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Correlation amplitudes for the spin-3 XXZ chain in a magnetic field
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We present accurate numerical estimates for the correlation amplitudes of leading and main subleading terms
of the two- and four-spin correlation functions in the one-dimensional spincX2 model under a magnetic
field. These data are obtained by fitting the correlation functions, computed numerically with the density-
matrix renormalization-group method, to the corresponding correlation functions in the low-energy effective
theory. For this purpose we have developed the Abelian bosonization approach to the spin chain under the
open-boundary conditions. We use the numerical data of the correlation amplitudes to quantitatively estimate
spin gaps induced by a transverse staggered field and by exchange anisotropy.
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I. INTRODUCTION ous space variable. For a better description of low-energy

physics, one needs to add fd, an irrelevant operator
The one-dimensional spin-12XZ model is a basic and cos(24/R): This operator becomes marginal &1 andH
well-studied model in statistical physics. In some parametetQ yielding logarithmic corrections, while it is relevant and
range its ground state is critical and spin-spin correlatiorppens a spin gap fak>1 and 0<|H|<H_;. We ignore this
functions exhibit quasi-long-range order. The model repreterm in this paper, however. This may introduce systematic

sents a typical example of Tomonaga-Luttinget) liquids  errors in our analysis fok=1 and smalM. The spin opera-
in which elementary excitations are gapless collective modegys are related to the bosonic fieldsas

rather than single-particle excitations, in contrast to three-
dimensional systems. These features are uncovered by exten- 1 d¢ . o(1)
sive theoretical studies over the years which have employed S/=M+5—2 = —ai(~ D'sinl QI+ —— |+
various powerful methods including the Bethe andatz, 3)
bosonization technique,and the conformal field theory.
One-dimensional spin chains are also important from the ex- -
perimental viewpoint, as they are relevant to many quasi- S =e27R¢()
one-dimensional magnets in which couplings along one di-
rection are considerably stronger than those in the other W@ here Q=27M is incommensurate wave number, aag
directions. _ _ andb,, are nonuniversal constants which dependo@and
In this paper, we discuss long-distance asymptotes ofs The TL liquid parametefor the compactification radilis
equal-time correlation functions in the spin-MXZchainin R characterizes the asymptotic behavior of correlation func-
a magnetic field. The Hamiltonian is tions and its exact value is readily obtained by solving the
Bethe ansatz integral equatioh$. Essentially all the low-
Ho=d>, (S, + 9, +AS'S, ) —H>, &, (1)  energy properties of the spin chdib follow from Egs.(2)-
l [ (4). For example, the ground-state two-spin correlation func-

whereJ>0 andS=(S', S ,S) is anS=1/2 spin operator tions are found to decay algebraicalfyf
on thelth site of the chain. The anisotropy parameteis EPNEL |
assumed to satisfy the inequaliy>—1 such that the sys- (5|X$x/>:Aé( ) — A% cog Q( )] +..., (5
tem is in the critical regime for a certain range of magnetic [1=1"]7 1=+ '
fields, i.e., Gs|H|<H. for —1<A<1 and H,<|H]|
<H,, for A>1, whereH_.; andH, are the lower and upper 1 ,co$Q(1—1")]
critical fields, respectively. The spins partially polarized by <SZ$Z,>=M2— 5 >+ =1
the fieldH have a finite magnetization per sitel, where 4wyl =]
—1/2<M<1/2. The low-energy excitations df(, in the ... (6)
critical regime are free massless bosons. They are governed '

¢(1)

bo(—1)'+bysin Qi+ |+, @

||_|r|1/77

, 2

by the Gaussian theory, The decay exponenj=27R? is a function ofA andM. For
2 —1<A<1, p=1-cos }A)/7 atM=0, while =2 atM
7 :Bf dx (d_d)) +<d_¢>) —+0 for A>1. As M increases,; varies monotonically
072 dx dx and approaches the universal value 1/2 in the lifvit
_ _ _ _ —1/2. The amplitude#\; and A}, are related to the coeffi-
where v is the renorTallzed spin-wave velocity and the cientsa, andb, . Recently Lukyanov and co-workéts®®
bosonic fieldsp(x) and¢(x) obey the commutation relation have obtained exact formulas of the correlation amplitudes in
[H(X), d(y)]=—(i/2)[1+sgnk—y)]. We take the lattice Eqs.(5) and(6) atM=0 and—1<A<1. Nevertheless their
spacinga=1 and identify the site indekwith the continu-  values atM #0 are not known analytically.
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The aim of this paper is to numerically determine thetions are presented in Secs. Ill A and Il B, respectively. We
nonuniversal coefficienta, and b, with high accuracy for show that the numerical results are in excellent agreement
arbitraryM. We first extend the bosonic representation of thewith analytical predictions available for various limiting
spin operator¢3) and (4) to a more general form of infinite cases. Furthermore, we discuss the spin gaps induced by the
series, and calculate the spin polarizat{@) and the two-  Perturbations of staggered transverse field and exchange an-

; ; ; X z L isotropy in Sec. Il C. Finally, we summarize the results in
spin gorrglanon functiong & Sx’>. and <SSZ’> within .the Sec. IV. The Appendix explains bosonization of spin opera-
bosonization theory. The analytic formulas so obtained ar

used to fit numerical data which we compute by using the
density-matrix renormalization groudMRG) method'**®
The fitting parameters are the coefficieats and b,,. This
scheme is basically the same as the one used in our previous A. Spin operators
studies®%and in this paper we provide more accurate nu-

merical data of the coefficienta,;, by, and b, for wider technique applied to the spin-1%XZ chain in a magnetic

range of parameters. field. Let us first express the original spin opera8raindS;
The information on the coefficients is crucial for quanti- in térms of the bogonic fields gTo thiz eng w?ﬁ‘ollovﬁ and

tative analysis on effects of perturbations to which the Criti'extend the scheme of Refs. 3 and 4. We begin with the

cal ground state of the spin-12XZ model has ms;[sabllmes. bosonic representation of electron operators in the Hubbard
Such perturbations include bond alternatiér} next-  model with the on-site repulsiod. At half filling we have a

nearest-neighbor coupling; and transverse staggered gapped charge mode and a gapless spin mode. After con-
magpnetic field:*~*°In the bosonization approach, a perturba-strycting spin operators from the electron operators, we inte-
tion Wl’ltten in the Ol’iginal Spin Opel’ators iS. translated intOQrate out the gapped Charge mode to obtain a bosonic repre-
bosonic operators through E¢8) and(4). The impact of the  gentation of the spin operators in the Heisenberg chain. We
perturbation on the ground state, the vacuum state of thehen generalize the result to theXZ case. A detailed deri-

Gaussian modeP), can be qualitatively estimated from scal- yation is presented in the Appendix, and here we show only
ing dimension of the perturbation operators, which dependgne final results,

only on the TL liquid parameteR. It is, however, necessary

to know the exact values of the nonuniversal coefficients 1 d¢ & B(x)
andb, as well, to quantitatively analyze effects of the per- Sf=-——— > apnia(— 1)'sir{(2n+1)—},
turbation, e.g., to estimate magnitude of an energy gap in- 2mR dx 7o R
duced by the perturbation or to compute correlation func- @)
tions in the presence of the perturbation. As an example of .

such quantitative analysis we calculate the spin gap induced 2Ry $(X)
by the staggered transverse féfcf>from the numerical data S =e? R"“”% [bZn( B 1)|C°5{2nT}
of the coefficients.

There are often cases when perturbations are composite
operators of twdor more spins, such as exchange interac-
tions. In this case one must consider fusion of two operators.
In general, fusing two spin operators at short distances mawyherea, andb, are nonuniversal constants. They depend on
generate operators which are not present in each single-spihe short-distance regularization of the Gaussian theory as
operator which is fused. Consequently, the leading term ofvell as on the parametefsandM. Equationg3) and(4) are
the correlator of the composite operator may be differenjust the first few terms of Eqg7) and (8) with the shift of
from a product of the leading terms of the correlators of thethe field ¢(x)— ¢(x)+QRx In principle the right-hand
single-spin operators. We illustrate this by taking the nearestside of Eqgs.(7) and(8) should contain descendant fields as
neighbor couplingS'S), ; as an example. We examine opera-well. It follows from Eq.(8) that
tors generated by the fusion 8f andSf', ;. From a numeri-
cal fitting of four-spin correlation functions, we estimate the ~ S\=3(S" +S)=3[S"+(§")]
amplitude of a leading uniform term of the correlation func- o $()
tion. The results are used to analyze the spin gap induced b _ _nl ~ A
the perturbation of exchange anisotrépy’ P9 ’ _Z‘o bon(—1) COiZWR(ﬁ(X)]COE{Zn R }

The paper is organized as follows. We briefly review the
Abelian bosonization approach to the mod#l in the fol- . . ~ .
lowing section. The bosonic representation of spin operators Fiban s gSIN 2R (x) ]sin
in the form of infinite series is introduced in Sec. IIA. We _
then use it to derive the analytic formulas of the two- andHere we have used the commutdtgi(x), #(x)]=—i/2. An
four-spin correlation functions in Secs. 1B and Il C. In Sec. equivalent bosonic representation of the spin operators is re-
[, we present the numerical results on the correlation funccently derived in Ref. 13 from global symmetry analysis of
tions obtained from the DMRG calculation. The numericalthe lattice and field operators. Our derivation in Appendix is
data of amplitudes of the two- and four-spin correlation func-complementary to Ref. 13.

II. BOSONIZATION

In this section, we summarize the Abelian bosonization

¢(x)

+by, 1SN (2n+1) R

] , ()

(2n+1)%x)“. 9)
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B. Two-spin correlation functions then the correlation amplitudes are related to the coefficients

The two-spin correlation functions are readily calculated™ EAs-(7) and(9) by
by the bosonization method. Let us first consider the thermo-
dynamic limit where the correlation functions depend only
on the distance between the two spins. In this case we ex-

pand the bosonic fieldg(x) and #(x) as

—\k/2
H(x)= f dk

b2 a2
Xx___n z__n
An—z(l-i- 5n,0)’ An_?' (16)

ForM=0 and—1<A<1, the values of the amplitudés; ,
glkx ) A¥, andA? are obtained by analyticd*~*3and numericaf
(ak a’y) methods. We note that in principle the long-distance expan-
sions (13) and (14) should also include contributions from

—ikx the descendants ignored In an and those from
e he d d i d in E¢g) and (9) and th f
+ m(dl*‘ @) |+ QRX (10)  the irrelevant operators discarded7if. 3

As mentioned in the Introduction, we determine the coef-
ficientsa,, and b, by fitting numerically computed correla-
tion functions to appropriate formulas. Since the numerical
DMRG method works best for finite-size systems with open
boundaries, we need to calculate the correlation functions

+ under the open-boundary conditions. For this purpose we
\/m(—aﬁ a_y) |, (1) employ the open-boundary bosonization scheme developed
in Refs. 16 and 10. Suppose that X Z spin chain of our
wherea, anda; are boson operators obeying the commuta-interest consists of. spins § (I1=12,...L). This is
tion relation[ e, e, 1= 8(k—k’), \ is a short-distance cut- €quivalent to assumin§o=S, ,,=0. In the bosonic repre-
off, and & is a positive infinitesimal. The fieldgs(x) and  Sentation this amounts to having the Gaussian m@ee-

~ ) : . fined in the finite region &x<L+ 1 with Dirichlet bound-
¢’(X)_ defined b! Eqs(10 gnd (11) sa.t|sfy the _co_mmutanon ary conditions ak=0 andx=L+1. Our convention is that
relation [ $(X),d(y)]=—10(x—y) in the limit \—0,

where®(x) is the step function. The Gaussian Hamiltonian
(2) defined on the whole real axis now reads

( at+al))

—\k/2
D)= f dk

e—ikx
+

$(0)=0, d(L+1)=27RLM. (17)

. These boundary conditions are consistent with Egs=(9).
Ho= J vk(afay+at ) dk+const. (120  Once we fix the boundary conditiot7) and the regulariza-

0 tion scheme, the coefficients, are uniquely determined
whereas the coefficients, are determined only up to a phase
factor. Instead of Eqg10) and(11), we now have the mode
expansion1%16

Thus, the ground statf)) of the Hamiltonian(1) corre-
sponds to the vacuum for the bosoasg, i.e., ¢,/0)=0.
Substituting Egs(10) and(11) to Eqgs.(7) and(9), we obtain
the equal-time two-point correlators in the thermodynamic

limit, ° sin(gpx) -
) $O0= 7ot 2 Ton (antan) (19
x X _pcog2nQ(l—=1")]
<SISXI>:nZO A2n(_1)|| ||—|'|7]+(2n)2/7]
S = COdOnX) ~
. cod(2n+1)Q(1—1")] PN =doti 2 —==(an—ay), (19
T ey [0 @9 1 Jmn

whereq,=mn/(L+1), [¢o,do]=i, anda,, anda are bo-

2512>_ 2 1 son operators satlsfymgﬁan,an,]—ﬁnyn,. The Gaussian
(Si50)= 4mly|l—1"|? model (2) becomes
,cod(2n+1)Q(I—=1")] ~ vl )
+2, As (- : T = 1 0
E 2n2(—1) 1= 17| @+ 17T Ho nzl vOnapant 200+1) 24+ 1) (20)
14

The lowest-energy state of the spin chéln with magneti-
where(- - -)=(0|-- -|0) represents the expectation value in zationM corresponds to a vacuum of bosarg0)=0 with
the Iowest energy state in the sector with magnetizaoif $0|0)=27RLM|0). To calculate the zero-temperature cor-
we adopt the regularization relation functions, we substitute Eq48) and(19) into Egs.
B ak (7) and (9) and take average with respect to the stée
f dk (1—coskx)=Inx, (15) (The readers interesteq in the detailed calculation should re-
k fer to Ref. 10) We obtain
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[

Fara(2)F52(217) s(n,n’;1,1")bgby
f‘)y(l _I,)fr](l +|,) n,n’'=0 4fﬂ2/20(2|)fn’2/277(2| ,)

(S'Sh)=

frnrry(1=1") fnn/,n<|+|'>]
X1 COo nl+n’l’)]|——+co nl—n'l’)]————, 21
[ $q( )]fnn’/n(l_H,) $q( )]fnnr/,?(l—l’) (21)
sy [ 9|7 v 9& | (=D'sinngh) (=1)"sinngl)| 1 | 1 1
<S$Z’>_(2w) n§=:1 27| foopp,(21) " froay(21") 4wy fz(l—l’)+f2(l+l’)
S (-1 asa [ frnrsp(1+17) fnn,,nu—l')]
+ co nl—n’l’)]|———co nl+n'l")]—————
Ty 2 2 T2 | AT o151
1 &, (—1)'cognql) , . (=1)"cogngl") , ,
) nan[ rom(2) [g(I+1")+g(l—1")]+ el [g(l+1")—g(l |)]], (22)
»_ O < _ (=D'sin(ng)
T S T 2
whereq=27ML/(L+1),
20L+1) [ alx| \]”
f(x)= S (2(L+1) , (24)
B T X )
900= 3 x N 2w D)) (25)

and the sunt’ is taken over odah only. We have used the regularizatiddi_ [ 1—cosx)/n=In[f,(X)] as in our previous
studiest®° The factors(n,n’;l,1") in Eq. (21) is

(_1)(n+1)|+(n’+1)|’+(n+n’)/2 if n+n’=even

S(n’n 'I’I ):l(_l)(n+l)|+(n'+l)|'+(n'n+l)/23gr(|_|/) if n+n’=odd.

In the thermodynamic limit l{—o with [I-L/2|<L, and  X({¢; e nbD=b, by t{e e ni;lt)
[I”—L/2|<L) the correlatorg21) and (22) reduce to Egs. roe
(13) and(14). xexp{i2mR[ e, d(1)+ ey (1 +1)]}

i
C. Four-spin correlation functions Xexﬂ’ﬁ[nlei¢(l)+n26§¢(l +D],

In this section, we discuss fusion of two operators taking (27)
S n example. To fin nic representation of th . .
SIS as an exa pxex © find bosonic representation of t Efetndt({ei ,€ ,n;;1}) is defined byt=—1 (ny,n,= even, t
composite operato8'S,,;, we need operator product ex- P " i N o
. A .. . = T €1€2€1€H (nl,nz— Odd), t—_|(_1) €r€) (I’ll— even
pansion of the operators in E@). We explicitly write down e o L B o
the product oS’ and S, ; as andn,= odd), t=i(—1)e;e; (n;= odd andn,= even. To
+1 find the first few leading operators in the expansia6), we
make each exponential operator in Eg7) in normal order

and expand the fieldgp(I+1) and ¢(l1+1) as ¢(I+1)

1 - :
XX _ X({e e ntl), =¢(l)+de(l)/dl+---. It turns out that the leading opera-
SIS 1 El,ez,ge’:il nl%=0 (el ki) tors in Eq.(26) come from the following three contributions.
1 26) (i) e1+€,=0 andn;e;+n,e;=0. In this caseX is ex-

panded as a sum of a constaidentity operator term,

d¢/dx and dé/dx with scaling dimension 1, and higher-
where order terms.
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(i) €1+ €,=0 andn,e;+n,e5==1. The leading opera- where 0:=0—(0). The correlation amplitudes are related
tors in the expansion ok are (—1)'exgd*i¢(I)/R], whose to the coefficientsc, by By=c3, B;=(c?+c}?)/2, Bj=

scaling dimension is 1/(#). —(c?+ch?)2m, andB,=c3/2.

(ii) €1+ €,=*2 andn,e; +nye5=0. The leading opera-
tors in this case are ekpi4mR¢(1)], which have dimension 1. NUMERICAL RESULTS
27.

In this section, we present numerical results on the corre-

We thus find that the operat&'S/, ; has the expansion . - ) : .
peral®sy. ; P lation amplitudes in the two- and four-spin correlation func-

do()  dd() "0 tions obtained from the DMRG calculatidfr’*We calculate
S'S=Co+ c(’)TJrchJrcl(— 1)'sinT the spin polarizatioqS/), the two-spin correlation functions
(S'S) and(S{S,), and the four-spin correlation functions
o(1) ~ (:(S'S1+S S 0SS 1TSS, )Y and
1oyl +1 +1 +1 +1
e 1)coszm+Coeog 4mRA(D] - - (S'S/11S.,S,,,,) in the openXXZ chain of L =200 sites.

(28) The correlation functions are calculated ferry—r/2 and
I"=ro+r/2, wherer, represent the center position of the
Apart from the constant termy, the leading term ir§(S,;  chain,ro=L/2 (for evenr) orry,=(L+1)/2 (for oddr). The
is the oscillating one with the coefficients and c; if A numerical calculation is done using the finite system algo-
>0 (7>1/2), while it is the nonoscillating term witty, and ~ rithm, and the number of kept statesis up to 200. We
cp if A<O (<1/2). We note that, for both signs af, the estimqte the numerical error due to the DMRG truncation
leading term in the expansion &S, , is not simply given  from difference between the data computed wity 200 and
those withm=150. The estimated errors for the spin polar-
ization, two-, and four-spin correlation functions are typi-
ally less than 107, 10 ®, and 10 %, respectively, and suf-
iciently small for accurate estimation of the amplitudes.

by the product of the leading operators$h and S, ;. In
fact, the higher-order terms with largen Eq. (9), which can

be ignored in the calculation of long-distance asymptotes o
two-point correlation functions, give contributions to the
leading operator in the operator product expansion of

S'S, ;. The same observation can be made for the other A. Amplitudes of two-spin correlation functions

subleading terms i8Sy, ; . This result illustrates that when  First, we show the results on the spin polarizaticf)
one fuses twgqor morg operators at short distances, infor- 54 the two-spin correlation functior4§|xslx> and(Slzgz ).
mation on only a few leading t?”‘“S of each operator 1S, NSince thenth-order terms in Eq<7) and(9) contribute to the
genergl, not enough_ to determine the leading terms in thgorrelators less and less for large we may neglect the
bosonic representation of the fusegl operator. Instead, o gher-order terms with=2 in the fitting procedure. That is
must survey contributions from all higher-order terms. to say, we fit the DMRG data to the analytic formtj[asl.)—
Calculating the coefficients, from the coefficientd,, is 23) séttinga —b,=0 for n=2 and takingb,, b,, anda
H H H n— ¥n— = 0s M1y 1
hardly possible not only because eagphas contributions as fitting parameters. We note that this scheme for determin-

from infinitely manybn s but also be.cause of the amb|gwty ing the coefficients is basically the same as those used in our
due to the short-distance cutoff. It is thus more practical Brevious studie®°in one® of which the numerical data of
es)t(lr;]ate thecy’s ”0”.‘ the f our-spin correlation function A7 and A are reported for several typical values Mfand
<SS'Jrlslx’gx’fl> and |t.s variants. From ,Eq28) we 'know 0<A=<1. However, in that work the decay exponenj as
the asymptotic behavior of the four-spin correlation func-\ye|| as the coefficients was taken as a fitting parameter, and
tions, this could cause small but avoidable errors in the estimates
(—1)" of the coefficients. In the present work, we use the exact
XX _ - Y value of » obtained from the Bethe ansatz solutions. We
(S'S+18 5.1 =Bo* By I _|r|1/nCOS{Q(I 1] therefore believe that the estimates of the coefficients pre-
sented here are even more accurate than the previous ones.
Bo B, Figure 1 shows the two-spin correlation functions
+ ||_|r|2+ I _|,|47,+ e (29 (S'S)), (S/S)), and the spin polarization(S}) at A
=0.5,0-0.5 andM =0.25. The DMRG data and the fitting
ot o —ot V..roto —at 3. results are plotted with the open and solid symbols, respec-
(8781175 §:0:(8: 51+ 5, 51 0)7) tively. The excellent agreement between them demonstrates
(—1)" 168! that the fitting procedure works extremely well at least for
=16B;——————cog Q(I —1")]+ o +... the parameters used in Fig. 1. To determine the correlation
[1=1"|Yn =12 amplitudes, we perform the fitting for the data of several
(30) ranges, 26&r=<140, 26sr=<180, 66=r=<140, and 66&:r
<180 for the two-spin correlation functions, and <20
8B, §180, 40=1=<160, and 66<1=<140 for th(nT spin polarizg-_
(S'S1S.S )= —— - (31)  fion. We then take the mean and the variance of the fitting

+
[I—1"]47 results as the estimate and the error of the numerical values
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(@) M=0.25, L=200 A7 becomes considerably poor. This difficulty might be due

' to the fact that, for this parameter range, the subleading terms
«A},A7 of the correlation functions become considerably
smaller than the nonoscillating leading terms. Further studies
with a more elaborated scheme will be required for accurate
estimation ofA}? in this case.

To further examine the accuracy of the numerical esti-
mates obtained above, we compare them with exact results
which are available for some limiting cases.

At M=0, the correlation amplitudesy, A%, andA7 for
—1<A<1 are analytically calculatett=*3

3 2 , g 7 7
19 100 » 200 1 F(2(1——7;)>
AT ( )
_ 2T 31
E/}I ~dt sinh( 7t) 72
i Xexp{—J’o T(sinr(t)cosr[(l—n)t]_ne t”
(32
7 n+(1/n)
O F(Z(l—m)
L 29(1-7) 1
25F<2<1—n>)
wdt( coshi2yt)e 2—1
X ex _LT 2sinh(77t)sinh(t)cosh (1— 7)t]
1 7”?+1
A TSt 7 Zt)' 33
(Dl 7 1/n
o)
2| ey
l_? 1
”;F(z(l—n))
ocdt( sinH (27— 1)t]
e foT sint 7t)cost (1 7)t]
_277_1e_2t }’ (34)
FIG. 1. (Color onling (@) (—1)'"(S'S%) vsr=|I-1"], (b) 7

[(SfS/)| vsr, and(c) |(S[)| vs| for A=0.5, 0, and—0.5 andM whereI'(x) is the Gamma function. These equations were

=0.25. The open symbols are the DMRG data while the small dotpreviously confirmed by numerical calculatiot?s-*? and
are the results of fitting. here we have found that the numerical estimates of the
present work with higher accuracy are even in better agree-

of the amplitudes, respectively. The resultsAdf=b3/2, A} ment with the above exact formulas fer0.8<A=<0.8.
=b?%/4 estimated fro{S'S),) andAi=aZ/2 estimated from In the saturation limitM — 1/2, exact asymptotic form of

(S?) are plotted in Fig. 2 as functions bf for several typical  the correlation(S'S,) can be obtained from known exact
values ofA.%° As shown in the figure, the amplitudes take results on the hard-core boson mothef®? It follows that

nonuniversal values af1=0 and vary smoothly ad in-  near the saturation limit the amplitudég, and A} should
creases. We have confirmed that the dataApfestimated behave as

from the correlation functiokS’S/,) coincide with those ob- 1o
tained from(Sf) within error bars. We note that, for small AX= P <£—M) (35)
A=-0.8, the accuracy of the estimated amplitudgsand 2\/; 2
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FIG. 2. (Color online Amplitudes of the two-spin correlation functions as functions/dfor several typical values of; (a) A5, (b) Af,
and(c) A]. Ay andA shown in(a) and(b) are estimated fronjS'S)\). A% for M>0 in (c) are estimated fronjS) while A} atM =0 are
from (S{S{). The solid curves plotted for largl in (a) and (b) represent Eqs(35) and (36), respectively, while the solid line ikc)
represents the exact restf=1/(27?) valid atA=0.

312 correlator  (:(S'S;1+S S51):(81S, ., +5.80 )
, (36)  shows power-law decay with the exponent equal to either

1/ (for A=0) or 2 (for A<0), while (S'S', 1SS, )

wherep is a universal constant related to Glaisher’s constan@lways decays with the exponenty4 We have found the

Aby p=mel2-13A-6=0.924B . ... We can see iffigs. SaMe behavior for other values &fandM. These results are

2(a) and 2Zb) that, for all A’s shown, the numerical data of coq_5|stent with Eqs(.zg)?(:%clg 25 we fit th cal

AX and A% approach the predicted behavior shown by the '° ?St'Taie the amplituck 2_02| ’_WTf'tt eI nl:m(—?rlga

solid curves. Note that there is no free parameter in the thed@t@ 0K(S" S48, S, . ) to its analytical formula for finite

1

2

. P
Y16n%?

oretical predictiong35) and (36). chains with open boundaries,

As for the(S{S/,) correlation, it is expected from E¢l4) (S+S++1S,TST+1>=(202)2<GXF[i47TR55(|)]
that the amplitudeA] should converge to a universal value
1/(27%) at M—1/2 for arbitraryA, since in this limit 5 xexd —i4mRp(1")])
becomes 1/2 and the correlator must take the constant value
1/4. Furthermore, foA =0 one can easily calculats's;,) _8B f2,(21)f5,(21) @7
exactly using the Jordan-Wigner transformation to fig 2f4,,(l +17)f4,(1 —1")’

=1/(2=°) for arbitraryM. We clearly see that the numerical where we used Eq19). We see in Fig. 3 that the data of

A . L

data of A7 in Fig. 2(c) agree with these predictions. _ 51+51++15|737 ) are fitted by the formula extremely well.
From these observations, we conclude that our estimat . + -

e estimated values d@, from the fitting procedure are

H H X X z
for the correlation amphtudeA_, 1, andA; are. prgtty shown in Fig. 4. We see that for eadhthe amplitude takes
accurate, except for the following parameter regirtig:A . - .
a nonuniversal value & =0, decreases monotonically ks

= _9'8 _and(n) A=0.8 andM =0. I_n the latter regime the increases, and vanishes eventuallyat-1/2. We note that
leading irrelevant operator cosfiR) is no longer negligible. . bt
for A=0 the analytic form of §"S", 1S/, ;) can be eas-

We point out that diverging behavior & =0, due to the | S 5
presence of théalmosi marginal operator, can be clearly 11y calculated, yieldingB,=[1+ cos(27M)}/16x°. Figure 4

seen in the data ok andAZ for A=0.8. shows that the numerical data far=0 are in good agree-
ment with the formula. We also compare the numerical esti-

) ) ) ) mate ofB, atM=0 and—1<A<1 with the exact formula
B. Amplitudes of four-spin correlation functions of B, derived recently by Lukyanov and Ter 13 ’

Next we discuss numerical results of the four-spin

4-4
correlation functions. Figure 3 shows the numerical 4 F(L) ’
data of the four-spin correlation functions: (S'Sy, B [T'(7n)] 2—27

— ot +a- — ot tot g Qo Ba= 3+47p, _2+2 2 (38)
+S S )1(S1S, 4SS,y and (S7S4S)S) L) 2 42 21— y)?| L[ 7
for A=0.5, 0, and—0.5 andM=0.05. We see that the 2—2n
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FIG. 3. (Color online Four-spin correlation functions
1(:(S'S31+S S 1)::(S)S ., +S.S),1):)| (open circles and
(875,155, ,) (open squares/sr=|l—1"| for M=0.05 anda)
A=0.5, (b) A=0, and(c) A=—0.5. The solid, dotted, and dashed
lines correspond, respectively, to the algebraic decay df”,
r~¥7 andr 2. The fitting results fokSS", ;S S, . ;) using Eq.
(37) are plotted by solid squares.
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FIG. 4. (Color onling Amplitude B, of the four-spin correlation
function (S°'S',;S,S,,, ;) as functions ofM for several typical
values of A. The solid curve represent the relatid,=[1
+ cos(2mM)]/1672 expected forA=0. Inset: Numerical estimates
of the amplitudeB, at M =0 (open circley and the analytical pre-
diction Eq.(38) (solid curve.

the amplitude B; of the leading oscillating term in
(:(S'S41+57 55 1):(S)S, 1+, 8),,):) due to the
presence of subleading terms which give sizable contribu-
tions to the correlation function. This issue of estimatihg

is left for future studies.

C. Spin gap

The data of the correlation amplitudes obtained in the
preceding sections is useful for analyzing effects of pertur-
bations of single-spin type and exchange-coupling type in
the bosonization framework. To illustrate how this scheme
works, we compute spin gaps induced by such perturbations
to the Hamiltonian(1).

As an example of the perturbation of the single-spin type,
we consider effects of the staggered transverse field. The
perturbation to the Hamiltoniafl) is given by

H'==h> (-1)'S. (39

It has been shown that!’ induces a spin gap. This field-
induced gap is believed to be the origin of the spin-gap be-
havior observed in Cu benzo&te?>*3and YhAs;***6un-

Here again we find good agreement between the exact resuler a uniform field, in which the staggered field emerges due
and our numerical data. This is another evidence that outo the alternating-tensor and the Dzyaloshinskii-Moriya in-

estimates are highly reliable. M =0 andA=1, B, shows

teraction. In these materials, exchange anisotropy is negligi-

a diverging behavior due to the marginal operator, suggestingly small and the staggered transverse fielés proportional

the breakdown of our analysis.

to the uniform fieldH. Thus, we may seA=1 and hg

Unfortunately, we cannot achieve a precise estimation of yH, wherey is a constant specific to each material.
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FIG. 5. (Color onling Field dependence of the spin gap in the  FIG. 6. (Color onling Field dependence of the spin gap in the
Heisenberg chairt{,(A=1) in a uniform fieldH and a staggered Heisenberg chaift{,(A=1) with the perturbation of transverse ex-
transverse fields=yH. The dotted curves represent the expectedchange anisotropy (_13)_
power-law behavior of the gajEcH?>.

L . . operators in the bosonizéd” ared¢/dx andd¢/dx. Since
In the bosonization scheme, the leading uniform term ofeir main effect is just a small renormalization of the TL
the perturbing Hamiltoniar#{’, which is responsible for jiquid parameteR, we can neglect these operators in lowest

opening the gap, is a cosine term, order in 1-A. We thus find that the dominant component

- _ which is responsible for opening the gap is the cosine term
H' = —hst(H)j cog 2mRp(x)]dx. (400 with coefficientc,,
Effects of the perturbation have been studied in the Tm_ _(1_7% f ~
literaturé®>=2>3"38and the induced spin gap is given®By H (1=A)cp(H) | cogamRe00]Ax. (44

n 4—7
Eg_2v(H>r(8—2n> Wbo(H)r< 2 |
J J F( 2 ) 2v(H) F(n) J

4—n 4

24— 1) The effect of this perturbation has been studi&tl,and the
> h spin gap forH>(1—A) is found to bé&’

n
4 E. 20(H) F(m)

9
J  r 1

Hence, the field-dependence of the spin gap is evaluated by F( 2_2,])

substituting our numerical estimates fogy(H) as well as the _ V227

exact values ob(H) and »(H) into Eq. (41). The result is m(1—A)cy(H) I'(1—7) K

shown in Fig. 5 for several typical values of It reproduces 20(H) T(7) (45)

the peculiarH dependence of the spin gap observed in ex- o ] )

periments,Eg~H2’3 for small H. We show in Fig. 6 the ﬂeld dependence of the spin gap for
Next, we consider the spin gap induced by the perturbaseveral typical values ak. As shown in the figure, the spin

tion of exchange anisotropy, gap opens very slowly withd and closes at the saturation

field H=2J, reflecting the fact that the coefficieny van-
ishes asM —1/2. In contrast to the case of the staggered
transverse field, the gap induced by the exchange anisotropy
5 is extremely small. This result is consistent with the obser-
to the Heisenberg chaif(o(A=1), where :--A<1. Note vation of the recent numerical stutiywhich finds no sub-
that by rotating the system around tlgeaxis, the whole stantial gap; the spin gap is too small to be detected by the
Hamiltonian is rewritten as numerical study on finite-size systems. We note that the
bosonization scheme with our estimatescefis, at present,

the only way to get reliable quantitative results on the spin
gap behavior.

H"=—3<1—3>2 SESU (42)

Hot 193 (S 1+ 9. +ASS. ) -HY S

(43)
Hence, the system can be also viewed asShkel/2 XXZ IV. SUMMARY
chain with anisotropyA in a uniform transverse fielti. As In this paper, we have studied the ground-state correlation

we have seen in Ed28), apart from a constant, the leading functions in theS=1/2 XXZ chain in a magnetic field. With

064427-9
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the bosonic representation of the spin opera®irandS' for ~ The Fermi wave numbets:, are functions of the magneti-
open-boundary conditions, we have calculated the two- andationM, Kg,; = 7(1/2+ M) andkg = m(1/2—M). We intro-
four-spin correlation functions analytically within the effec- duce fields¢ and ¢ given by

tive low-energy theory. We have also calculated the correla-

tion functions numerically using the DMRG method, and Do(X)= 0L o(X) T @R o(X), (A7)
estimated correlation amplitudes of the first few leading ~
terms by fitting the numerical results to the analytic formu- Do(X) = QL o(X) = PR o(X), (A8)

las. We have thus obtained precise data of nonuniversal ¢z .., satisfy [ bo(X),Do(y)]=—(i/2)[ 1+ sgn

eff.|C|ents appearing in the bosonic representation of Iatt|C(.e_ y)16, . - It then follows that the electron density becomes
spin operators. Excellent agreement is found in the compari- '

son of the numerical data with the exact known results in ke 1 d¢

various limiting cases. Po=Uk or ot ¥l L o=—F ———.  (A9)
We believe that the data of the correlation amplitudes pre- ' ' 7w dx

Sented in th|S WOI’k iS Suitable for quantitatively Studying The uniform Charge and Spin densities are

low-energy properties of perturbed spin chains within the

bosonization method. Indeed, it has been shown in Ref. 37 1 1 1 de¢.

that the data of; andb, can be used successfully to explain pc=5(pitp)=5+ n dx’ (A10)

guantitative features of the dynamical spin structure factor in

Cu benzoate. We hope that the data will be applied to a wider 1 1 de

variety of problems in one-dimensional spin systems. PSZE(PT_PQ: M + E d_xs (A11)
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APPENDIX: BOSONIC REPRESENTATION OF SPIN
OPERATORS The charge mode in the Hubbard chain is gapped at half
filing when the on-site interaction is repulsivid,>0. The
In this appendix, we briefly overview the derivation of the charge gap is generated by the umklapp scattering term,
bosonic representation of the spin operat@isand(8) in the

t t
spin-1/2 XXZ chain. We basically follow the strategy of Uldr 1 (X) ¢ 1 (X) dr, | (X)L, (X)
Refs. 3 and 4. We first bosonize the repulsive Hubbard chain t +
at half filling, in which charge excitations have a Mott- UL PR 00U 00 ¥R, (0]
Hubbard gap. We then obtain the spin operators by throwing 2U
the gapped charge mode away, and generalize the results to =— 2cos( V87T e), (A14)
the anisotropicXXZ case. (2ma)

Let us begin with the bosonic representation of electron,nich pins the charge field aﬁczn\/w_/Z (n: integed. At
operators §=1,1), low energies we may treat the field as a classical number,

i.e.,
‘/IG'(X) = l//R,o'(X) + lsz,o'(X)r (Al)

cog \/8m¢)=C,

Ky - 7= .

Yro(X)= ﬁe' VAmeR, o) +iKeoX (A2) sin(y8m¢,) =0, (A15)
a

where C is a positive nonuniversal constant. At this point,

following Ref. 40, we modify Eqs(A2) and(A3) to

K . o— .
LX) = o ef|\3477¢|_‘(,(x)7|k|:(,x, A3 .
o= == (A3) . I
Uro(X)= === 2 elCrilesc o imd,
where k. are Klein factors obeying«, ,«,}=26, , and 2man=0
the bosonic fieldsp obey the commutation relations, -
__Ke —i(2n+ 1) (Kp X+ VT d,) —iVTd,
[0ro(X), @R (V]=(114)5, psOriX-Y),  (Ad) Po(X)= == 2 e e Dlent T mimte,
Lol o(X) oL o (Y)]=—(i14)6, ,rsan(x—Y), (A5) Using the equations above, one can derive the bosonic
representation for the spin operators. Bremponent of the
[ero(X), 0L o (Y)]=—(114) 6, 4 (A6)  spin operator is given by
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SZ(X)=%[¢¥(X) sz(x)—de(x)wl(x)] Similarly, the operatoS* in the antiferromagnetic Heisen-
berg chain is given by
1
= SLps()+ Y 1 (YL () + 9 1 (X) g 1 (%) ) .
ST =[vr 1 (})+ ¢ ;) ehr, )+, ()]
— Yk 0L (0= 9L (0 (0] -
1 de. = =¢ \*“WsZO {bn(—1)*cog 2n(27Mx+ 27 ¢hs) ]
:M+Td_xs_20a2n+l(_l)x n=
vem " + by S (2n+1)(27Mx+ 27 hg) |} (AL18)
Xsin(2n+1)(2aMx+ 27 o)1, (A16)
wherea,, . ; is a nonuniversal constant. Here we must recall3Y 9eneralizing the equation to theXz case, we arrive at
that Eq.(A16) is obtained from the Hubbard chain at half the final formula,

filling, whose low-energy effective spin Hamiltonian is noth-
ing but the antiferromagnetic Heisenberg spin chain, in

which R=1/\27r. To generalize the result to theXZ chain, St(x)=¢e'2™R¢ > ( Dyn(— 1)Xc05{2n M}
what one needs to do is replacin® ¢ with ¢s/R. We n=0 R
also definep(x) = ¢¢(x) +27RMx to obtain B(X)
+b2n+1sir{(2n+ 1)—“ , (A19)
1 dg(x) R

(2n+1)T

. (x)
SZ(X):ZWR ax _ngoaznﬂ(_l)xsm ¢ }

(A17)  where we have replaced@ 7o with 2R .
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