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Collective magnetostatic modes on a one-dimensional array of ferromagnetic stripes
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The peculiarities of collective magnetostatic modes on a one-dimensional array of ferromagnetic stripes have
been studied. It has been shown that the frequency splitting, induced via dipole magnetostatic coupling in the
oscillations of otherwise individual stripes, can achieve the values of the order of several GHz. This makes it
easily observable by means of a standard Brillouin light spectrometer. To quantify the investigated effects, an
analytical technique developed earlier for an isolated stripe has been extended to the case of a one-dimensional
array of ferromagnetic stripes. The magnetization profiles of the stripes in the presence of strong coupling have
been estimated numerically.
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[. INTRODUCTION transferred wave vector—one can retrieve information on the
distribution of magnetization on each element of the atray.
The physics of nanopatterned magnetic structures ha@therwise, it can be done directly, with more precision, by
driven extensive research in recent years with both static angieans of Kerr microscopy: '
dynamic behavior being investigated. The applied aspect of Until lately, the problem of magnetostatic modes on one-
these studies should not be underestimated either. A rapi@imensional ferromagnetic objects had no solution except
increase of processor speeds in modern computers has led@8e Which is purelynumerical® It was generally accepted
the necessity of writing gigabits of information in a fraction that the magnetic field at the edges of the film, to the first
of a second. This means that the magnetic system is excitetPproximation, tends to zefd.In other words, the spins at
at gigahertz rates and the inevitable generation of spin wave8e edges of the film are totally “pinned.” In a recent paifer
will strongly influence the response of magnetic recordingthe authors proposed amalytical formalism. It expresses
media. In this respect, it is necessary to prevent the mutuéhe modal distribution of the magnetic field across the width
influence of adjacent magnetic elements through inevitabl@f @ magnetic stripe, in a nonexchange approximation, as an
coupling via the dynamic dipolar magnetic fields of indi- €igenfunction of an integral equation. Thus the demagnetiz-
vidual elements. The key parameter governing such couplinid fields at the edges of the stripe are taken into account and
is the spatial separation of the elements. To minimize th&ffective pinning conditions introduced. We have extended
overall size of the structure, this separation must be kept a&lis approach to the case of a periodic array of ferromagnetic
small as possible. On the other hand, if the elements ar8tripes and have obtained the dispersion characteristics of the
brought too close together, spuriotsilectivemagnetostatic ~ collective modes existing on such structures.
modes will be excited through the thus-increased coupling.
In the case of nanodots, where the fundamental magnetic Il. THEORY
state corresponds to a vortex configuration, this leads to a ] o ) ] )
considerable mutual influence between the dots during the ANY coupling between individual stripes in an array is due
magnetization reversalas well as magnetostatic coupling to the long-range dipole-dipole interactions. Such coupl_ln.g is
between the dynamic modes of individual vortideSimi- ~ MOSt pronounced for the lowest width modes of a finite-
larly, in the case of nanowires of cylindrical cross section,Width stripe which is, in most cases, of a dipole nature. That
both in theor§ and in experiment,collective modes due to IS Why in order to calculate the dipolar coupling between the
the interplay between individual wires have been reported. individual stripes we will extend the approach developed in
To study the basic properties of collective modes on peR€f- 18, which is based on one-dimensional Green’s func-
riodic nanostructures we restricted our analysis to an idedions P(¢,¢'). According to this approach, the dynamical
model object: a one-dimensional array of ferromagnetidh@gnetizatiorm(¢) in a magnetostatic mode can be deter-
stripes. Thus, simple and efficient numerical procedures caftined as an eigenfunction of the integral equation
be developed backed by analytical expressions providing "
more physical |nS|ght. _ o AM(&)= de'P(&,£)m(EN), 1)
The magnetostatic coupling between the individual reso- —1/2
nances in a collective mode produces two effects: a redistri-
bution of the dynamic magnetization on each element and with
((:é)lr_rse)si)e(:;c::ing frequency shift. The Brllloum I_|ght scattering 1 (=)
gue has proved to be a very efficient method for P(£,¢)=~In
directly measuring the dispersion characteristics of magnons ' p [P+ (£-¢&)°]%
on periodic structure%:* Moreover, by recording the shape
of a spectral line in Fourier space—i.e., in tKespace of E=x/w, p=L/w.
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wherem(¢) is a periodic function with the period,—i.e.,

m(&+T)=m(&). The wave numbek for the first Brillouin
1 2 zone may vary within the range<Ok<</2. It should be
noted that by considering E¢Rb) in Fourier space it is easy
to demonstrate that solutigi@) really stands.
Inserting Eq.(3) into Eq. (2b) results in
| | x

j’=oc

112
Ay (6= > f P& +()' =T
FIG. 1. Geometry of the structure. Stripe thicknesd jsits jl=—e 12
width isw, and distance between neighboring striped.is X exp{ik[ &' — &+ (' —] S et /
J'=DTIIm(EN)dE. (4

HereP(&,¢") is the Green's function calculated in the mag- In the limit 27/k<w—i.e., when the spatial period of the
netostatic approximation andl is the eigenvalue, corre- collective mode is much greater than that of the wire
sponding to the eigenfunctiom(£). This expression has array—we may assume

been obtained through averaging the general expression re-

lating the magnetization to the dipolar magnetic field in- explik[ &' — &+ (' — )T =~exdik(j' —j)T]
duced by it over the thickness of the filine., overz). It will o
be shown below that the resultant purely dipolar modes are =exdi(j'—j)A¢], (5

characterlzed by a quasmosmusmda_ll dlstr|but|on_ of the .dyi/vhereAcp represents the relative phase of the oscillations of
namic magnetization across the width of a stripe, which

o . two adjacent stripes. Furthermore, if the period of the struc-
mak_es a generalization of the dipole-exchange case rath?urre is much greater than the width of the stripes—that is
straightforward. '

, o . T>1—from general considerations it is clear that effective
This generalization is uncomplicated for the case of a

magnetic field inside a stripe with humbgrcreated by a coupling is only possible between two adjacent stripes.

> ) , S d Therefore, on the right-hand side of E¢) we may only
series ofN parallel stripegFig. 1) arranged with dimension- o A
less periodl = (1+ A/w): keep three terms correspondingjte 1, j, j+1:

N m;_1(&)=m(&)exdi(—Ae)],
Am(6)= 2 LPEEFG=DD

i'=0 -
Xmp[€'+(j =) T]d¢’, (2a)

m;11(&)=M(&)expiAg),
where¢ and ¢’ are local coordinates within each individual _
stripe (— 1/2< ¢,¢'<1/2) andA is the distance between the in Which case Eq(4) reduces to
neighboring stripes. In the case of an infinite series of stripes

m;(§)=m(¢§),

a more symmetrical presentation is preferable: = 2 / P ; /
. )\m(g)—Jillzp(g,f —T)m(¢ ) exp(—iAp)dé
e
. — P , ’ i"—0NT 1/2 ~
SICE |7 peei-im [ preemenae
xmy L€+ (j'—])T]d¢". (2b) "
The system of coupled singular integral equatit2iy is too + Jfllzp(f’f’ +T)m(E")expide)dé’,  (6)

complex for an analytical solution to be found. In its general
form it can only be analyzed numerically. To handle the comwhere the first term corresponds to the contribution of the
putational problems arising from the nonanalytical behaviorstripe j— 1 and the last one to that of the stripe 1.
of the kernel in the vicinity of the poinf=¢’ we used the Taking advantage of the symmetry of the problem one can
method proposed in Refs. 19 and 20. Here for the subtractioarrive at the following relation describing the dispersion of
of the singularity we took advantage of the fact that the in-the collective mod¢see the Appendix, EGA10)]:
tegral of the Green’s function may be evaluated analytically
over the range—1/2<{<1/2. To streamline the computa- w2, 12 172
tional procedure we made use of the Nystrom method and —)\f m (f)d§+2f m(&dg | [P(&¢)

. 2 0
the Gaussian quadratuf®.

0

However, in some particular cases analytical solutions do +P(—&,&E)]M(&E)dE’
exist. Let us consider one of them. As is well knof¥rthe " "
solution of a linear equation with periodic coefficients has +2j cosAef(§)de | [C(&, &)
the form 0 0
m;(§)=m(&)exdik(+jT)], () +C(=&.&)]m(¢")d¢"=0. (7
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Here, the upper sign corresponds to the case of symmetric 36

modes and the lower one to the case of antisymmetric

modes. This equation relatas which is a function ofw, to _ 95 ST LA ARE
the phase shift between the adjacent stripgswhich de- r - P *1
scribes the wave number of a collective mode. Now let us S oe®

adopt an approximation according to which at long distances § 24 e

between stripesT>1) the functionm(¢) that appears in Eq. 9 .

(7) practically does not differ from one of the eigenfunctions 8 2011 e

of Eq. (1), m(&), with corresponding eigenvalug?. In L {'

other words, the dynamic-magnetization distributions across Lk

each individual stripe in the array are very close to that in an 12

absolutely separated stripe; the last expression can be con- 0 5 70 15 20 o5

siderably simplified:
y P Resonance number

Sho= 2cos\g 1’2m°(§)d§f1/2[0(§ &) FIG. 2. Spectrum of collective modes in the system consisting
; 1 . . . .
Nl Iml(£)12deT0 N 0 of three parallel iron stripes of thickness 50 nm, having the same

0 width of 1 um, separated by a distance of 50 nm from each other.
=C(—&,&)Imy(€)d¢e’, (8)  saturation magnetization of the stripes is (34) kG; the static

. . . . magnetic field applied along the stripes is 1 kOe.
whered\ , gives us an addition to the elgenfrequenmésaf g PP g P

individual stripes, determined by E@l), due to coupling.

Obviously, the particular caske =0, when all neighbor-
ing stripes are in phase, corresponds to the lower bounda
of the first Brillouin zone, wherea& ¢ = 7, when the neigh-
boring stripes are in antiphase, to its upper boundary. Ther
fore, the frequency width of the Brillouin zone, resulting
from the splitting of the resonant modes of an individual
stripe due to coupling, may be roughly estimated as

2 shows the spectrum of coupled resonances—i.e., collective
Imode—of a system of three iron stripes 50 nm thicly in
\Xide, separated by 50 nm. The spectrum was calculated nu-
merically from Eg.(2b). Solid circles show the resonance
Effequencies. For comparison, a segment of a solid vertical
line shows the frequency position of the first Brillouin zone
of the spectrum of the collective mode on an infinite array of
such stripegsee Fig. 4.

W2 AN A0 The distributions of the dynamic magnetization for the
Aw,= o (Ae=1)—w,(Ap=0)= M—g( Ly lowest-frequency triplet are given in Fig. 3. As anticipated,
167w, 2m the magnetization distributions of individual stripes, as well

0
Moy

(0p)?= wn(wy+oy) — oy 7

(98 as the “dipolar” pinning conditiond® are markedly per-
wherewy=47yM, and turbed by the presence of the interstripe dipolar coupling. As
a result, an appreciable frequency splittidgyp, is intro-
)\g 2 duced and the degeneracy is removed. Calculations show
E) (9b)  that the same is also valid for the higher triplets of reso-
nances.
is the eigenfrequency of resonance of an individual stfipe, ~ Obviously, the spatially quasihomogeneous dynamic de-
wy=4myH, H is the static field applied along the stripgs, magnetizing field of the lowest resonance of an individual
is the gyromagnetic ratidvl , is the saturation magnetization, stripe is spread farther outside the stripe itself compared with
and higher resonances for which the field lines can be closed
within the stripe itself. Therefore, for a finite distance be-

4 2.0 1 , tween the stripes, the frequency of the lowest resonance of
A}\n:_ﬂ—f 3 [mo(g)]zdgfo m(&)dEf§C(&,¢") initially uncoupled stripes is affected most of all. This must
B produce the maximum frequency splitting in the lowest fre-
iC(—f,g’)]mﬂ(g’)dg’. (90 quency triplet, which is clearly seen in Fig. 2.

Then, also numerically, by using E@) we calculated the
dispersionw(k) of the collective mode traveling across an
infinite array of parallel coupled stripes of the same geom-

To study the major properties of a system of coupledetry. Figure 4 demonstrates the dispersion curve in the first
stripes we have chosen the cade=2 [Eq. (2a]—i.e., a  Brillouin zone. It is obvious that the group velocity of the
system of thregarallel stripes. From general considerations,waveV,= dw(k)/Jk depends on the zone width, which in its
it is clear that the spectrum will represent a set of frequencyurn depends on the strength of the coupling. The group ve-
triplets. If the distance between the stripes tends to infinityJocity is a very important parameter, because it determines
the stripes become entirely separated, which leads to a threthe spatial damping of the wave and, therefore, the coupling
fold degeneracy within each triplet. This is no longer thedistance in the real array where significant damping is al-
case for a finite interstripe spacing: the dipolar coupling beways present. Another important parameter to be estimated is
tween stripes removes the degeneracy. To quantify these dfe frequency widthPA wg, of the Brillouin zone: it deter-
fects, we have numerically solved EQa) for N=2. Figure  mines the possibility of a direct observation of the coupling

Ill. DISCUSSION
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-1 ] | 15 r r r
1 1 0 1 0 1 2 3
. Dimensionsless wavenumber kT
(2]
= (b) FIG. 4. Spectrum of the collective mode on an infinite array of
; iron stripes 50 nm thick and &m wide. The stripes are separated
= by 50 nm. Saturation magnetization of the stripes i$£2t/kG; the
;J’ 0+ ‘ static magnetic field applied along them is 1 kOe. The curve was
] calculated numerically from Ed4).
=
2 line of a Brillouin spectrometer in Fourier spate.
To better understand the behavior of the magnetostatic
-1 ; ; - modes within the first Brillouin zone, another series of cal-
1 =. L L culations has been carried out. The following considerations
©) make it possible to substantially simplify the computational
@ algorithm. As stated above, the lower boundary of the zone
= corresponds to a collective resonance in which the transverse
g distributions of dynamic magnetization across individual
g ol stripes are identical and in phase. This results in an equation
3 as follows:
2
= .
&
/ .
Num(é) =Y m(g) X P(£¢+T)dé", (108
-1 [

-1 0 1

Dimensionsless distance (x/w)

Fig. 2.

effect by using the BLS technique. In physical terms, the
bandwidth of the first Brillouin zone corresponds to the fre-
qguency splitting in the first frequency triplet in Fig. 2. To
compare the two quantities, in Fig. 2 the valueXobg, is
indicated with a segment of a solid vertical line. As is clearly
seen, the two magnitudes differ only a little, being of the
order of 3—4 GHz. Consequently, the frequency separation
between two modes is about 1.5-2 GHz. The linewidth of
the ferromagnetic resonance in iron is of the order of 100
Oe?? while the typical resolution of the Brillouin spectrom-
eter is of the order of 300 MHz, indicating that the experi-
mental measurement of the frequency splitting is quite fea-
sible. As for recording the actual distribution of the

wherem(¢) is the distribution of dynamic magnetization.

At the upper boundary of the zone, we also have a wave
FIG. 3. Distribution of dynamic magnetization across a systemWith identical distributions of magnetization on the stripes.

of three parallel stripes for the three lowest resonant frequencieslowever, the neighboring stripes are now in antiphase. This

from Fig. 2. All the parameters of calculation are the same as irgives

Amplitude (arb. units)

1.0

o
o

0.0

-0.5

0.0 0.5

Dimensionsless coordinate x/w

magnetization across the stripes, it can be accomplished FIG. 5. Distributions of dynamic magnetization across an indi-
directly—for example, by means of Kerr vidual stripe in an infinite array. All the parameters of calculation
microscopy>!%—or indirectly from the shape of a spectral are the same as in Fig. 4.
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j== _ rigorous solutions for the upper boundary practically coin-
Num(é)= i’i,zm(g’)_ > (—1)IP(&&+|T)de". cide with graphical accuracy.
J=== For comparison, the corresponding magnetization distri-
(10b  pution on an isolated stripe numerically calculated from Eq.
) . (1) is also placed in the figure, shown by a thick dashed line.
For numerical calculations we used the usual method of contpe shape of the transverse distribution for an isolated stripe

secutive approximations. Its efficiency for a kernel similar togf the same width is shown by a dashed line. It is seen from
that of Egs.(10) was demonstrated recentfy. the figure that the distributions of the dynamic magnetiza-

Given in Fig. 5 are the transverse distributions of the dy-ion, in particular the values at the stripe edge, differ appre-
namic magnetization across individual stripes forming an inciably at the upper and lower boundaries of the Brillouin
finite array. Thick solid and thick dotted lines demonstratezone. This can lead to a noticeable change in the shape of the
the rigorous solution and correspond to the lower and uppespectral line of a Brillouin spectrometer K space.
boundaries of the first Brillouin zone, respectively. They To study this effect we have approximated the solution of
were calculated by numerically solving E@}) both rigor-  Egs. (10) for the dynamic magnetization by a portion of a
ously and approximately, introducing the effective localcosine functionm(&)=cosé), 0<x<w. Then the eigen-
wave numbeK1l). The thin dotted lines are the correspond-value of Eqs.(10) can be approximately found as the mini-
ing approximate solutions. Note that the approximate ananum of a function iny:

j=oc

Yl Videdg cosxg)codxe) X (FLIP(EL HIT)

A =min '
1w V2 T AEdE cos xE)Cos x€') *

(11)

Here the upper sign corresponds to the lower zone boundary Note that the agreement between the eigenvalues obtained
and vice versa. by directly numerically solving Eq910) with those calcu-

It should be noted that if the cosine function is approxi-lated from Eq(11) is much better than that of the eigenfunc-
mated by its Taylor series, an analytical solution of the mini-tions. In particular, for the case of Fig. 6, the discrepancy
mization problem(11) can be found. However, even when petween the values dfw calculated approximately making
only two first terms of the Taylor expansion are retained theyse of Eq.(11) and those rigorously calculated is less than
obtained expressions turn out to be cumbersome, makingo, Taking into account the variational stability of the func-
their appl_|cab|I|_ty dublous_. Direct numerical minimization of tion involved, this is not surprising.
the functional in Eq(11) is far more appropriate from the — Einajly in Fig. 6c) the dependence of the effective wave
pra}cng_al pé"tnht of VIEW.. ‘ luti f EAD f numbersy for the upper and lower zone boundaries is dem-

n -ig. € approximate soiutions o ay or_m(g) onstrated. The calculations were made by using the approxi-
are shown by dotted I.|nes.. It is seen from the figure tha ate expressiofiL1). In both Figs. 6) and 8¢ the dashed
m(¢) fc_Jr the upper Bn_lloum zone boundary is very _vveII line corresponds to the upper boundary of the Brillouin zone
a_ppr0X|mated_by a cosine function. The agreement with th%md the dashed-dotted one to the lower boundary. All the
rigorous S°.|Ut'0n for the lower bogndgry IS worse, but .Weparameters of calculation, except for the interstripe distance,
believe it still to be good enqugh to justify using thg effective are the same as in Fig. 4. The figure shows that the coupling
V\f["’l.ve mcjimberx to characterize the effective pinning at the increases the effective pinning at the upper zone boundary
S ”Apeteh ges. bet di t stri is th ial and diminishes it at the lower one. This result is qualitatively

s the spacing between adjacent stripes 1S the CrUcla’ Pagq jictaple. In the limin/w— 0, the situation reduces to the

e o o L35 O 1 omogeneous precesson nonsructred
. . g the i netic layer. At the same time, the upper zone boundary for
collective mode at the boundaries of the first Brillouin zone

(see Fig. 6. Thus we have estimated the frequencies of theAlW_}0 corresponds to a continuous magnetostatic wave

upperw(Xy) and lowero(\ 1) boundaries of the Brillouin with wave numberr/w.
zone [Fig. 6(@] and their difference Aw=w(\qy)

—w(\q1.) [Fig. 6b)] as a function of the normalized inter- IV. CONCLUSION
stripe distance\/w. To find w(\1y) and (1) from the
calculated values of;, and\ iy, we used Eq(9b). When considering the problem of the magnetostatic oscil-

It is seen from Fig. @) that the bandwidthAw of the lations on an array of magnetic elements one should take into
Brillouin zone, for metals like iron with high saturation mag- account the dipolar interstripe coupling which leads to the
netization[see Eq(9a)], can exceed 5 GHz. In other words, formation of collective magnetostatic modes. We have inves-
it can be easily measured by means of the BLStigated its role for the particular case of one-dimensional
techniqué® 4 array of ferromagnetic stripes. As in any periodic structure,
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21 nique, developed earlier for an isolated stripehas been
20 - (a) extended to the case of a one-dimensional array of ferromag-
\ netic stripes. The profiles of magnetization on the stripes in
19 4 —_—— the presence of strong coupling have been estimated numeri-
N T —/— cally.
o 181 L—
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g - (b) APPENDIX
> 54 Let us consider the sum of the first and the last term in Eq.
e (6) denoting itW(&):
[
= 4
e 112 .
D 31 W(§)=fﬁllZ[P(&?—T)eXp(—lAcp)JrP(§,§’+T)
g 2- o
g xXexpiAg)Jm(¢)dg’
i T+1/2 B
0 T T T =cosA<pf C(& &m(&E)dé
s 0 1 2 3 -1/2
5 (C) T+1/2
g ° A\ —i sinAqof L, SEEHMENde’, (A1)
E \\_——__—_——-—a ith
§ / - — wit
. — &+ bQrg g1 4
'g c(g,g’)=3|n 2 (e ,§ 1;)2(52 ‘ T), 77,
3 5 PP H(E=& +T) TP +(§-¢'—T)7]
©
3 L (E-E TP (E-E -T)P
o S(é,é ) =—In—FF—=z> —7 772
a p (=& -T) [p +({-¢& +T)7]
X (Ala)
E The final expression will depend on the symmetry of the
a8 ! T T T mode of magnetizatiom(¢).
0 1 2 8 In the case of a symmetric mode
Inter-stripe distance A/w (= &) =(¢") A2)

FIG. 6. (a) Eigenfrequencies of the collective mode vs the dis- .
tance between the neighboring stripes in an infinite array of paralle] 2King the symmetry of the mode and the symmetry of the

stripes. (b) Difference of frequencies ifa). (c) Effective “local”  auxiliary function into account simultaneously,
wave number, describing the shape of the distribution of dynamic L ,
magnetization across an individual stripe of the array. S(—&,—-&)=—-S(¢,¢), (A3)

it is easy to show that

the collective modes in such array are characterized by a 12 12
periodic dispersion curve comprised of Brillouin zones. Nu- f rn(g)gf S(&,&Mm(¢)dE =0. (A4)
merical simulations for the case of an array of iron stripes 50 -1z -1z
nm thick, 1um wide, and separated by 50 nm show that theS
frequency band, corresponding to the first Brillouin zone,
amounts to 4.5 GHz. This makes it easily observable by C(—&—¢')=C(&,E) (A5)
means of a standard Brillouin spectrometer.

To quantify the investigated effects, the analytical tech-ead to

imilar calculations based on the symmetry of the

064408-6



COLLECTIVE MAGNETOSTATIC MODES ONAONE.. .. PHYSICAL REVIEW B69, 064408 (2004

1/2

1/2 1/2 1/2
f m(¢)dé C(§.§’)r~n(§’)d§'=f m(&)dE [ [C(£,¢")+C(—&.&)Im(g")de’
1/2 -1/2 0

-1/2

1/2 1/2
=2f0 m(£)d¢ . [C(=&,&")+C(&E)]M(E)dE". (A6)
In the case of an antisymmetric mode,
m(—¢")=-m(¢"), (A7)
and application of EQ9A3) and (A7) describing the symmetry leads to the following expressions. As in the previous case,
1/2 1/2
f m(§dé | S(§,¢")m(E)dE" =0. (A8)
-1/2 —-1/2
For the second integral we obtain
1/2 1/2 1/2 1/2
J m(&)dé C(§.§’)m(§’)d§’=2J fﬁ(%)d§f [C(&,&")—C(—¢,&)]m(&)déE". (A9)
-1/2 -1/2 0 0

Inserting Eqs(A4), (A6), (A8), and(A9) into Eg. (1) we arrive at the following dispersion equation for collective modes:
1/2 1/2 1/2
—kf_mﬁﬁZ(é)déHJO M(E)AE | [P(£:E)=P(=£E)IM(E)dE

1/2 1/2
+2f0 COSA@'r“n(f)d%jo [C(£,&")=C(—¢&,¢")]Im(¢)dg"=0. (A10)
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