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Collective magnetostatic modes on a one-dimensional array of ferromagnetic stripes
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The peculiarities of collective magnetostatic modes on a one-dimensional array of ferromagnetic stripes have
been studied. It has been shown that the frequency splitting, induced via dipole magnetostatic coupling in the
oscillations of otherwise individual stripes, can achieve the values of the order of several GHz. This makes it
easily observable by means of a standard Brillouin light spectrometer. To quantify the investigated effects, an
analytical technique developed earlier for an isolated stripe has been extended to the case of a one-dimensional
array of ferromagnetic stripes. The magnetization profiles of the stripes in the presence of strong coupling have
been estimated numerically.
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I. INTRODUCTION

The physics of nanopatterned magnetic structures
driven extensive research in recent years with both static
dynamic behavior being investigated. The applied aspec
these studies should not be underestimated either. A r
increase of processor speeds in modern computers has l
the necessity of writing gigabits of information in a fractio
of a second. This means that the magnetic system is exc
at gigahertz rates and the inevitable generation of spin wa
will strongly influence the response of magnetic record
media. In this respect, it is necessary to prevent the mu
influence of adjacent magnetic elements through inevita
coupling via the dynamic dipolar magnetic fields of ind
vidual elements. The key parameter governing such coup
is the spatial separation of the elements. To minimize
overall size of the structure, this separation must be kep
small as possible. On the other hand, if the elements
brought too close together, spuriouscollectivemagnetostatic
modes will be excited through the thus-increased coupl
In the case of nanodots, where the fundamental magn
state corresponds to a vortex configuration, this leads
considerable mutual influence between the dots during
magnetization reversal,1 as well as magnetostatic coupling2

between the dynamic modes of individual vortices.3 Simi-
larly, in the case of nanowires of cylindrical cross sectio
both in theory4 and in experiment,5 collective modes due to
the interplay between individual wires have been reporte

To study the basic properties of collective modes on
riodic nanostructures we restricted our analysis to an id
model object: a one-dimensional array of ferromagne
stripes. Thus, simple and efficient numerical procedures
be developed backed by analytical expressions provid
more physical insight.

The magnetostatic coupling between the individual re
nances in a collective mode produces two effects: a redi
bution of the dynamic magnetization on each element an
corresponding frequency shift. The Brillouin light scatteri
~BLS! technique has proved to be a very efficient method
directly measuring the dispersion characteristics of magn
on periodic structures.6–14 Moreover, by recording the shap
of a spectral line in Fourier space—i.e., in theK space of
0163-1829/2004/69~6!/064408~7!/$22.50 69 0644
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transferred wave vector—one can retrieve information on
distribution of magnetization on each element of the array6,9

Otherwise, it can be done directly, with more precision,
means of Kerr microscopy.15,16

Until lately, the problem of magnetostatic modes on on
dimensional ferromagnetic objects had no solution exc
one which is purelynumerical.8 It was generally accepted
that the magnetic field at the edges of the film, to the fi
approximation, tends to zero.17 In other words, the spins a
the edges of the film are totally ‘‘pinned.’’ In a recent pape18

the authors proposed ananalytical formalism. It expresses
the modal distribution of the magnetic field across the wid
of a magnetic stripe, in a nonexchange approximation, as
eigenfunction of an integral equation. Thus the demagne
ing fields at the edges of the stripe are taken into account
effective pinning conditions introduced. We have extend
this approach to the case of a periodic array of ferromagn
stripes and have obtained the dispersion characteristics o
collective modes existing on such structures.

II. THEORY

Any coupling between individual stripes in an array is d
to the long-range dipole-dipole interactions. Such coupling
most pronounced for the lowest width modes of a fini
width stripe which is, in most cases, of a dipole nature. T
is why in order to calculate the dipolar coupling between
individual stripes we will extend the approach developed
Ref. 18, which is based on one-dimensional Green’s fu
tions P(j,j8). According to this approach, the dynamic
magnetizationm(j) in a magnetostatic mode can be dete
mined as an eigenfunction of the integral equation

lm~j!5E
21/2

1/2

dj8P~j,j8!m~j8!, ~1!

with

P~j,j8!5
1

p
ln

~j2j8!4

@p21~j2j8!2#2 ,

j5x/w, p5L/w.
©2004 The American Physical Society08-1
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HereP(j,j8) is the Green’s function calculated in the ma
netostatic approximation andl is the eigenvalue, corre
sponding to the eigenfunctionm(j). This expression has
been obtained through averaging the general expressio
lating the magnetization to the dipolar magnetic field
duced by it over the thickness of the film~i.e., overz). It will
be shown below that the resultant purely dipolar modes
characterized by a quasicosinusoidal distribution of the
namic magnetization across the width of a stripe, wh
makes a generalization of the dipole-exchange case ra
straightforward.

This generalization is uncomplicated for the case o
magnetic field inside a stripe with numberj created by a
series ofN parallel stripes~Fig. 1! arranged with dimension
less periodT5(11D/w):

lmj~j!5 (
j 850

j 85N E
21/2

1/2

P„j,j81~ j 82 j !T…

3mj 8@j81~ j 82 j !T#dj8, ~2a!

wherej andj8 are local coordinates within each individu
stripe (21/2,j,j8,1/2) andD is the distance between th
neighboring stripes. In the case of an infinite series of stri
a more symmetrical presentation is preferable:

lmj~j!5 (
j 852`

j 85` E
21/2

1/2

P„j,j81~ j 82 j !T…

3mj 8@j81~ j 82 j !T#dj8. ~2b!

The system of coupled singular integral equations~2b! is too
complex for an analytical solution to be found. In its gene
form it can only be analyzed numerically. To handle the co
putational problems arising from the nonanalytical behav
of the kernel in the vicinity of the pointj5j8 we used the
method proposed in Refs. 19 and 20. Here for the subtrac
of the singularity we took advantage of the fact that the
tegral of the Green’s function may be evaluated analytica
over the range21/2,j,1/2. To streamline the computa
tional procedure we made use of the Nystrom method
the Gaussian quadrature.20

However, in some particular cases analytical solutions
exist. Let us consider one of them. As is well known,21 the
solution of a linear equation with periodic coefficients h
the form

mj~j!5m̃~j!exp@ ik~j1 jT !#, ~3!

FIG. 1. Geometry of the structure. Stripe thickness isL, its
width is w, and distance between neighboring stripes isD.
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wherem̃(j) is a periodic function with the periodT,—i.e.,
m̃(j1T)5m̃(j). The wave numberk for the first Brillouin
zone may vary within the range 0,k,p/2. It should be
noted that by considering Eq.~2b! in Fourier space it is easy
to demonstrate that solution~3! really stands.

Inserting Eq.~3! into Eq. ~2b! results in

lm̃j~j!5 (
j 852`

j 85` E
21/2

1/2

P„j,j81~ j 82 j !T…

3exp$ ik@j82j1~ j 82 j !T#%m̃j~j8!dj8. ~4!

In the limit 2p/k!w—i.e., when the spatial period of th
collective mode is much greater than that of the w
array—we may assume

exp$ ik@j82j1~ j 82 j !T#%'exp@ ik~ j 82 j !T#

[exp@ i ~ j 82 j !Dw#, ~5!

whereDw represents the relative phase of the oscillations
two adjacent stripes. Furthermore, if the period of the str
ture is much greater than the width of the stripes—that
T@1—from general considerations it is clear that effecti
coupling is only possible between two adjacent strip
Therefore, on the right-hand side of Eq.~5! we may only
keep three terms corresponding toj 21, j , j 11:

mj 21~j!5m̃~j!exp@ i ~2Dw!#,

mj~j!5m̃~j!,

mj 11~j!5m̃~j!exp~ iDw!,

in which case Eq.~4! reduces to

lm̃~j!5E
21/2

1/2

P~j,j82T!m̃~j8!exp~2 iDw!dj8

1E
21/2

1/2

P~j,j8!m̃~j8!dj8

1E
21/2

1/2

P~j,j81T!m̃~j8!exp~ iDw!dj8, ~6!

where the first term corresponds to the contribution of
stripe j 21 and the last one to that of the stripej 11.

Taking advantage of the symmetry of the problem one
arrive at the following relation describing the dispersion
the collective mode@see the Appendix, Eq.~A10!#:

2lE
2 l /2

1/2

m̃2~j!dj12E
0

1/2

m̃~j!djE
0

1/2

@P~j,j8!

6P~2j,j8!#m̃~j8!dj8

12E
0

1/2

cosDwm̃~j!djE
0

1/2

@C~j,j8!

6C~2j,j8!#m̃~j8!dj850. ~7!
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COLLECTIVE MAGNETOSTATIC MODES ON A ONE . . . PHYSICAL REVIEW B69, 064408 ~2004!
Here, the upper sign corresponds to the case of symm
modes and the lower one to the case of antisymme
modes. This equation relatesl, which is a function ofv, to
the phase shift between the adjacent stripesDw which de-
scribes the wave number of a collective mode. Now let
adopt an approximation according to which at long distan
between stripes (T@1) the functionm̃(j) that appears in Eq
~7! practically does not differ from one of the eigenfunctio
of Eq. ~1!, mn

0(j), with corresponding eigenvalueln
0 . In

other words, the dynamic-magnetization distributions acr
each individual stripe in the array are very close to that in
absolutely separated stripe; the last expression can be
siderably simplified:

dln5
2 cosDw

*2 l /2
l /2 @mn

0~j!#2dj
*0

1/2mn
0~j!dj*0

1/2@C~j,j8!

6C~2j,j8!#mn
0~j8!dj8, ~8!

wheredln gives us an addition to the eigenfrequenciesln
0 of

individual stripes, determined by Eq.~1!, due to coupling.
Obviously, the particular caseDw50, when all neighbor-

ing stripes are in phase, corresponds to the lower boun
of the first Brillouin zone, whereasDw5p, when the neigh-
boring stripes are in antiphase, to its upper boundary. Th
fore, the frequency width of the Brillouin zone, resultin
from the splitting of the resonant modes of an individu
stripe due to coupling, may be roughly estimated as

Dvn5vn~Dw5p!2vn~Dw50!5
vM

2 Dln

16pvn
0 S 11

ln
0

2p D ,

~9a!

wherevM54pgM0 and

~vn
0!25vH~vH1vM !2vM

2 F ln
0

4p
1S ln

0

4p D 2G ~9b!

is the eigenfrequency of resonance of an individual strip18

vH54pgH, H is the static field applied along the stripes,g
is the gyromagnetic ratio,M0 is the saturation magnetization
and

Dln5
4

*2 l /2
l /2 @mn

0~j!#2dj
*0

1/2mn
0~j!dj*0

1/2@C~j,j8!

6C~2j,j8!#mn
0~j8!dj8. ~9c!

III. DISCUSSION

To study the major properties of a system of coup
stripes we have chosen the caseN52 @Eq. ~2a!#—i.e., a
system of threeparallel stripes. From general consideratio
it is clear that the spectrum will represent a set of freque
triplets. If the distance between the stripes tends to infin
the stripes become entirely separated, which leads to a th
fold degeneracy within each triplet. This is no longer t
case for a finite interstripe spacing: the dipolar coupling
tween stripes removes the degeneracy. To quantify thes
fects, we have numerically solved Eq.~2a! for N52. Figure
06440
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2 shows the spectrum of coupled resonances—i.e., collec
mode—of a system of three iron stripes 50 nm thick, 1m m
wide, separated by 50 nm. The spectrum was calculated
merically from Eq.~2b!. Solid circles show the resonanc
frequencies. For comparison, a segment of a solid vert
line shows the frequency position of the first Brillouin zon
of the spectrum of the collective mode on an infinite array
such stripes~see Fig. 4!.

The distributions of the dynamic magnetization for t
lowest-frequency triplet are given in Fig. 3. As anticipate
the magnetization distributions of individual stripes, as w
as the ‘‘dipolar’’ pinning conditions,18 are markedly per-
turbed by the presence of the interstripe dipolar coupling.
a result, an appreciable frequency splittingDvspl is intro-
duced and the degeneracy is removed. Calculations s
that the same is also valid for the higher triplets of res
nances.

Obviously, the spatially quasihomogeneous dynamic
magnetizing field of the lowest resonance of an individu
stripe is spread farther outside the stripe itself compared w
higher resonances for which the field lines can be clo
within the stripe itself. Therefore, for a finite distance b
tween the stripes, the frequency of the lowest resonanc
initially uncoupled stripes is affected most of all. This mu
produce the maximum frequency splitting in the lowest f
quency triplet, which is clearly seen in Fig. 2.

Then, also numerically, by using Eq.~4! we calculated the
dispersionv(k) of the collective mode traveling across a
infinite array of parallel coupled stripes of the same geo
etry. Figure 4 demonstrates the dispersion curve in the
Brillouin zone. It is obvious that the group velocity of th
waveVg5]v(k)/]k depends on the zone width, which in i
turn depends on the strength of the coupling. The group
locity is a very important parameter, because it determi
the spatial damping of the wave and, therefore, the coup
distance in the real array where significant damping is
ways present. Another important parameter to be estimate
the frequency widthDvBr of the Brillouin zone: it deter-
mines the possibility of a direct observation of the coupli

FIG. 2. Spectrum of collective modes in the system consist
of three parallel iron stripes of thickness 50 nm, having the sa
width of 1 mm, separated by a distance of 50 nm from each oth
Saturation magnetization of the stripes is 21/~4p! kG; the static
magnetic field applied along the stripes is 1 kOe.
8-3
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KOSTYLEV, STASHKEVICH, AND SERGEEVA PHYSICAL REVIEW B69, 064408 ~2004!
effect by using the BLS technique. In physical terms,
bandwidth of the first Brillouin zone corresponds to the f
quency splitting in the first frequency triplet in Fig. 2. T
compare the two quantities, in Fig. 2 the value ofDvBr is
indicated with a segment of a solid vertical line. As is clea
seen, the two magnitudes differ only a little, being of t
order of 3–4 GHz. Consequently, the frequency separa
between two modes is about 1.5–2 GHz. The linewidth
the ferromagnetic resonance in iron is of the order of 1
Oe,22 while the typical resolution of the Brillouin spectrom
eter is of the order of 300 MHz, indicating that the expe
mental measurement of the frequency splitting is quite f
sible. As for recording the actual distribution of th
magnetization across the stripes, it can be accomplis
directly—for example, by means of Ker
microscopy15,16—or indirectly from the shape of a spectr

FIG. 3. Distribution of dynamic magnetization across a syst
of three parallel stripes for the three lowest resonant frequen
from Fig. 2. All the parameters of calculation are the same a
Fig. 2.
06440
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line of a Brillouin spectrometer in Fourier space.6,9

To better understand the behavior of the magnetost
modes within the first Brillouin zone, another series of c
culations has been carried out. The following considerati
make it possible to substantially simplify the computation
algorithm. As stated above, the lower boundary of the zo
corresponds to a collective resonance in which the transv
distributions of dynamic magnetization across individu
stripes are identical and in phase. This results in an equa
as follows:

l1Lm~j!5*21/2
1/2 m~j8! (

j 52`

j 5`

P~j,j81 jT !dj8, ~10a!

wherem(j) is the distribution of dynamic magnetization.
At the upper boundary of the zone, we also have a w

with identical distributions of magnetization on the stripe
However, the neighboring stripes are now in antiphase. T
gives

es
in

FIG. 4. Spectrum of the collective mode on an infinite array
iron stripes 50 nm thick and 1mm wide. The stripes are separate
by 50 nm. Saturation magnetization of the stripes is 21/~4p! kG; the
static magnetic field applied along them is 1 kOe. The curve w
calculated numerically from Eq.~4!.

FIG. 5. Distributions of dynamic magnetization across an in
vidual stripe in an infinite array. All the parameters of calculati
are the same as in Fig. 4.
8-4
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l1Um~j!5*21/2
1/2 m~j8! (

j 52`

j 5`

~21! j P~j,j81 jT !dj8.

~10b!

For numerical calculations we used the usual method of c
secutive approximations. Its efficiency for a kernel similar
that of Eqs.~10! was demonstrated recently.23

Given in Fig. 5 are the transverse distributions of the d
namic magnetization across individual stripes forming an
finite array. Thick solid and thick dotted lines demonstra
the rigorous solution and correspond to the lower and up
boundaries of the first Brillouin zone, respectively. Th
were calculated by numerically solving Eq.~4! both rigor-
ously and approximately, introducing the effective loc
wave number~11!. The thin dotted lines are the correspon
ing approximate solutions. Note that the approximate a
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rigorous solutions for the upper boundary practically co
cide with graphical accuracy.

For comparison, the corresponding magnetization dis
bution on an isolated stripe numerically calculated from E
~1! is also placed in the figure, shown by a thick dashed li
The shape of the transverse distribution for an isolated st
of the same width is shown by a dashed line. It is seen fr
the figure that the distributions of the dynamic magneti
tion, in particular the values at the stripe edge, differ app
ciably at the upper and lower boundaries of the Brillou
zone. This can lead to a noticeable change in the shape o
spectral line of a Brillouin spectrometer inK space.

To study this effect we have approximated the solution
Eqs. ~10! for the dynamic magnetization by a portion of
cosine functionm(j)5cos(xj), 0,x,p. Then the eigen-
value of Eqs.~10! can be approximately found as the min
mum of a function inx:
l1L(U)5minS *21/2
1/2 *21/2

1/2 djdj8cos~xj!cos~xj8! (
j 52`

j 5`

~61! j P~j,j81 jT !

*21/2
1/2 *21/2

1/2 djdj8cos~xj!cos~xj8!
,xD . ~11!
ined
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Here the upper sign corresponds to the lower zone boun
and vice versa.

It should be noted that if the cosine function is appro
mated by its Taylor series, an analytical solution of the mi
mization problem~11! can be found. However, even whe
only two first terms of the Taylor expansion are retained
obtained expressions turn out to be cumbersome, ma
their applicability dubious. Direct numerical minimization o
the functional in Eq.~11! is far more appropriate from th
practical point of view.

In Fig. 5 the approximate solutions of Eq.~11! for m(j)
are shown by dotted lines. It is seen from the figure t
m(j) for the upper Brillouin zone boundary is very we
approximated by a cosine function. The agreement with
rigorous solution for the lower boundary is worse, but w
believe it still to be good enough to justify using the effecti
wave numberx to characterize the effective pinning at th
stripe edges.

As the spacing between adjacent stripes is the crucial
rameter governing interstripe dipolar coupling, we used it
a variable in the functions describing the behavior of
collective mode at the boundaries of the first Brillouin zo
~see Fig. 6!. Thus we have estimated the frequencies of
upperv(l1U) and lowerv(l1L) boundaries of the Brillouin
zone @Fig. 6~a!# and their difference Dv5v(l1U)
2v(l1L) @Fig. 6~b!# as a function of the normalized inte
stripe distanceD/w. To find v(l1U) and v(l1L) from the
calculated values ofl1L andl1U we used Eq.~9b!.

It is seen from Fig. 6~b! that the bandwidthDv of the
Brillouin zone, for metals like iron with high saturation ma
netization@see Eq.~9a!#, can exceed 5 GHz. In other word
it can be easily measured by means of the B
technique.6–14
ry
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Note that the agreement between the eigenvalues obta
by directly numerically solving Eqs.~10! with those calcu-
lated from Eq.~11! is much better than that of the eigenfun
tions. In particular, for the case of Fig. 6, the discrepan
between the values ofDv calculated approximately makin
use of Eq.~11! and those rigorously calculated is less th
5%. Taking into account the variational stability of the fun
tion involved, this is not surprising.

Finally, in Fig. 6~c! the dependence of the effective wav
numbersx for the upper and lower zone boundaries is de
onstrated. The calculations were made by using the appr
mate expression~11!. In both Figs. 6~a! and 6~c! the dashed
line corresponds to the upper boundary of the Brillouin zo
and the dashed-dotted one to the lower boundary. All
parameters of calculation, except for the interstripe distan
are the same as in Fig. 4. The figure shows that the coup
increases the effective pinning at the upper zone bound
and diminishes it at the lower one. This result is qualitative
predictable. In the limitD/w→0, the situation reduces to th
case of the homogeneous precession in a nonstructured
netic layer. At the same time, the upper zone boundary
D/w→0 corresponds to a continuous magnetostatic w
with wave numberp/w.

IV. CONCLUSION

When considering the problem of the magnetostatic os
lations on an array of magnetic elements one should take
account the dipolar interstripe coupling which leads to
formation of collective magnetostatic modes. We have inv
tigated its role for the particular case of one-dimensio
array of ferromagnetic stripes. As in any periodic structu
8-5
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the collective modes in such array are characterized b
periodic dispersion curve comprised of Brillouin zones. N
merical simulations for the case of an array of iron stripes
nm thick, 1mm wide, and separated by 50 nm show that
frequency band, corresponding to the first Brillouin zon
amounts to 4.5 GHz. This makes it easily observable
means of a standard Brillouin spectrometer.

To quantify the investigated effects, the analytical tec

FIG. 6. ~a! Eigenfrequencies of the collective mode vs the d
tance between the neighboring stripes in an infinite array of par
stripes.~b! Difference of frequencies in~a!. ~c! Effective ‘‘local’’
wave number, describing the shape of the distribution of dyna
magnetization across an individual stripe of the array.
06440
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nique, developed earlier for an isolated stripe,18 has been
extended to the case of a one-dimensional array of ferrom
netic stripes. The profiles of magnetization on the stripes
the presence of strong coupling have been estimated num
cally.
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APPENDIX

Let us consider the sum of the first and the last term in
~6! denoting itW(j):

W~j!5E
21/2

1/2

@P~j,j82T!exp~2 iDw!1P~j,j81T!

3exp~ iDw!#m̃~j8!dj8

5cosDwE
T21/2

T11/2

C~j,j8!m̃~j8!dj8

2 i sinDwE
T21/2

T11/2

S~j,j8!m̃~j8!dj8, ~A1!

with

C~j,j8!5
1

p
ln

~j2j81T!4~j2j82T!4

@p21~j2j81T!2#2@p21~j2j82T!2#2 ,

S~j,j8!5
1

p
ln

~j2j81T!4@p21~j2j82T!2#2

~j2j82T!4@p21~j2j81T!2#2 .

~A1a!

The final expression will depend on the symmetry of t
mode of magnetizationm̃(j).

In the case of a symmetric mode

m̃~2j8!5m̃~j8!. ~A2!

Taking the symmetry of the mode and the symmetry of
auxiliary function into account simultaneously,

S~2j,2j8!52S~j,j8!, ~A3!

it is easy to show that

E
21/2

1/2

m̃~j!jE
21/2

1/2

S~j,j8!m̃~j8!dj850. ~A4!

Similar calculations based on the symmetry of the

C~2j,2j8!5C~j,j8! ~A5!

lead to

-
el

ic
8-6
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E
21/2

1/2

m̃~j!djE
21/2

1/2

C~j,j8!m̃~j8!dj85E
21/2

1/2

m̃~j!djE
0

1/2

@C~j,j8!1C~2j,j8!#m̃~j8!dj8

52E
0

1/2

m̃~j!djE
0

1/2

@C~2j,j8!1C~j,j8!#m̃~j8!dj8. ~A6!

In the case of an antisymmetric mode,

m̃~2j8!52m̃~j8!, ~A7!

and application of Eqs.~A3! and ~A7! describing the symmetry leads to the following expressions. As in the previous c

E
21/2

1/2

m̃~j!djE
21/2

1/2

S~j,j8!m̃~j8!dj850. ~A8!

For the second integral we obtain

E
21/2

1/2

m̃~j!djE
21/2

1/2

C~j,j8!m̃~j8!dj852E
0

1/2

m̃~j!djE
0

1/2

@C~j,j8!2C~2j,j8!#m̃~j8!dj8. ~A9!

Inserting Eqs.~A4!, ~A6!, ~A8!, and~A9! into Eq. ~1! we arrive at the following dispersion equation for collective modes

2lE
21/2

1/2

m̃2~j!dj12E
0

1/2

m̃~j!djE
0

1/2

@P~j,j8!6P~2j,j8!#m̃~j8!dj8

12E
0

1/2

cosDwm̃~j!djE
0

1/2

@C~j,j8!6C~2j,j8!#m̃~j8!dj850. ~A10!
Y.

.
s.

.

r-
e

.

p

ys

P.

r-

.

-

ter.
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.

n-
,

.
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