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Correlation amplitudes for the spin-1
2 XXZ chain in a magnetic field

T. Hikihara and A. Furusaki
Condensed-Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

~Received 17 October 2003; published 24 February 2004!

We present accurate numerical estimates for the correlation amplitudes of leading and main subleading terms
of the two- and four-spin correlation functions in the one-dimensional spin-1/2XXZ model under a magnetic
field. These data are obtained by fitting the correlation functions, computed numerically with the density-
matrix renormalization-group method, to the corresponding correlation functions in the low-energy effective
theory. For this purpose we have developed the Abelian bosonization approach to the spin chain under the
open-boundary conditions. We use the numerical data of the correlation amplitudes to quantitatively estimate
spin gaps induced by a transverse staggered field and by exchange anisotropy.
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I. INTRODUCTION

The one-dimensional spin-1/2XXZ model is a basic and
well-studied model in statistical physics. In some parame
range its ground state is critical and spin-spin correlat
functions exhibit quasi-long-range order. The model rep
sents a typical example of Tomonaga-Luttinger~TL! liquids
in which elementary excitations are gapless collective mo
rather than single-particle excitations, in contrast to thr
dimensional systems. These features are uncovered by e
sive theoretical studies over the years which have emplo
various powerful methods including the Bethe ansa1

bosonization technique,2 and the conformal field theory.3

One-dimensional spin chains are also important from the
perimental viewpoint, as they are relevant to many qua
one-dimensional magnets in which couplings along one
rection are considerably stronger than those in the other
directions.

In this paper, we discuss long-distance asymptotes
equal-time correlation functions in the spin-1/2XXZ chain in
a magnetic field. The Hamiltonian is

H05J(
l

~Sl
xSl 11

x 1Sl
ySl 11

y 1DSl
zSl 11

z !2H(
l

Sl
z , ~1!

whereJ.0 andSl5(Sl
x ,Sl

y ,Sl
z) is an S51/2 spin operator

on the l th site of the chain. The anisotropy parameterD is
assumed to satisfy the inequalityD.21 such that the sys
tem is in the critical regime for a certain range of magne
fields, i.e., 0<uHu,Hc2 for 21,D<1 and Hc1,uHu
,Hc2 for D.1, whereHc1 andHc2 are the lower and uppe
critical fields, respectively. The spins partially polarized
the field H have a finite magnetization per site,M, where
21/2,M,1/2. The low-energy excitations ofH0 in the
critical regime are free massless bosons. They are gove
by the Gaussian theory,

H̃05
v
2E dxF S df

dx D 2

1S df̃

dx
D 2G , ~2!

where v is the renormalized spin-wave velocity and t
bosonic fieldsf(x) andf̃(x) obey the commutation relatio

@f(x),f̃(y)#52( i /2)@11sgn(x2y)#. We take the lattice
spacinga51 and identify the site indexl with the continu-
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ous space variablex. For a better description of low-energ
physics, one needs to add toH̃0 an irrelevant operator
cos(2f/R): This operator becomes marginal atD51 andH
50 yielding logarithmic corrections, while it is relevant an
opens a spin gap forD.1 and 0,uHu,Hc1. We ignore this
term in this paper, however. This may introduce system
errors in our analysis forD*1 and smallM. The spin opera-
tors are related to the bosonic fields3–5 as

Sl
z5M1

1

2pR

df

dx
2a1~21! lsinS Ql1

f~ l !

R D1•••,

~3!

Sl
15ei2pRf̃( l )Fb0~21! l1b1sinS Ql1

f~ l !

R D1•••G , ~4!

where Q52pM is incommensurate wave number, andan
and bn are nonuniversal constants which depend onD and
M. The TL liquid parameter~or the compactification radius!
R characterizes the asymptotic behavior of correlation fu
tions and its exact value is readily obtained by solving
Bethe ansatz integral equations.6–8 Essentially all the low-
energy properties of the spin chain~1! follow from Eqs.~2!–
~4!. For example, the ground-state two-spin correlation fu
tions are found to decay algebraically,9,10

^Sl
xSl 8

x &5A0
x ~21! l 2 l 8

u l 2 l 8uh
2A1

x cos@Q~ l 2 l 8!#

u l 2 l 8uh11/h
1•••, ~5!

^Sl
zSl 8

z &5M22
1

4p2hu l 2 l 8u2
1A1

z~21! l 2 l 8
cos@Q~ l 2 l 8!#

u l 2 l 8u1/h

1•••. ~6!

The decay exponenth52pR2 is a function ofD andM. For
21,D<1, h512cos21(D)/p at M50, while h52 at M
→10 for D.1. As M increases,h varies monotonically
and approaches the universal value 1/2 in the limitM
→1/2. The amplitudesAn

x and An
z are related to the coeffi

cients an and bn . Recently Lukyanov and co-workers11–13

have obtained exact formulas of the correlation amplitude
Eqs.~5! and~6! at M50 and21,D<1. Nevertheless their
values atMÞ0 are not known analytically.
©2004 The American Physical Society27-1



he

th

a
th

io
u

ti-
iti
.

d
a
to

th
l-
nd
y

r
i

nc

c

os
c
or

-s
o

en
th
es
a

he
c-
d

he

to
e
nd
c
nc
a
c

e
ent

g
y the

an-
in
ra-

ion

nd
the
ard

con-
te-
pre-
We

nly

on
as

as

re-
of
is

T. HIKIHARA AND A. FURUSAKI PHYSICAL REVIEW B 69, 064427 ~2004!
The aim of this paper is to numerically determine t
nonuniversal coefficientsan and bn with high accuracy for
arbitraryM. We first extend the bosonic representation of
spin operators~3! and ~4! to a more general form of infinite
series, and calculate the spin polarization^Sl

z& and the two-
spin correlation functionŝ Sl

xSl 8
x & and ^Sl

zSl 8
z & within the

bosonization theory. The analytic formulas so obtained
used to fit numerical data which we compute by using
density-matrix renormalization group~DMRG! method.14,15

The fitting parameters are the coefficientsan and bn . This
scheme is basically the same as the one used in our prev
studies,16,10 and in this paper we provide more accurate n
merical data of the coefficientsa1 , b0, and b1 for wider
range of parameters.

The information on the coefficients is crucial for quan
tative analysis on effects of perturbations to which the cr
cal ground state of the spin-1/2XXZ model has instabilities
Such perturbations include bond alternation,17,18 next-
nearest-neighbor coupling,19–21 and transverse staggere
magnetic field.22–25In the bosonization approach, a perturb
tion written in the original spin operators is translated in
bosonic operators through Eqs.~3! and~4!. The impact of the
perturbation on the ground state, the vacuum state of
Gaussian model~2!, can be qualitatively estimated from sca
ing dimension of the perturbation operators, which depe
only on the TL liquid parameterR. It is, however, necessar
to know the exact values of the nonuniversal coefficientsan
and bn as well, to quantitatively analyze effects of the pe
turbation, e.g., to estimate magnitude of an energy gap
duced by the perturbation or to compute correlation fu
tions in the presence of the perturbation. As an example
such quantitative analysis we calculate the spin gap indu
by the staggered transverse field22–25from the numerical data
of the coefficients.

There are often cases when perturbations are comp
operators of two~or more! spins, such as exchange intera
tions. In this case one must consider fusion of two operat
In general, fusing two spin operators at short distances m
generate operators which are not present in each single
operator which is fused. Consequently, the leading term
the correlator of the composite operator may be differ
from a product of the leading terms of the correlators of
single-spin operators. We illustrate this by taking the near
neighbor couplingSl

xSl 11
x as an example. We examine oper

tors generated by the fusion ofSl
x andSl 11

x . From a numeri-
cal fitting of four-spin correlation functions, we estimate t
amplitude of a leading uniform term of the correlation fun
tion. The results are used to analyze the spin gap induce
the perturbation of exchange anisotropy.26,27

The paper is organized as follows. We briefly review t
Abelian bosonization approach to the model~1! in the fol-
lowing section. The bosonic representation of spin opera
in the form of infinite series is introduced in Sec. II A. W
then use it to derive the analytic formulas of the two- a
four-spin correlation functions in Secs. II B and II C. In Se
III, we present the numerical results on the correlation fu
tions obtained from the DMRG calculation. The numeric
data of amplitudes of the two- and four-spin correlation fun
06442
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tions are presented in Secs. III A and III B, respectively. W
show that the numerical results are in excellent agreem
with analytical predictions available for various limitin
cases. Furthermore, we discuss the spin gaps induced b
perturbations of staggered transverse field and exchange
isotropy in Sec. III C. Finally, we summarize the results
Sec. IV. The Appendix explains bosonization of spin ope
tors.

II. BOSONIZATION

A. Spin operators

In this section, we summarize the Abelian bosonizat
technique applied to the spin-1/2XXZ chain in a magnetic
field. Let us first express the original spin operatorsSl

x andSl
z

in terms of the bosonic fields. To this end, we follow a
extend the scheme of Refs. 3 and 4. We begin with
bosonic representation of electron operators in the Hubb
model with the on-site repulsionU. At half filling we have a
gapped charge mode and a gapless spin mode. After
structing spin operators from the electron operators, we in
grate out the gapped charge mode to obtain a bosonic re
sentation of the spin operators in the Heisenberg chain.
then generalize the result to theXXZ case. A detailed deri-
vation is presented in the Appendix, and here we show o
the final results,

Sl
z5

1

2pR

df

dx
2 (

n50

`

a2n11~21! lsinF ~2n11!
f~x!

R G ,
~7!

Sl
15ei2pRf̃(x) (

n50

` H b2n~21! lcosF2n
f~x!

R G
1b2n11sinF ~2n11!

f~x!

R G J , ~8!

wherean andbn are nonuniversal constants. They depend
the short-distance regularization of the Gaussian theory
well as on the parametersD andM. Equations~3! and~4! are
just the first few terms of Eqs.~7! and ~8! with the shift of
the field f(x)→f(x)1QRx. In principle the right-hand
side of Eqs.~7! and ~8! should contain descendant fields
well. It follows from Eq. ~8! that

Sl
x5 1

2 ~Sl
11Sl

2!5 1
2 @Sl

11~Sl
1!†#

5 (
n50

` H b2n~21! lcos@2pRf̃~x!#cosF2n
f~x!

R G
1 ib2n11sin@2pRf̃~x!#sinF ~2n11!

f~x!

R G J . ~9!

Here we have used the commutator@f(x),f̃(x)#52 i /2. An
equivalent bosonic representation of the spin operators is
cently derived in Ref. 13 from global symmetry analysis
the lattice and field operators. Our derivation in Appendix
complementary to Ref. 13.
7-2
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B. Two-spin correlation functions

The two-spin correlation functions are readily calculat
by the bosonization method. Let us first consider the therm
dynamic limit where the correlation functions depend on
on the distance between the two spins. In this case we
pand the bosonic fieldsf(x) and f̃(x) as

f~x!5E
0

`

dk
e2lk/2

A4p
F eikx

Ak2 id
~ak1a2k

† !

1
e2 ikx

Ak1 id
~ak

†1a2k!G1QRx, ~10!

f̃~x!5E
0

`

dk
e2lk/2

A4p
F eikx

Ak1 id
~2ak1a2k

† !

1
e2 ikx

Ak2 id
~2ak

†1a2k!G , ~11!

whereak andak
† are boson operators obeying the commu

tion relation@ak ,ak8
†

#5d(k2k8), l is a short-distance cut
off, and d is a positive infinitesimal. The fieldsf(x) and
f̃(x) defined by Eqs.~10! and ~11! satisfy the commutation
relation @f(x),f̃(y)#52 iQ(x2y) in the limit l→0,
whereQ(x) is the step function. The Gaussian Hamiltoni
~2! defined on the whole realx axis now reads

H̃05E
0

`

vk~ak
†ak1a2k

† a2k!dk1const. ~12!

Thus, the ground stateu0& of the Hamiltonian~1! corre-
sponds to the vacuum for the bosonsak , i.e., aku0&50.
Substituting Eqs.~10! and~11! to Eqs.~7! and~9!, we obtain
the equal-time two-point correlators in the thermodynam
limit,

^Sl
xSl 8

x &5 (
n50

` H A2n
x ~21! l 2 l 8

cos@2nQ~ l 2 l 8!#

u l 2 l 8uh1(2n)2/h

2A2n11
x cos@~2n11!Q~ l 2 l 8!#

u l 2 l 8uh1(2n11)2/h J , ~13!

^Sl
zSl 8

z &5M22
1

4p2hu l 2 l 8u2

1 (
n50

`

A2n11
z ~21! l 2 l 8

cos@~2n11!Q~ l 2 l 8!#

u l 2 l 8u(2n11)2/h
,

~14!

where^•••&5^0u•••u0& represents the expectation value
the lowest-energy state in the sector with magnetizationM. If
we adopt the regularization

E
0

`

dk
e2lk

k
~12coskx!5 ln x, ~15!
06442
o-

x-

-

c

then the correlation amplitudes are related to the coefficie
in Eqs.~7! and ~9! by

An
x5

bn
2

4
~11dn,0!, An

z5
an

2

2
. ~16!

For M50 and21,D,1, the values of the amplitudesA0
x ,

A1
x , andA1

z are obtained by analytical28,11–13and numerical16

methods. We note that in principle the long-distance exp
sions ~13! and ~14! should also include contributions from
the descendants ignored in Eqs.~7! and ~9! and those from
the irrelevant operators discarded inH̃0.13

As mentioned in the Introduction, we determine the co
ficients an and bn by fitting numerically computed correla
tion functions to appropriate formulas. Since the numeri
DMRG method works best for finite-size systems with op
boundaries, we need to calculate the correlation functi
under the open-boundary conditions. For this purpose
employ the open-boundary bosonization scheme develo
in Refs. 16 and 10. Suppose that theXXZ spin chain of our
interest consists ofL spins Sl ( l 51,2, . . . ,L). This is
equivalent to assumingS05SL1150. In the bosonic repre-
sentation this amounts to having the Gaussian model~2! de-
fined in the finite region 0,x,L11 with Dirichlet bound-
ary conditions atx50 andx5L11. Our convention is that

f~0!50, f~L11!52pRLM. ~17!

These boundary conditions are consistent with Eqs.~7!–~9!.
Once we fix the boundary conditions~17! and the regulariza-
tion scheme, the coefficientsan are uniquely determined
whereas the coefficientsbn are determined only up to a phas
factor. Instead of Eqs.~10! and~11!, we now have the mode
expansion5,10,16

f~x!5
x

L11
f01 (

n51

`
sin~qnx!

Apn
~ ãn1ãn

†!, ~18!

f̃~x!5f̃01 i (
n51

`
cos~qnx!

Apn
~ ãn2ãn

†!, ~19!

whereqn5pn/(L11), @f̃0 ,f0#5 i , andãn andãn
† are bo-

son operators satisfying@ãn ,ãn8
†

#5dn,n8 . The Gaussian
model ~2! becomes

H̃05 (
n51

`

vqnãn
†ãn1

vf0
2

2~L11!
2

pv
24~L11!

. ~20!

The lowest-energy state of the spin chain~1! with magneti-
zationM corresponds to a vacuum of bosonsãnu0&50 with
f0u0&52pRLMu0&. To calculate the zero-temperature co
relation functions, we substitute Eqs.~18! and~19! into Eqs.
~7! and ~9! and take average with respect to the stateu0&.
~The readers interested in the detailed calculation should
fer to Ref. 10.! We obtain
7-3
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^Sl
xSl 8

x &5
f h/2~2l ! f h/2~2l 8!

f h~ l 2 l 8! f h~ l 1 l 8!
(

n,n850

`
s~n,n8; l ,l 8!bnbn8

4 f n2/2h~2l ! f n82/2h~2l 8!

3H cos@q~nl1n8l 8!#
f nn8/h~ l 2 l 8!

f nn8/h~ l 1 l 8!
1cos@q~nl2n8l 8!#

f nn8/h~ l 1 l 8!

f nn8/h~ l 2 l 8!
J , ~21!

^Sl
zSl 8

z &5S q

2p D 2

2 (
n51

`

8
qan

2p F ~21! lsin~nql!

f n2/2h~2l !
1

~21! l 8sin~nql8!

f n2/2h~2l 8!
G2

1

4p2h
F 1

f 2~ l 2 l 8!
1

1

f 2~ l 1 l 8!
G

1 (
n,n851

`

8
~21! l 2 l 8anan8

2 f n2/2h~2l ! f n82/2h~2l 8!
Hcos@q~nl2n8l 8!#

f nn8/h~ l 1 l 8!

f nn8/h~ l 2 l 8!
2cos@q~nl1n8l 8!#

f nn8/h~ l 2 l 8!

f nn8/h~ l 1 l 8!
J

2
1

2ph (
n51

`

8 nanH ~21! lcos~nql!

f n2/2h~2l !
@g~ l 1 l 8!1g~ l 2 l 8!#1

~21! l 8cos~nql8!

f n2/2h~2l 8!
@g~ l 1 l 8!2g~ l 2 l 8!#J , ~22!

^Sl
z&5

q

2p
2 (

n51

`

8 an

~21! lsin~nql!

f n2/2h~2l !
, ~23!

whereq52pML/(L11),

f n~x!5F2~L11!

p
sinS puxu

2~L11! D G
n

, ~24!

g~x!5
p

2~L11!
cotS px

2~L11! D , ~25!

and the sum(8 is taken over oddn only. We have used the regularization(n51
` @12cos(qnx)#/n5ln@f1(x)# as in our previous

studies.16,10 The factors(n,n8; l ,l 8) in Eq. ~21! is

s~n,n8; l ,l 8!5H ~21!(n11)l 1(n811)l 81(n1n8)/2 if n1n85even

~21!(n11)l 1(n811)l 81(n82n11)/2sgn~ l 2 l 8! if n1n85odd.
in
th
-

-
.

r-
In the thermodynamic limit (L→` with u l 2L/2u!L, and
u l 82L/2u!L) the correlators~21! and ~22! reduce to Eqs.
~13! and ~14!.

C. Four-spin correlation functions

In this section, we discuss fusion of two operators tak
Sl

xSl 11
x as an example. To find bosonic representation of

composite operatorSl
xSl 11

x , we need operator product ex
pansion of the operators in Eq.~9!. We explicitly write down
the product ofSl

x andSl 11
x as

Sl
xSl 11

x 5
1

16 (
e1 ,e2 ,e18 ,e28561

(
n1 ,n250

`

X~$e i ,e i8 ,ni%; l !,

~26!

where
06442
g
e

X~$e i ,e i8 ,ni%; l !5bn1
bn2

t~$e i ,e i8 ,ni ; l %!

3exp$ i2pR@e1f̃~ l !1e2f̃~ l 11!#%

3expH i

R
@n1e18f~ l !1n2e28f~ l 11!#J ,

~27!

and t($e i ,e i8 ,ni ; l %) is defined byt521 (n1 ,n25 even!, t
52e1e2e18e28 (n1 ,n25 odd!, t52 i (21)le2e28 (n15 even
andn25 odd!, t5 i (21)le1e18 (n15 odd andn25 even!. To
find the first few leading operators in the expansion~26!, we
make each exponential operator in Eq.~27! in normal order
and expand the fieldsf( l 11) and f̃( l 11) as f( l 11)
5f( l )1df( l )/dl1•••. It turns out that the leading opera
tors in Eq.~26! come from the following three contributions

~i! e11e250 andn1e181n2e2850. In this caseX is ex-
panded as a sum of a constant~identity operator! term,
df/dx and df̃/dx with scaling dimension 1, and highe
order terms.
7-4
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~ii ! e11e250 andn1e181n2e28561. The leading opera
tors in the expansion ofX are (21)lexp@6if(l)/R#, whose
scaling dimension is 1/(2h).

~iii ! e11e2562 andn1e181n2e2850. The leading opera

tors in this case are exp@6i4pRf̃(l)#, which have dimension
2h.

We thus find that the operatorSl
xSl 11

x has the expansion

Sl
xSl 11

x 5c01c08
df~ l !

dl
1c09

df̃~ l !

dl
1c1~21! lsin

f~ l !

R

1c18~21! lcos
f~ l !

R
1c2cos@4pRf̃~ l !#1•••.

~28!

Apart from the constant termc0, the leading term inSl
xSl 11

x

is the oscillating one with the coefficientsc1 and c18 if D
.0 (h.1/2), while it is the nonoscillating term withc08 and
c09 if D,0 (h,1/2). We note that, for both signs ofD, the
leading term in the expansion ofSl

xSl 11
x is not simply given

by the product of the leading operators inSl
x and Sl 11

x . In
fact, the higher-order terms with largen in Eq. ~9!, which can
be ignored in the calculation of long-distance asymptotes
two-point correlation functions, give contributions to th
leading operator in the operator product expansion
Sl

xSl 11
x . The same observation can be made for the ot

subleading terms inSl
xSl 11

x . This result illustrates that whe
one fuses two~or more! operators at short distances, info
mation on only a few leading terms of each operator is,
general, not enough to determine the leading terms in
bosonic representation of the fused operator. Instead,
must survey contributions from all higher-order terms.

Calculating the coefficientscn from the coefficientsbn is
hardly possible not only because eachcn has contributions
from infinitely manybn’s but also because of the ambigui
due to the short-distance cutoff. It is thus more practica
estimate thecn’s from the four-spin correlation function
^Sl

xSl 11
x Sl 8

x Sl 811
x & and its variants. From Eq.~28! we know

the asymptotic behavior of the four-spin correlation fun
tions,

^Sl
xSl 11

x Sl 8
x Sl 811

x &5B01B1

~21! l 2 l 8

u l 2 l 8u1/h
cos@Q~ l 2 l 8!#

1
B08

u l 2 l 8u2
1

B2

u l 2 l 8u4h
1•••, ~29!

^:~Sl
1Sl 11

2 1Sl
2Sl 11

1 !::~Sl 8
1Sl 811

2
1Sl 8

2Sl 811
1

!:&

516B1

~21! l 2 l 8

u l 2 l 8u1/h
cos@Q~ l 2 l 8!#1

16B08

u l 2 l 8u2
1•••,

~30!

^Sl
1Sl 11

1 Sl 8
2Sl 811

2 &5
8B2

u l 2 l 8u4h
1•••, ~31!
06442
f

f
er

n
e

ne
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-

where :O:5O2^O&. The correlation amplitudes are relate
to the coefficientscn by B05c0

2, B15(c1
21c18

2)/2, B085

2(c08
21c09

2)/2p, andB25c2
2/2.

III. NUMERICAL RESULTS

In this section, we present numerical results on the co
lation amplitudes in the two- and four-spin correlation fun
tions obtained from the DMRG calculation.14,15We calculate
the spin polarization̂Sl

z&, the two-spin correlation functions
^Sl

xSl 8
x & and ^Sl

zSl 8
z &, and the four-spin correlation function

^:(Sl
1Sl 11

2 1Sl
2Sl 11

1 )::(Sl 8
1Sl 811

2
1Sl 8

2Sl 811
1 ):& and

^Sl
1Sl 11

1 Sl 8
2Sl 811

2 & in the openXXZ chain of L5200 sites.
The correlation functions are calculated forl 5r 02r /2 and
l 85r 01r /2, wherer 0 represent the center position of th
chain,r 05L/2 ~for evenr ) or r 05(L11)/2 ~for oddr ). The
numerical calculation is done using the finite system al
rithm, and the number of kept statesm is up to 200. We
estimate the numerical error due to the DMRG truncat
from difference between the data computed withm5200 and
those withm5150. The estimated errors for the spin pola
ization, two-, and four-spin correlation functions are typ
cally less than 1027, 1026, and 1026, respectively, and suf-
ficiently small for accurate estimation of the amplitudes.

A. Amplitudes of two-spin correlation functions

First, we show the results on the spin polarization^Sl
z&

and the two-spin correlation functions^Sl
xSl 8

x & and ^Sl
zSl 8

z &.
Since thenth-order terms in Eqs.~7! and~9! contribute to the
correlators less and less for largen, we may neglect the
higher-order terms withn>2 in the fitting procedure. That is
to say, we fit the DMRG data to the analytic formulas~21!–
~23! settingan5bn50 for n>2 and takingb0 , b1, anda1
as fitting parameters. We note that this scheme for determ
ing the coefficients is basically the same as those used in
previous studies,16,10 in one10 of which the numerical data o
A1

z and A0
x are reported for several typical values ofM and

0<D<1. However, in that work10 the decay exponenth as
well as the coefficients was taken as a fitting parameter,
this could cause small but avoidable errors in the estima
of the coefficients. In the present work, we use the ex
value of h obtained from the Bethe ansatz solutions. W
therefore believe that the estimates of the coefficients p
sented here are even more accurate than the previous o

Figure 1 shows the two-spin correlation functio
^Sl

xSl 8
x &, ^Sl

zSl 8
z &, and the spin polarization̂ Sl

z& at D
50.5,0,20.5 andM50.25. The DMRG data and the fittin
results are plotted with the open and solid symbols, resp
tively. The excellent agreement between them demonstr
that the fitting procedure works extremely well at least
the parameters used in Fig. 1. To determine the correla
amplitudes, we perform the fitting for the data of seve
ranges, 20<r<140, 20<r<180, 60<r<140, and 60<r
<180 for the two-spin correlation functions, and 20< l
<180, 40< l<160, and 60< l<140 for the spin polariza-
tion. We then take the mean and the variance of the fitt
results as the estimate and the error of the numerical va
7-5
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of the amplitudes, respectively. The results ofA0
x5b0

2/2, A1
x

5b1
2/4 estimated from̂Sl

xSl 8
x & andA1

z5a1
2/2 estimated from

^Sl
z& are plotted in Fig. 2 as functions ofM for several typical

values ofD.29 As shown in the figure, the amplitudes tak
nonuniversal values atM50 and vary smoothly asM in-
creases. We have confirmed that the data ofA1

z estimated
from the correlation function̂Sl

zSl 8
z & coincide with those ob-

tained from^Sl
z& within error bars. We note that, for sma

D&20.8, the accuracy of the estimated amplitudesA1
x and

FIG. 1. ~Color online! ~a! (21)u l 2 l 8u^Sl
xSl 8

x & vs r 5u l 2 l 8u, ~b!
u^Sl

zSl 8
z &u vs r, and ~c! u^Sl

z&u vs l for D50.5, 0, and20.5 andM
50.25. The open symbols are the DMRG data while the small d
are the results of fitting.
06442
A1
z becomes considerably poor. This difficulty might be d

to the fact that, for this parameter range, the subleading te
}A1

x ,A1
z of the correlation functions become considerab

smaller than the nonoscillating leading terms. Further stud
with a more elaborated scheme will be required for accur
estimation ofA1

x,z in this case.
To further examine the accuracy of the numerical e

mates obtained above, we compare them with exact res
which are available for some limiting cases.

At M50, the correlation amplitudesA0
x , A1

x , andA1
z for

21,D,1 are analytically calculated:11–13

A0
x5

1

8~12h!2F GS h

2~12h! D
2Ap GS 1

2~12h! D G
h

3expF2E
0

`dt

t S sinh~ht !

sinh~ t !cosh@~12h!t#
2he22tD G ,

~32!

A1
x5

1

2h~12h!F GS h

2~12h! D
2Ap GS 1

2~12h! D G
h1(1/h)

3expF2E
0

`dt

t S cosh~2ht !e22t21

2sinh~ht !sinh~ t !cosh@~12h!t#

1
1

sinh~ht !
2

h211

h
e22tD G , ~33!

A1
z5

2

p2F GS h

2~12h! D
2Ap GS 1

2~12h! D G
1/h

3expF E
0

`dt

t S sinh@~2h21!t#

sinh~ht !cosh@~12h!t#

2
2h21

h
e22tD G , ~34!

whereG(x) is the Gamma function. These equations we
previously confirmed by numerical calculations,16,10,12 and
here we have found that the numerical estimates of
present work with higher accuracy are even in better ag
ment with the above exact formulas for20.8&D&0.8.

In the saturation limitM→1/2, exact asymptotic form o
the correlation^Sl

xSl 8
x & can be obtained from known exac

results on the hard-core boson model.30–32 It follows that
near the saturation limit the amplitudesA0

x and A1
x should

behave as

A0
x5

r

2Ap
S 1

2
2M D 1/2

, ~35!

ts
7-6
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FIG. 2. ~Color online! Amplitudes of the two-spin correlation functions as functions ofM for several typical values ofD; ~a! A0
x , ~b! A1

x ,
and~c! A1

z . A0
x andA1

x shown in~a! and~b! are estimated from̂Sl
xSl 8

x &. A1
z for M.0 in ~c! are estimated from̂Sl

z& while A1
z at M50 are

from ^Sl
zSl 8

z &. The solid curves plotted for largeM in ~a! and ~b! represent Eqs.~35! and ~36!, respectively, while the solid line in~c!
represents the exact resultA1

z51/(2p2) valid at D50.
an
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A1
x5

r

16p5/2S 1

2
2M D 23/2

, ~36!

wherer is a universal constant related to Glaisher’s const
A by r5pe1/2221/3A2650.92418 . . . . We can see inFigs.
2~a! and 2~b! that, for all D ’s shown, the numerical data o
A0

x and A1
x approach the predicted behavior shown by

solid curves. Note that there is no free parameter in the
oretical predictions~35! and ~36!.

As for the^Sl
zSl 8

z & correlation, it is expected from Eq.~14!

that the amplitudeA1
z should converge to a universal valu

1/(2p2) at M→1/2 for arbitraryD, since in this limit h
becomes 1/2 and the correlator must take the constant v
1/4. Furthermore, forD50 one can easily calculatêSl

zSl 8
z &

exactly using the Jordan-Wigner transformation to findA1
z

51/(2p2) for arbitraryM. We clearly see that the numeric
data ofA1

z in Fig. 2~c! agree with these predictions.
From these observations, we conclude that our estim

for the correlation amplitudesA0
x , A1

x , and A1
z are pretty

accurate, except for the following parameter regime:~i! D
&20.8 and~ii ! D*0.8 andM50. In the latter regime the
leading irrelevant operator cos(2f/R) is no longer negligible.
We point out that diverging behavior atM50, due to the
presence of the~almost! marginal operator, can be clear
seen in the data ofA0

x andA1
z for D*0.8.

B. Amplitudes of four-spin correlation functions

Next we discuss numerical results of the four-sp
correlation functions. Figure 3 shows the numeric
data of the four-spin correlation functionŝ:(Sl

1Sl 11
2

1Sl
2Sl 11

1 )::(Sl 8
1Sl 811

2
1Sl 8

2Sl 811
1 ):& and ^Sl

1Sl 11
1 Sl 8

2Sl 811
2 &

for D50.5, 0, and20.5 and M50.05. We see that the
06442
t

e
e-

lue

es

l

correlator ^:(Sl
1Sl 11

2 1Sl
2Sl 11

1 )::(Sl 8
1Sl 811

2
1Sl 8

2Sl 811
1 ):&

shows power-law decay with the exponent equal to eit
1/h ~for D>0) or 2 ~for D,0), while ^Sl

1Sl 11
1 Sl 8

2Sl 811
2 &

always decays with the exponent 4h. We have found the
same behavior for other values ofD andM. These results are
consistent with Eqs.~29!–~31!.

To estimate the amplitudeB25c2
2/2, we fit the numerical

data of^Sl
1Sl 11

1 Sl 8
2Sl 811

2 & to its analytical formula for finite
chains with open boundaries,

^Sl
1Sl 11

1 Sl 8
2Sl 811

2 &5~2c2!2^exp@ i4pRf̃~ l !#

3exp@2 i4pRf̃~ l 8!#&

58B2

f 2h~2l ! f 2h~2l 8!

f 4h~ l 1 l 8! f 4h~ l 2 l 8!
, ~37!

where we used Eq.~19!. We see in Fig. 3 that the data o
^Sl

1Sl 11
1 Sl 8

2Sl 811
2 & are fitted by the formula extremely wel

The estimated values ofB2 from the fitting procedure are
shown in Fig. 4. We see that for eachD the amplitude takes
a nonuniversal value atM50, decreases monotonically asM
increases, and vanishes eventually atM→1/2. We note that
for D50 the analytic form of̂ Sl

1Sl 11
1 Sl 8

2Sl 811
2 & can be eas-

ily calculated, yieldingB25@11cos(2pM)#/16p2. Figure 4
shows that the numerical data forD50 are in good agree
ment with the formula. We also compare the numerical e
mate ofB2 at M50 and21,D,1 with the exact formula
of B2 derived recently by Lukyanov and Terras,13

B25
@G~h!#4

2314hp212h~12h!2F GS 1

222h D
GS h

222h D G
424h

. ~38!
7-7
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Here again we find good agreement between the exact r
and our numerical data. This is another evidence that
estimates are highly reliable. AtM50 andD>1, B2 shows
a diverging behavior due to the marginal operator, sugges
the breakdown of our analysis.

Unfortunately, we cannot achieve a precise estimation

FIG. 3. ~Color online! Four-spin correlation functions
u^:(Sl

1Sl 11
2 1Sl

2Sl 11
1 )::(Sl 8

1Sl 811
2

1Sl 8
2Sl 811

1 ):&u ~open circles! and
^Sl

1Sl 11
1 Sl 8

2Sl 811
2 & ~open squares! vs r 5u l 2 l 8u for M50.05 and~a!

D50.5, ~b! D50, and~c! D520.5. The solid, dotted, and dashe
lines correspond, respectively, to the algebraic decay ofr 24h,
r 21/h, andr 22. The fitting results for̂ Sl

1Sl 11
1 Sl 8

2Sl 811
2 & using Eq.

~37! are plotted by solid squares.
06442
ult
ur

g

f

the amplitude B1 of the leading oscillating term in
^:(Sl

1Sl 11
2 1Sl

2Sl 11
1 )::(Sl 8

1Sl 811
2

1Sl 8
2Sl 811

1 ):& due to the
presence of subleading terms which give sizable contri
tions to the correlation function. This issue of estimatingB1
is left for future studies.

C. Spin gap

The data of the correlation amplitudes obtained in
preceding sections is useful for analyzing effects of pert
bations of single-spin type and exchange-coupling type
the bosonization framework. To illustrate how this sche
works, we compute spin gaps induced by such perturbat
to the Hamiltonian~1!.

As an example of the perturbation of the single-spin ty
we consider effects of the staggered transverse field.
perturbation to the Hamiltonian~1! is given by

H852hs(
l

~21! lSl
x . ~39!

It has been shown thatH8 induces a spin gap. This field
induced gap is believed to be the origin of the spin-gap
havior observed in Cu benzoate22–25,33and Yb4As3

34–36 un-
der a uniform field, in which the staggered field emerges d
to the alternatingg-tensor and the Dzyaloshinskii-Moriya in
teraction. In these materials, exchange anisotropy is neg
bly small and the staggered transverse fieldhs is proportional
to the uniform fieldH. Thus, we may setD51 and hs
5gH, whereg is a constant specific to each material.

FIG. 4. ~Color online! AmplitudeB2 of the four-spin correlation
function ^Sl

1Sl 11
1 Sl 8

2Sl 811
2 & as functions ofM for several typical

values of D. The solid curve represent the relationB25@1
1cos(2pM)#/16p2 expected forD50. Inset: Numerical estimate
of the amplitudeB2 at M50 ~open circles! and the analytical pre-
diction Eq.~38! ~solid curve!.
7-8
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In the bosonization scheme, the leading uniform term
the perturbing HamiltonianH8, which is responsible for
opening the gap, is a cosine term,

H̃852hsb0~H !E cos@2pRf̃~x!#dx. ~40!

Effects of the perturbation have been studied in
literature22–25,37,38and the induced spin gap is given by38

Eg

J
5

2v~H !

Ap

GS h

822h D
GS 2

42h D F pb0~H !

2v~H !

GS 42h

4 D
GS h

4 D
hs

J G 2/(42h)

.

~41!

Hence, the field-dependence of the spin gap is evaluate
substituting our numerical estimates forb0(H) as well as the
exact values ofv(H) andh(H) into Eq. ~41!. The result is
shown in Fig. 5 for several typical values ofg. It reproduces
the peculiarH dependence of the spin gap observed in
periments,Eg;H2/3 for small H.

Next, we consider the spin gap induced by the pertur
tion of exchange anisotropy,

H952J~12D̃ !(
l

Sl
xSl 11

x , ~42!

to the Heisenberg chainH0(D51), where 12D̃!1. Note
that by rotating the system around they axis, the whole
Hamiltonian is rewritten as

H01H95J(
l

~Sl
xSl 11

x 1Sl
ySl 11

y 1D̃Sl
zSl 11

z !2H(
l

Sl
x .

~43!

Hence, the system can be also viewed as theS51/2 XXZ

chain with anisotropyD̃ in a uniform transverse fieldH. As
we have seen in Eq.~28!, apart from a constant, the leadin

FIG. 5. ~Color online! Field dependence of the spin gap in th
Heisenberg chainH0(D51) in a uniform fieldH and a staggered
transverse fieldhs5gH. The dotted curves represent the expec
power-law behavior of the gap,Eg}H2/3.
06442
f

e

by

-

-

operators in the bosonizedH9 aredf/dx anddf̃/dx. Since
their main effect is just a small renormalization of the T
liquid parameterR, we can neglect these operators in lowe
order in 12D̃. We thus find that the dominant compone
which is responsible for opening the gap is the cosine te
with coefficientc2,

H̃952~12D̃ !c2~H !E cos@4pRf̃~x!#dx. ~44!

The effect of this perturbation has been studied,26,27 and the
spin gap forH@(12D̃) is found to be27

Eg

J
5

2v~H !

Ap

GS h

222h D
GS 1

222h D
3Fp~12D̃ !c2~H !

2v~H !

G~12h!

G~h!
G1/(222h)

. ~45!

We show in Fig. 6 the field dependence of the spin gap
several typical values ofD̃. As shown in the figure, the spin
gap opens very slowly withH and closes at the saturatio
field H52J, reflecting the fact that the coefficientc2 van-
ishes asM→1/2. In contrast to the case of the stagger
transverse field, the gap induced by the exchange anisot
is extremely small. This result is consistent with the obs
vation of the recent numerical study39 which finds no sub-
stantial gap; the spin gap is too small to be detected by
numerical study on finite-size systems. We note that
bosonization scheme with our estimates ofc2 is, at present,
the only way to get reliable quantitative results on the s
gap behavior.

IV. SUMMARY

In this paper, we have studied the ground-state correla
functions in theS51/2 XXZ chain in a magnetic field. With

d

FIG. 6. ~Color online! Field dependence of the spin gap in th
Heisenberg chainH0(D51) with the perturbation of transverse ex

change anisotropy (12D̃).
7-9
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the bosonic representation of the spin operatorsSl
z andSl

x for
open-boundary conditions, we have calculated the two-
four-spin correlation functions analytically within the effe
tive low-energy theory. We have also calculated the corre
tion functions numerically using the DMRG method, a
estimated correlation amplitudes of the first few lead
terms by fitting the numerical results to the analytic form
las. We have thus obtained precise data of nonuniversa
efficients appearing in the bosonic representation of lat
spin operators. Excellent agreement is found in the comp
son of the numerical data with the exact known results
various limiting cases.

We believe that the data of the correlation amplitudes p
sented in this work is suitable for quantitatively studyi
low-energy properties of perturbed spin chains within
bosonization method. Indeed, it has been shown in Ref
that the data ofa1 andb0 can be used successfully to expla
quantitative features of the dynamical spin structure facto
Cu benzoate. We hope that the data will be applied to a w
variety of problems in one-dimensional spin systems.

ACKNOWLEDGMENTS

The authors appreciate F. H. L. Essler for fruitful discu
sions and comments. The work of A.F. was supported in p
by a Grant-in-Aid for Scientific Research on Priority Are
from the Ministry of Education, Culture, Sports, Science a
Technology, Japan~Grant No.12046238!.

APPENDIX: BOSONIC REPRESENTATION OF SPIN
OPERATORS

In this appendix, we briefly overview the derivation of th
bosonic representation of the spin operators~7! and~8! in the
spin-1/2 XXZ chain. We basically follow the strategy o
Refs. 3 and 4. We first bosonize the repulsive Hubbard ch
at half filling, in which charge excitations have a Mot
Hubbard gap. We then obtain the spin operators by throw
the gapped charge mode away, and generalize the resu
the anisotropicXXZ case.

Let us begin with the bosonic representation of elect
operators (s5↑,↓),

cs~x!5cR,s~x!1cL,s~x!, ~A1!

cR,s~x!5
ks

A2pa
eiA4pwR,s(x)1 ikFsx, ~A2!

cL,s~x!5
ks

A2pa
e2 iA4pwL,s(x)2 ikFsx, ~A3!

whereks are Klein factors obeying$ks ,ks8%52ds,s8 and
the bosonic fieldsw obey the commutation relations,

@wR,s~x!,wR,s8~y!#5~ i /4!ds,s8sgn~x2y!, ~A4!

@wL,s~x!,wL,s8~y!#52~ i /4!ds,s8sgn~x2y!, ~A5!

@wR,s~x!,wL,s8~y!#52~ i /4!ds,s8 . ~A6!
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The Fermi wave numberskFs are functions of the magneti
zationM, kF↑5p(1/21M ) andkF↓5p(1/22M ). We intro-
duce fieldsf and f̃ given by

fs~x!5wL,s~x!1wR,s~x!, ~A7!

f̃s~x!5wL,s~x!2wR,s~x!, ~A8!

which satisfy @fs(x),f̃s(y)#52( i /2)@11sgn(x
2y)#ds,s8 . It then follows that the electron density becom

rs5cR,s
† cR,s1cL,s

† cL,s5
kFs

p
1

1

Ap

dfs

dx
. ~A9!

The uniform charge and spin densities are

rc5
1

2
~r↑1r↓!5

1

2
1

1

A2p

dfc

dx
, ~A10!

rs5
1

2
~r↑2r↓!5M1

1

A2p

dfs

dx
, ~A11!

where the charge and spin fields are defined by

fc5
1

A2
~f↑1f↓!, fs5

1

A2
~f↑2f↓!, ~A12!

f̃c5
1

A2
~f̃↑1f̃↓!, f̃s5

1

A2
~f̃↑2f̃↓!. ~A13!

The charge mode in the Hubbard chain is gapped at
filling when the on-site interaction is repulsive,U.0. The
charge gap is generated by the umklapp scattering term

U@cR,↑
† ~x!cL,↑~x!cR,↓

† ~x!cL,↓~x!

1cL,↑
† ~x!cR,↑~x!cL,↓

† ~x!cR,↓~x!#

52
2U

~2pa!2
cos~A8pfc!, ~A14!

which pins the charge field atfc5nAp/2 (n: integer!. At
low energies we may treat the field as a classical num
i.e.,

cos~A8pfc!5C,

sin~A8pfc!50, ~A15!

whereC is a positive nonuniversal constant. At this poin
following Ref. 40, we modify Eqs.~A2! and ~A3! to

cR,s~x!5
ks

A2pa
(
n50

`

ei (2n11)(kFsx1Apfs)2 iApf̃s,

cL,s~x!5
ks

A2pa
(
n50

`

e2 i (2n11)(kFsx1Apfs)2 iApf̃s.

Using the equations above, one can derive the boso
representation for the spin operators. Thez component of the
spin operator is given by
7-10
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Sz~x!5 1
2 @c↑

†~x!c↑~x!2c↓
†~x!c↓~x!#

5
1

2
@rs~x!1cR,↑

† ~x!cL,↑~x!1cL,↑
† ~x!cR,↑~x!

2cR,↓
† ~x!cL,↓~x!2cL,↓

† ~x!cR,↓~x!#

5M1
1

A2p

dfs

dx
2 (

n50

`

a2n11~21!x

3sin@~2n11!~2pMx1A2pfs!#, ~A16!

wherea2n11 is a nonuniversal constant. Here we must rec
that Eq. ~A16! is obtained from the Hubbard chain at ha
filling, whose low-energy effective spin Hamiltonian is not
ing but the antiferromagnetic Heisenberg spin chain,
which R51/A2p. To generalize the result to theXXZ chain,
what one needs to do is replacingA2pfs with fs /R. We
also definef(x)5fs(x)12pRMx to obtain

Sz~x!5
1

2pR

df~x!

dx
2 (

n50

`

a2n11~21!xsinF ~2n11!
f~x!

R G .
~A17!
cs

,

d

B

B

s.

06442
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Similarly, the operatorS1 in the antiferromagnetic Heisen
berg chain is given by

S1~x!5@cR,↑
† ~x!1cL,↑

† ~x!#@cR,↓~x!1cL,↓~x!#

5eiA2pf̃s(
n50

`

$b2n~21!xcos@2n~2pMx1A2pfs!#

1b2n11sin@~2n11!~2pMx1A2pfs!#%. ~A18!

By generalizing the equation to theXXZ case, we arrive at
the final formula,

S1~x!5ei2pRf̃ (
n50

` H b2n~21!xcosF2n
f~x!

R G
1b2n11sinF ~2n11!

f~x!

R G J , ~A19!

where we have replacedA2pf̃s with 2pRf̃.
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