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Creation of classical and quantum fluxons by a current dipole in a long Josephson junction
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We study static and dynamical properties of fluxons in a long annular Josephson juyddtieith a current
injected at one point and collected back at a close point. Uniformly distributed dc bias current with density
is applied too. We demonstrate that, in the limit of the infinitely small size of the current dipole, the critical
value of y, above which static phase distributions do not exist, that was recently faunie Fraunhofer’s
analytical form for the annular JJ with the length much smaller than the Josephson penetration length is valid
irrespective of the junction’s length, including infinitely long JJ's. In a long annular JJ, the dipole generates free
fluxon(s) if y exceeds the critical value. For long JJ’s, we also find another critical Vialwe analytical form
too), which is always slightly smaller than the Fraunhofer value, except for points where the dipole strength is
27N with integerN, and both values vanish. The static phase configuration which yields the new critical value
is based on an unstable fluxon-antifluxon bound state, therefore it will probably not manifest itself in the usual
(classical regime. However, it provides for a dominatimgstantonconfiguration for tunnel birth of a free
fluxon, hence it is expected to determine a quantum-birth threshold for fluxons at ultralow temperatures. We
also consider the interaction of a free fluxon with the complex consisting of the current dipole and antifluxon
pinned by it. A condition for suppression of the net interaction force, which makes the long JJ nearly homo-
geneous for the free fluxon, is obtained in an analytical form. The analytical results are compared with
numerical simulations. The analysis presented in the paper is relevant to the recently proposed new experi-
mental technique of inserting fluxons into annular Josephson junctions.
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l. INTRODUCTION electrodes %141° However, the latter technique does not
provide for reproducible results, and requires heating of the
Long Josephson junctiondJ's are well known to be a junction to high temperatures. Moreover, trapped fluxons
unique physical system that allows one to experimentallygenerated in such a manner get often pinned by Abrikosov
study dynamics of topological solitons in the form of fluxons vortices, which may be trapped in the electrodes in the
(alias Josephson vortices, each carrying a magnetic-flugourse of cooling below ..
quantum®,).*? For both experimental and theoretical stud- In a recent work® a new method to insert fluxons into
ies, the most convenient object is annular (circulan long  annular JJ's was proposed and demonstrated experimentally
JJ, in which the net number of initially trapped fluxons is and numerically. It is based on injecting a relatively large
conserved, hence new solitons may only be created agurrentl into the junction locally; the current flows from the
fluxon-antifluxon pairs:* Fluxon dynamics in the annular injection point into the superconducting electrode and also
junctions manifests itself in the clearest way, as it is notacross the Josephson barrier, and is collected back at another
complicated by reflections from boundaries. The interest tgoint of the same electrode, which is separated from the
annular long JJ's stems from the great potential they offer foinjection spot by a small distand®. The schematic view of
fundamental studies of dynamical properties of solitons, suckuch JJ is given in Fig. 1. In the following, we use the nor-
as, e.g., emission of the Cherenkov radiafi6 challeng-  malized notation for the distance between the current injec-
ing problem for the theory is quantum soliton dynamics intors, d=D/\;, and the currente=1/\;, where\; is the
long JJ's, which has been recently observed in experiment atosephson penetration depth.
ultralow temperature5On the other hand, annular JJ's offer  In this setting, one is actually dealing withcarrent di-
applications in cryoelectronics, such as sources of highly copole the total current traversing the Josephson barrier being
herent microwave radiatidnand radiation detectofsBe-  zero. The dipole gives rise to a local magnetic filixin the
sides that, long annular JJ's have a potential for designingegion between the injection and collection points. If the
fluxon qubit$'*®and fluxon ratchets:*? magnitude of this pinned flux attains the flux quantdry it
A key problem in experiments with annular JJ's is themay become energetically favorakii@ the presence of an
trapping of a desired number of fluxons. The only previouslyadditional dc bias current uniformly distributed along the
known method which made it possible to do that in a conqunction) to have the pinned flux compensated by a negative
trollable way is rather complicated, relying upon the use of &lux —®. In fact, this implies that a fluxon-antifluxon pair
scanning electrorior lasej microscope? Other studies re- is created in the annular JJ, so that the antifluxon carrying the
lied on fluxon trapping in the course of cooling the systemflux —® is pinned by the current dipole, while elsewhere in
below the critical temperatur@, of the superconducting the long junction there appears a free fluxon carrying the
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approximate analytical form, that, keeping the dipole slze
and currents finite (or proceeding to the limit of the point-
wise dipolg, one may indeed select their values so that the
interaction is strongly suppressed. This prediction, which has
immediate relevance to the experiment, is also compared
with direct numerical simulations.

Il. CRITICAL CONDITIONS FOR GENERATION OF FREE
CLASSICAL AND QUANTUM FLUXONS

A. General considerations

o . The system outlined above is described by the following
FIG. 1. A sketch of the annular Josephson junction with a cur-perturbed sine-GordofsG) equation for the superconducting

rent dipole formed by local injection of currehtinto one of the phase difference, which is written in the standard
superconducting electrodes. notatiort2

compensating fluxb,. Further, if® exceeddN®,, thenN
free fluxons are expected to appear in the annular JJ.
One objective of this work is to theoretically analyze the

above problem and find a critical condition for the generatlonwher65 is the Dirac delta functiofit is used in Eq(1) due

of free fluxons by the current dipole in a long JJ biased by, . . .
the uniformly distributed dc bias current Results will be o thg assumption, yvh|9h corresponds_ to the expenmentgl
: \ . ) situation, that the injection and collection leads have their
obtained in an exact analytical form Sec. I)) for the case . . . .
: SIS . width much smaller thamn;], y is the density of the uni-
when the dipole strengtik=ed is finite, while d—0 and L . . L
; . . . formly distributed dc bias current, and is a dissipative
e—oo. Two different solutions will be obtained. One of them . o .
. " i o ) constant. In the limit of the pointlike dipoled(~0), the
yields a critical value ofy which coincides with the Fraun- limiting form of Eq. (1) is
hofer expressiolisee below, which was recently found as a 9 q:
condition for the transition into a resistive state in a short
annular JJ, whose full length was assumed to be much D~ dxxtSing=—ad—y+ x5 (x), 2
smaller thank;.'" In our solution, the length of the ring
junction may be arbitrarily large. Thus, we demonstrate thawherex=ed is the dipole strength defined above, afidis
the Fraunhofer formula for the critical bias current isrd-  the derivative of the delta function.
versalone, which is valid irrespective of the dipole strength ~ The model(2) has been first studied almost two decades
and junction’s length. ago by Aslamazov and Gurovi¢AThese authors considered
The second analytical solution reported in this paper ignteraction of fluxons with an Abrikosov vortex trapped in
exact only for long junctions. It yields the critical value f  one of the junction’s electrodes, so that the vortex’s normal
which is slightly smaller than the one given by the first so-core is parallel to the tunnel barrier. Later, the influence of
lution. However, the configuration on which the second sothe Abrikosov vortex on the fluxon bound states localized
lution is based(essentially, it is a fluxon-antifluxon bound near the junction boundary was studied by Fistul and
state is, plausibly, always unstable. For this reason, the secGiuliani.?®
ond solution may be irrelevant to the experimental technique In the special case=m, Eq.(2) is also used as a model
outlined above in the usuétlassical regime of operation. which describes composite long JJ's including segments of
However, precisely this second solution defines arD-type andm-type Josephson barriets.Such composite
instantort® which controls the tunneling rate for quantum junctions can be fabricated, for example, by using zigzag
birth of a free fluxon, in the same long JJ, at ultralow tem-barriers betwees-wave andd wave superconducto?%.This
peratures. The instanton predicts that the exponentially smathodel gives rise to stable semifluxons fluxons with a
factor, which limits the quantum-birth rate, will scale as asemi-integer topological chargeAs it was pointed out by
square root of that for the long uniform junction, i.e., the Goldobinet al,?! semifluxons can also be created in a con-
quantum vyield is strongly enhanced by the current dipoleventional long junction with local current injection in the
Therefore, the second solution is physically meaningful tooform of a current dipole.
The analytical predictions will be compared with results of  The critical condition for the transition to a free moving
direct numerical simulations of the critical conditigim the  fluxon is defined in the following way: it is necessary to find
classical situation a maximum valuey,,,, of the bias current density such
A free fluxon moving in the annular JJ will periodically that, for givenx, static (time-independentsolutions to Eg.
collide with the antifluxon pinned by the current dipole and(2) exist for|y| < ymax, @and do not exist if y| exceedsyax-
the dipole itself. An important issue is to minimize interac- As it was clearly shown by dint of direct simulations of Eq.
tion between the free fluxon and the dipole-antifluxon com+«(1) reported in Ref. 16, the disappearance of the static solu-
plex, so that the junction would seem as uniform as possibléon means the appearance of freely moving flusbm the
for the moving soliton. In Sec. Ill, we demonstrate, in anlong JJ.

P~ duxtSiNG=—ad—y—e[6(x—d/2)— §(x+d/2)],
Y
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Double integration of the static versiogh(=0) of Eq.(2) In the annular junction of any length, the valuedbbn both
in a vicinity of the pointx=0 yields the following boundary sides of the matching poimt=0 must be equal, as they
conditions(bc’s) to be satisfied at this point: belong to one and the same solution. Besides that, due to the
continuity of d¢/dx at the matching poink=0, see Egs.
H(x=+0)=p(x=-0)=«k, ¢'(x=+0)=¢'(x=-0).  (3), the values of §¢/dx)2 are also equal on both sides.
3 Thus, equating the values of the Hamiltonian, we obtain a

Off the pointx=0, the static solution obeys the equation ~condition

—¢"+sing+y=0. (4) CoY 1+ k) + (P11 k) =COSPh1+ vy, 8

Further analysis of the static problem based on Egjsand
(4) will be presented in the following section.

In the sG system operating in the quantum regiinee, in
a long JJ kept at extremely low temperatyre8uxon-
antifluxon pairs can be produced as a result of under-barrier
tunneling® The corresponding tunneling rate is determined
by an instanton solution, which starts with some static field
configuration(which is just a flat phase distribution, in the
case of a homogenous systeamd, going in imaginary time
under the energy barrier, ends up on the physical shell, wit ined by varying,. This yields an expression of the Fraun-
a state consisting of far separated fluxon and antifluxon. | ofer’s type for the critical bias-current density
was shown that, in the presence of local inhomogeneities, the '
guantum birth of fluxon-antifluxon pairs may be facilitated
(the corresponding tunneling rate being enhanced by an ex-
ponentially large factgrif one or both solitons appear on the fyvhich is attained atp, = 7/2— /2.

mass shel_(appear as real_quasiparticleg after completion o Thus, Eq.(10) gives the largest value of beyond which
the tunneling in a state pinned by an inhomogenéityin no static solution may exist in a vicinity of the point dipole

this connection, it is important to find a threshojdy (@ jy the annular JJ of any length, implying a transition to a
minimum value ofy) past which there appears a state with adynamical regime, i.e., generation of free flug@nin the

pinned fluxon and free antifluxon, i.e., an effective threshold.;¢a of the long JJ. Note, however, that it may happen that
for the quantum birth of fluxons in the quantum regime. A e than one critical values exist, then EfO) gives, ac-

difference from the problem of finding the above-mentionedcording to its derivation from Eq(9), only thelargestone

value ymay, Which determines the threshold for the creationgmong them. In fact, it will be shown in the following sec-
of a free fluxon in the classical regime, is that, on the way;;q, that(in the case of the long Jdhere indeed exists ex-

from y=0 10 y=ymax, the corresponding static solutions 0 4ty one more critical value, which is smaller than EL),
Eq. (2) need not be stable; just on the contrary, instantorygq Eq(13) below.

solutions usually go through unstable states, such as fluxon- Quite naturally, in the limite— 0 Eq. (10) yields y.=1
. . . . . . . ’ . (o] 1
antifluxon pairs, as the evolution in imaginary time does not,hich is the commonly known critical value of the bias-

where ¢, is the value onp on one left side of the matching
point, the value on the right side beidgp= ¢+ «, accord-
ing to Eqgs.(3).

A more convenient form of Eq8) is

y=k " (1—cosk)cos¢,+ (sink)sing,]. (9)

One can now look for the largest possible value of the ex-
ression on the right-hand side of E@®) that can be ob-

Ye=2ksin(k/2), (10)

require stability in real timé: current density in the long homogeneoug The fact thaty,
vanishes ak =2 is also easy to understand: the static equa-
B. Critical current in the annular junction of arbitrary length, tion (4) has obvious stable uniform solutions

the classical regime

In the case of a finite-length annular JJ, the above- = —sin"Ly+2amn (11
mentioned static problem takes the following form: one
should find a solution to Eq(4) such that it satisfies bc (provided tha{y|<1), with an arbitrary integem, hence the
which is tantamount to Eq3): bc (3) with k=2 implies that two such solutions{® and
#H) match to each other across the poirt0; in the annu-
p(x=L)=p(x=0)=«, ¢'(Xx=L)=¢'(x=0), (5 Ilar system, they must be connected by a static Knk,
which is possible exactly agy=0. Similarly, in the casec
=27N with any integerN, Eq. (10) again yieldsy,=0,
which means thall fluxons will appear spontaneously in this
case, without the application of the bias current.
The result(10) does notdepend on the length of the an-

wherelL is the full length of the annular junction. Irrespective
of the length, Eq(2) is equivalent to the Newton’s equation
of motion in “time” x for a particle with the coordinate, in
the presence of the potential

U(¢)=— yd+cose, (6) nular junction; for this reason, it coincides with the threshold
. . _ for transition to a resistive state inshortannular JJ, which
hence the motion conserves the Hamiltonian was found in the recent worK.It is relevant to mention that

the actual calculation of the threshold in that work was per-
formed in an altogether different way, so that the sG equation
was not used at all.

2
+cos¢p+ ye. (7)

1/d¢
H—E(&
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C. The fluxon-birth threshold in the long annular junction, the
quantum regime

Coming back to the case of the long JJ, we note that a

solution for ¢(x) must assume the background validd)
(for instance, withn=0) far from the dipole(formally, at
X— * ), Thus, in the case of a very lorifprmally, infinite)
junction, we need to find two solutions of E), in the
regions, respectivelyx>0 andx<0, so that one solution
assumes the asymptotic val(fel) at x— + o0, and the other
one assumes the same valuexat —. The solutions must
be matched at the poimt=0, pursuant to bc'$3), and it is
necessary to find a maximum value ppf| for which the
matching is possible with a given dipole strength

PHYSICAL REVIEW B 69, 064502 (2004
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FIG. 2. A sketch of the critical-field configuration that gives rise
to the threshold valu€l3) of the bias-current density.

Consideration of the equivalent mechanical problem men-

tioned above, i.e., motion in the potenti@), demonstrates
that there areexactly twosolutions to this problem. One of
them yields the above result0). A description of both so-
lutions (for the case of a very long Jis given below.

Both solutions employ the single functio(x) which
satisfies Eq(4) and assumes the same asymptotic valie
simultaneously ax— +o~ andx— —o. This function repre-

sents a fluxon-antifluxon (ffoound state; it is an even func-
tion, with a maximum valueb, ., at the central point. Using
the conservation of the Hamiltonidid), one can find a rela-
tion betweeng,,.x and ¢q, which takes the form

ysin ty+cogsin 1 y) = — ymaxt COSPmax. (12

In addition to the ffsolution, Eq.(4) also has a semidi-
vergent one, which starts with the val(gl), say, atx=
—oo, and diverges ag(x)~(y/2)x? atx— +%. This solu-

=k+ ¢o=k—sin 1y. This expression should be inserted in
Eq. (12). After that, the “worst” transcendental terms
ysin 1y in the ensuing equation mutually cancel, and the
remaining equation can be solved in an exact form, to yield a
new critical value ofy, which, this time, we call a threshold
one:

2 sirf(«/2)
Va sirf(k/2) + (k—sink)?’

Ythr= (13

As well as in the case of the Fraunhofer expressi),
the limit value of yy, for k—0 is 1, which is the above-
mentioned critical bias-current density in the uniform long
JJ. On the other hand, ¥ is close to 2r, i.e., the phase
jump in bc's(3) is close to 2r, the ff solution takes the form
of a bound state of a fluxon and an antifluxon separated by a
large distance, which implies that even a small bias current is

tion may also be employed to construct a full static stateable to destroy this configuration pinned by the dipole. Ac-

consisting of two pieces that are matched as per EB3)sat

cordingly, one finds from Eq13) that

x=0. It is easy to check that the state built as the combina-

tion of the ff and semidivergent solutions disappears, with

the increase ofy, exactly at the critical pointl0), so this is

Yinr=(4m) Mk —2m)? (14)

when « is close to 2r, which should be compared to the

how the solution corresponding to the Fraunhofer’s formulagsymptotic form of the Fraunhofer critical value in the same

(10) looks in the long JJ.

case: as it follows from Eq10), | y~|«x—2m|/8. Contrary

Besides this matched state, there is another one, specifig this linearly vanishing expression, Ed4) shows that the
to the long junction. It can be constructed from two pieceshewly found threshold value vanishes quadratically. As well
belonging to the ffsolution[it is easy to see that no state as the Fraunhofer critical value, the threshold ¢hé) has
satisfying the bc’q3) can be constructed if both pieces be- higher-order minima ak=2=N with N integer.
long to the semidivergent solution; thus no extra solution is The comparison of the two critical valuggersusx) is

possible in addition to the two presently considered gnes

shown below as a part of Fig(&. As is seen from the figure

At the critical point corresponding to the disappearance ofand can be proved analyticallythe threshold valu€l4) is

the new matched state, the b3 are satisfied in an extreme
form: on one side of the point=0, we have the uniform
background solutiorb= ¢y, while on the other side a piece

always smallerexcept for the pointsc=2xN, where both
critical values vanish which implies that, in the application
to the tunnel-birth problem for fluxons in the quantum sys-

of the ff solution is to be used. Due to the continuity of the tem, it will be a dominating one. In principle, for the same

derivative ¢’ (x) atx=0 [see Eqs(3)] and the fact that’
vanishes at the matching point in the critical cqas the
derivative of ¢(x)= ¢, is zerd, the central poini{the one
with ¢ = ¢pa0 Of the ff solution, which is the only spot
where the derivative vanishes, must be set exactly=ad

reason it could play a dominant role in the transition to the
dynamical regime in the classical case, but, in fact, this is
hindered by the instability of the fitatic configuration
which underlies Eq(13). Unlike this, it was checked in di-
rect simulations that the configuration based on the matched

when one attains the critical configuration, see Fig. 2. Inff and semidivergent solutions, which yields the Fraunhof-
view of the first bc(3), this means that the background value er’s expressioti10), is always stable in the long junctigfor

(11) and ¢4 are relatedin the critical statg so thatémax

the casec= m, it was also shown in Ref. 25However, as it
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was explained above, the dynamical instability of the inter-antifluxon is attracted by ifotherwise, the antifluxon cannot
mediate state does not bar using the configuration as a part bé in the pinned stateAs it follows from Eq. (16), this
the under-barrier instanton trajectory. implies thato=sgre.

While detailed consideration of the under-barrier produc- Besides that, the fluxon also interacts with the antifluxon
tion of fluxons in the quantum system is beyond the scope opinned by the dipole. A well-known perturbative expression
this work, we briefly mention that the above-mentioned in-for the interaction force between the fluxon and antifluxon
stanton may be constructed, following the pattern of the critiis?® F i~ — 32~ ¢. Then, a simple condition for the effec-
cal configuration that yields the threshold vald®), as pre- tive suppression of the net interaction between the free
cisely ahalf of the fluxon-antifluxon bound state on one sidefluxon and the complex including the current dipole and the
of the pointx=0, matched to the uniform statél) on its  antifluxon pinned by it may be formulated as a condition for
other side. This makes the integral of the system’s actionmutual cancellation of the two forces, the repulsive &g
taken along the under-barrier evolution in the imaginaryand the attraction force s, which produces the following
time, which determines the exponential smallness of the tunresult:
neling rate” equal to exactly half the integral in the absence
of the current dipole. For this reason, the exponential small- |e|sinh (d/2)=4. (17)
ness is expected to scale as tware rootof that in the
uniform system, so that the tunneling will be strongly en-The meaning of this result is that the free fluxon is expected
hanced. As for the direct role of the threshold va({@8), it  to move nearly as in the homogeneous long JJ if the param
implies that, ify is taken larger than this value, the tunneling eters of the current dipole are selected according to(Eq).
mechanism will directly generate a free fluxon in the systemNote also that, in the limit of the pointlike dipole, which was
dealt with in the preceding section, i.e5;»~ andd—0, the
condition(17) takes a very simple forrx=8. This result is
obtained in the framework of the approximations adopted
above, but it is not very different from the exact result that
follows from Eq.(10), i.e., k=2 (at this value ofk, the

As it was mentioned in the Introduction, another problemfluxon can be very easily separated from the dipole-
relevant to the experiment is to suppress interaction betweedntifluxon complex
an already existing free fluxon and its antifluxon counterpart, The validity of the prediction(17) was checked against
which is pinned by the dipole pair of currents in the long JJ.direct numerical simulations of the full equati¢h). For in-

A natural way to select parameters of the dipole configurastance, in the case shown below in Fig. 5, with 8 andd
tion in Eq. (1) with, generally speakindinite dande, so as  =0.5, the product on the left-hand side of E#7) takes the

to minimize the interaction, is to consider the case when th&alue 4.17, and the interaction with the dipole-antifluxon
distance between the free fluxon and pinned antifluxon isomplex indeed gives rise to a very small perturbation in
large enough, so that the interaction between them may baotion of the free fluxon. Simulation runs for values of
treated by means of the perturbation the@rin the frame- |&|sinh (d/2) quite different from 4(not shown here, as the
work of this approach, the free fluxon with zero velocity, pictures are rather messgtemonstrate a much stronger per-
whose form is turbation.

IIl. SUPPRESSION OF THE INTERACTION BETWEEN A
FREE FLUXON AND THE ANTIFLUXON PINNED
BY THE CURRENT DIPOLE

¢q=4tan Hexd o(x— &)1}, (15 IV. NUMERICAL SIMULATIONS

where ¢ is the coordinate of the fluxon’s center amd In order to verify analytical results for the fluxon injec-
=+1 is its polarity, is regarded as a quasiparticle. Since théion, we performed numerical simulations by solving the full
term in the Hamiltonian of the full sG modél), which  equation(1). In the simulations, eaci function in Eq.(1)
corresponds to the current-dipole terms in the equation, i¥/as approximated by its smooth counterpart,

Haip= e[ p(x=0d/2)— ¢(x=—d/2)], it is easy to obtain an

effective potential of direct interaction of the free fluxon with & 8(X)~ ng(x)= 7 secR(2x/&), (18)
the current dipole, substituting the wave fof@®) in Hg,. ) ) ) o
Eventually, one can find an effective force of the directSUch that né=e, which complies with the definition

fluxon-dipole interaction, J28(x)dx=1. This approximation implies that the injected
current is spread over the distaneg\ ;. We will present
dHy results obtained with the valugs=1 andé=0.1 , which lie
Faip="— — P —2g¢[sechié—di2) —seclié+di2)] in a typical experimentally accessible range of this
d¢ parametet® The numerically calculated current-voltage
~8ce sinnd/2)e ¢, (16) characteristics will be shown in normalized units %),

werev is the average fluxon velocity normalized to the Swi-
where we made use of the assumption that the disti@iia#  hart velocityc. With this normalizatiorv =1 corresponds to
the fluxon from the dipole is large. The polarityof the free  the asymptotic voltage of the single-fluxon step. The simula-
fluxon and the sign of the curreatmust correlate so that the tions are performed with the normalized junction length
free fluxon is repelled by the dipole, while the corresponding=10 and dissipation coefficieni=0.1.
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FIG. 3. (a) Numerically calculated dependence of the critical
current of the annular junctiof. on the injection-current amplitude
e for d=2. (b) Numerically calculated current-voltage characteris- ~ FIG- 4. (&) Numerically calculated dependence of the critical
tics of the annular junction for two values of the injection current, current in the annular junctiory., on the dipole-current amplitude
£=52 ande=9.1. k. The newly found threshold value, given by E@.3) (dashed
line), and the Fraunhofer value, given by E0) (solid line), are

Figure 3a) presents the calculated dependence of thén(?luded too.(b) Numericz_ally calculated current—volt.age ,character-
critical currenty, on the injection-current amplitude for Istics of the annular junction for two values of the dipole’s strength,
d=2. The inset shows the adopted approximation for the<~ &3 and«=12.8.
injected-current profile,f(x) = [ g(x—d/2)—g(x+d/2)],
see Eq.(18), with é&=1 and »=9. As it has already been of the uniformly distributed bias current. It can be noted
concluded from experimental ddtathe dependence in Fig. from Fig. 3a) that there is a residual pinning of flux@n
3 is very similar to the conventional Fraunhofer pattern ofdue to the disturbance produced by the current injectors. This
the critical current in a small Josephson junction in the magpinning is smallest at injection-current values which lie be-
netic field, the length of the equivalent small junction beingtween the lobes of the.(e) curve. Thus, for a given injector
associated with the distancebetween the injecting points. spacingd, the residual fluxon pinning can be minimized by
The overlap between the lobes gets larger for ladg&ue to  choosing an appropriate value for the injection current
this overlap, the minimum value of the critic&fluxon- In order to numerically model the pointlike dipole given
depinning current between the lobes decreases with by the last term of Eq(2), we used the derivativg’ (x) of

Numerically calculated-V curves for various values of the functiong(x) defined by Eq(18). Figure 4a) shows the
the injection currentindicated in the plotsare shown in Fig. calculated dependenae on the dipole-current amplitude.
3(b). One-fluxon and two-fluxon steps can be clearly recog-The inset shows the numerically used current profi)
nized here. Numerical data show that the stepk-®icurves =#7g’(x—d/2) with £=0.1. The spatial grid used in this
are accounted for by fluxons freely moving under the actiorcalculation had\x=0.01. In spite of the limited accuracy of
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iniecﬁlon Iregion V. CONCLUSION
In this work, we have considered static and dynamical
voltage ¢, (c9 solutions for fluxons in the model of the annular Josephson
i junction with the local current dipole. The analysis is rel-
s -5:0 evant for interpreting the recent experiménthat imple-
£ a0 mented a new technique of inserting fluxons into long junc-
10 tions.

Recently, a critical value of the bias-current densjty
above which the system performs transition to a dynamical
state, was found’ in the Fraunhofer's form, for annular
junctions whose length is much smaller thap. We have

coordinate x shown that, in the limit of the infinitely narrow current di-
. . o pole, the same critical expression is vaditlall valuesof the

FIG. 5. Spatially temporal evolution of the normalized instanta-j ;nction’s length. In the long junction, the dipole generates
neous voltage in simulations of the annular Josephson junction wit ee fluxor(s) wheny exceeds the critical valug,. We have
e=8,d=1, andy=0.4. Dashed lines indicate the current injection Y ERLE . .
points. also found another critical valuey, for long junctions,

which is always slightly smaller than the Fraunhofer’s one,
ical sch b f the sh ‘ f.Iexcept for points where both vanish. The phase configuration
our numerical scheme because of the sharp current profiig, ;. yields the new critical value is generated by an un-
the agreement between the numerical data and the Fraun: . o
hofer formula (10), represented by the solid line, is very stable fluxon-antifluxon bound state, therefore it is not rel-
good. For the com,parison's sake, in Figaythe dasﬁed line  €vant to the classical-fluxon-generation regime. However, it

shows the newly found threshold value given by Et®) determines a quantum-birth threshold for fluxons in the
The numerically calculated-V curves for the pointlike quantum regime. It was also concluded that these two critical

dipole are shown in Fig.@®). In comparison with Fig. &) values exhaust all possible solutions to the problem of find-

the depinning current is very small, and the value of theng the c_ritical bias-current density in the presence of the
bias-current density corresponding to the steps is very closgurrent dipole.

to the maximum valuey=1. Both the one-fluxon and two- The interaction of a free fluxon with the complex consist-
fluxon steps can be hardly distinguished from those in théng of the current dipole and antifluxon pinned by it was
ideal uniform annular junction with trapped fluxons. considered too. A condition for suppression of the effective

The presentation of numerical results is concluded by Figinteraction force was predicted, which makes the long junc-
5. It shows a two-dimensional gray scale plot of the spatiallytion effectively uniform for the motion of the free fluxon.
temporal evolution of the instantaneous normalized voltage The analytical predictions obtained in this work were
¢i(x,t) in the annular junction fore=8, d=1, and y  checked against direct simulations. In all the cases, they
=0.4. The moving fluxon is recognized as a solitary-waveagree well.
packet propagating at a nearly constant velocity across the
junction. One can see that the disturbance of the fluxon mo-

tion in the region where the current injector is located is tiny, ACKNOWLEDGMENTS
which was explained above, by the proximity of this case to
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