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Creation of classical and quantum fluxons by a current dipole in a long Josephson junction
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We study static and dynamical properties of fluxons in a long annular Josephson junction~JJ! with a current
injected at one point and collected back at a close point. Uniformly distributed dc bias current with densityg
is applied too. We demonstrate that, in the limit of the infinitely small size of the current dipole, the critical
value ofg, above which static phase distributions do not exist, that was recently found~in the Fraunhofer’s
analytical form! for the annular JJ with the length much smaller than the Josephson penetration length is valid
irrespective of the junction’s length, including infinitely long JJ’s. In a long annular JJ, the dipole generates free
fluxon~s! if g exceeds the critical value. For long JJ’s, we also find another critical value~in an analytical form
too!, which is always slightly smaller than the Fraunhofer value, except for points where the dipole strength is
2pN with integerN, and both values vanish. The static phase configuration which yields the new critical value
is based on an unstable fluxon-antifluxon bound state, therefore it will probably not manifest itself in the usual
~classical! regime. However, it provides for a dominatinginstantonconfiguration for tunnel birth of a free
fluxon, hence it is expected to determine a quantum-birth threshold for fluxons at ultralow temperatures. We
also consider the interaction of a free fluxon with the complex consisting of the current dipole and antifluxon
pinned by it. A condition for suppression of the net interaction force, which makes the long JJ nearly homo-
geneous for the free fluxon, is obtained in an analytical form. The analytical results are compared with
numerical simulations. The analysis presented in the paper is relevant to the recently proposed new experi-
mental technique of inserting fluxons into annular Josephson junctions.

DOI: 10.1103/PhysRevB.69.064502 PACS number~s!: 74.50.1r, 85.25.2j
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I. INTRODUCTION

Long Josephson junctions~JJ’s! are well known to be a
unique physical system that allows one to experiment
study dynamics of topological solitons in the form of fluxo
~alias Josephson vortices, each carrying a magnetic-
quantumF0).1,2 For both experimental and theoretical stu
ies, the most convenient object is anannular ~circular! long
JJ, in which the net number of initially trapped fluxons
conserved, hence new solitons may only be created
fluxon-antifluxon pairs.3,4 Fluxon dynamics in the annula
junctions manifests itself in the clearest way, as it is n
complicated by reflections from boundaries. The interes
annular long JJ’s stems from the great potential they offer
fundamental studies of dynamical properties of solitons, s
as, e.g., emission of the Cherenkov radiation.5,6 A challeng-
ing problem for the theory is quantum soliton dynamics
long JJ’s, which has been recently observed in experimen
ultralow temperatures.7 On the other hand, annular JJ’s off
applications in cryoelectronics, such as sources of highly
herent microwave radiation4 and radiation detectors.8 Be-
sides that, long annular JJ’s have a potential for design
fluxon qubits9,10 and fluxon ratchets.11,12

A key problem in experiments with annular JJ’s is t
trapping of a desired number of fluxons. The only previou
known method which made it possible to do that in a co
trollable way is rather complicated, relying upon the use o
scanning electron~or laser! microscope.13 Other studies re-
lied on fluxon trapping in the course of cooling the syste
below the critical temperatureTc of the superconducting
0163-1829/2004/69~6!/064502~8!/$22.50 69 0645
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electrodes.3–6,14,15 However, the latter technique does n
provide for reproducible results, and requires heating of
junction to high temperatures. Moreover, trapped fluxo
generated in such a manner get often pinned by Abriko
vortices, which may be trapped in the electrodes in
course of cooling belowTc .

In a recent work,16 a new method to insert fluxons int
annular JJ’s was proposed and demonstrated experimen
and numerically. It is based on injecting a relatively lar
currentI into the junction locally; the current flows from th
injection point into the superconducting electrode and a
across the Josephson barrier, and is collected back at an
point of the same electrode, which is separated from
injection spot by a small distanceD. The schematic view of
such JJ is given in Fig. 1. In the following, we use the n
malized notation for the distance between the current in
tors, d5D/lJ , and the current,«5I /lJ , wherelJ is the
Josephson penetration depth.

In this setting, one is actually dealing with acurrent di-
pole, the total current traversing the Josephson barrier be
zero. The dipole gives rise to a local magnetic fluxF in the
region between the injection and collection points. If t
magnitude of this pinned flux attains the flux quantumF0, it
may become energetically favorable~in the presence of an
additional dc bias current uniformly distributed along t
junction! to have the pinned flux compensated by a nega
flux 2F0. In fact, this implies that a fluxon-antifluxon pa
is created in the annular JJ, so that the antifluxon carrying
flux 2F0 is pinned by the current dipole, while elsewhere
the long junction there appears a free fluxon carrying
©2004 The American Physical Society02-1
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compensating fluxF0. Further, if F exceedsNF0, thenN
free fluxons are expected to appear in the annular JJ.

One objective of this work is to theoretically analyze t
above problem and find a critical condition for the generat
of free fluxons by the current dipole in a long JJ biased
the uniformly distributed dc bias currentg. Results will be
obtained in an exact analytical form~in Sec. II! for the case
when the dipole strengthk[«d is finite, while d→0 and
«→`. Two different solutions will be obtained. One of the
yields a critical value ofg which coincides with the Fraun
hofer expression~see below!, which was recently found as
condition for the transition into a resistive state in a sh
annular JJ, whose full length was assumed to be m
smaller thanlJ .17 In our solution, the length of the ring
junction may be arbitrarily large. Thus, we demonstrate t
the Fraunhofer formula for the critical bias current is auni-
versalone, which is valid irrespective of the dipole streng
and junction’s length.

The second analytical solution reported in this pape
exact only for long junctions. It yields the critical value ofg
which is slightly smaller than the one given by the first s
lution. However, the configuration on which the second
lution is based~essentially, it is a fluxon-antifluxon boun
state! is, plausibly, always unstable. For this reason, the s
ond solution may be irrelevant to the experimental techni
outlined above in the usual~classical! regime of operation.
However, precisely this second solution defines
instanton18 which controls the tunneling rate for quantu
birth of a free fluxon, in the same long JJ, at ultralow te
peratures. The instanton predicts that the exponentially s
factor, which limits the quantum-birth rate, will scale as
square root of that for the long uniform junction, i.e., t
quantum yield is strongly enhanced by the current dipo
Therefore, the second solution is physically meaningful t
The analytical predictions will be compared with results
direct numerical simulations of the critical condition~in the
classical situation!.

A free fluxon moving in the annular JJ will periodicall
collide with the antifluxon pinned by the current dipole a
the dipole itself. An important issue is to minimize intera
tion between the free fluxon and the dipole-antifluxon co
plex, so that the junction would seem as uniform as poss
for the moving soliton. In Sec. III, we demonstrate, in

FIG. 1. A sketch of the annular Josephson junction with a c
rent dipole formed by local injection of currentI into one of the
superconducting electrodes.
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approximate analytical form, that, keeping the dipole sized
and current« finite ~or proceeding to the limit of the point
wise dipole!, one may indeed select their values so that
interaction is strongly suppressed. This prediction, which
immediate relevance to the experiment, is also compa
with direct numerical simulations.

II. CRITICAL CONDITIONS FOR GENERATION OF FREE
CLASSICAL AND QUANTUM FLUXONS

A. General considerations

The system outlined above is described by the follow
perturbed sine-Gordon~sG! equation for the superconductin
phase differencef, which is written in the standard
notation1,2

f tt2fxx1sinf52af t2g2«@d~x2d/2!2d~x1d/2!#,
~1!

whered is the Dirac delta function@it is used in Eq.~1! due
to the assumption, which corresponds to the experime
situation, that the injection and collection leads have th
width much smaller thanlJ], g is the density of the uni-
formly distributed dc bias current, anda is a dissipative
constant. In the limit of the pointlike dipole (d→0), the
limiting form of Eq. ~1! is

f tt2fxx1sinf52af t2g1kd8~x!, ~2!

wherek[«d is the dipole strength defined above, andd8 is
the derivative of the delta function.

The model~2! has been first studied almost two decad
ago by Aslamazov and Gurovich.19 These authors considere
interaction of fluxons with an Abrikosov vortex trapped
one of the junction’s electrodes, so that the vortex’s norm
core is parallel to the tunnel barrier. Later, the influence
the Abrikosov vortex on the fluxon bound states localiz
near the junction boundary was studied by Fistul a
Giuliani.20

In the special casek5p, Eq. ~2! is also used as a mode
which describes composite long JJ’s including segments
0-type andp-type Josephson barriers.21 Such composite
junctions can be fabricated, for example, by using zigz
barriers betweens-wave andd wave superconductors.22 This
model gives rise to stable semifluxons (p fluxons with a
semi-integer topological charge!. As it was pointed out by
Goldobinet al.,21 semifluxons can also be created in a co
ventional long junction with local current injection in th
form of a current dipole.

The critical condition for the transition to a free movin
fluxon is defined in the following way: it is necessary to fin
a maximum valuegmax of the bias current densityg such
that, for givenk, static ~time-independent! solutions to Eq.
~2! exist for ugu,gmax, and do not exist ifugu exceedsgmax.
As it was clearly shown by dint of direct simulations of E
~1! reported in Ref. 16, the disappearance of the static s
tion means the appearance of freely moving fluxon~s! in the
long JJ.

-
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Double integration of the static version (f t50) of Eq.~2!
in a vicinity of the pointx50 yields the following boundary
conditions~bc’s! to be satisfied at this point:

f~x510!2f~x520!5k, f8~x510!5f8~x520!.
~3!

Off the pointx50, the static solution obeys the equation

2f91sinf1g50. ~4!

Further analysis of the static problem based on Eqs.~3! and
~4! will be presented in the following section.

In the sG system operating in the quantum regime~i.e., in
a long JJ kept at extremely low temperatures!, fluxon-
antifluxon pairs can be produced as a result of under-ba
tunneling.23 The corresponding tunneling rate is determin
by an instanton solution, which starts with some static fi
configuration~which is just a flat phase distribution, in th
case of a homogenous system! and, going in imaginary time
under the energy barrier, ends up on the physical shell, w
a state consisting of far separated fluxon and antifluxon
was shown that, in the presence of local inhomogeneities
quantum birth of fluxon-antifluxon pairs may be facilitate
~the corresponding tunneling rate being enhanced by an
ponentially large factor! if one or both solitons appear on th
mass shell~appear as real quasiparticles after completion
the tunneling! in a state pinned by an inhomogeneity.24 In
this connection, it is important to find a thresholdg thr ~a
minimum value ofg) past which there appears a state with
pinned fluxon and free antifluxon, i.e., an effective thresh
for the quantum birth of fluxons in the quantum regime.
difference from the problem of finding the above-mention
valuegmax, which determines the threshold for the creati
of a free fluxon in the classical regime, is that, on the w
from g50 to g5gmax, the corresponding static solutions
Eq. ~2! need not be stable; just on the contrary, instan
solutions usually go through unstable states, such as flu
antifluxon pairs, as the evolution in imaginary time does
require stability in real time.23,24

B. Critical current in the annular junction of arbitrary length,
the classical regime

In the case of a finite-length annular JJ, the abo
mentioned static problem takes the following form: o
should find a solution to Eq.~4! such that it satisfies bc
which is tantamount to Eq.~3!:

f~x5L !2f~x50!5k, f8~x5L !5f8~x50!, ~5!

whereL is the full length of the annular junction. Irrespectiv
of the length, Eq.~2! is equivalent to the Newton’s equatio
of motion in ‘‘time’’ x for a particle with the coordinatef, in
the presence of the potential

U~f!52gf1cosf, ~6!

hence the motion conserves the Hamiltonian

H5
1

2 S df

dx D 2

1cosf1gf. ~7!
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In the annular junction of any length, the values ofH on both
sides of the matching pointx50 must be equal, as the
belong to one and the same solution. Besides that, due to
continuity of df/dx at the matching pointx50, see Eqs.
~3!, the values of (df/dx)2 are also equal on both side
Thus, equating the values of the Hamiltonian, we obtain
condition

cos~f11k!1g~f11k!5cosf11gf1 , ~8!

wheref1 is the value onf on one left side of the matching
point, the value on the right side beingf25f11k, accord-
ing to Eqs.~3!.

A more convenient form of Eq.~8! is

g5k21@~12cosk!cosf11~sink!sinf1#. ~9!

One can now look for the largest possible value of the
pression on the right-hand side of Eq.~9! that can be ob-
tained by varyingf1. This yields an expression of the Frau
hofer’s type for the critical bias-current density,

gc52k21sin~k/2!, ~10!

which is attained atf15p/22k/2.
Thus, Eq.~10! gives the largest value ofg beyond which

no static solution may exist in a vicinity of the point dipo
in the annular JJ of any length, implying a transition to
dynamical regime, i.e., generation of free fluxon~s! in the
case of the long JJ. Note, however, that it may happen
more than one critical values exist, then Eq.~10! gives, ac-
cording to its derivation from Eq.~9!, only the largest one
among them. In fact, it will be shown in the following se
tion that ~in the case of the long JJ! there indeed exists ex
actly one more critical value, which is smaller than Eq.~10!,
see Eq.~13! below.

Quite naturally, in the limitk→0 Eq. ~10! yields gc51,
which is the commonly known critical value of the bia
current density in the long homogeneous JJ.1 The fact thatgc
vanishes atk52p is also easy to understand: the static eq
tion ~4! has obvious stable uniform solutions

f0
(n)52sin21g12pn ~11!

~provided thatugu<1), with an arbitrary integern, hence the
bc ~3! with k52p implies that two such solutionsf0

(0) and
f0

(1) match to each other across the pointx50; in the annu-
lar system, they must be connected by a static 2p kink,
which is possible exactly atg50. Similarly, in the casek
52pN with any integerN, Eq. ~10! again yieldsgc50,
which means thatN fluxons will appear spontaneously in th
case, without the application of the bias current.

The result~10! does notdepend on the length of the an
nular junction; for this reason, it coincides with the thresho
for transition to a resistive state in ashort annular JJ, which
was found in the recent work.17 It is relevant to mention tha
the actual calculation of the threshold in that work was p
formed in an altogether different way, so that the sG equa
was not used at all.
2-3
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C. The fluxon-birth threshold in the long annular junction, the
quantum regime

Coming back to the case of the long JJ, we note tha
solution for f(x) must assume the background value~11!
~for instance, withn50) far from the dipole~formally, at
x→6`). Thus, in the case of a very long~formally, infinite!
junction, we need to find two solutions of Eq.~4!, in the
regions, respectively,x.0 and x,0, so that one solution
assumes the asymptotic value~11! at x→1`, and the other
one assumes the same value atx→2`. The solutions must
be matched at the pointx50, pursuant to bc’s~3!, and it is
necessary to find a maximum value ofugu for which the
matching is possible with a given dipole strengthk.

Consideration of the equivalent mechanical problem m
tioned above, i.e., motion in the potential~6!, demonstrates
that there areexactly twosolutions to this problem. One o
them yields the above result~10!. A description of both so-
lutions ~for the case of a very long JJ! is given below.

Both solutions employ the single functionf(x) which
satisfies Eq.~4! and assumes the same asymptotic value~11!
simultaneously atx→1` andx→2`. This function repre-
sents a fluxon-antifluxon (ff)̄ bound state; it is an even func
tion, with a maximum valuefmax at the central point. Using
the conservation of the Hamiltonian~7!, one can find a rela-
tion betweenfmax andf0, which takes the form

g sin21g1cos~sin21g!52gfmax1cosfmax. ~12!

In addition to the ff̄solution, Eq.~4! also has a semidi
vergent one, which starts with the value~11!, say, atx5
2`, and diverges asf(x)'(g/2)x2 at x→1`. This solu-
tion may also be employed to construct a full static st
consisting of two pieces that are matched as per Eqs.~3! at
x50. It is easy to check that the state built as the combi
tion of the ff̄ and semidivergent solutions disappears, w
the increase ofg, exactly at the critical point~10!, so this is
how the solution corresponding to the Fraunhofer’s form
~10! looks in the long JJ.

Besides this matched state, there is another one, spe
to the long junction. It can be constructed from two piec
belonging to the ff̄solution @it is easy to see that no sta
satisfying the bc’s~3! can be constructed if both pieces b
long to the semidivergent solution; thus no extra solution
possible in addition to the two presently considered ones#.

At the critical point corresponding to the disappearance
the new matched state, the bc’s~3! are satisfied in an extrem
form: on one side of the pointx50, we have the uniform
background solutionf[f0, while on the other side a piec
of the ff̄ solution is to be used. Due to the continuity of th
derivativef8(x) at x50 @see Eqs.~3!# and the fact thatf8
vanishes at the matching point in the critical case@as the
derivative off(x)[f0 is zero#, the central point~the one
with f5fmax) of the ff̄ solution, which is the only spo
where the derivative vanishes, must be set exactly atx50
when one attains the critical configuration, see Fig. 2.
view of the first bc~3!, this means that the background val
~11! and fmax are related~in the critical state! so thatfmax
06450
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5k1f0[k2sin21g. This expression should be inserted
Eq. ~12!. After that, the ‘‘worst’’ transcendental term
g sin21g in the ensuing equation mutually cancel, and t
remaining equation can be solved in an exact form, to yie
new critical value ofg, which, this time, we call a threshold
one:

g thr5
2 sin2~k/2!

A4 sin4~k/2!1~k2sink!2
. ~13!

As well as in the case of the Fraunhofer expression~10!,
the limit value ofg thr for k→0 is 1, which is the above-
mentioned critical bias-current density in the uniform lo
JJ. On the other hand, ifk is close to 2p, i.e., the phase
jump in bc’s~3! is close to 2p, the ff̄ solution takes the form
of a bound state of a fluxon and an antifluxon separated b
large distance, which implies that even a small bias curren
able to destroy this configuration pinned by the dipole. A
cordingly, one finds from Eq.~13! that

g thr'~4p!21~k22p!2 ~14!

when k is close to 2p, which should be compared to th
asymptotic form of the Fraunhofer critical value in the sam
case: as it follows from Eq.~10!, ugcu'uk22pu/8. Contrary
to this linearly vanishing expression, Eq.~14! shows that the
newly found threshold value vanishes quadratically. As w
as the Fraunhofer critical value, the threshold one~14! has
higher-order minima atk52pN with N integer.

The comparison of the two critical values~versusk) is
shown below as a part of Fig. 4~a!. As is seen from the figure
~and can be proved analytically!, the threshold value~14! is
always smaller~except for the pointsk52pN, where both
critical values vanish!, which implies that, in the application
to the tunnel-birth problem for fluxons in the quantum sy
tem, it will be a dominating one. In principle, for the sam
reason it could play a dominant role in the transition to t
dynamical regime in the classical case, but, in fact, this
hindered by the instability of the ff¯ static configuration
which underlies Eq.~13!. Unlike this, it was checked in di-
rect simulations that the configuration based on the matc
ff̄ and semidivergent solutions, which yields the Fraunh
er’s expression~10!, is always stable in the long junction~for
the casek5p, it was also shown in Ref. 25!. However, as it

FIG. 2. A sketch of the critical-field configuration that gives ri
to the threshold value~13! of the bias-current density.
2-4
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was explained above, the dynamical instability of the int
mediate state does not bar using the configuration as a pa
the under-barrier instanton trajectory.

While detailed consideration of the under-barrier prod
tion of fluxons in the quantum system is beyond the scop
this work, we briefly mention that the above-mentioned
stanton may be constructed, following the pattern of the c
cal configuration that yields the threshold value~13!, as pre-
cisely ahalf of the fluxon-antifluxon bound state on one si
of the pointx50, matched to the uniform state~11! on its
other side. This makes the integral of the system’s act
taken along the under-barrier evolution in the imagina
time, which determines the exponential smallness of the
neling rate,23 equal to exactly half the integral in the absen
of the current dipole. For this reason, the exponential sm
ness is expected to scale as thesquare rootof that in the
uniform system, so that the tunneling will be strongly e
hanced. As for the direct role of the threshold value~13!, it
implies that, ifg is taken larger than this value, the tunnelin
mechanism will directly generate a free fluxon in the syste

III. SUPPRESSION OF THE INTERACTION BETWEEN A
FREE FLUXON AND THE ANTIFLUXON PINNED

BY THE CURRENT DIPOLE

As it was mentioned in the Introduction, another proble
relevant to the experiment is to suppress interaction betw
an already existing free fluxon and its antifluxon counterp
which is pinned by the dipole pair of currents in the long
A natural way to select parameters of the dipole configu
tion in Eq. ~1! with, generally speaking,finite dand«, so as
to minimize the interaction, is to consider the case when
distance between the free fluxon and pinned antifluxon
large enough, so that the interaction between them may
treated by means of the perturbation theory.26 In the frame-
work of this approach, the free fluxon with zero veloci
whose form is

ffl54 tan21$exp@s~x2j!#%, ~15!

where j is the coordinate of the fluxon’s center ands
561 is its polarity, is regarded as a quasiparticle. Since
term in the Hamiltonian of the full sG model~1!, which
corresponds to the current-dipole terms in the equation
Hdip5«@f(x5d/2)2f(x52d/2)#, it is easy to obtain an
effective potential of direct interaction of the free fluxon wi
the current dipole, substituting the wave form~15! in Hdip .
Eventually, one can find an effective force of the dire
fluxon-dipole interaction,

Fdip[2
dHdip

dj
52s«@sech~j2d/2!2sech~j1d/2!#

'8s« sinh~d/2!e2j, ~16!

where we made use of the assumption that the distanceuju of
the fluxon from the dipole is large. The polaritys of the free
fluxon and the sign of the current« must correlate so that th
free fluxon is repelled by the dipole, while the correspond
06450
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antifluxon is attracted by it~otherwise, the antifluxon canno
be in the pinned state!. As it follows from Eq. ~16!, this
implies thats5sgn«.

Besides that, the fluxon also interacts with the antiflux
pinned by the dipole. A well-known perturbative expressi
for the interaction force between the fluxon and antiflux
is26 Fantifl'232e2j. Then, a simple condition for the effec
tive suppression of the net interaction between the f
fluxon and the complex including the current dipole and
antifluxon pinned by it may be formulated as a condition
mutual cancellation of the two forces, the repulsive oneFdip
and the attraction forceFantifl , which produces the following
result:

u«usinh ~d/2!54. ~17!

The meaning of this result is that the free fluxon is expec
to move nearly as in the homogeneous long JJ if the par
eters of the current dipole are selected according to Eq.~17!.
Note also that, in the limit of the pointlike dipole, which wa
dealt with in the preceding section, i.e.,«→` andd→0, the
condition~17! takes a very simple formk58. This result is
obtained in the framework of the approximations adop
above, but it is not very different from the exact result th
follows from Eq. ~10!, i.e., k52p ~at this value ofk, the
fluxon can be very easily separated from the dipo
antifluxon complex!.

The validity of the prediction~17! was checked agains
direct numerical simulations of the full equation~1!. For in-
stance, in the case shown below in Fig. 5, with«58 andd
50.5, the product on the left-hand side of Eq.~17! takes the
value 4.17, and the interaction with the dipole-antiflux
complex indeed gives rise to a very small perturbation
motion of the free fluxon. Simulation runs for values
u«usinh (d/2) quite different from 4~not shown here, as the
pictures are rather messy! demonstrate a much stronger pe
turbation.

IV. NUMERICAL SIMULATIONS

In order to verify analytical results for the fluxon injec
tion, we performed numerical simulations by solving the f
equation~1!. In the simulations, eachd function in Eq.~1!
was approximated by its smooth counterpart,

«d~x!'hg~x![h sech2~2x/j!, ~18!

such that hj5«, which complies with the definition
*2`

1`d(x)dx51. This approximation implies that the injecte
current is spread over the distance.jlJ . We will present
results obtained with the valuesj51 andj50.1 , which lie
in a typical experimentally accessible range of th
parameter.16 The numerically calculated current-voltag
characteristics will be shown in normalized units asg(v),
werev is the average fluxon velocity normalized to the Sw
hart velocityc̄. With this normalizationv51 corresponds to
the asymptotic voltage of the single-fluxon step. The simu
tions are performed with the normalized junction lengthL
510 and dissipation coefficienta50.1.
2-5
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Figure 3~a! presents the calculated dependence of
critical currentgc on the injection-current amplitude« for
d52. The inset shows the adopted approximation for
injected-current profile, f (x)5h@g(x2d/2)2g(x1d/2)#,
see Eq.~18!, with j51 andh59. As it has already been
concluded from experimental data,16 the dependence in Fig
3 is very similar to the conventional Fraunhofer pattern
the critical current in a small Josephson junction in the m
netic field, the length of the equivalent small junction bei
associated with the distanced between the injecting points
The overlap between the lobes gets larger for largerd. Due to
this overlap, the minimum value of the critical~fluxon-
depinning! current between the lobes decreases withd.

Numerically calculatedI -V curves for various values o
the injection current~indicated in the plots! are shown in Fig.
3~b!. One-fluxon and two-fluxon steps can be clearly rec
nized here. Numerical data show that the steps onI -V curves
are accounted for by fluxons freely moving under the act

FIG. 3. ~a! Numerically calculated dependence of the critic
current of the annular junctiongc on the injection-current amplitude
« for d52. ~b! Numerically calculated current-voltage character
tics of the annular junction for two values of the injection curre
«55.2 and«59.1.
06450
e

e

f
-

-

n

of the uniformly distributed bias current. It can be not
from Fig. 3~a! that there is a residual pinning of fluxon~s!
due to the disturbance produced by the current injectors. T
pinning is smallest at injection-current values which lie b
tween the lobes of thegc(«) curve. Thus, for a given injecto
spacingd, the residual fluxon pinning can be minimized b
choosing an appropriate value for the injection current«.

In order to numerically model the pointlike dipole give
by the last term of Eq.~2!, we used the derivativeg8(x) of
the functiong(x) defined by Eq.~18!. Figure 4~a! shows the
calculated dependencegc on the dipole-current amplitudek.
The inset shows the numerically used current profilef (x)
[hg8(x2d/2) with j50.1. The spatial grid used in thi
calculation hadDx50.01. In spite of the limited accuracy o

FIG. 4. ~a! Numerically calculated dependence of the critic
current in the annular junction,gc , on the dipole-current amplitude
k. The newly found threshold value, given by Eq.~13! ~dashed
line!, and the Fraunhofer value, given by Eq.~10! ~solid line!, are
included too.~b! Numerically calculated current-voltage characte
istics of the annular junction for two values of the dipole’s streng
k56.3 andk512.8.
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CREATION OF CLASSICAL AND QUANTUM FLUXONS . . . PHYSICAL REVIEW B 69, 064502 ~2004!
our numerical scheme because of the sharp current pro
the agreement between the numerical data and the Fr
hofer formula ~10!, represented by the solid line, is ve
good. For the comparison’s sake, in Fig. 4~a! the dashed line
shows the newly found threshold value given by Eq.~13!.

The numerically calculatedI -V curves for the pointlike
dipole are shown in Fig. 4~b!. In comparison with Fig. 3~b!,
the depinning current is very small, and the value of
bias-current density corresponding to the steps is very c
to the maximum value,g51. Both the one-fluxon and two
fluxon steps can be hardly distinguished from those in
ideal uniform annular junction with trapped fluxons.

The presentation of numerical results is concluded by F
5. It shows a two-dimensional gray scale plot of the spatia
temporal evolution of the instantaneous normalized volt
w t(x,t) in the annular junction for«58, d51, and g
50.4. The moving fluxon is recognized as a solitary-wa
packet propagating at a nearly constant velocity across
junction. One can see that the disturbance of the fluxon
tion in the region where the current injector is located is ti
which was explained above, by the proximity of this case
the interaction-suppression condition~17!. The residual per-
turbation may, nevertheless, be significant at small veloci
of the fluxon, when its kinetic energy is comparable to t
pinning potential generated by the perturbation.

FIG. 5. Spatially temporal evolution of the normalized instan
neous voltage in simulations of the annular Josephson junction
«58, d51, andg50.4. Dashed lines indicate the current injecti
points.
-
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V. CONCLUSION

In this work, we have considered static and dynami
solutions for fluxons in the model of the annular Joseph
junction with the local current dipole. The analysis is re
evant for interpreting the recent experiment16 that imple-
mented a new technique of inserting fluxons into long jun
tions.

Recently, a critical value of the bias-current densityg,
above which the system performs transition to a dynam
state, was found,17 in the Fraunhofer’s form, for annula
junctions whose length is much smaller thanlJ . We have
shown that, in the limit of the infinitely narrow current d
pole, the same critical expression is validat all valuesof the
junction’s length. In the long junction, the dipole genera
free fluxon~s! wheng exceeds the critical valuegc . We have
also found another critical valueg thr for long junctions,
which is always slightly smaller than the Fraunhofer’s on
except for points where both vanish. The phase configura
which yields the new critical value is generated by an u
stable fluxon-antifluxon bound state, therefore it is not r
evant to the classical-fluxon-generation regime. Howeve
determines a quantum-birth threshold for fluxons in t
quantum regime. It was also concluded that these two crit
values exhaust all possible solutions to the problem of fi
ing the critical bias-current density in the presence of
current dipole.

The interaction of a free fluxon with the complex consi
ing of the current dipole and antifluxon pinned by it w
considered too. A condition for suppression of the effect
interaction force was predicted, which makes the long ju
tion effectively uniform for the motion of the free fluxon.

The analytical predictions obtained in this work we
checked against direct simulations. In all the cases, t
agree well.
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