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Monte Carlo study of the Blume-Emery-Griffiths model
at the ferromagnetic-antiquadrupolar-disordered phase interface

A. Rachadi and A. Benyoussef
Laboratoire de Magne´tisme et de Physique des Hautes Energies, Faculte´ des Sciences, Boite Postale 1014, Rabat, Morocco

~Received 23 September 2003; published 20 February 2004!

In this paper, we give high precision Monte Carlo~MC! results for the Blume-Emery-Griffiths~BEG! model
at the ferromagnetic-antiquadrupolar-disordered phase interface. The data are analyzed by the multiple histo-
gram technique. We show that this point of the phase diagram presents a highly degenerate ground-state with
a residual entropy at temperatureT50 taking the valuesS`50.767060.0005 and 0.704860.0008 for the two
and the three-dimensional systems, respectively. We prove that the system with dimensiond52 does not
present any re-entrant behavior, while a re-entrance occurs in the systemd53 with a phase transition atTc

51.03660.007. Results for a multilayer system are also presented. They show that the re-entrance begins to
appear forM>5, whereM is the number of layers. Finally, the staggered quadrupolar phase is shown to be
unstable ford52 andd53 as well.
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I. INTRODUCTION

In addition to the bilinear exchange interactionJ of the
standard Ising model, the spin-1 Ising model possesse
biquadratic exchange interactionK and a single ion crysta
field D. It is also known as the Blume-Emery-Griffith
~BEG! model and was originally introduced in order to e
plain the phase separation and superfluidity in He3–He4

mixtures1 and was later developed to describe multicomp
nent fluids, liquid crytal mixtures, microemulsions and sem
conductor alloys~see Ref. 2, and references therein!. The
model is described by the following Hamiltonian:

H52J(̂
i j &

SiSj2K(̂
i j &

Si
2Sj

21D(
i

Si
2 , ~1!

whereSi50, 11 or 21 is the spin at sitei and(^ i j & stands
for a summation over all nearest-neighbor pairs. The mo
with vanishing biquadratic interaction (K50) is known as
the Blume-Capel model.3–5 Without loss of generality, we
can assume thatJ.0, because the antiferromagnetic ca
can be obtained from the ferromagnetic one by redefining
spin direction of one of the two sublattices in a bipart
lattice and we can setJ51 for what follows.

From a theoretical point of view, the BEG model has
tracted considerable interest due to the variety of topolog
of its phase diagrams and the multitude of critical behavi
it exhibits for different values of its parameters. In this r
spect, we mention the mean field extensive study2 of the
phase diagrams. A similar global work was done on a m
netic bilayer6 using a cluster variational theory within th
pair approximation. The latter results apply to the BE
model on a fivefold coordination Bethe lattice as well. T
two-dimensional model was also studied by real-space re
malization group theory and by finite size scaling analys7

Monte Carlo simulations have been also applied and
vealed interesting features of the BEG model.8–10

At temperatureT50, we can define three regions of th
phase space: the ferromagnetic~F!, the disordered~D!, and
the staggered quadrupolar~SQ! phases~the SQ phase is als
0163-1829/2004/69~6!/064423~5!/$22.50 69 0644
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known as the antiquadrupolar phase!. These phases minimiz
the Hamiltonian~1! and are represented in the (K,D) plane
by

F5$~K,D!:11K22D/z.0;11K2D/z.0%,

D5$~K,D!:11K22D/z,0;D.0%,

SQ5$~K,D!:11K2D/z,0;D,0%,

wherez is the coordination number. The SQ phase is ch
acterized atT50 by a highly degenerate ground-state w
one sublattice~sayA) occupied by spinsSi

A50 and the other
sublattice~B! is randomly occupied by spinsSi

B561, or
equivalently Si

B50 and Si
A561. This leads to an exac

number of configurations equal to the partition function
T50: ZN

0 5232N/252N/211, whereN is the total number of
sites in the lattice. In the thermodynamic limitN→`, the
reduced free energy per site defined byf 5N21 ln Z0 be-
comesf 5 ln 2/2 and represents the ground-state entropy
the system. In addition, at the SQ boundaries SQ-D
SQ-F, the BEG model has also infinitely many ground-st
configurations, especially at the F-SQ interface where th
appears a kind of a ferromagnetic ordering.2

There exists a point in the phase diagram where all
above mentioned three phases meet. It has coordinateK
521,D50) and is very highly degenerate as we will prov
It has been shown,2 using mean field theory, that the BEG
model at this point, exhibits a re-entrant behavior in the c
tinuous F–D phase boundary. Monte carlo studies9 in one
hand, and real space renormalization group investigati
and finite size scaling analysis7 in the other hand, found no
evidence of this re-entrant behavior in the two-dimensio
system. A slight re-entrance was also found in the bila
system6 with the use of the cluster variational theory with
the pair approximation. The bilayer system (z55) lies some-
what between the two-dimensional square lattice (z54) and
the three-dimensional cubic lattice (z56). On the other
hand, it is well established that the mean field picture is va
©2004 The American Physical Society23-1
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only for higher dimensions, and we find it useful to giv
more insight into the nature of the critical behavior at th
special point.

In the present paper, extensive Monte Carlo simulati
were performed in order to clarify the situation about t
re-entrant behavior of the BEG model at (K521,D50)
making use of the Mixed Cluster Algorithm~MCA! ~Refs.
11,12! and the multiple-histogram technique.13,14 It is found
that no re-entrance is present in dimensiond52 while for
d53 a clear re-entrance takes place. In addition, we h
studied a system withM layers and found that the bilaye
system presents no re-entrance in contrary to what
speculated in Ref. 6. The re-entrance appears only forM
>5. Finally, we find that the staggered quadrupolar phas
unstable atT50 for all system dimensions.

II. SIMULATION ALGORITHMS

For the purpose of this work, we have used the Mix
Cluster Algorithm ~MCA! developed by Bouabci an
Carneiro11 and recently generalized by Rachadi a
Benyoussef.12 This algorithm has the advantage that it us
in each step, mixed clusters of either1 and 0 spins or2 and
0 spins in addition to the well known Wolff clusters of lik
spins. This fact makes of it a useful tool to simulate t
physics of the BEG model at the region of the parame
space lying at the interface between the ferromagnetic,
staggered quadrupolar and the disordered phases. The
rithm proceeds with the following way. We select random
two different spin valuesS0 and S1. If S152S0, we build
Wolff clusters with probabilitypw512exp@22b# for mak-
ing bonds between sites having spinsS0 and flip them auto-
matically. In the other case, we construct mixed clusters w
probability peq512exp@22b/3# and peq512exp@24b/3#
for making bonds between like spins and different spi
respectively.~This corresponds to taking the value22/3 for
the parameterl in Ref. 12.! Then the mixed clusters ar
flipped with the metropolis rate according to the ener
change of the system. The flip of the mixed clusters cons
of performing the moves (1→0 and 0→2) or (2→0 and
0→1) for the (1,0) and (2,0) clusters, respectively.

We have also taken advantage of the local nature of
metropolis algorithm. Indeed, for the BEG model at the po
(K521,D50), the energiesEi j of link ^ i j & are all equal
except whenSi52Sj ~andSiÞ0). This guarantees that th
standard Metropolis algorithm does not suffer from the f
that the majority of the flip attempts are unsuccessful.
short, we have adopted an hybrid algorithm which perfor
an MCA sweep followed by a standard Metropolis swe
Such hybrid algorithms are shown to be useful in increas
the performance substantially and reducing statistical er
of the simulations especially for the spin-1/2 and the spin-
Ising models.15 The Monte Carlo time is normalized so to g
one MC step per site for one unit time. The simulatio
performed in this paper are of lengths up to 106 MCS/spin.

In order to locate the critical temperature, we have use
slightly modified version of the probability changing clust
~PCC! algorithm.16 The numerical advantage of this alg
rithm is that it can find the system critical temperature in
06442
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own in a single run. The main idea of the PCC algorithm
to adjust continuously the system temperature so that
latter is always brought back to stay near its critical tempe
ture. This can be achieved by decreasing or increasing
probability p of constructing a bond between neighborin
sites having the same spin depending on the observation
the system is percolating or not. The existence of at least
cluster invading the lattice and wrapping around the perio
conditions is a sufficient condition for percolation. Afte
completing a sufficient number of MC steps, we obtain t
critical temperatureTc as an output of the simulation by th
formula Tc522/ln(12p).

When applied to the BEG model, the PCC algorithm,
its original form, is not ergodic because it does not chan
the magnitude of the spins but only their signs. The solut
adopted is based on a simple idea. We supplement e
PCC updating sweep by a standard Metropolis sweep wh
we perform at the actual simulation temperatureT5
22/ln(12p).

Some of the MC results are analyzed with the multip
histogram technique13,14 which is particularly useful when
determining the ground-state entropy of the system. In
simulations presented here, the multiple-histogram res
are obtained using combined data from up to 22 simulati
at different temperatures. These simulations are performe
regular intervals for dimensiond52 ranging from 0 to 4.5.
While for the three-dimensional system, more simulatio
are performed at the vicinity of the transition temperatu
where strong statistical fluctuations are present.

III. RESULTS AND DISCUSSIONS

In this section we present the results of our simulatio
concerning the BEG model at the point (K521,D50). We
have plotted in Fig. 1, the magnetizationM of the two-
dimensional square lattice as a function of temperaturT
with the use of the multiple-histogram method for syste
linear sizesL54, 8, 16, and 32. Our Monte Carlo data a
consistent with no spontaneous magnetization in the ther

FIG. 1. Magnetization as a function of temperature in two
mensions for system sizesL54, 8, 16, and 32. The results ar
obtained with 16 histograms forL54 and 8 and 22 histograms fo
L532, with 106 MCS per spin for each run.
3-2
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dynamic limit at all temperatures, includingT50. Indeed, if
we represent the variation of the magnetizationM (T50)
with system size up toL564 as shown in Fig. 2 in a log–log
scale, we can see that it decreases asM (T50)}L2d/2 within
statistical errors as expected for a paramagnetic phase.

Thus, even atT50, there is no temperature driven pha
transition. In relation to this point, it was stated in Ref. 9 th
the critical temperature approaches zero linearly asTc
53.8(11K) when K approaches21. our results sugges
that despite this result, the point (K521,D50) does not
belong the universality class of the critical line it terminat
and no evidence of a re-entrant behavior is found for a tw
dimensional square lattice at this point.

On the other hand, our results for thed53 system are
compatible with a nonvanishing zero-temperature magnet
tion in the thermodynamic limit as can be seen from Fig.

Apart from a slightly higher value for system sizeL54,
the T50 magnetization decreases towards a finite va
0.426060.0025 supporting the idea of a finite temperatu
second order phase transition. We note also that this valu
the magnetization is much lower than that of maximal fer

FIG. 2. Log–log plot of the zero-temperature magnetizat
M (T50) vs linear sizeL in a two-dimensional lattice. The straigh
line is a linear fit with a slope21.

FIG. 3. Magnetization as a function of temperature in three
mensions for system sizesL54, 8, and 16. The results are obtaine
with 22 histograms with 106 MCS per spin for each run.
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magnetic order due to the existence of other phases. In o
to determine the critical temperature ford53, we have used
the hybrid probability changing cluster~PCC! algorithm de-
scribed above. Our simulations with this algorithm lead
Tc51.03660.007 which, as can be expected, is much low
than the mean field prediction.2

We have demonstrated that the bidimensional square B
model (z54) cannot order ferromagnetically at any tem
perature while the three-dimensional system (z56) does
show a re-entrant behavior. There is a system which
somewhat between these two ones and which has coord
tion numberz55. This is the magnetic bilayer system.
was studied6 in the framework of the cluster variationa
method within the pair approximation and found to posses
slight re-entrant behavior.

We did simulations atT50 for this bilayer system and
found ~Fig. 4! that the zero-temperature magnetization d
creases with the total number of sitesN as M (T50)
}N21/2 which characterizes a paramagnetic phase exclud
the presence of any re-entrant behavior for this system.

Moreover, we did simulations for a system ofM layers to
see for what value ofM, the system becomes to present
re-entrance. ForM51 andM52 which correspond to the
two-dimensional and the bilayer systems respectively,
have proven the absence of any re-entrance. ForM→`
which corresponds to the three-dimensional system, ther
a clear ferromagnetic re-entrance. So, we expect that
some intermediary value 2,Mc,`, the re-entrance be
comes to appear. In fact, our MC simulations for anL3L
3M system indicate that forMc55, the system becomes t
preserve a nonvanishing zero-temperature magnetizatio
the thermodynamic limit with ^M (T50)&50.3541
60.0015. To confirm the existence of a finite temperat
transition, we performed a simulation with the hybrid PC
algorithm as described above and found a critical tempe
ture Tc50.61660.001.

Although there is no re-entrance for the multilayer syst
with M<4, we found a peculiar behavior forM54. Indeed,
the decrease of the zero-temperature with system size

i-

FIG. 4. Log–log plot of the zero-temperature magnetizat
M (T50) vs linear size L in a bilayer lattice. The straight line is
linear fit with a slope21.
3-3
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not follow the paramagnetic scaling, but a scaling la
^M (T50)&}L2b/n characterizing a ferromagnetic
paramagnetic transition atT50 with an exponentb/n
50.21. This is a somewhat intermediary behavior betwee
strong decrease of the magnetization characterizing the
sence of a phase transition and a stability of the ferrom
netic phase atT50 characterizing a nonzero phase tran
tion.

Now, we return to the highly degenerate character of
system ground-state at (K521,D50). As it is known, nu-
merous systems present such an infinitely many ground-s
configurations. A typical example of these systems is
antiferromagnetic three state Potts model.17 This model is
equivalent to the Blume-Emery-Griffiths model at (K
523,D/z52) with the spin direction of one of the tw
sublattices being redefined andJ.0. This means that this
model lies at the antiquadrupolar-disordered interface. Th
we expect the zero-temperature entropy of our model to
higher than the values32 ln 4

3 ~see Refs. 17,18! and 0.3673
~see Ref. 18! found for the antiferromagnetic three state Po
model withd52 andd53, respectively. This is due to th
fact that the space of the ground-states of this mode
in fact a subset of the configuration space of the B
model at (K521,D50) located at the ferromagnetic
antiquadrupolar-disordered interface. Another model wh
presents a highly degenerate ground-state is theq-state anti-
ferromagneticZ(q) model recently studied forq55 andq
57 ~see Ref. 19!.

One way to determine the ground-state entropy is to m
use of the multiple histogram technique. As we pointed
before, if we perform MC simulations in different temper
tures up to a sufficiently high temperature, we can cover
entire range of temperature fromT5` where the entropy is
known to be ln 3 down toT50. Then using the multiple
histogram self-consistent relations we can compute the
energy as a function of temperature and shift it by addin
convenient constant such that for higher temperatures
free energy coincides with the limit ln 3.

FIG. 5. Reduced free energy per sitef 5N21 ln Z as a function
of temperature for dimensiond52. The histograms used are take
from the same set of data as those of Fig. 1. The inset shows the
temperature part in a greater scale to distinguish the values c
sponding to higher values ofL.
06442
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Figures 5 and 6 presents plots of the variation with te
perature of the reduced free energy per sitef 5N21 ln Z,
where Z is the system partition function, ford52 and d
53, respectively. The results are obtained using up to
histograms each with 106 MCS per spin. The zero-
temperature entropies extrapolate to the thermodynamic l
L→` as S(L)5S`1bL2d, whereb is some constant. We
found S`50.767060.0005 andS`50.704860.0008, re-
spectively, for the two and the three-dimensional systems
we expected, these values are much higher than those o
three-state antiferromagnetic Potts model.

Concerning the staggered quadrupolar phase, our
simulations are in favor of the fact that this phase is unsta
at T50 for both thed52 and thed53 systems. This can be
deduced from the variation with system size of the ord
parameter Q52/N@( i PASi

22( i PBSi
2)], where A and B

stand for the two interpenetrating sublattices in a bipar
lattice such that all sites in sublatticeA have their neares
neighbors in sublatticeB and vice versa. Figure 7 show

ow
re-

FIG. 6. Reduced free energy per sitef as a function of tempera
ture for dimensiond53. The histograms used are taken from t
same set of data as those of Fig. 3. The inset shows the low
perature part in a greater scale to distinguish the values corresp
ing to higher values ofL.

FIG. 7. Plot of the variation with system size of the order p
rameterQ52/N@( i PASi

22( i PBSi
2)], for both the d52 ~circles!

and thed53 ~squares! systems. The corresponding straight lin
have slopes21 and21.5, respectively.
3-4
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these variations which follow clearly the laŵQ(T50)&
}L2d indicating that the SQ phase in indeed unstable in
thermodynamic limit.

In the following, we give an argument which, though n
rigorous, can give more insight into the reasons of the un
bility of the SQ phase atT50. As we pointed out before,
completely ordered SQ phase has an exact number of
figurations equalNSQ52N/211 in a lattice ofN sites. Corre-
spondingly, the total numberNT of configurations of our
model atT50 can be estimated from the ground-state
tropy SN5N21 ln NT . Then the ratioNSQ/NT can be written

NSQ

NT
5

2N/211

exp@NSN#
5expH NF S 11

1

ND ln 22SNG J . ~2!

As N→`, this ratio tends to exp$N@ln 22S̀ #%. The valuesS`

calculated for the two and the three-dimensional systems~see
above!, are much greater than ln 2. Then, we conclude tha
the thermodynamic limit, the number of configurations ch
acterizing a SQ phase are negligible in comparison to
huge total number of configurations atT50 and the SQ
phase becomes unstable. Moreover, even if we conside
completely ordered SQ configurations and overestimateNSQ
to NSQ;Na32N/211 with a.0, the precedent argument st
holds and the contribution of these configurations to the t
number vanishes in the infinite-size limit. Thus, we conclu
that the high values of the zero-temperature entropy are
sponsible for the unstability of the SQ phase atT50.
n
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Recently, it was shown20 that the BEG model at the SQ-D
phase interface presents a spin–spin correlation func
which decays exponentially fast at all nonzero temperatu
The authors argued that this behavior indicate the absenc
re-entrance forD50 andK,Kd , whereKd depends on the
dimensiond (Kd526.395 ford52). These results canno
be applied to the model studied here which is a limiting ca
where the staggered quadrupolar phase is unstable eve
zero temperature.

IV. CONCLUSION

Using both the Monte Carlo mixed cluster algorith
~MCA! and the probability changing cluster~PCC! algo-
rithm, we studied the BEG model at the ferromagnet
antiquadrupolar-disordered phase interface located atK
521,D50) with infinitely many ground-state configura
tions. We showed that the ferromagnetic phase is unstab
T50 in the thermodynamic limit for dimensiond52 and
stable for the three-dimensional system giving rise to a
entrant behavior. This re-entrance is shown to be absent f
multilayer system with less than 5 layers. We computed
values of the zero-temperature entropy ford52 andd53
and found that these values are relatively high which cau
the instability of the staggered quadrupolar phase for all
mensions atT50.
1M. Blume, V. Emery, and R.B. Griffiths, Phys. Rev. A4, 1071
~1971!.

2W. Hoston and A. Berker, Phys. Rev. Lett.67, 1027~1991!.
3M. Blume, Phys. Rev.141, 517 ~1966!.
4H. Capel, Physica~Amsterdam! 32, 966 ~1966!.
5H. Capel, Physica~Amsterdam! 33, 295 ~1967!.
6J. Tucker, T. Balcerzak, M. Gzik, and A. Sukiennicki, J. Mag

Magn. Mater.187, 381 ~1998!.
7A. Bakchich, A. Benyoussef, and M. Touzani, Physica A186, 524

~1992!.
8M. Tanaka and T. Kawabe, J. Phys. Soc. Jpn.54, 2194~1985!.
9Y.L. Wang, F. Lee, and J.D. Kimel, Phys. Rev. B36, 8945~1987!.

10Y.L. Wang and C. Wentworth, J. Appl. Phys.61, 4411~1987!.
11M.B. Bouabci and C.E.I. Carneiro, Phys. Rev. B54, 359 ~1996!.
.

12A. Rachadi and A. Benyoussef, Phys. Rev. B68, 064113~2003!.
13A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.63, 1195

~1989!.
14A.M. Ferrenberg and R.H. Swendsen, Comput. Phys.3, 101

~1989!.
15J.A. Plascak, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. E65,

066702~2002!.
16Y. Tomita and Y. Okabe, Phys. Rev. Lett.86, 572 ~2001!.
17J.S. Wang, R.H. Swendsen, and R. Kotecky´, Phys. Rev. B42,

2465 ~1990!.
18K. Binder, Z. Phys. B: Condens. Matter43, 119 ~1981!.
19A. Benyoussef, M. Loulidi, and A. Rachadi, Phys. Rev. B67,

094415~2003!.
20G.A. Braga and P.C. Lima, J. Phys. A36, 9609~2003!.
3-5


