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Criticality in coupled quantum spin chains with competing ladderlike and two-dimensional
couplings: Contrasting SrCu2O3 with CaCu2O3
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Motivated by the geometry of spins in the materials SrCu2O3 and CaCu2O3, we study a two-layer, spin-half
Heisenberg model, with nearest-neighbor exchange couplingsJ andaJ along the two axes in the plane and a
couplingJ' perpendicular to the planes. We study these class of models using the stochastic series expansion
quantum Monte Carlo simulations at finite temperatures and series expansion methods atT50. The critical
value of the interlayer coupling,J'

c , separating the Ne´el ordered and disordered ground states, is found to
follow very closely a square root dependence ona. Both T50 and finite-temperature properties of the model
are presented and the contrasting behavior of SrCu2O3 and CaCu2O3 are explained.
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I. INTRODUCTION

In recent years, the geometrical arrangement of atoms
rying spin and those mediating interactions between them
newly discovered magnetic materials, has been a domi
theme in the field of quantum magnetism, and has insp
many interesting models and theories.1 In a class of cuprate
materials, the arrangement of copper and oxygen atom
the copper-oxide planes leads to nearly ideal realization
one-dimensional~1D! spin chains, of spin ladders as well a
of simple and decorated square-lattice systems.2,3 The varia-
tions in geometry, in other recently discovered materia
have led to several magnetically ordered, spin-gapped
dimerized phases.4 These materials have allowed the exp
ration of dimensional crossovers, unusual excitations,
quantum critical phenomena5,6 through detailed comparison
between experiments and theory.

Many classes of materials involve weakly coupled sp
half chains. From a theoretical point of view, these are id
systems for finding and testing novel phenomena as our
derstanding of the spin-half chain is rather complete tha
to Bethe ansatz methods, quantum field-theory methods,
numerical techniques.7–9 However, different ways of cou
pling the chains together can lead to widely different beh
iors. If two Heisenberg chains are coupled weakly togethe
is known to lead to a disordered ground state and a gap in
spin-excitation spectra. These systems have been called
ladders and are considered generic examples of spin
phenomena.2,10 On the other hand, if an array of spin chain
say arranged parallel to each other in a two-dimensio
plane, are weakly coupled together in an unfrustrated m
ner, they develop conventional Ne´el order.11 If the interchain
couplings are strongly frustrated, one can even find a ca
over of exotic one-dimensional physics to high
dimensions.12,13

In this paper, we are motivated by the material CaCu2O3,
which has a geometry very similar to the well-known sp
ladder material SrCu2O3, but develops Ne´el order at low
temperatures.14 The largest exchange coupling in both the
materials is of order 2000 K. One can regard these mate
0163-1829/2004/69~6!/064428~8!/$22.50 69 0644
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as spin chains coupled in two different ways. Along one a
perpendicular to the chains, one has effectively a two-
ladder, which are then nearly decoupled from the rest of
system, due to the geometry of copper-oxygen bond ang
Along the other axis perpendicular to the chains, the c
pling between the chains leads to an anisotropic square
tice of spins.15 Thus the materials have competing tendenc
to Néel order and to develop a gap in the spin excitati
spectra. The material SrCu2O3 is known to have a spin gap.16

Néel order is found14 in bulk CaCu2O3 materials withTN
525 K. Schön et al.17 have also argued that thin films o
CaCu2O3 act as spin ladders and show field-induced sup
conducitvity. While controversy surrounding the work
Schön et al.puts the existence of field-induced supercond
tivity in doubt, the fact remains that these materials are cl
to being quantum critical and could go into an ordered
disordered phase with small changes in parameters.

Here we consider two square-lattice layers of spins, w
axes of the square lattice pointing alongx and y and a
Heisenberg Hamiltonian

H5J(
a,i

Sa,iSa,i 1 x̂1aJ(
a,i

Sa,iSa,i 1 ŷ1J'(
i

S1,iS2,i .

~1!

Here, a takes values 1 and 2, the first sum runs over
nearest neighbors along thex axis, the second over the nea
est neighbor along they axis and the third between the nea
est neighbors along thez axis. The modelH, in the limit of
a51 ~the isotropic bilayer!, has been extensively studie
using numerical and analytical methods.18 We shall callH an
anisotropic bilayer model. We setJ51 and study the phas
diagram of this model atT50 using series expansion meth
ods and stochastic series expansion~SSE! quantum Monte
Carlo ~QMC! simulations. We find that the phase bounda
separating the Ne´el ordered and disordered phases follo
very closely the behavior

J'
c 5AAa, ~2!
©2004 The American Physical Society28-1
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TABLE I. Series coefficients for dimer expansions of the ground-state energy per siteE0 /NJ', the antiferromagnet susceptibilityx, the
minimum triplet energy gapm/J' , and the critical spin-wave velocity along thex andy directions~as described in the text!. Coefficients of
(J/J')n for a51/2 up to ordern511 are listed.

n E0 /J' x m/J' 2CDx /J'
2 2CDy /J'

2

0 23.75000000031021 1.000000000 1.000000000 0.000000000 0.000000000
1 0.000000000 3.000000000 21.500000000 1.000000000 5.00000000031021

2 22.34375000031021 7.125000000 1.25000000031021 0.000000000 0.000000000
3 21.05468750031021 1.5468750003101 24.68750000031021 1.750000000 5.46875000031021

4 22.27050781331022 3.1326171873101 25.07812500031021 1.218750000 1.75781250031021

5 8.18481445331022 6.1530110683101 21.64794921931021 24.10156250031021 23.37646484431021

6 9.03854370131022 1.1883063873102 2.85690307631021 21.158325195 21.55822753931021

7 1.04563236231022 2.2762965123102 7.15942382831022 21.660129547 28.04538726831022

8 21.30057454131021 4.3268617263102 28.71566712931021 6.81538581831021 7.27293491431021

9 21.56634292631021 8.1655765123102 22.380170342 3.975312367 8.96076630831021

10 22.07510741931022 1.5297636463103 21.890960221 2.580596185 22.33316484731021

11 2.34905843531021 2.8502793073103 21.91642542931021 22.162085212 21.298405600
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whereA'2.53 is the critical point for isotropic case. We al
calculate the uniform susceptibility and the internal energy
the model at finite temperatures, and study its excitat
spectra in the spin-gap and Ne´el ordered phases.

The plan of the paper is as follows. In Sec. II, we discu
the series expansion method. In Sec. III, we discuss the
chastic series expansion calculations. In Sec. IV, we pre
the T50 properties of the system. In Sec. V, we present
uniform susceptibility and internal energy at finite tempe
tures and in Sec. VI, we present our conclusions.

II. SERIES EXPANSION METHODS

We have carried out dimer expansions and Ising exp
sions for this system atT50. The linked-cluster series ex
pansion method has been previously reviewed in Ref.
and will not be repeated here.

A. Dimer expansions

In the limit that the exchange coupling along the rungJ'

is much larger than the couplings within the plane, the ru
interact only weakly with each other, and the dominant c
figuration in the ground state is the product state with
spin on each rung forming a spin singlet. We can constr
dimer expansion inJ/J' by treating the last term in Eq.~1!
as the unperturbed Hamiltonian and the rest of terms a
perturbation.

We have carried out the dimer expansions for theT50
ground-state energy per siteE0 /N, the antiferromagnetic
susceptibilityx, and the lowest lying triplet excitation spec
trum D(kx ,ky) ~odd parity under interchange of the plane!
up to order (J/J')11 for fixed values ofa. The resulting
power series inJ/J' for the ground-state energy per si
E0 /N and the antiferromagnetic susceptibilityx for a51/2
are presented in Table I. A table of series coefficients for
triplet excitation spectrumD(kx ,ky) would require an inor-
dinate amount of space to reproduce in print; it is availa
from the authors upon request. Instead, we also presen
Table I the series for the minimum energy gapm
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5D(p,p). The dimer expansion for isotropic case (a51)
was carried out by Hida20 up to order (J/J')6 in 1992, and
extended to order (J/J')8 by Gelfand,21 and to order
(J/J')11 by one of the authors.22 Here, the number of clus
ters involved is much more than the isotropic case since
system no longer has 90° rotation symmetry, and there
in all, 38 070 linked clusters of up to 12 sites involved in t
calculation.

B. Ising expansions

To construct an expansion about the Ising limit for th
system, one has to introduce an anisotropy parameterx, and
write the Hamiltonian for Heisenberg-Ising model as

H5H01xV, ~3!

where

H05J (
a51,2

(
i

Sa,i
z Sa,i 1 x̂

z
1aJ (

a51,2
(

i
Sa,i

z Sa,i 1 ŷ
z

1J'(
i

S1,i
z S2,i

z 1t(
a,i

ea,iSa,i
z ,

V5J (
a51,2

(
i

~Sa,i
x Sa,i 1 x̂

x
1Sa,i

y Sa,i 1 x̂
y

!

1aJ (
a51,2

(
i

~Sa,i
x Sa,i 1 ŷ

x
1Sa,i

y Sa,i 1 ŷ
y

!

1J'(
i

~S1,i
x S2,i

x 1S1,i
y S2,i

y !2t(
a,i

ea,iSa,i
z , ~4!

and ea,i561 on the two sublattices. The last term in bo
H0 and V is a local staggered field term, which can be i
cluded to improve convergence. The limitsx50 andx51
correspond to the Ising model and the isotropic Heisenb
model, respectively. The operatorH0 is taken as the unper
turbed Hamiltonian, with the unperturbed ground state be
8-2
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CRITICALITY IN COUPLED QUANTUM SPIN CHAINS . . . PHYSICAL REVIEW B 69, 064428 ~2004!
the usual Ne´el state. The operatorV is treated as a perturba
tion. It flips a pair of spins on neighboring sites.

The Ising series have been calculated for the ground s
energy per siteE0 /N, the staggered magnetizationM, the
uniform perpendicular susceptibilityx' , and the lowest ly-
ing triplet excitation spectrumD(kx ,ky ,kz) for several ratio
of couplings and~simultaneously! for several values oft up
to orderx10 ~the series for uniform perpendicular susceptib
ity x' is one order less!. The series are available upon r
quest. Here there are two branches of the spin-wave dis
sion. From the series one can see that the symmetric~optical!
excitation spectrumD(kx ,ky,0) is related to the antisymme
ric ~acoustic! excitation spectrumD(kx ,ky ,p) by

D~kx ,ky,0!5D~p2ky ,p2kx ,p!, ~5!

and so we only consider the antisymmetric excitation sp
trum here.

III. QUANTUM MONTE CARLO SIMULATIONS

We have used the stochastic series expansion~SSE!
method23,24 to study the ground state and finite temperat
properties of the Heisenberg antiferromagnet on anisotro
bilayers. The SSE is a finite-temperature QMC techniq
based on importance sampling of the diagonal matrix e
ments of the density matrixe2bH. Ground-state propertie
are obtained by using sufficiently large values ofb. There
are no approximations beyond statistical errors. Using
‘‘operator-loop’’ cluster update,24 the autocorrelation time fo
the system sizes we consider here~up to'3103 spins! is at
most a few Monte Carlo sweeps even at the criti
coupling.25

IV. TÄ0 PROPERTIES

A. Results from dimer expansions

With the dimer series for the antiferromagnetic susce
bility x, and the minimum triplet gapm, one can determine
the critical point (J/J')c by constructing Dlog Pade´
approximants26 to these series, and since the transiti
should lie in the universality class of the classicald53
Heisenberg model~our unbiased analysis also supports thi!,
we expect that the critical index forx andm should be ap-
proximately 1.40 and 0.71, respectively. The critical line o
tained by the exponent-biased Dlog Pade´ approximants21 are
shown in Fig. 1.

The spectra for some particular values ofa and J/J' in
the dimer phase are illustrated in Fig. 2, where the direct s
to the series atJ/J'5(J/J')c is indeed consistent with th
integrated differential approximants21 that one can construct
In Fig. 3, we show the spectra for some particular values
a andJ/J' along the critical line.

To compute the critical spin-wave velocityv, one ex-
pands the spectrumD in the vicinity of wave vector (p,p)
up to k2:
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D~p2kx ,p2ky!~J/J'!

5C~J/J'!1Dx~J/J'!kx
21Dy~J/J'!ky

21•••,

~6!

and it is easy to prove21 that the critical spin-wave velocity
along the x and y direction are equal to (2CDx)

1/2 and
(2CDy)

1/2, respectively, at (J/J')c . The series coefficients
for 2CDx and 2CDy in J/J' are listed in Table I. These
series can be extrapolated to (J/J')c by using the integrated
differential approximants, and the results are shown in Fig
one can see thatvx (vy) is increased~decreased! once the
anisotropy is introduced. Asa→0, near the critical lineJ'

FIG. 1. The ground-state phase diagram in the parameter s
of the in-plane anisotropya and the interlayer couplingJ' . Both
QMC and series expansion results are shown. The error bars
smaller than the size of the symbols. The curve is a square root
the critical coupling data. Rough estimates of parameters
CaCu2O3 and SrCu2O3 are also indicated.

FIG. 2. Plot of the antisymmetric spin-triplet excitation spe
trum D(kx ,ky ,p)/J' in the dimer phase along high-symmetry cu
through the Brillouin zone for the system with coupling ratiosa
50.5 andJ/J'50.1 ~dotted line!, 0.3 ~dashed line!, 0.556 ~solid
line!. The lines are the estimates by direct sum to the dimer se
and the points circles with error bar for the case ofJ/J'50.556
only are the estimates of the integrated differential approximant
the dimer series.
8-3
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PINAKI SENGUPTA, WEIHONG ZHENG, AND RAJIV R. P. SINGH PHYSICAL REVIEW B69, 064428 ~2004!
→0 and the system approaches a spin-chain along thex axis,
where the spin-wave velocity is known to bepJ/2. Hence
asymptotically, along the critical line,

vx /J'.~p/2!~J/J'!;0.619/Aa. ~7!

This asymptotic behavior is shown by a dashed line. One
see that the presence of other interactions further incre
the spin-wave velocity alongx. To understand the behavio

FIG. 3. Plot of the antisymmetric spin-triplet excitation spe
trum D(kx ,ky ,p)/J' along high-symmetry cuts through the Bri
louin zone for the system along the critical line witha50.25
~dashed line!, 0.5 ~dotted line!, 1~solid line!. The results of the
integrated differential approximants to the dimer series are sho

FIG. 4. The spin-wave velocityv/J' along x and y directions
versusa at the critical ratio (J/J')c obtained from dimer series
expansion. Also shown are the asymptotic results ofvx /J'

50.619/Aa ~dashed line! and the linear spin-wave results forvx

andvy ~dotted lines!.
06442
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of vy , we turn to linear spin-wave theory. We obtain th
antisymmetric excitation spectrum

D~kx ,ky!52SJ$~11a1J'/2J!2

2@cos~kx!1a cos~ky!2J'/2J#2%1/2 ~8!

with this one can obtain spin-wave velocity along they di-
rection

vy52SJ@a~11a1J' /J!#1/2. ~9!

Note thatvx is obtained fromvy by exchanging the intralaye
couplings along thex andy directions. The linear spin-wave
results for bothvx andvy are plotted as dotted lines in Fig. 4
We see that for smalla, the linear spin-wave theory, whic
is known to be off by a factor ofp/2 for the spin-half chain,
works quite well for vy , the velocity along the weakly
coupled direction.

B. Results from Ising expansions

With the Ising series for staggered magnetizationM and
the uniform perpendicular susceptibilityx' , one can also
determine the phase boundary by extrapolating the series
M andx' to the isotropic pointx51 using the same metho
as in Ref. 22, the results fora51/2 are shown in Fig. 5. We
note thatM and x' first increase for smallJ' /J, then de-
crease for a larger value ofJ' /J, and vanish at aboutJ' /J
51.8, which is consistent with the more accurate critic
point determined by the dimer expansions. The reason for
initial increase is that for smallJ' /J the interlayer coupling

n.

FIG. 5. The staggered magnetizationM and the uniform perpen-
dicular susceptibilityx' vs J' /J for a50.5 as estimated by Ising
expansions.
8-4
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CRITICALITY IN COUPLED QUANTUM SPIN CHAINS . . . PHYSICAL REVIEW B 69, 064428 ~2004!
enhances the antiferromagnetic long-range order as the
tem acquires a weak three dimensionality and quantum fl
tuations are suppressed.

The antisymmetric excitation spectraD(kx ,ky ,p) for
some particular values ofJ' /J anda51/2 are illustrated in
Fig. 6, where we can see that the excitation is gapless a
(p,p,p) point. ForJ' /J51.75 ~close to the critical point!,
the spectra are very similar to that obtained from dimer
pansion. Thus, as one goes through the quantum phase
sition, the spectra evolve smoothly.

C. Ground-state properties obtained by SSE

For the ground-state properties, using the SSE method
have studied lattices of the form 23L3L, with L up to 20.
Periodic boundary conditions were applied in both thex and
y directions. A series of values ofa were chosen, and th
critical J' was determined for each of them, mapping out
ground-state phase diagram in thea2J' parameter space
An inverse temperatureb516L was found to be sufficien
for the calculated quantities to have converged to th
ground-state values.

An efficient way to determine the critical coupling for th
spin gap transition is by studying the finite size scaling of
ground-state (T50) spin stiffness. The spin stiffness can
defined27,28 as the second derivative of the free energy w
respect to a uniform twistf. At T50, the free energy is the
same as the internal energy, and the expression for the
stiffness takes the form

r5
]2E~f!

]f2
, ~10!

whereE(f) is the internal energy per spin in the presence
a twist. The stiffness can be related to the fluctuations of
‘‘winding number’’ in the simulations23,29–31and hence can
be estimated directly without actually including a twis

FIG. 6. Plot of the antisymmetric spin-triplet excitation spe
trumD(kx ,ky ,p)/J' in the Néel order phase derived from the Isin
expansions along high symmetry cuts through the Brillouin zone
the system with coupling ratiosa50.5 and J' /J50.5 ~upper
curve!, 1.75~lower curve!, also shown as dotted lines are the resu
of linear spin-wave theory.
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Since the twist can be applied parallel to thex or y axes,
there are two different spin stiffnessesrx and ry in the an-
isotropic system considered here.

Finite size scaling analysis dictates that at the critical c
pling, the spin stiffness should scale with the system s
as32,33

r~L !;Ld222z, ~11!

whered(52) is the dimensionality andz is the dynamical
critical exponent. The transition is expected to be in the u
versality class of the 3D Heisenberg model—hencez51. It
follows from the above relation that in a plot ofLra ,(a
5x,y) versusJ' , the curves for different system size shou
intersect atJ'

c . In practice, it is found that the crossing poi
shifts monotonically with increasing system size—the int
section of the curves for successive system sizes~linear di-
mensionsL andL12) give a finite size dependent estima
of the critical couplingJ'

c (L) that converges to the true criti
cal couplingJ'

c at largeL. Interestingly, the convergence
from opposite directions forrx and ry–J'

c (L)→J'
c from

above ~below! for ry(rx).
34 This yields upper and lowe

bounds for the true critical coupling, leading to an improv
estimate forJ'

c . The results fora50.5 are shown in Fig. 7.
The upper~lower! panel shows the data forrx(ry). The
curves are found to cross in the neighborhood ofJ''1.8. A
plot of the finite size dependent critical coupling obtain
from the crossing of successive system sizes obtained f
the plot is shown in Fig. 8. As discussed above,J'

c (L) is
seen to converge toward'1.79 from above~below! for

r

FIG. 7. The ground-state spin stiffness times the linear sys
sizeL as a function of the interlayer coupling in the vicinity of th
critical point for square lattices withL56,8, . . .,20. The~negative!
slope increases with increasingL. The intralayer anisotropy isa
50.5. The upper~lower! panel shows the data for stiffness alon
the x ~y! axis. Error bars are of the size of the symbols or smal
The curves are quadratic fits to the data.
8-5
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PINAKI SENGUPTA, WEIHONG ZHENG, AND RAJIV R. P. SINGH PHYSICAL REVIEW B69, 064428 ~2004!
rx(ry). From the data, we estimate the true critical coupl
in the limit of infinite system size to beJ'

c 51.7960.005 for
a50.5.

A similar analysis of the spin stiffness data for differe
values of a gives us the critical value of the interplan
coupling J'

c for the spin gap transition as a function ofa.
The resulting phase diagram is shown in Fig. 1.

Independent estimate of the critical coupling can be
tained from the finite size scaling of the staggered struc
factor and the corresponding susceptibility. The full tw
plane static spin susceptibility is defined as

x~q!5
1

L2 (
i , j

eiq•(r i2r j )E
0

b

dt^@S1,j
z ~t!2S2,j

z ~t!#@S1,i
z ~0!

2S2,i
z ~0!#&. ~12!

At the critical point, the staggered,q5(p,p), susceptibility
for finite size systems scale with the system size as a sim
power law behavior32,33 determined by the critical exponen
h:

x~L,J'
c !;L22h. ~13!

This implies that on a plot of ln(x) versus ln(L), the data for
the critical J' should fall on a straight line with slope 2
2h. In the spin gapped phase, the staggered susceptib
should go to a constant at largeL, whereas in the Ne´el phase
with long-range antiferromagnetic order, it should diver
faster than any power ofL. Figure 9 shows the plot of ln(x)
versus ln(L) for fixed a(50.5) and five different values o
J' in the vicinity of the critical coupling. For large values o
L, the data for the critical coupling is indeed found to fall o
a straight line. The slope of the line yieldsh'0.035. The
deviation from power law behavior in both the spin gapp
and Néel phases are also in agreement with the above
cussion. The value ofh obtained from Fig. 9 is in close
agreement with its value for the 3D Heisenberg universa
class. Furthermore, both the staggered structure factor

FIG. 8. The finite-size dependent critical point as obtained fr
the crossing of the stiffness curves for successive system sizes
linear dimensionsL andL12. The estimate for the critical couplin
converges from above~below! for thery(rx) data, providing upper
and lower bounds for the true critical coupling in the thermod
namic limit.
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susceptibility~for any a.0) show the expected finite-siz
scaling with the critical exponentsn'0.7 andg'1.4. This
confirms that the transition belongs to the universality cl
of the 3D Heisenberg model for any finitea.

V. FINITE TEMPERATURE PROPERTIES

A. Uniform susceptibility

We start the presentation of the finite temperature prop
ties with the uniform magnetic susceptibility defined as

xu5
b

N (
i , j

^@S1,i
z 1S2,i

z #@S1,j
z 1S2,j

z #&, ~14!

where N is the size of the system. For finite temperatu
properties, we have carried out the simulations on latti
with rectangular geometryLx3Ly ,LxÞLy . This is to reduce
finite size effects. It was shown by Sandvik38 for a system of
coupled Heisenberg chains, the finite size effects depen
monotonically for rectangular lattices whereas for square
tices the behavior was less well behaved. While such effe
are expected for ground state properties also, our limita
in terms of computational power has restricted us to the
of square lattices. Fortunately, the stiffness in the two dir
tions give upper and lower bounds for the critical couplin
leading to a reliable estimate ofJ'

c . Simulations at finite
temperatures require considerably less computer powe
hence we are able to study rectangular lattices. In particu
lattices with aspect ratioLx54Ly have been considered.

Results from the study of the nonlinears model predict
that at the critical coupling, the uniform susceptibilityx(T)
is linear inT ~at low temperatures! with zero intercept. The
region of linearT dependence gives an estimate of the qu
tum critical regime. The finite-size effects in the estimates
T.0 data decrease rapidly with increasing system size—
difference in the estimate ofxu between lattices withLx

ith

-

FIG. 9. The finite-size scaling of the staggeredQ5(p,p) static
susceptibility in the vicinity of the critical coupling fora50.5. For
lattices larger thanL510, the data close to the critical coupling
found to fit a power law behavior with an exponent 22h (h
50.035) that is consistent with the 3D Heisenberg universa
class.
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564 and 128 is of the order of the magnitude of the er
bars up to the lowest temperatures studied. Henceforth,
data are presented for lattices withLx5128. Figure 10 show
the temperature dependence of thexu for three different val-
ues of the inter-planar coupling close to the critical valu
The data shown are for a rectangular lattice withLx5128. It
was found that the difference in the estimates ofxu at low
temperatures. For all the values, the uniform susceptibilit
linear inT over the range of temperature shown. ForJ'

c , the
intercept is approximately zero, while it is positive~negative!
for J',(.)J'

c . The results are consistent with the estima
of J'

c obtained from the stiffness data. While the linearT
behavior at the critical coupling is found to hold for all va
ues of the in-plane spatial anisotropy, its range decrea
with decreasing value ofa.

B. Internal energy and specific heat

Instead of working directly with the specific heat, we ha
studied the internal energy, of which the specific heat is
temperature derivative. This is driven by the practical co
sideration that the specific heat data~that can be estimate
directly within the framework of the SSE method! gets noisy
at low temperatures, while the internal energy data is larg
free from such noise at all temperatures considered. The
perature dependence of the specific heat is easily obta
from that of the internal energy. An estimate of the tempe
ture dependence of the internal energy is obtained by ass
ing spin wave dispersion at low energies. In the Ne´el phase,
the dispersion is«(k)5ck, wherec is the spin wave veloc-
ity. In the presence of a spin gap (D), the dispersion takes
the form «(k)5AD21c2k2. For a 2D system, the interna
energy per particle at low temperatures should take the f

E

N
;E

0

`

kdk«~k!
1

e2«(k)/kBT21
.

FIG. 10. The uniform susceptibility as a function of temperatu
near the critical coupling fora50.5. At low temperatures, the sus
ceptibility depends linearly onT, in agreement with the prediction
from field theoretic calculations. Above the transition, in the s
gapped phase,xu scales to zero at finiteT, while below the transi-
tion, in the Néel phase,xu scales to a finite value atT50. At the
critical point,xu extrapolates to zero atT50. The data shown are
for a rectangular lattice withN5128332.
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For the gapless dispersion, this givesE/N5(const)3T3,
which implies that the specific heatCv;T2. For the spin
gapped phase, the internal energy expression reduces to

E

N
5~const!3T3E

D2/T

` x2dx

ex21
.

For D2!T, the leading behavior of the specific heat is on
again;T2. For large gap and/or low temperatures, this w
turn into an activated behavior, coming from the temperat
dependence of the definite integral. However, this region
not been accessible to our Monte Carlo simulations. Fig
11 shows the internal energy as a function of the tempera
for two parameter sets corresponding to the gapless and
gapped phases along with theT3 fit. This suggests that unles
one goes down to very low temperatures, near the crit
line it would be difficult to tell from the specific heat dat
whether one is in an ordered or a spin-gap phase.

VI. COMPARISON WITH EXPERIMENTS

Let us now consider the two materials SrCu2O3 and
CaCu2O3. The former has been considered as a model s
ladder system.2 It is known to have a spin gap of about 42
K in the excitation spectra.16 From its geometry, one expect
J' comparable toJ. Early attempts to study this model use
a ladder geometry (a50) with J'5J, and concluded35 that
the experimental data can be fit withJ'850 K. Later direct
measurements of the susceptibility yielded36 a much larger
value ofJ'2000 K. Johnston37 later suggested that the su
ceptibility data can be explained~once again with a ladde
geometry! with J of order 2000 K and a much smallerJ'

~less than 0.5J). However, as pointed out by Greven an
Birgeneau,39 one always expects in these materials, an in
ladder coupling in the third direction leading to a nonzeroa,
possibly as large asa'0.05. Our study shows that even th
small a value ofa, along withJ'50.5 would push Sr2CuO3
into the Néel phase. To account for the experimentally o
served spin-gapped behavior witha'0.05 one needsJ' /J
;1.0. We have indicated this in Fig. 1. The main differen

FIG. 11. The energy as a function of the temperature for
Néel and the spin gapped phases. The data forJ'51.85 is found to
deviate from a pureT3 dependence at low temperatures.
8-7
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between SrCu2O3 and CaCu2O3 is that in the latter buckling
leads to much smallerJ' /J('0.2) ~Ref. 14! thus leading to
Néel order. This is also indicated in the phase diagram
Fig. 1.

VII. CONCLUSIONS

We have used the stochastic series expansion~SSE! quan-
tum Monte Carlo~QMC! and series expansion methods
study the antiferromagnetic Heisenberg model on spati
anisotropic bilayer systems. The criticalJ'

c , separating the
Néel ordered and disordered phases is found to depend oa,
the ratio of in-plane couplings, according to a simple squa
root behavior. For all values ofa considered, the transition
to the spin-gapped state belongs to the universality clas
the 3D classical Heisenberg model. TheT50 and finite tem-
perature properties of the model are studied, espec
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