such
2 t

w?>—\1—y

a solution. If the mode is bunched, there is not much differ-
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ence between layers 1 and 2 either, which leads us to th

following ansatzon the phases:

or= o+ Sp= ¢

(13
©*=p— ko,

wherex is some, yet, unknown constant afid represents a

(smal) difference between the solutions. Introducing this

into Egs.(12) yields the following equations:

Jt=
1-28°

[(1=S)@uxt (1+ kS) Sy,

JZ

[(1_25)§Dxx_(K+28) 5(Pxx]- (14)

T 1-2%?

Now by using that sing+ é¢)~sin ¢+ d¢ cose and calculat-
ing the differencel®—J2, we get the following equation:

Oyt adpi+cog @) d¢

- 1
(14 k)(1-29Y)
X[Sey+ (1+25+(1+9)k)de,,]. (15

This equation is coupled to an equation fgrand a general
solution of these two coupled equations will probably be
quite complicated. But we may look at the solution where
sinp=¢,,=0. If the solution fore is some form of a z
kink, then this corresponds to looking at solutions away fro
the center, located at=vt+X,. Doing this, we end up with
the following differential equation fob:

1
_1+25+(149)«
(1+k)(1-2%P)

where we have introduced the self-coordindtdefined by
E=x—vt—Xp. If we restrict ourselves to the intervgk o0,
the solution of this type of equation has an exponential de

O~ (avép,— 6¢)=0, (16)

2

caying term and an exponential growing term. The exponen,

tial growing term contradicts our assumption tihatis small
and is discarded. The nature of the remaining term depen
on the magnitude of?. Thus, if

1425+ (1+9S)«
>—

02
(1+x)(1—2S?)

: (17)
we get an oscillating solutiofdiscarding terms of second
order and higher inr). From Ref. 21 we know that we get
oscillations(Cherenkov radiationabove the lower character-
istic velocity,c™=1/1/1— \/2S, so by equating the left-hard
side and the right-hand side in E¢L7) and insertingo
=c~, we can determina, and we find«= /2. It is inter-

PHYSICAL REVIEW &9, 064507 (2004

15

(|)2+21'E |

-5
-40

-20 -10
X

FIG. 2. Plot showing a numerical solution of the bunched mode
of the 3 junction stack which clearly shows the oscillating tail. Also
plotted is the analytical expression, E48), and the exponential
decay curve is shown separately. The consténtaand A, have
been fitted numerically. Parameters in the numerical solution are
a=0.1, y=—0.48,v=1.13, andS=—0.2. ¢° is not shown, be-
cause it is indistinguishable from®. We see that the analytical
expression fits well away from the fluxon center, which is expected
from the assumptions made in the derivation of B).

-30 0

ried over from the plasma oscillations, but the phase oscilla-
tions are antiphase to lock the fluxoffs.

Summarizing the characteristics of the bunched state, the
amplitude in layer 2 is abou{2 times bigger than the am-
plitude in layers 1 and 3, and the oscillations in the two
ayers are antiphase and exponentially decaying with a decay
constantk given by k= av/2(v?>—c?). Finally, the angular
frequencyw of the oscillations is given byw=1/\Jv2—c?.
Explicitly, we have foré<0 andv>c™,

Sp=e““(Ajcog wé) + A, sin(wé)), (18

whereA; andA, are some unknown constants. A plot show-
ing the above formula together with a numerical solution of
the full system can be seen in Fig. 2.
It is also worth noting that almost the same argument
applies to the 2 junction stadlexcept we getx=1). But
here it does not represent the bunched state, because in the
unched state of the 2 junction stack, which corresponds to

({)ﬁe ansat#13), the phases are exactly equal, i¢'= ¢2. So

the method in that case rather shows what happens when we
have the bunched state, and then introduces some small dif-
ference between the two layers. The system responds with
antiphase oscillations trying to preserve fluxon locking, for
example, ifp, were trapped in a local minimum gf;. Sev-
eral authors have investigated this scenario, see, for example,
Ref. 22.

The role of the oscillations discussed fér= 3 (and partly
for N=2) are generic for the locking mechanism leading to
in-phase fluxon motion. We note that the method should be
usable for the casd$>3 also, but for the lack of space, we

esting to note that we also gg¢2 when we take the ratio of do not discuss this here. Nevertheless, the in-phase fluxon
the amplitudes for the in-phase mode of the plasma oscillamotion for N=3 shows the close correspondence between

tions in layers 1 and 2, i.eA3/A}=\2. Thus the relative the fluxon modes and the corresponding plasma modes that
amplitudes of oscillating parts of the fluxon solution are car-can be obtained analytically.
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FIG. 3. lllustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction stack with
unnatural biasing. The top plots are modeyt£ — »?) and the bottom plots are mode 2= 7). The rightmost figures are the trajectories
of the fluxons. Parameters ane=0.1, S=—0.2, y=—0.2 (top), —0.44 (bottom), andv =0.75 (top), 1.07 (bottom).

We also note from Eq11) for the N=3 system(with the = plasma modes into the four fluxon modes. First, we choose
bias currents we have chosen in this sedtitvat in addition  the bias current as it suits our needs and next we change to
to the in-phase plasma oscillations there are two othethe natural way of choosing the bias current. We will in the
plasma modes. Both of these are characterized by antiphass&o following sections also see what happens when the map-
plasma oscillations. As we will discuss in the following sec- ping is generalized ttN>2.
tion, this symmetry will suggest antiphase fluxon modes with
little interaction and no antiphase oscillating tails. This will A. Unnatural biasing

be demonstrated numerically in the following section. i i
For the 2 junction stack, we can map the two plasma

modes into two in-phase fluxon modes. We thus state that the
antiphase plasma oscillations map into the in-phase fluxon-
In this section we will look numerically at a relationship antifluxon mode(iii) and the in-phase plasma oscillations
between the plasma modes and the fluxon modes. We wilhap into the in-phase fluxon-fluxon mode¢. This requires
first consider what we shall call “unnatural biasing.” This is Us to choose the bias current in different ways for the two
the case where' can be* . We refer to this as “unnatu- Mmodes, i.e., in opposite directions f@ii ) and in same direc-
ral,” because it is hard, if not impossible, to realize this in antions for (i). We will expect the velocities of the two modes
experimental setup foN>2. For N=2 it has been done to be smaller than the characteristic velocity for each mode.
experimentally, see Ref. 23. After this, we will focus on We know this is true from Ref. 23. The mapping is illustrated
“natural biasing” (y' =v!) and go into considerably more in Fig. 3. Note that the plasma oscillations in this and all
detail, because this is of greater practical interest. The resulgiher plots have been multiplied by 3 in order to show them
presented in this section should be regarded as “experimernore clearly.
tal” numerical observations and not as exact results. The above illustrates the mapping for the 2 junction stack.
For the 2 junction stack, there are two plasma mod¢as: We will generalize this, so that a mode consists of at most
the antiphase oscillations ar{tl) the in-phase oscillations. ©one fluxon(or antifluxon in each junction, and the polarity
Following Ref. 23, there are, however, more fluxon modesf the fluxons is determined by the relative phases of the
than two. If the bias current has the same direction in bottplasma oscillations. To be more precise, we use the following
junctions, then there ang@) an in-phase fluxon-fluxon mode scheme to generate the fluxon/antifluxon configuration in
with characteristic velocitg™ and (i) an antiphase fluxon- modem:?® (a) aj,>0, junctioni contains a fluxon{b) a,
antifluxon mode with characteristic velocity . If the bias <0, junctioni contains an antifluxon(c) a;,=0, junctioni
current has opposite directions in the two junctidisge has no 2r phase shift, and the velocity of the fluxons of
Refs. 23 and 1P there are in additior(iii) an in-phase modem should be in the intervdlO.c,,], because,, is the
fluxon-antifluxon mode with characteristic velocity and  maximum velocity of the mode.
(iv) an antiphase fluxon-fluxon mode with characteristic ve- Next, we choose the bias current such that it drives all the
locity ¢*. The latter is not discussed, biit—(iii) are shown fluxons and antifluxons in the same direction. One may say
in Figs. 3 and 4. that we “fit” the bias current to suit our need for in-phase
We will now investigate two types of mappings of the two fluxon/antifluxon motion. The careful reader will here notice

V. NUMERICAL SIMULATIONS
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FIG. 4. lllustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction stack with natural
biasing. The top plots are mode 1 and the bottom plots are mode 2. The rightmost figures are the trajectories of the fluxons. Parameters are
a=0.1, S=—-0.2, y=—0.3 (top), —0.44 (bottom), andv =0.87 (top), 1.07 (bottom).

that for the highest moder(=N), where all solitons have We have been able to find all the modes, but with some

the same polarity, this unnatural way of choosing the biagninor discrepancies, which we will now point out. For stack

current actually becomes the natural way. We will, neverthesizes of more than three junctions, we have observed that the

less, refer to this way of choosing the bias current as unnatunodes with the highest mode number=N, the outer junc-

ral, although it is only unnatural iN—1 modes out of a total tions are switching to the McCumber curifénite voltage,

of N modes. but everything else is as expected. We will comment more on
As we have already seen, these kinds of modes are pogj_ese modes in the section with natural biasing. In addition to

sible in the 2 junction stack. We have carried this further, andhiS: We have found four other modes, which also only

found solutions according to the above construction of @hoWed the expected behavior if some of the junctions had

mode for a stack with up to seven junctions. swn_c_hed to f|n|te_voltage. We observed the following, in
To search for a given mode, we have used a :standarﬁdd't'On to the switchedh=N modes.

procedure to solve the coupled non-linear equati@nsThe

equations have been discretized in thdirection by a sym- m Expected Found
metric second-order finite-difference method, and fhege 4 3 111 TMM |

number of resulting coupled ordinary differential equations ¢ 4 ML TMLIMT
have then been solved with a fifth-order Runge-Kuttag 5 TTTLLL TTMM |
method with error estimation valid to fourth order. The 5 MLt TIMIMTT

boundary conditions have been taken to be of the reflective
type, Eq.(5). . _
In order to find the modes, we constructed an initialwhere| meansa;,>0, | meansa,,<0, andM means that
fluxon configuration using the above scheme. We choos#e junction has switched to the McCumber curve. Junction
some values of, |y|, L, andS and observed how the con- number 1 is the leftmost arrow in each row, and the junction
figuration evolved in time. If we did not find a satisfactory humber is increasing as we move to the right. The results
steady-state solution, we then tried to change the bias currenere calculated witts= —0.2 anda= 0.1, but we have also
|7, while holding &, L, and S fixed. We started with the tried other values, and believe it to be valid for a wide range
lowest-order mode, and a low value |of. From knownlvy  of parameters.
curves of small stacks we know that the modes will probably We thus see that the scheme predicts, rather reliably, a
only exist for some finite range dfy|, and that the lowest nhumber of different fluxon configurations.
value of|y| where a mode is stable is increasing with the
mode numbet?® This is why we begin searching for the low-
est mode to get an idea of whiag| we can use to find the
mode. Also, the soliton velocity is increasing with the mode  For the case of natural biasing, it was recently proposed in
number, so it is also fair to assume that we must increase thRef. 24 that there also, in this case, could exist a relationship
bias current to achieve this. between the linear modes and the fluxon modes of a Joseph-

B. Natural biasing
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FIG. 5. The plasma oscillations and the soliton modes of the 3 junction stack with natural biasing. We see that the scheme also carries
through for the 3 junction stack. The middle parts have no fluxon in the middle layer, thus only the first and second layers are present in the
trajectories plot. Parameters for the figures@are0.1, S=—0.2, y= —0.2(top), —0.375(middle), —0.44(bottom), andv = 0.79(top), 0.89
(middle), 1.12 (bottom).

son stack. Fioa 2 junction stack it was noted that the an- not expect the upper bound to be exactly valid, because it is
tiphase plasma oscillations with characteristic velodfy = known even for the one-junction case that, when examined
could correspond to the modé&) which has an antiphase carefully, it does not hold exactly.

fluxon motion, and the in-phase plasma oscillations with We have already seen in Fig. 4 that the 2 junction stack

characteristic velocitg ™ could correspond to the mode with pehaves just as proposed. In Fig. 4 we have also included a
in-phase fluxon motiorti). The similarity of the plasma o0s- plot of the trajectories of the fluxons. These are found nu-

cillations and the soliton mode is illustrated in Fig. 4 for the merically by determining the position of a fluxon in layier

2 junction stack. For the antiphase mode in Fig. 4, th&yy finging the lowest value af! . In order to get the value as
smalle_r pegk is not_afluxon but the trace_of the fluxon in thegood as possible, without too large a numberxehesh
other junctions. This was also observed in Ref. 9.

We note that this behavior is expected if we assume thgomts, we had to approximate the shapegpfaround the

relationship proposed in Sec. V A. The relative polarities of ninimum by a secqnd-order p_o_lynom|ad. DO'T‘Q thls_at Sev-
the fluxons are the same as in Sec. V A, so the only di1‘fer—eral times and plqttmg the posmon; asa fu_nctlon of time, we
’ d up with the rightmost plot in Fig. 4. It is easy to see the

ence is the bias current. If the bias current is chosen to be th . . .
same in all junctions, then fluxons and antifluxons will be fluxon motion of the two modes in this type of plot.
driven in different directions. It is therefore expected that for  After being encouraged by the 2 junction stack we, natu-
a 2 junction stack moden=1 will translate into fluxons rally, analyzed the 3 junction stack. Th5e237]gnct|qn stack has
moving in an antiphase pattern, i.e., we get the situaion Peen investigated by several grodps> >’ since it repre-
discussed in the beginning of this section. sents the lowest-order nontrivial system. For the expected
We will in this section try to elaborate on the proposalin-phase fluxon mode, the fluxon-plasma relations were dis-
from Ref. 24 by searching for similar modes in stacks withcussed perturbatively in the preceding section.
more than two junctions. The procedure is simply to see if The results from the 3 junction stack is presented in Fig.
there is a soliton mode which corresponds to a given plasma. This figure shows that the lowest mod®p) has the
mode. The idea is to generalize the observation by Ref. 24 gflasma oscillations of layers 1 and 3 in-phase and layer 2
the 2 junction stack. To be more precise, there should exist antiphase with layers 1 and 3. We have then found a soliton
steady-state soliton configuration in moglewhere the rela- mode where layers 1 and 3 are moving together and layer 2
tive polarities are chosen according to the scheme in Seés moving in an antiphase manner with these two layers. The
V A. We should expect that solitons should move in an anti-magnitude of the velocity of the solitons is the same, namely;
phase manner with antisolitons, since the bias current drives=0.79 for the parameters used in the figure. This velocity is
them in opposite directions. Finally, the velocity of the  indeed in the rang€0,c,] where, from Eq.(10), c,~0.88
fluxons shoulda priori belong to the intervalO,c,]. We do  whenS=—-0.2.
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FIG. 6. Top plots are the plasmaoscillations of the second mode of the 4 junction stack with natural biasing. The bottom-left plot is for
the phasesp' of this mode and the bottom-right is for the trajectories of the solitons. Parameters for the plats &g, y=—0.35, S
=—0.2, and the velocity i =0.92.

Although the present paper is considered as an empiricalhould layers 2 and 3. This is also true, but we would also
observation of a plasma mode—fluxon mode relationship, wexpect that layers 1 and 4 are antiphase with respect to layers
note that a careful calculation of the trajectory in the top2 and 3, which is not what we observed. Instead, we find that
right of Fig. 5 shows that the? velocity is slightly different  all the layers are, more or less, bunched. Layers 1 and 4 are
from the ¢* and ¢* velocity, and may even exceed teg  moving together very closely and so are layers 2 and 3,
velocity. Such subtletiegnostly not visible to the naked eye \which are also moving a little behind layers 1 and 4. All
are sometimes observed, but beyond the empirical scope @bjitons are moving with the same velocity, which is in the
the present paper. o _ desired intervaj0,c,]. The mode can be seen in Fig. 6.

_The second mode of the 3 junction stack is seen as the e have also found that the fourth mode of the 4 junction
middle plots of Fig. 5. Here the plasma oscillations tell Usg;o i deviates from the expected behavior, which was also
that we should look for a soliton mode where layers 1 and 3,0 in Sec. v A. This is the mode which should be totally

fisr?n?ggén?O'Snzmg?ga\slveean; I;ie%icﬁﬂtaégso?c:hseO“Vt:Ig'C?t_g%unched, but we find that the solitons in the two outer layers
' 9 9 have disappeared, and instead the layers have switched to the

of the solitons in layers 1 and 3 to be=0.89, which is well McCumb — e Althouah th . liton i
belowc, whenS=—0.2, and therefore in the desired range. cCumber curve g, Y @). ougn there IS no Sotiton In
the outer layers, we still have an image in the outer layers

The third mode predicted by the proposal was also found g ) ) ) -
and it is the well known and very desirable in-phase mode offom the solitons in the middle layers. This means that
the 3 junction stack, which was also discussed in Sec. IV. [{o0ks more or less like there is a soliton in all the layers, as
is shown in the bottom plots of Fig. 5. We again find that thecan be seen in Fig. 7. Interest in this mode is usually due to
mode conforms to the proposal, and that the velocity is in théhe fact that it can be used as a microwave oscillator, where
desired range. we get pulses at the edges when the solitons arrive. These

A very interesting question is now how well the proposalpulses depend on the voltage across the junction, which is
predicts the soliton modes when there are more than thrgeroportional tog, . Judging from Fig. 7, it should not matter
junctions. We have found that it can predict most of thethat much if the outer layers have switched to the McCumber
fluxon modes, but not all. We will here just explain the onescurve, because the pulsed microwave output is of the same
which deviate from the proposed behavior. It must be notedorder. For cases similar to Fig. 7 we have confirmed from
though, that in the nonpredicted modes the basic symmetriesumerical simulations of the available total power from all
of the plasma modes are still preserved. the junctions that this is indeed the c&8e.

For the 4 junction stack we find that the second mode We have summarized our results in Table I. For up to a 7
deviates from what is expected. From the plasma oscillationginction stack we discuss in Table | the validity of our initial
we would expect that layers 1 and 4 should bunch and sproposal that it is possible to predict a family of fluxon
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FIG. 7. The top four plots are, of the fourth mode of the 4 junction stack with natural biasing together with the plasma oscillations of
this mode. We see that it is hard to tell that there is no soliton present in the first and fourth layerg,frohine bottom plot is the
trajectories of the “solitons.” Parameters for the plots are 0.1, y=—0.54, S=—0.2, and the velocity is=1.17.

modes by just looking at the analytical expression of thetrivial case N=1, which has both a plasma mode and a
plasma modes. We note that we use a different short-hanituxon mode in agreement with the prediction, has been
notation than in the preceding section. We do this to emphasmitted in Table I.
size the fluxon motion and not the fluxon polarity. Moving horizontally, we see in the first set of squares the
In this generic prediction scheme, an upward pointingpredicted antiphase fluxon modes with every fluxon moving
plasma excitation leads to a fluxon, a downward pointingin opposite direction to that in the neighboring layer. If we
plasma excitation leads to an antifluxon, and zero-amplitudéollow the squares in the direction of the diagonal, the
plasma excitation leads to no fluxon. plasma-mode prediction method suggests in-phase fluxon
In Table | the horizontal direction gives the number of modes. This is also found, except for higirHere the two
junctions in the stackiN, and the vertical direction gives the outer layer fluxons are replaced by a similar looking pulse
order of the mode, with mode 1 always being the clean antin-phase with the other fluxoph$ut on top of the voltage
tiphase mode and mod¢ being the in-phase modat least  corresponding to the McCumber curve. A different value of
for the plasma excitationln each square, the right-hand side the layer-to-layer coupling could presumably convert the
shows the plasma-mode prediction and the left part showsuter pulses back to clean fluxon pulses; however, as dis-
the fluxon-mode obtained from numerical simulations. Thecussed above, the predicted pulse geometry is preserved, and
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TABLE I. Summary of what we have found with natural biasing. An arrow means a fluxon, a line means no fluxon, a dashed line means
the layer is on the McCumber curve, a dashed arrow means McCumber with a clear image of aXluxaans that something ot
according to the proposall means that some layers have switched to the McCumber curve but otherwise okaynaads that everything
is according to the proposal. The arrows to the left of the symhols] and X, show the mode we have found, and the ones to the right
show the mode according to the proposal. A small horisontal shift between arrows implies that the fluxon destamycérom the
boundariesin x space is greater than;, and no spacing means that the distance is much smallemthan

Stack Size 2 3 4 5 6 7
— —
— —
— — — —
— — — —
— - — — — —
— — — - — —
Mode 1 Vv — Vv « Vv - Vv - Vv — v «
— — — — — —
— — — — — —
— — — —
— — — —
— —
— —
— —
— —
— — — —
— — — —
— — — — - —
— — — — — —
Mode 2 Vv Y - X Y x - v =
— — — — — —
— — — — — —_
— — — —
— — — —
— —
— —
— —_—
— -—
— — — —
- — — —_
— — - —_ —_ —
— — - —
Mode 3 — \/ —_ \/ — X — X — X —_
— — — —
— — — — — —
— — — —
— — —_ —
—_ —
— —
— —
— —_
— — —_ —_
--> — — —
— — — —
— — — —
Mode 4 M Y - X - Vv =
— — - —
— — — —
-—3 — — —
- — - —
— —
— —
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TABLE I. (Continued.

Stack Size 2 3 4 5 6 7
— —
e —
-—3 — — —
— —
— — — —
— —
Mode 5 — M — \/ — X e
— —
— — — —
— —
--3 — — —
— —
— —
- —
-3 —
— ¢
— —
- —
— —
Mode 6 M ... M -
— —
— —
— —
— —
- —
--3 —
--3 —
— -
— —
Mode 7 - M _
— —
— —
-3 —

the change is not essential for the total power output from thene fluxon in each layer, or if the stack is subject to an
in-phase pulses, as we have confirmed in numericain-plane magnetic field.
simulations?®
Even the squares with crosses, which indicate discrepan- VI. CONCLUSION
cies, show that the numerically obtained fluxon mode has @ \\,x have considered a stack of inductively coupled Jo-

majqrity of the features in common with the prediction from sephson junctions with particular emphasis on the symme-
the linear plasma modes. tries of the plasma modes, which can be derived analytically.

We note that the plasma modes and fluxon modes have gemonstrated empirically, by numerical methods, that the
not only their geometry in common, but also their velocity. properties of the fluxon modes can be rather reliably pre-
For the plasma modes this velocity is easily obtained analytidicted from the symmetries of the plasma modes. This al-
cally, or can be taken from the dispersion relation. Findinglowed us to numerically find a family of soliton modes, using
the same approximate velocity in the fluxon modes just conenly knowledge from the plasma modes. Other authors noted
firms the validity of our prediction. that the plasma modes enter the soliton modes in the form of

We point out that our method should be applicable alsadCherenkov radiation. As a side result, we were able to cal-
for more complicated modes, for example, with more thanculate the decay profile of this radiation analytically.
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