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Criticality in coupled quantum spin chains with competing ladderlike and two-dimensional
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Motivated by the geometry of spins in the materials S@uand CaCyO3, we study a two-layer, spin-half
Heisenberg model, with nearest-neighbor exchange couplisgsl «J along the two axes in the plane and a
couplingJ, perpendicular to the planes. We study these class of models using the stochastic series expansion
guantum Monte Carlo simulations at finite temperatures and series expansion metfiee8.athe critical
value of the interlayer couplingl® , separating the Na ordered and disordered ground states, is found to
follow very closely a square root dependenceaorBoth T=0 and finite-temperature properties of the model
are presented and the contrasting behavior of gg@and CaCyO; are explained.
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[. INTRODUCTION as spin chains coupled in two different ways. Along one axis
perpendicular to the chains, one has effectively a two-leg
In recent years, the geometrical arrangement of atoms caladder, which are then nearly decoupled from the rest of the
rying spin and those mediating interactions between them, igystem, due to the geometry of copper-oxygen bond angles.
newly discovered magnetic materials, has been a dominadtlong the other axis perpendicular to the chains, the cou-
theme in the field of quantum magnetism, and has inspire@!ing between the chains leads to an anisotropic square lat-
many interesting models and theorfe a class of cuprate tice qf spinst® Thus the materials have _competin_g tend_enc_:ies
materials, the arrangement of copper and oxygen atoms i{p Neel order and to develop a gap in the spin excitation
the copper-oxide planes leads to nearly ideal realizations cfP€ctra. The material Sr&d; is known to have a spin gaf.
one-dimensional1D) spin chains, of spin ladders as well as N€€! order is found in bulk CaCyO; materials withTy

— s 17 in fi
of simple and decorated square-lattice systéfiEhe varia- 622 KO Scha et a!. Ih:(\j/e also dar%uedf_thlgt_tréln f|I(;ns of
tions in geometry, in other recently discovered materials, aCy0; act as spin ladders and show field-induced super-
nducitvity. While controversy surrounding the work of

have led to several magnetically ordered, spin-gapped an ch et al. puts the existence of field-induced superconduc-

dimerized phasebsThese materials have allowed the explo-. .. : .

. . . o tjvity in doubt, the fact remains that these materials are close
ration of dimensional crossovers, unusual excitations, an being quantum critical and could go into an ordered or
quantum critical phenomen&through detailed comparisons disordered phase with small changes in parameters.

between experiments and theory. _ Here we consider two square-lattice layers of spins, with
Many classes of materials involve weakly coupled spin-gyes of the square lattice pointing alomgand y and a
half chains. From a theoretical point of view, these are idealygjsenberg Hamiltonian

systems for finding and testing novel phenomena as our un-

derstanding of the spin-half chain is rather complete thanks

to Bethe ansatz _meth99ds, quantum fleld-theory methods, and H=J2 Sa,iSa,i+§<+a32 Sa,iSa,i+§/+JJ_2 SISy
numerical techniques.® However, different ways of cou- a,i a,i i

pling the chains together can lead to widely different behav- (1)
iors. If two Heisenberg chains are coupled weakly together, it

is known to lead to a disordered ground state and a gap in thgere, a takes values 1 and 2, the first sum runs over the
spin-excitation spectra. These systems have been called spi@arest neighbors along theaxis, the second over the near-
ladders and are considered generic examples of spin gagst neighbor along thgaxis and the third between the near-
phenomend:'° On the other hand, if an array of spin chains, est neighbors along theaxis. The mode#, in the limit of
say arranged parallel to each other in a two-dimensionak=1 (the isotropic bilayer has been extensively studied
plane, are weakly coupled together in an unfrustrated manssing numerical and analytical methd@aVe shall caltH an
ner, they develop conventional Nmrder{[l If the interchain anisotropic bi|ayer model. We sét=1 and Study the phase
couplings are strongly frustrated, one can even find a carrygiagram of this model a&f =0 using series expansion meth-
over of exotic one-dimensional physics to higherods and stochastic series expansi@$B quantum Monte
dimensions?* Carlo (QMC) simulations. We find that the phase boundary

In this paper, we are motivated by the material C#03)  separating the Na ordered and disordered phases follows
which has a geometry very similar to the well-known spin-very closely the behavior

ladder material SrCiD;, but develops Nel order at low
temperature$? The largest exchange coupling in both these .
materials is of order 2000 K. One can regard these materials I =Aa, 2
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TABLE I. Series coefficients for dimer expansions of the ground-state energy p&i,¢ite], , the antiferromagnet susceptibiligy, the
minimum triplet energy gam/J, , and the critical spin-wave velocity along tReandy directions(as described in the textCoefficients of
(3/3)" for a=1/2 up to ordem=11 are listed.

n Eo/J, X m/J, 2CD,/J? 2CD, /3%

0 —3.750000006¢ 10 * 1.000000000 1.000000000 0.000000000 0.000000000
1 0.000000000 3.000000000 —1.500000000 1.000000000 5.00000080M *
2 —2.343750006 107 ¢ 7.125000000 1.25000008QL0 * 0.000000000 0.000000000
3 —1.054687506¢ 10 ¢ 1.546875006 10" —4.687500006 1071 1.750000000 5.468750080L0° 1
4 —2.27050781% 10 2 3.13261718% 10 —5.078125006 10 * 1.218750000 1.75781256QL0 *
5 8.184814453 102 6.15301106& 10" —1.64794921% 1071 —4.101562506( 10 * —3.37646484% 1071
6 9.03854370% 10?2 1.18830638% 10% 2.856903076 101 —1.158325195 —1.55822753% 10 ¢
7 1.04563236% 10 2 2.27629651X 107 7.159423828 10 2 —1.660129547 —8.045387268 10 2
8 —1.30057454% 10 * 4.326861726 107 —8.71566712% 10 * 6.815385818 10 * 7.27293491% 10 ¢
9 —1.56634292610 ¢ 8.16557651% 107 —2.380170342 3.975312367 8.96076630% *
10 —2.07510741% 10 2 1.529763646 10° —1.890960221 2.580596185 —2.33316484% 10 *
11 2.349058435 107 ¢ 2.85027930% 10° —1.91642542% 1071 —2.162085212 —1.298405600

whereA~2.53 is the critical point for isotropic case. We also =A(,7). The dimer expansion for isotropic case=1)

calculate the uniform susceptibility and the internal energy ofwas carried out by Hid& up to order ¢/J,)® in 1992, and

the model at finite temperatures, and study its excitatiorextended to order J{J,)® by Gelfand? and to order

spectra in the spin-gap and &leordered phases. (J3/3,)* by one of the author€ Here, the number of clus-
The plan of the paper is as follows. In Sec. I, we discusgers involved is much more than the isotropic case since the

the series expansion method. In Sec. Ill, we discuss the st@gystem no longer has 90° rotation symmetry, and there are,

chastic series expansion calculations. In Sec. 1V, we presein all, 38 070 linked clusters of up to 12 sites involved in the

the T=0 properties of the system. In Sec. V, we present thecalculation.

uniform susceptibility and internal energy at finite tempera-

tures and in Sec. VI, we present our conclusions. B. Ising expansions

To construct an expansion about the Ising limit for this
system, one has to introduce an anisotropy paranxetamnd
We have carried out dimer expansions and Ising expanwrite the Hamiltonian for Heisenberg-Ising model as
sions for this system af=0. The linked-cluster series ex-
pansion method has been previously reviewed in Ref. 19, H=Ho+xV, ()
and will not be repeated here.

II. SERIES EXPANSION METHODS

where

A. Dimer expansions

Ho=3 2 X SLS, stad 2 XSS

In the limit that the exchange coupling along the ruhg a=1,2 "7
is much larger than the couplings within the plane, the rungs
interact only weakly with each other, and the dominant con- +3] E SZ-S§-+tE € S
figuration in the ground state is the product state with the L THER e TeiTel
spin on each rung forming a spin singlet. We can construct
dimer expansion id/J, by treating the last term in Eq1)
as the unperturbed Hamiltonian and the rest of terms as a V:Joziz Z (S);,is);,i+§<+si,iszyy,i+;)
perturbation. ’

We have carried out the dimer expansions for TheO
ground-state energy per site;,/N, the antiferromagnetic +aJa:2122i (Sﬁ,iSZ,HﬁSi,iSi,H;)
susceptibilityy, and the lowest lying triplet excitation spec- '
trum A(k,,k,) (odd parity under interchange of the planes
up to ordery(J/JL)11 for fixed values ofa. The resulting +JLZ (S)l(,iS)Z(,iJrS)l/,iS%,i)_t; €aiSeis (4
power series inJ/J, for the ground-state energy per site '
Eo/N and the antiferromagnetic susceptibiligyfor a=1/2  ande,;==*1 on the two sublattices. The last term in both
are presented in Table I. A table of series coefficients for thédy andV is a local staggered field term, which can be in-
triplet excitation spectrum (k,,k,) would require an inor- cluded to improve convergence. The limiks-0 andx=1
dinate amount of space to reproduce in print; it is availablecorrespond to the Ising model and the isotropic Heisenberg
from the authors upon request. Instead, we also present imodel, respectively. The operatbly is taken as the unper-
Table | the series for the minimum energy gap  turbed Hamiltonian, with the unperturbed ground state being
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the usual Nel state. The operatdr is treated as a perturba- 3.0 - - - — T
tion. It flips a pair of spins on neighboring sites. i ]

The Ising series have been calculated for the ground state 50 spin gapped _/,m/’"
energy per siteEy/N, the staggered magnetizatid, the 50 B ‘,,,m’“’ ]
uniform perpendicular susceptibility, , and the lowest ly- L _m 4
ing triplet excitation spectrum (k,,ky ,k,) for several ratio 15 B,/" -
of couplings andsimultaneouslyfor several values of up - «

10 . . . . | - Neel e QMCdata a

to orde_rx (the series for umform_ perpendmglar susceptibil- 10—z o o Ser. expn. data
ity x, is one order legs The series are available upon re- i o CaCuO
quest. Here there are two branches of the spin-wave disper- 0.5 ./ o SICuO. ]
sion. From the series one can see that the symmefpiical 0.0 ¢ A R A R
excitation spectrun (k, ,ky,0) is related to the antisymmet- 0.0 02 0.4 0.6 0.8 L0
ric (acousti¢ excitation spectrund (k, ,k, , ) by o

FIG. 1. The ground-state phase diagram in the parameter space
A(ky,ky,0)=A(m—ky,m—Ky,7), (5  of the in-plane anisotropy and the interlayer coupling, . Both
QMC and series expansion results are shown. The error bars are

d | ider th " i itati smaller than the size of the symbols. The curve is a square root fit to
?rzmsk?e\rl;e only consider the antiSymmetric excitation SpeC,e  ciitical coupling data. Rough estimates of parameters for

CaCy03; and SrCyO; are also indicated.

. QUANTUM MONTE CARLO SIMULATIONS A(W_kx’w_ky)(‘]/‘]l)

We have used the stochastic series expan$®8B ZC(J/JLHDx(J/JL)kiJFDy(J/JL)ksZ/JF Tt
method®?*to study the ground state and finite temperature (6)
properties of the Heisenberg antiferromagnet on anisotropic
bilayers. The SSE is a finite-temperature QMC techniquexnd it is easy to prove that the critical spin-wave velocity
based on importance sampling of the diagonal matrix elealong thex and y direction are equal to (@D,)*? and
ments of the density matrie #". Ground-state properties (2CDy)1’2, respectively, atJ/J,).. The series coefficients
are obtained by using sufficiently large valuesffThere for 2CD, and 2D, in J/J, are listed in Table 1. These
are no approximations beyond statistical errors. Using th@eries can be extrapolated t#/J, ). by using the integrated
“operator-loop” cluster updaté the autocorrelation time for  gitferential approximants, and the results are shown in Fig. 4,
the system sizes we consider héup to~x10° sping isat  one can see that, (v,) is increaseddecreasedonce the

mostl_azgew Monte Carlo sweeps even at the criticalanisotropy is introduced. Ae—0, near the critical lineJ,
coupling’

IV. T=0 PROPERTIES
A. Results from dimer expansions

With the dimer series for the antiferromagnetic suscepti-
bility y, and the minimum triplet gam, one can determine r
the critical point (/J,). by constructing Dlog Pade B
approximant® to these series, and since the transition -
should lie in the universality class of the classich+ 3 [
Heisenberg moddour unbiased analysis also supports)this L
we expect that the critical index foy andm should be ap- -
proximately 1.40 and 0.71, respectively. The critical line ob- i
tained by the exponent-biased Dlog Pagproximants' are -
shown in Fig. 1. 0. . . |, -

The spectra for some particular valuesafandJ/J, in 0 @0 (mm) (00
the dimer phase are illustrated in Fig. 2, where the direct sum
,to the serle§ a‘ﬂ/‘]i_:(‘]/‘]i)c _'S indeed consistent with the trum A(ky ,ky,)/J, in the dimer phase along high-symmetry cuts
integrated differential approximaritshat one can construct. through the Brillouin zone for the system with coupling raties
In Fig. 3, we show the spectra for some particular values ot o 5 andJ/3, =0.1 (dotted ling, 0.3 (dashed ling 0.556 (solid
a andJ/J, along the critical line. line). The lines are the estimates by direct sum to the dimer series,

To compute the critical spin-wave velocity, one ex- and the points circles with error bar for the caseJi, =0.556
pands the spectrud in the vicinity of wave vector fr,77)  only are the estimates of the integrated differential approximants to
up tok?: the dimer series.

=
d ;!
TR R

. L ®
(0,m) (m,m)

FIG. 2. Plot of the antisymmetric spin-triplet excitation spec-
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- / o e ]
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FIG. 3. Plot of the antisymmetric spin-triplet excitation spec- 0.02 E i E
trum A(k,,k,,)/J, along high-symmetry cuts through the Bril- N ]
louin zone for the system along the critical line with=0.25 oF { _
(dashed ling 0.5 (dotted ling, 1(solid line). The results of the e e e T e
integrated differential approximants to the dimer series are shown. 0 05 ] 1/J 1.5 2
1
—0and the SYStem approa(.:he.s a spin-chain along ’ FIG. 5. The staggered magnetizatignand the uniform perpen-
where the spin-wave velocity is known to bel/2. Hence  gicylar susceptibilityy, vsJ, /3 for a=0.5 as estimated by Ising
asymptotically, along the critical line, expansions.
0y 13, =(ml2)(313,)~0.619%a. 7 of vy, We turn to linear spin-wave theory. We obtain the

This asymptotic behavior is shown by a dashed line. One cafitiSymmetric excitation spectrum
see that the presence of other interactions further increases )
the spin-wave velocity along. To understand the behavior A(ky ky)=2SK(1+a+J,/23)

—[cogk,) +a cogky) —J,/2]]?}2 (8)

1.5

with this one can obtain spin-wave velocity along theli-
rection

vy=2SJ a(1+a+J, /13)]*2 (9)

Note thatv, is obtained fromv, by exchanging the intralayer
couplings along th& andy directions. The linear spin-wave
results for bothy, andv,, are plotted as dotted lines in Fig. 4.
We see that for smalk, the linear spin-wave theory, which
is known to be off by a factor ofr/2 for the spin-half chain,
works quite well forv,, the velocity along the weakly
coupled direction.

v/J,

r 1 B. Results from Ising expansions

i ] With the Ising series for staggered magnetizatidrand
E the uniform perpendicular susceptibility, , one can also
[ B determine the phase boundary by extrapolating the series for
0 0.2 0.4 0.6 0.8 1 M and y, to the isotropic poink=1 using the same method

& as in Ref. 22, the results far=1/2 are shown in Fig. 5. We
note thatM and y, first increase for small, /J, then de-
crease for a larger value df, /J, and vanish at abou, /J

FIG. 4. The spin-wave velocity/J, alongx andy directions

versusa at the critical ratio §/J,). obtained from dimer series
expansion. Also shown are the asymptotic results vgfJ, =1.8, which is consistent with the more accurate critical

=0.619A/a (dashed ling and the linear spin-wave results for, point determined by the dimer expansions. The reason for the
andv,, (dotted lines. initial increase is that for small, /J the interlayer coupling
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I ¢
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FIG. 6. Plot of the antisymmetric spin-triplet excitation spec-
trumA(ky,ky ,m)/J, inthe Neel order phase derived from the Ising
expansions along high symmetry cuts through the Brillouin zone for
the system with coupling ratiogge=0.5 andJ, /J=0.5 (upper

curve), 1.75(lower curve, also shown as dotted lines are the results
of linear spin-wave theory.

FIG. 7. The ground-state spin stiffness times the linear system
. . ) izeL as a function of the interlayer coupling in the vicinity of the
teenrzaanccejrtehseaa\r/]vif:&r?hr?:(gr(li(iartr;((;arllc;?ognzlii?gzncgdiai?utgeflchritical point for square lattices with=6,8, . . .,20. The(negative
tuati nq ] ] d y q slope increases with increasiig The intralayer anisotropy is
uaTr? sa e. supp egse N Ak k f =0.5. The uppeflower) panel shows the data for stiffness along
e anfusymmetnc excitation spectra( X1 Y’W) or. the x (y) axis. Error bars are of the size of the symbols or smaller.
some particular values df, /J anda=1/2 are illustrated in 14 curves are quadratic fits to the data.
Fig. 6, where we can see that the excitation is gapless at the
(., ) point. ForJ, /J=1.75(close to the critical point gi06 the twist can be applied parallel to ther y axes
the spectra are very similar to that obtained from dimer ®X3here are two different spin stiffnessps and p, in the an—’
pansion. Thus, as one goes through the quantum phase tra}gétropic system considered here Py
sition, the spectra evolve smoothly. Finite size scaling analysis dictates that at the critical cou-

pling, the spin stiffness should scale with the system size
as°;2,33

For the ground-state properties, using the SSE method, we
have studied lattices of the form>X2 X L, with L up to 20. p(L)~L9"277 (11
Periodic boundary conditions were applied in both xrend

y directions. A series of values af were chosen, and the Whered(=2) is the dimensionality and is the dynamical

critical J, was determined for each of them, mapping out thecritical exponent. The transition is expected to be in the uni-

ground-state phase diagram in the-J, parameter space. versality class of the 3D Heisenberg model—heneel . It

An inverse temperatur@=16L was found to be sufficient follows from the above relation that in a plot afp, (e

for the calculated quantities to have converged to their=X,y) versusl, , the curves for different system size should

ground-state values. intersect atlS . In practice, it is found that the crossing point
An efficient way to determine the critical coupling for the shifts monotonically with increasing system size—the inter-

spin gap transition is by studying the finite size scaling of thesection of the curves for successive system siliesar di-

ground-state T=0) spin stiffness. The spin stiffness can be mensions. andL +2) give a finite size dependent estimate

defined’?® as the second derivative of the free energy withof the critical coupling)® (L) that converges to the true criti-

respect to a uniform twisp. At T=0, the free energy is the cal couplingJ$ at largeL. Interestingly, the convergence is
same as the internal energy, and the expression for the spfrom opposite directions fop, and py_\]i(L)_h]i from

stiffness takes the form above (below) for py(p,).** This yields upper and lower

bounds for the true critical coupling, leading to an improved
_ PPE(9) 1o Cestimate ford{ . The results folx=0.5 are shown in Fig. 7.
pP= g (10 The upper(lower) panel shows the data fgs(p,). The

curves are found to cross in the neighborhood 0£1.8. A
whereE(¢) is the internal energy per spin in the presence ofplot of the finite size dependent critical coupling obtained

a twist. The stiffness can be related to the fluctuations of th&om the crossing of successive system sizes obtained from
“winding number” in the simulation$*?*~3'and hence can the plot is shown in Fig. 8. As discussed abovg(L) is
be estimated directly without actually including a twist. seen to converge towaret1.79 from above(below) for

C. Ground-state properties obtained by SSE
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T I T i 6 T T T T T T T T T
1.800 - -
2 17951 — —
- o
L - =
=
1.790 — _
1.7 1 ] 1 | L
88.05 0.10 0.15
l/L I l I l I | ) | I

1.75 2.00 2.25 2.50 2.75
FIG. 8. The finite-size dependent critical point as obtained from In(L)
the crossing of the stiffness curves for successive system sizes with
linear dimension& andL + 2. The estimate for the critical coupling ~ FIG. 9. The finite-size scaling of the staggef@e (, ) static
converges from abowéelow) for the p,(p,) data, providing upper ~Susceptibility in the vicinity of the critical coupling fag=0.5. For
and lower bounds for the true critical coupling in the thermody-lattices larger thai. =10, the data close to the critical coupling is
namic limit. found to fit a power law behavior with an exponent-Z (7
=0.035) that is consistent with the 3D Heisenberg universality

px(py). From the data, we estimate the true critical coupling€lass-

in the limit of infinite system size to b& =1.79+0.005 for - o

=05 susceptibility (for any «>0) show the expected finite-size
A similar analysis of the spin stiffness data for different Scaling with the critical exponents~0.7 andy~1.4. This

values of« gives us the critical value of the interplanar confirms that the transition belongs to the universality class

coupling J¢ for the spin gap transition as a function of  ©f the 3D Heisenberg model for any finite

The resulting phase diagram is shown in Fig. 1.

Independent estimate of the critical coupling can be ob- V. FINITE TEMPERATURE PROPERTIES
tained from the finite size scaling of the staggered structure
factor and the corresponding susceptibility. The full two-
plane static spin susceptibility is defined as We start the presentation of the finite temperature proper-

ties with the uniform magnetic susceptibility defined as

A. Uniform susceptibility

1 . B
X(@=1z > elq~<ri—rj>f dr([S};(1)—S5;(n)][S;(0) 8
E ° xo=y 2 ([SFSHIISH+ 85,0, (14

—$5(0)]). (12)
. . . . where N is the size of the system. For finite temperature
At the critical point, the staggered,=(, ), susceptibility properties, we have carried out the simulations on lattices

for finite size syst_em?%scale W.ith the system §ize asa Simpk?/ith rectangular geometny, XL, ,L,#L,. Thisis to reduce
power law behavid? 3 determined by the critical exponent finite size effects. It was showr% by Sarzoe(?ikor a system of

G coupled Heisenberg chains, the finite size effects depended
X(L,J¢)~L2 7, 13) monotonically f(_)r rectangular lattices Whereas_for square lat-
L tices the behavior was less well behaved. While such effects
This implies that on a plot of Iny) versus In), the data for ~are expected for ground state properties also, our limitation
the critical J, should fall on a straight line with slope 2 in terms of computational power has restricted us to the use
— 7. In the spin gapped phase, the staggered susceptibilit§f square lattices. Fortunately, the stiffness in the two direc-
should go to a constant at largewhereas in the N phase tions give upper and lower bounds for the critical coupling,
with long-range antiferromagnetic order, it should divergeleading to a reliable estimate df . Simulations at finite
faster than any power df. Figure 9 shows the plot of Ipf ~ temperatures require considerably less computer power—
versus In() for fixed a(=0.5) and five different values of hence we are able to study rectangular lattices. In particular,
J, in the vicinity of the critical coupling. For large values of lattices with aspect ratib,=4L, have been considered.
L, the data for the critical coupling is indeed found to fall on  Results from the study of the nonlinearmodel predict
a straight line. The slope of the line yields~0.035. The that at the critical coupling, the uniform susceptibiljgyT)
deviation from power law behavior in both the spin gappedis linear inT (at low temperaturgswith zero intercept. The
and Nel phases are also in agreement with the above discegion of linearT dependence gives an estimate of the quan-
cussion. The value of; obtained from Fig. 9 is in close tum critical regime. The finite-size effects in the estimates of
agreement with its value for the 3D Heisenberg universalityT >0 data decrease rapidly with increasing system size—the
class. Furthermore, both the staggered structure factor ardifference in the estimate of, between lattices witH_,

064428-6



CRITICALITY IN COUPLED QUANTUM SPIN CHAINS . .. PHYSICAL REVIEW B 69, 064428 (2004

T T I T T I |. ._F r
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0.0 1 ] 1 ] 1 ] 1 ] ) ] i e J =175
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FIG. 10. The uniform susceptibility as a function of temperature T

near the critical coupling forr=0.5. At low temperatures, the sus-
ceptibility depends linearly off, in agreement with the prediction
from field theoretic calculations. Above the transition, in the spin
gapped phasegy, scales to zero at finit&, while below the transi-
tion, in the Nel phasey, scales to a finite value d&=0. At the . . . . 3
critical point, x, extrapolates to zero at=0. The data shown are FOr the gapless dispersion, this givBsN=(const)<T,
for a rectangular lattice withl=128x 32. which implies that the specific he&,~T2. For the spin
gapped phase, the internal energy expression reduces to

FIG. 11. The energy as a function of the temperature for the
Neéel and the spin gapped phases. The datd fer 1.85 is found to
deviate from a purd@® dependence at low temperatures.

=64 and 128 is of the order of the magnitude of the error E 3 [ x2dx
bars up to the lowest temperatures studied. Henceforth, the N:(COHSDXT J

. ; AT e¥—1°
data are presented for lattices with=128. Figure 10 show

the temperature dependence of fhefor three different val- - £or A2<T| the leading behavior of the specific heat is once
ues of the inter-planar coupling close tq the .critical Value-again~T2. For large gap and/or low temperatures, this will
The data shown are for a rectangular lattice Wigh=128. It tyn into an activated behavior, coming from the temperature
was found that the difference in the estimatesygfat low  gependence of the definite integral. However, this region has
temperatures. For all the values, the uniform susceptibility i$ot been accessible to our Monte Carlo simulations. Figure
linear inT over the range of temperature shown. Bbr the 11 shows the internal energy as a function of the temperature
intercept is approximately zero, while it is positireegative  for two parameter sets corresponding to the gapless and spin
for J, <(>)J$ . The results are consistent with the estimategapped phases along with tia fit. This suggests that unless

of J{ obtained from the stiffness data. While the lindlar one goes down to very low temperatures, near the critical
behavior at the critical coupling is found to hold for all val- line it would be difficult to tell from the specific heat data
ues of the in-plane spatial anisotropy, its range decreaseghether one is in an ordered or a spin-gap phase.

with decreasing value af.

VI. COMPARISON WITH EXPERIMENTS
B. Internal energy and specific heat

. . . . Let us now consider the two materials S and
Instead of working directly with the specific heat, we haveC 50y

. . . o . aCy0;. The former has been considered as a model spin-
studied the internal energy, of which the specific heat is th?adder systerA.It is known to have a spin gap of about 420

temperature derivative. This is driven by the pract?cal CON in the excitation spectri From its geometry, one expects
sideration that the specific heat ddthat can be estimated J, comparable td. Early attempts to study this model used

directly within the framework of the SSE methagkts noisy a ladder geometryd=0) with J, =J, and conclude® that

at low temperatur_es, while the internal energy data is Iargel¥he experimental data can be fit willk=850 K. Later direct
free from such noise at all temperatures considered. The te neasurements of the susceptibility yieldd much larger

perature dependence of the specific heat is easily obtain lue of J~2000 K. JohnstaH later suggested that the sus-

from that of the internal energy. An estimate of the tempera-,_ .+ .. . T
ture dependence of the internal energy is obtained by assurﬁemlb'“ty data can be explaing@nce again with a ladder

ing spin wave dispersion at low energies. In theeNehase, geometry with J of order 2000 K and a much smallég

) S - . . (less than 0.%). However, as pointed out by Greven and
the dispersion iz (k) =ck, wherec is the spin wave veloc- ;. 9 . ) .
) . . . Birgeneau;” one always expects in these materials, an inter-
ity. In the presence of a spin gap), the dispersion takes

the form (k) = VAZ+ %K. For a 2D system, the internal ladder coupling in the third direction leading to a nonzero

. ossibly as large ag~0.05. Our study shows that even this
energy per particle at low temperatures should take the for mall a value ofx, along withd, = 0.5 would push SICUO;
] 1 — VY.

E . 1 into the Nel phase. To account for the experimentally ob-
_NJ kdke (K) ————. served spin-gapped behavior with=0.05 one needd, /J
N Jo e ek 1 ~1.0. We have indicated this in Fig. 1. The main difference
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between SrCy0, and CaCyO; is that in the latter buckling around the critical line. We find that the spin-wave spectra
leads to much smallet, /J(=~0.2) (Ref. 14 thus leading to  evolve smoothly through the transition. The spin-wave ve-
Neel order. This is also indicated in the phase diagram irocity becomes highly anisotropic as—0. We hope our
Fig. 1. work would stimulate further measurements of spin-wave
spectra for materials such as SpOg and CaCyOs.
VIl. CONCLUSIONS

We have used the stochastic series expan$&b quan-
tum Monte Carlo(QMC) and series expansion methods to
study the antiferromagnetic Heisenberg model on spatially We would like to thank H. Rosner, A. Sandvik, J. Oitmaa,
anisotropic bilayer systems. The critic3l , separating the and C.J. Hamer for fruitful discussions. This work was sup-
Neel ordered and disordered phases is found to depenrd on ported in part by the US National Science Foundation Grant
the ratio of in-plane couplings, according to a simple squareNos. DMR-9986948 and DMR-0240918 and by the Austra-
root behavior. For all values af considered, the transition lian Research Council. Part of the simulations were carried
to the spin-gapped state belongs to the universality class afut on the IBM SP facility at NERSC. We are also grateful
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