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Monte Carlo study of the Blume-Emery-Griffiths model
at the ferromagnetic-antiquadrupolar-disordered phase interface
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In this paper, we give high precision Monte CafMC) results for the Blume-Emery-Griffith®@EG) model
at the ferromagnetic-antiquadrupolar-disordered phase interface. The data are analyzed by the multiple histo-
gram technique. We show that this point of the phase diagram presents a highly degenerate ground-state with
a residual entropy at temperatufe- 0 taking the value$,=0.7670+0.0005 and 0.70480.0008 for the two
and the three-dimensional systems, respectively. We prove that the system with dingrslodoes not
present any re-entrant behavior, while a re-entrance occurs in the sgst@with a phase transition &t
=1.036£0.007. Results for a multilayer system are also presented. They show that the re-entrance begins to
appear forM=5, whereM is the number of layers. Finally, the staggered quadrupolar phase is shown to be
unstable ford=2 andd=3 as well.
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[. INTRODUCTION known as the antiquadrupolar phasehese phases minimize
the Hamiltonian(1) and are represented in thK,A) plane
In addition to the bilinear exchange interactidrof the by
standard Ising model, the spin-1 Ising model possesses a

biguadratic exchange interactidtand a single ion crystal F={(K,A):1+K—-2A/z>0;1+K—-A/z>0},
field A. It is also known as the Blume-Emery-Griffiths
(BEG) model and was originally introduced in order to ex- D={(K,A):1+K—2A/z<0;A>0},

plain the phase separation and superfluidity in®+ée*
mixtures and was later developed to describe multicompo-
nent fluids, liquid crytal mixtures, microemulsions and semi-

conductor alloys(see Ref. 2, and references thejeilihe  \herez is the coordination number. The SQ phase is char-
model is described by the following Hamiltonian: acterized aff=0 by a highly degenerate ground-state with
one sublatticésayA) occupied by spin$A= 0 and the other
H=-32 SS-KX, SIS+A> &, (1)  sublattice(B) is randomly occupied by spin§®=+1, or
{n {n ! equivalently S=0 and S*=+1. This leads to an exact
whereS;=0, +1 or —1 is the spin at sit¢ and ;;, stands number of configurations equal to the partition function at
for a summation over all nearest-neighbor pairs. The modeT=0: z%=2x2V2=2N2"1 whereN is the total number of
with vanishing biquadratic interactiorK0) is known as  sites in the lattice. In the thermodynamic linht—c, the
the Blume-Capel modér.® Without loss of generality, we reduced free energy per site defined by N~1InZ° be-
can assume thai>0, because the antiferromagnetic casecomesf=1In2/2 and represents the ground-state entropy of
can be obtained from the ferromagnetic one by redefining théhe system. In addition, at the SQ boundaries SQ-D and
spin direction of one of the two sublattices in a bipartite SQ-F, the BEG model has also infinitely many ground-state
lattice and we can set=1 for what follows. configurations, especially at the F-SQ interface where there
From a theoretical point of view, the BEG model has at-appears a kind of a ferromagnetic ordering.
tracted considerable interest due to the variety of topologies There exists a point in the phase diagram where all the
of its phase diagrams and the multitude of critical behaviorabove mentioned three phases meet. It has coordintes (
it exhibits for different values of its parameters. In this re-=—1A=0) and is very highly degenerate as we will prove.
spect, we mention the mean field extensive studfythe It has been showhusing mean field theory, that the BEG
phase diagrams. A similar global work was done on a magmodel at this point, exhibits a re-entrant behavior in the con-
netic bilayef using a cluster variational theory within the tinuous F-D phase boundary. Monte carlo stutliesone
pair approximation. The latter results apply to the BEGhand, and real space renormalization group investigations
model on a fivefold coordination Bethe lattice as well. Theand finite size scaling analy$is the other hand, found no
two-dimensional model was also studied by real-space renoevidence of this re-entrant behavior in the two-dimensional
malization group theory and by finite size scaling analf/sis.system. A slight re-entrance was also found in the bilayer
Monte Carlo simulations have been also applied and resysteni with the use of the cluster variational theory within
vealed interesting features of the BEG motief the pair approximation. The bilayer system=(5) lies some-
At temperatureT =0, we can define three regions of the what between the two-dimensional square lattize 4) and
phase space: the ferromagne(ie, the disorderedD), and  the three-dimensional cubic lattice£6). On the other
the staggered quadrupole8Q phasegthe SQ phase is also hand, it is well established that the mean field picture is valid

SQ={(K,A):1+K—A/z<0;:A<0},
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only for higher dimensions, and we find it useful to give 0%

more insight into the nature of the critical behavior at this ;] Lea

special point. :
In the present paper, extensive Monte Carlo simulations %1

were performed in order to clarify the situation about the ;]

re-entrant behavior of the BEG model &€ —1,A=0) ;

making use of the Mixed Cluster AlgorithfMCA) (Refs.  y %201 Leg

11,12 and the multiple-histogram technigliet* It is found 015

that no re-entrance is present in dimensta2 while for .

d=3 a clear re-entrance takes place. In addition, we have ©°1°7 L=16

studied a system wittM layers and found that the bilayer om:_

system presents no re-entrance in contrary to what wa: ]

speculated in Ref. 6. The re-entrance appears onlyMor 0.00 - - -

=5. Finally, we find that the staggered quadrupolar phase i< T

unstable aff =0 for all system dimensions.

FIG. 1. Magnetization as a function of temperature in two di-
mensions for system sizds=4, 8, 16, and 32. The results are
obtained with 16 histograms fdr=4 and 8 and 22 histograms for

g-=32, with 1¢ MCS per spin for each run.

II. SIMULATION ALGORITHMS

For the purpose of this work, we have used the Mixe
Cluster Algorithm (MCA) developed by Bouabci and
Carneird® and recently generalized by Rachadi andOwn in a single run. The main idea of the PCC algorithm is
Benyousset? This algorithm has the advantage that it usesfo adjust continuously the system temperature so that this
in each step, mixed clusters of eitherand 0 spins or- and  latter is always brought back to stay near its critical tempera-
0 spins in addition to the well known Wolff clusters of like ture. This can be achieved by decreasing or increasing the
spins. This fact makes of it a useful tool to simulate theProbability p of constructing a bond between neighboring
physics of the BEG model at the region of the parametefites having the same spin depending on the observation that
space lying at the interface between the ferromagnetic, thé1e system is percolating or not. The existence of at least one
staggered quadrupolar and the disordered phases. The algduster invading the lattice and wrapping around the periodic
rithm proceeds with the following way. We select randomly conditions is a sufficient condition for percolation. After
two different spin values® and St. If S'=—S°, we build completing a sufficient number of MC steps, we obtain the
Wolff clusters with probabilityp,,= 1 —exd —23] for mak- critical temperaturd . as an output of the simulation by the
ing bonds between sites having spifsand flip them auto- formulaT.= —2/In(1—p).
matically. In the other case, we construct mixed clusters with When applied to the BEG model, the PCC algorithm, in
probability peq=1—exp—24/3] and pe,=1—exy —44/3] its ongmql form, is not _ergodlc becausg it does not change
for making bonds between like spins and different spinsthe magnitude of the spins but only their signs. The solution
respectively(This corresponds to taking the value2/3 for ~ adopted is based on a simple idea. We supplement every
the parameten in Ref. 12) Then the mixed clusters are PCC updating sweep by a standard Metropolis sweep which
flipped with the metropolis rate according to the energywe perform at the actual simulation temperatufe=
change of the system. The flip of the mixed clusters consists 2/IN(1—p).

Of performing the moves_( —0 and 0_>_) or (__>0 and ) Some of the MC results are analyzed with the multiple-
0— +) for the (+,0) and (,0) clusters, respectively. histogram techniqdé* which is particularly useful when

We have also taken advantage of the local nature of théetermining the ground-state entropy of the system. In the
metropolis algorithm. Indeed, for the BEG model at the pointSimulations presented here, the multiple-histogram results
(K=-1A=0), the energie&;; of link (ij) are all equal &€ _obtalned using combined data from_up to 22 simulations
except wher§ = —S; (andS;#0). This guarantees that the at d|ffer§nt temperatures. These S|mulat_|ons are performed at
standard Metropolis algorithm does not suffer from the fact€gular intervals for dimensiod=2 ranging from 0 to 4.5.
that the majority of the flip attempts are unsuccessful. inWhile for the three-d|rn_e_ns_,|ona| system, more simulations
short, we have adopted an hybrid algorithm which perform&re performed at_th_e vicinity o_f the transition temperature
an MCA sweep followed by a standard Metropolis S\,\,e(:)p_vvhere strong statistical fluctuations are present.

Such hybrid algorithms are shown to be useful in increasing

the performance substa_ntially and reducing statistical errors IIl. RESULTS AND DISCUSSIONS

of the simulations especially for the spin-1/2 and the spin-3/2

Ising models-® The Monte Carlo time is normalized so to get  In this section we present the results of our simulations
one MC step per site for one unit time. The simulationsconcerning the BEG model at the poilt€ —1,A=0). We
performed in this paper are of lengths up t& MCS/spin.  have plotted in Fig. 1, the magnetization of the two-

In order to locate the critical temperature, we have used dimensional square lattice as a function of temperafure
slightly modified version of the probability changing cluster with the use of the multiple-histogram method for system
(PCO algorithm® The numerical advantage of this algo- linear sizesL=4, 8, 16, and 32. Our Monte Carlo data are
rithm is that it can find the system critical temperature in itsconsistent with no spontaneous magnetization in the thermo-
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FIG. 2. Log—log plot of the zero-temperature magnetization
M(T=0) vs linear size in a two-dimensional lattice. The straight FIG. 4. Log-log plot of the zero-temperature magnetization
line is a linear fit with a slope-1. M(T=0) vs linear size L in a bilayer lattice. The straight line is a
linear fit with a slope—1.

dynamic limit at all temperatures, includifig=0. Indeed, if

we represent the variation of the magnetizatidi{T=0)  magnetic order due to the existence of other phases. In order
with system size up tb =64 as shown in Fig. 2 in a log—log to determine the critical temperature b= 3, we have used
scale, we can see that it decreaseb1g3 =0)=L -2 within  the hybrid probability changing clustéPCO algorithm de-
statistical errors as expected for a paramagnetic phase. scribed above. Our simulations with this algorithm lead to

Thus, even af =0, there is no temperature driven phaseT_ = 1.036+ 0.007 which, as can be expected, is much lower
transition. In relation to this point, it was stated in Ref. 9 thatthan the mean field predicticn.
the critical temperature approaches zero linearly Tas We have demonstrated that the bidimensional square BEG
=3.8(1+K) when K approaches-1. our results suggest model =4) cannot order ferromagnetically at any tem-
that despite this result, the poinKEé —1,A=0) does not perature while the three-dimensional system=6) does
belong the universality class of the critical line it terminatesshow a re-entrant behavior. There is a system which lies
and no evidence of a re-entrant behavior is found for a twosomewhat between these two ones and which has coordina-
dimensional square lattice at this point. tion numberz=5. This is the magnetic bilayer system. It

On the other hand, our results for tile=3 system are was studiefl in the framework of the cluster variational
compatible with a nonvanishing zero-temperature magnetizanethod within the pair approximation and found to possess a
tion in the thermodynamic limit as can be seen from Fig. 3slight re-entrant behavior.

Apart from a slightly higher value for system sikze=4, We did simulations aff=0 for this bilayer system and
the T=0 magnetization decreases towards a finite valudound (Fig. 4) that the zero-temperature magnetization de-
0.4260+0.0025 supporting the idea of a finite temperaturecreases with the total number of sitéé as M(T=0)
second order phase transition. We note also that this value ofN~Y2 which characterizes a paramagnetic phase excluding
the magnetization is much lower than that of maximal ferro-the presence of any re-entrant behavior for this system.

Moreover, we did simulations for a systemdflayers to
see for what value oM, the system becomes to present a
re-entrance. FoM=1 andM =2 which correspond to the
two-dimensional and the bilayer systems respectively, we
have proven the absence of any re-entrance. Wep «
which corresponds to the three-dimensional system, there is
a clear ferromagnetic re-entrance. So, we expect that for
some intermediary value 2M_ <o, the re-entrance be-
comes to appear. In fact, our MC simulations for lax L
X M system indicate that favl,=5, the system becomes to
preserve a nonvanishing zero-temperature magnetization in
the thermodynamic limit with (M(T=0))=0.3541
+0.0015. To confirm the existence of a finite temperature
transition, we performed a simulation with the hybrid PCC
algorithm as described above and found a critical tempera-

T ture T,=0.616+0.001.

FIG. 3. Magnetization as a function of temperature in three di- Although there is no re-entrance for the multilayer system
mensions for system sizés=4, 8, and 16. The results are obtained With M=<4, we found a peculiar behavior fof = 4. Indeed,
with 22 histograms with fOMCS per spin for each run. the decrease of the zero-temperature with system size does
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FIG. 5. Reduced free energy per sfte N"!In Z as a function FIG. 6. Reduced free energy per ditas a function of tempera-

of temperature for dimensioti=2. The histograms used are taken ture for dimensiond=3. The histograms used are taken from the
from the same set of data as those of Fig. 1. The inset shows the losame set of data as those of Fig. 3. The inset shows the low tem-
temperature part in a greater scale to distinguish the values corr@erature part in a greater scale to distinguish the values correspond-
sponding to higher values &f. ing to higher values of.

Figures 5 and 6 presents plots of the variation with tem-
not follow the paramagnetic scaling, but a scaling lawperature of the reduced free energy per diteN " *InZz,
(M(T=0))xL #"  characterizing a ferromagnetic- where Z is the system partition function, fad=2 andd
paramagnetic transition al=0 with an exponents/v =3, respectively. The results are obtained using up to 22
=0.21. This is a somewhat intermediary behavior between aistograms each with £0 MCS per spin. The zero-
strong decrease of the magnetization characterizing the altemperature entropies extrapolate to the thermodynamic limit
sence of a phase transition and a stability of the ferromagk —» asS(L)=S.+bL "¢ whereb is some constant. We
netic phase af=0 characterizing a nonzero phase transi-found S,=0.7670-0.0005 andS,,=0.7048:0.0008, re-
tion. spectively, for the two and the three-dimensional systems. As

Now, we return to the highly degenerate character of thave expected, these values are much higher than those of the
system ground-state aK& —1,A=0). As it is known, nu- three-state antiferromagnetic Potts model.
merous systems present such an infinitely many ground-state Concerning the staggered quadrupolar phase, our MC
configurations. A typical example of these systems is thesimulations are in favor of the fact that this phase is unstable
antiferromagnetic three state Potts modeThis model is atT=0 for both thed=2 and thed=3 systems. This can be
equivalent to the Blume-Emery-Griffiths model aK ( deduced from the variation with system size of the order
=—3,A/z=2) with the spin direction of one of the two parameterQ=2/IN[Z; ,S’—=;.5S?)], where A and B
sublattices being redefined add-0. This means that this stand for the two interpenetrating sublattices in a bipartite
model lies at the antiquadrupolar-disordered interface. Thudattice such that all sites in sublattice have their nearest
we expect the zero-temperature entropy of our model to beeighbors in sublatticd8 and vice versa. Figure 7 shows
higher than the value$ In 3 (see Refs. 17,18and 0.3673
(see Ref. 18found for the antiferromagnetic three state Potts
model withd=2 andd=3, respectively. This is due to the
fact that the space of the ground-states of this model is
in fact a subset of the configuration space of the BEG
model at K=—-1A=0) located at the ferromagnetic-
antiquadrupolar-disordered interface. Another model which
presents a highly degenerate ground-state igjtbmte anti-
ferromagneticZ(q) model recently studied fog=5 andq
=7 (see Ref. 19 1079
One way to determine the ground-state entropy is to make
use of the multiple histogram technique. As we pointed out
before, if we perform MC simulations in different tempera-
tures up to a sufficiently high temperature, we can cover the 19° - — T AR
entire range of temperature frof=o where the entropy is 10 10 10
known to be In3 down tolr=0. Then using the multiple L
histogram self-consistent relations we can compute the free F|G. 7. Plot of the variation with system size of the order pa-
energy as a function of temperature and shift it by adding @ameterQ=2/IN[S; .S~ 3,;_sS?)], for both thed=2 (circles
convenient constant such that for higher temperatures thgnd thed=3 (squarep systems. The corresponding straight lines
free energy coincides with the limit In 3. have slopes-1 and—1.5, respectively.

10° 3

1074

<Q(T=0)>
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these variations which follow clearly the layQ(T=0)) Recently, it was showf that the BEG model at the SQ-D
«L~%indicating that the SQ phase in indeed unstable in thgohase interface presents a spin—spin correlation function
thermodynamic limit. which decays exponentially fast at all nonzero temperatures.

In the following, we give an argument which, though not The authors argued that this behavior indicate the absence of
rigorous, can give more insight into the reasons of the unstae-entrance fon=0 andK<K,, whereK4 depends on the
bility of the SQ phase at=0. As we pointed out before, a dimensiond (K4= —6.395 ford=2). These results cannot
completely ordered SQ phase has an exact number of Cope applied to the model studied here which is a limiting case

: H —_oN/2+1 ; : H .
figurations equaNsq=2"*"" in a lattice ofN sites. Corre- \yhere the staggered quadrupolar phase is unstable even at
spondingly, the total numbeNy of configurations of our ;5o temperature.

model atT=0 can be estimated from the ground-state en-
tropy Sy=N"1InN;. Then the ratidNso/ Ny can be written

NSQ 2N/2+l
—=——————=exp N In2— . 2
Nt exdN&] p{ N ] @ Using both the Monte Carlo mixed cluster algorithm

As N—c, this ratio tends to eXpi[In 2—S.]. The valuesS., (MCA) and the_ probability changing clustéPCQO algo- _
calculated for the two and the three-dimensional systesess  11thm, we studied the BEG model at the ferromagnetic-
above, are much greater than In 2. Then, we conclude that ifRntiquadrupolar-disordered phase interface locatedKat (
the thermodynamic limit, the number of configurations char-= —1,A=0) with infinitely many ground-state configura-
acterizing a SQ phase are negligible in comparison to th&éons. We showed that the ferromagnetic phase is unstable at
huge total number of configurations @t=0 and the SQ T=0 in the thermodynamic limit for dimensiod=2 and
phase becomes unstable. Moreover, even if we consider irstable for the three-dimensional system giving rise to a re-
completely ordered SQ configurations and overestimage  entrant behavior. This re-entrance is shown to be absent for a
to Ngg~N“X 2N2*1 with >0, the precedent argument still multilayer system with less than 5 layers. We computed the
holds and the contribution of these configurations to the totavalues of the zero-temperature entropy tb+2 andd=3
number vanishes in the infinite-size limit. Thus, we concludeand found that these values are relatively high which causes
that the high values of the zero-temperature entropy are rahe instability of the staggered quadrupolar phase for all di-
sponsible for the unstability of the SQ phaseTatO. mensions af =0.

IV. CONCLUSION
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