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Pyrochlore photons: TheU„1… spin liquid in a SÄ 1
2 three-dimensional frustrated magnet
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We study theS51/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis
exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model
has aU(1) gauge symmetry generated by certain local rotations about thez axis in spin space. Upon addition
of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-
sharing octahedra, we can write down the exact ground-state wave function with no further approximations.
Using the properties of the soluble point we show that these models enter theU(1) spin liquid phase, a
fractionalized spin liquid with an emergentU(1) gauge structure. This phase supports gappedSz51/2 spinons
carrying theU(1) ‘‘electric’’ gauge charge, a gapped topological point defect or ‘‘magnetic’’ monopole, and a
gapless ‘‘photon,’’ which in spin language is a gapless, linearly dispersingSz50 collective mode. There are
power-law spin correlations with a nontrivial angular dependence, as well asU(1) topological order. This state
is stable toall zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a
convenient lattice version of electric-magnetic duality, we develop the effective description of theU(1) spin
liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the
universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wave
function. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and
for making contact with experiments.
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I. INTRODUCTION

The search for quantum spin liquid states in frustra
magnets can be traced back at least as far as the early
gestion of a resonating valence bond state in the triang
lattice Heisenberg model.1 Almost 15 years later, the sugge
tion of such a state in the undoped high-Tc cuprates2 set off
an explosion of interest in two-dimensional spin liquids~i.e.,
Mott insulators at half filling withno broken symmetries!.
Frustrated Heisenberg models on the square, triangular,
kagomélattices have all received significant attention as c
didate systems for quantum disordered ground states. W
there has been comparatively little theoretical work on qu
tum spin liquids in three-dimensional frustrated magne
materials with magnetic ions on the pyrochlore lattice~Fig.
2! may be good candidates for spin liquids and other ex
states. To give one example, recent neutron-scattering ex
ments on ZnCr2O4, a S53/2 pyrochlore Heisenberg antife
romagnet, suggest a nontrivial disordered state3 above a tran-
sition to Néel order accompanied by a lattice distortion4 at
12.5 K.

Meanwhile, much work has been devoted to understa
ing the properties of possible spin liquid states, independ
of their existence in particular microscopic models. Most
the proposed spin liquid states support deconfinedS51/2
spinons; such states are fractionalized, in that some of
elementary excitations carry quantum numbers that are f
tions of those allowed in a finite-size system. Fractionaliz
states can be precisely characterized by theirtopological
order,5 which in the simplest scenario is associated with
topological sectors of an emergent, deconfiningZ2 gauge
field.6 The ‘‘vison,’’ a gapped vortexlike excitation that ca
ries theZ2 flux,7 must also be present. While topologic
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order does not require a liquid ground state and can coe
with conventional long-range order, we believe it is probab
common in spin liquids and hence in some of the nea
ordered states. Very recently, many of these ideas have
put on firmer ground by the emergence of several mic
scopic models supporting stable fractionalized phases in
and three dimensions.8–14

Despite these recent theoretical successes, an unam
ous experimental realization of these ideas is still lacki
Indeed, spin liquid states seem rather rare; is topological
der rare as well? ForZ2-fractionalized states this question
difficult to answer, because the gapped visons have no e
on easily measurable low-energy properties. Clever prop
als have been made15 and carried out16,17 to directly detect
topological order in the cuprates~with negative results thus
far!, but these experiments are difficult and rely on propert
of the phases proximate to a topologically ordered state.Z2
topological order is difficult enough to observe that it is im
possible to say at present how rare or common it is.

Fortunately it may be possible to shed some light on
experimental situation. In this paper, we present two mod
of three-dimensional S51/2 frustrated magnets, one on th
pyrochlore lattice, the other on a related network of corn
sharing octahedra~the links of the cubic lattice, as shown i
Fig. 5!. Both these models exhibit a fractionalized phase,
U(1) spin liquid. This state has an emergentU(1) gauge
structure that gives rise to several remarkable propert
there is agapless‘‘artificial photon’’ excitation, a gapped
spinon carrying ‘‘electric’’ gauge charge, a gapped ‘‘ma
netic’’ monopole, an emergent 1/r ‘‘Coulomb’’ potential be-
tween pairs of spinons and monopoles, andU(1) topological
order. If this phase exists in a real material, the gapless p
ton should have important implications for low-energy the
©2004 The American Physical Society04-1
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modynamics, transport, and spectroscopy; thereforeU(1)
fractionalization may be easier to find in experiments. Su
states, thus far realized in large-N spin models18 and bosonic
Hubbard-type models,10–12 arise as the deconfined or Co
lomb phase of compactU(1) lattice gauge theory. While
most work on spin liquids has focused ond<2, motivated
by the cuprates and the conventional wisdom that quan
fluctuations are more effective at destroying long-range or
in low dimensions, theU(1) spin liquid only occurs ind
>3; for d<2 the Coulomb phase of compactU(1) gauge
theory~with gapped matter! is always unstable due to instan
ton effects.19

Both models are of intrinsic interest as examples of tr
table but nontrivial frustrated magnets. The pyrochlo
model is particularly appealing due to its simplicity: its de
vation begins with the nearest-neighborS51/2 Heisenberg
antiferromagnet. Taking the limit of large easy-axis exchan
anisotropyJz@J' simplifies the problem by breaking th
spectrum into extensively degenerate manifolds with la
separations ofO(Jz). It is then possible to write an effectiv
Hamiltonian describing the splitting of the low-energy ma
fold, using standard techniques of degenerate perturba
theory inJ' . This effective Hamiltonianhasa U(1) gauge
structure, which forms the foundation for our subsequ
analysis.20 Another point of view, equivalent at the level o
perturbation theory but perhaps with broader implications
more general scenarios, is that the low-energy sector of
model isunitarily equivalentto a U(1) gauge theory. It is
not obvious how to treat the resulting model analytically, b
upon addition of an extra six-site interaction term it can
tuned to a soluble point where it is possible to write an ex
ground-state wave function with no further approximatio
The models can be reinterpreted as quantum dimer mo
~QDM’s!, and the extra term as the analog of the Rokhs
Kivelson ~RK! potential in the square lattice QDM.21 As will
be explained in detail below, the properties of the solu
point allow us to locate theU(1) spin liquid adjacent to it.
Since this state is stable toall zero-temperature perturba
tions, it persists over a finite extent of the phase diagr
~Fig. 1!. Furthermore, stability to large but finiteJz implies
that theU(1) gauge structure persists in the absence of
croscopic local symmetries and is truly emergent. On
purely theoretical side, we believe these models give the
examples ofU(1) gauge theories that have a deconfini
phase even in the limit of infinitely strong bare coupling. T
first suchZ2 gauge theory was discovered only recently
Moessner and Sondhi.8

The effective theory of theU(1) spin liquid and the
soluble RK point is simply Gaussian quantum electrodyna
ics ~QED!. At the RK point, which is itself a special decon
fined limit of the generic phase, the ‘‘electric stiffness,’’
coefficient of E2 in the Hamiltonian, vanishes. This is
higher-dimensional generalization of the effective picture
the square lattice QDM in terms of a coarse-grained he
field.22

The U(1) spin liquid has power-law correlations wit
nontrivial angular dependence,U(1) topological order, and
supports gappedSz51/2 spinons, a gapped topological poi
defect~the ‘‘magnetic’’ monopole!, and a gaplessSz50 col-
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lective mode corresponding to the photon of the gau
theory. The latter excitation makes an additiveT3 contribu-
tion to the low-temperature specific heat and should aff
various other low-energy properties ofU(1)-fractionalized
phases@either theU(1) spin liquid, or phases with coexistin
conventional and topological order#. If such a phase exists in
a real material, we speculate that it may be possible to pr
‘‘photons’’ with photons via Raman scattering.

A. Outline

We begin Sec. II with a derivation of the pyrochlor
model starting from the Heisenberg antiferromagnet. In S
II B the cubic ~or corner-sharing octahedra! model is dis-
cussed. The remainder of Sec. II is concerned with dem
strating the equivalence of the spin models to frustrated c
pact U(1) gauge theories and developing a useful latt
version of electric-magnetic duality.

Beginning from the dual description, Sec. III develops t
effective description of theU(1) spin liquid and the soluble
point in terms of Gaussian quantum electrodynamics. C
rections to effective action and to the scaling equalities
tween microscopic and effective degrees of freedom are
cussed in Sec. III C. Section IV contains a discussion of
universal properties of theU(1) spin liquid, including its
U(1) topological order. In Sec. V we present our analysis
the soluble point ground-state wave function, which giv
strong support for the validity of our effective picture. W
conclude in Sec. VI with a discussion of open issues, foc
ing on the challenging problems of understanding this ph
ics in a broader range of models and looking f
U(1)-fractionalized phases in real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore model

We begin with the nearest-neighborS51/2 Heisenberg
antiferromagnet on the pyrochlore lattice. This structure i
three-dimensional network of corner-sharing tetrahedra~Fig.

FIG. 1. Phase diagram for both models. The parameterV/Jring

is the relative strength of the Rokhsar-Kivelson potential and
XY ring exchange that obtains in the easy-axis limit of the Heis
berg model. The soluble point is located atV/Jring51, which is a
special deconfined point of the adjacentU(1) spin liquid. Just to
the right of the soluble point the models go into an Ising orde
state. Sufficiently far to the left we expect Ising order, while
intermediate values ofV/Jring states with broken translation sym
metry but no magnetic order are also possible. Immediately to
left of the soluble point, theU(1) spin liquid exists over a finite
~but unknown! extent of the phase diagram.
4-2
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2!. It can be obtained by translating one ‘‘up-pointing’’ te
rahedron~shown on the right of Fig. 2! through the fcc Bra-
vais lattice vectorsR5n0a01n1a11n2a2. We choosea0

5x, a15x/21A3y/2, and a25x/21y/2A31A2/3z. Basis
vectors for the reciprocal lattice are defined bybi

5A2pe i jkaj3ak , so thatai•bj52pd i j . The four sites in
each unit cell are distinguished by an indexi 50, . . . ,3, as
indicated in Fig. 2. Lattice sites are denoted either by sin
italic letters such asi or by pairs (R,i ) when we wish to
specify the position of a site within the unit cell.

Up to a constant the Hamiltonian can be written as a s
over tetrahedra:

H5
J

2 (
t

~St!
2, ~1!

whereSt5( i PtSi is the total spin on the tetrahedront. Fol-
lowing the analysis of a generalized kagome´ Heisenberg an-
tiferromagnet in Ref. 9, we introduce easy-axis exchange
isotropy:

H5HI1H8, ~2!

HI5
Jz

2 (
t

~St
z!2, ~3!

H85
J'

2 (̂
i j &

~Si
1Sj

21H.c.!, ~4!

whereJz@J' . This reduces the globalSU(2) invariance to
U(1)3Z2. We first consider the pointJ'50, whereH re-
duces to a classical Ising model, with ground states spec
by St

z50 on all tetrahedra. It was argued by Anderson23 that,
almost identically to Pauling’s model for water ice,24 this
Ising model has an extensive ground-state degeneracy~i.e.,
finite T50 entropy per site!.

A small J'.0 introduces quantum fluctuations and lif
the extensive degeneracy; this splitting is encapsulated i
effective Hamiltonian using standard techniques of pertur

FIG. 2. The pyrochlore lattice~left! and one up-pointing tetra
hedron~right!. One sublattice of tetrahedra is shaded and the o
transparent. The thickened bonds show the location of a pyroch
hexagon. Each such hexagon is a member of one of four orie
tions of kagome´ lattice planes. The numbering of sites in the u
pointing tetrahedron on the right is the convention used in the t
For i 50,1,2, the fcc Bravais lattice vectorai points in the direction
given by looking from site 3 to sitei.
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tion theory. The first-order contribution is easily seen to va
ish. We will need to go to third order, where we have t
general expression

He f f5~12P!F2H8
P
HI

H81H8
P
HI

H8
P
HI

H8G~12P!.

~5!

Here P projects onto the orthogonal complement of t
ground-state manifold. To describe the processes contri
ing in Eq. ~5!, it is useful to work in the standard hard-co
boson language for the spins, whereSz561/2 corresponds
to the presence/absence of a boson. Each term inH8 hops
bosons along nearest-neighbor bonds; acting on a state i
low-energy manifold, each hop creates two tetrahedra w
St

zÞ0. At second order inH8, bosons can hop and the
return along the same bond@Fig. 3~a!#. This can always oc-
cur on four bonds in every tetrahedron, thus giving only
constant contribution to the energy. At third order anoth
constant contribution arises from single bosons~or holes!
hopping around triangular faces@Fig. 3~b!#. There is also a
nontrivial ring exchangeprocess acting on the hexagon
plaquettes~see Fig. 2!, where hexagons containing thre
evenly spaced bosons can be rotated as shown in Fig.~c!.
The resulting effective Hamiltonian is

He f f5~J'
2 /Jz!~J' /Jz21!Nt

1Jring(̋ ~S1
1S2

2S3
1S4

2S5
1S6

21H.c.!, ~6!

whereNt is the total number of tetrahedra,Jring53J'
3 /2Jz

2

and the sum is over hexagonal plaquettes. The labeling o
spin operators inside the sum is given by moving arou
each hexagon in an arbitrary direction. Note that@He f f ,St

z#
50, as must be true forany effective Hamiltonian acting in
the low-energy manifold, whatever the form ofH8.

We focus on the extreme easy-axis limit described
He f f , but note in passing that a finite but largeJz would
introduce small fluctuations out of the ground-state manifo

er
re
a-

t.

FIG. 3. Depiction of the processes contributing to the thi
order degenerate perturbation theory for the easy-axis pyroch
Heisenberg antiferromagnet. Processes~a! and ~b! give only trivial
constant shifts of the energy. Process~c! leads to anXY ring ex-
change term acting on hexagonal plaquettes.
4-3
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While these will not affect universal properties, they c
matter for the short-distance correlation functions of so
microscopic operators. This can be understood formally b
more sophisticated execution of the perturbation theory inJ'

that accounts for splitting of the low-energy manifold a
mixing of higher states on an equal footing.25 The main re-
sult is that the problem at finiteJz can be mapped, by a
unitary transformation, order by order inJ' onto a trans-
formed Hamiltonian acting only within the low-energy man
fold where St

z50. This mapping accounts for finiteJz by
generating nontrivial perturbative relations between phys
and transformed operators; however, we ignore these co
tions for simplicity and use only the results of the stand
degenerate perturbation theory described above.

It is possible, and will be convenient, to change the s
of the ring term by a unitary transformation. On any giv
site we can make the transformationSz→Sz and S6

→2S6 by making ap rotation about thez axis in spin
space. One transformation with the desired effect, consis
of p rotations on a pattern of sites, is

Si
z→Si

z , ~7!

SRi
6 →exp~ iQi•R!SRi

6 , ~8!

whereQ05Q15(b11b2)/2 andQ25Q350.
After this transformation the Hamiltonian takes the for

Hp52Jring(̋ ~S1
1S2

2S3
1S4

2S5
1S6

21H.c.!, ~9!

where the constant terms have been dropped. Models sim
to this one on the kagome´,9 square,26,27 triangular,28 and
other lattices,11 whereXY ring exchange of spins or boson
is a dominant term, have recently been shown to exhib
variety of unusual phases and critical behavior. The phy
of the pyrochlore ring exchange model should be access
to quantum Monte Carlo studies; while the original Ham
tonian in Eq.~2! has a sign problem,Hp does not.

Hp can be reinterpreted as a quantum dimer model on
diamond lattice~Fig. 4!, with two dimers touching every site
To see this, observe that the centers of the pyrochlore te
hedra form a diamond lattice. Each nearest-neighbor
mond link passes through exactly one pyrochlore site, so
can reinterpret the pyrochlore spins as diamond link v
ables. The smallest closed loops in this lattice contain
links and correspond to the pyrochlore hexagons. We sa
dimer is present on a given bond ifSi

z51/2 or absent ifSi
z

521/2. St
z50 becomes the constraint that every diamo

site touches two dimers, and the ring exchange move is
most local dynamics preserving this constraint. Each term
Hp acts on a ‘‘flippable’’ hexagon, one containing alternati
full and empty bonds as in Fig. 4, by rotating the dime
around it. Nonflippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod
generically have a point in their parameter space where
possible to write down the exact ground-state wa
function.21 To reach this point in our model, we add the ter
HV5VNf , whereNf is the number of flippable hexagon
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The RK point obtains forHRK5Hp1JringNf ~i.e., V
5Jring), and the ground state is an equal-weight superp
tion of all possible dimer coverings of the lattice that satis
the constraint of two dimers touching every site. In the s
language, this wave function can be written as the projec
of a transverse ferromagnet:

ucRK&5~12P!)
i

uSi
x51/2&, ~10!

where, as in Eq.~5!, (12P) projects onto theSt
z50 mani-

fold. For completeness, we also expressNf in terms of spin
operators:Nf5(

˝
Pf lip(˝), where Pf lip(˝) gives unity

acting on a flippable hexagon and zero otherwise. One h

Pf lip~˝ !5 (
s561

)
j P˝

S 1

2
1s~21! jSj

zD . ~11!

We will be interested in the properties of the generalized r
modelHp1HV in the vicinity of the soluble point.

B. Cubic model

Largely to simplify the geometry of the presentation, w
introduce an alternate model that we find has many of
same properties as its pyrochlore analog. The model is
QDM on the cubic lattice, withthreedimers touching every
site. We consider only the most local dynamics, which
tates the configuration on square plaquettes with two dim
on opposite sides, and the corresponding Rokhsar-Kive
potential that counts flippable squares. Reversing the m
ping above, we can also think of this as a spin model w
S51/2 on the links of a cubic lattice, or, equivalently, on th
sites of a lattice of corner-sharing octahedra with their c
ters at the cubic sites~Fig. 5!. The octahedra play the role o
the pyrochlore tetrahedra, with the total spin on eachSoct

z

50. We denote cubic sites by boldface letters liker and
identify the links by specifying either pairs of adjacent site
or one site and the direction of the link. For example, the l

FIG. 4. A small piece of the diamond lattice. The links for
hexagonal loops corresponding to the pyrochlore hexagons. T
are the shortest possible closed paths on the diamond lattice.
hexagon with three thickened bonds depicts the dimer position
a flippable hexagon. The alternating full and empty bonds co
spond to alternating up and down spins.
4-4
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connecting a siter with its nearest neighbor in the positivex
direction (r1x) is denoted by (r ,r1x) or (r ,x). Using this
notation, we express the dimer kinetic term as a four-siteXY
ring exchange for the spins:

Hc52Jring(
h

~S1
1S2

2S3
1S4

21H.c.!

52Jring(
r

~Srx
1Sr1x,y

2 Sr1y,x
1 Sry

2 1H.c.1••• !, ~12!

where the numbering in the first line runs around the per
eter of each square plaquette, and in the second line only
orientation of plaquette is shown explicitly. As before, w
will be interested in the vicinity of the soluble point ofHc
1HV .

It is also interesting to note that, as forHp , the pure ring
exchange modelHc can be derived as the easy-axis limit
a Heisenberg antiferromagnet. In this case one begins
spins on the network of corner-sharing octahedra w
nearest-neighbor exchange, and an additional exchang
the same sign and magnitude between spins at opp
points of the same octahedron. The Hamiltonian can be w
ten as a sum over octahedra, and the analysis proceed
actly as before.

C. Frustrated U„1… gauge theory

Both the cubic and pyrochlore models have an exactU(1)
gauge invariance, as is generally the case in dimer model
the pyrochlore model, this arises because of the local inte
conserved quantitySt

z . The local symmetry is generated b
rotations about thez axis in spin space on all the sites in
given tetrahedron:Gt(a)5exp(iaSt

z). These generators com
mute with one another and the Hamiltonian. It is importan
emphasize that this gauge symmetry is generated byphysical
transformations and has nothing to do with any redunda
in our description. These statements also hold for the cu
model, with octahedra substituted for tetrahedra. For n
we shall focus on the cubic model for ease of presentat
All of the statements in this and the following section can
generalized simply to the pyrochlore case; this is summ
rized in Sec. II E below.

FIG. 5. Illustration that thelinks of the cubic lattice are equiva
lent to thesitesof a lattice of corner-sharing octahedra.
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The gauge structure suggests we may gain insight
thinking about the model as aU(1) lattice gauge theory, an
approach that proved helpful in understanding the square
tice QDM.29 In fact, it is possible to formally rewriteHc as a
pure gauge theory on the cubic lattice. To see this, we fin
convenient to soften the hard-core constraint on the bos
by explicitly introducing an on-site repulsion term in th
Hamiltonian. We also go to quantum rotor variablesnrr 8
PZ and f rr 8P@2p,p), with commutation relations
@f r i ,nr8 j #5 id i j d rr 8 . ~Here and elsewhere we commit
standard abuse of notation and formally denote a constr
on the eigenvalues of an operator as a constraint on the
erator itself.! Using the relationsSz5n21/2 andS65exp
(6if), we have

Hc5
U

2 (
^rr 8&

~nrr 821/2!22K(
h

cos~f12f21f32f4!,

~13!

where the numbering inside the cosine proceeds around
perimeter of the given square. This is a faithful represen
tion of the spin model, Eq.~12!, in the limit U/K→`, which
just imposes the hard-core constraintnrr 850,1.

We now define an orientation on the cubic links, whi
we take to point out of theA sublattice and into theB sub-
lattice. This allows us to define oriented link variables by

err 856~nrr 821/2!, ~14!

arr 856f rr 8 . ~15!

Here we take the plus/minus sign whenr lies in the A/B
sublattice. Sinceerr 852er8r , these variables can be thoug
of as components of vector fields taken along the links of
lattice. Putting these definitions into the Hamiltonian, w
have

Hc5
U

2 (
^rr 8&

err 8
2

2K(
h

cosS (
rr 8Ph

	 arr 8D . ~16!

The sum inside the cosine is taken in an oriented fash
around the links of the given square plaquette, and is thu
discrete line integral ofarr 8 along a smallest possible close
path. This is a lattice version of the curl, so we define

~curl a!h5 (
rr 8Ph

	 arr 8 . ~17!

Equation ~16! is invariant under gauge transformation
written in the usual formarr 8→arr 81x r82x r . Therefore
arr 8 behaves like a vector potential, and since@arr 8 ,err 8#
5 i , err 8 plays the role of an electric field. Since the vect
potential is a 2p periodic phase, this is evidently acompact
gauge theory. The electric charge is given by the lattice
vergence oferr 8

~div e!r5 (
r8←r

err 856Soct
z , ~18!
4-5
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where the sum is over the sites adjacent tor . In the ground
state there is no gauge charge sinceSoct

z 50, and single
gauge charges have a large gap of orderJz .

Supposer is a site in theA sublattice. Acting withSr ,x
1

creates two octahedra withSoct
z 51, at r and r1x. In the

gauge theory language, there is a positive electric charger
and a negative one atr1x, where the sign of the charg
comes from the orientation convention, Eq.~14!. We can
now act with the infinite string operator

Ostring5 )
n50

`

S[ r1(n12)x1ny],y
1 S[ r1(n11)x1ny],x

2 . ~19!

This hops the gauge charge originally atr1x off to `, leav-
ing an isolatedSz51 octahedron atr . The twoSz51 octa-
hedra together carryStotal

z 51, so the single remaining octa
hedron is evidently aSz51/2 spinon.9,30 The spinons are
single electric gauge charges and can propagate freely
deconfining phase of the gauge theory; such a state is th
fore fractionalized. We note that, because spinons cannot
from one sublattice to the other, there are in fact two spin
flavors.

Because the theory is compact, magnetic charge is
allowed. We define dual lattice sites by serif characterr
5r1(x1y1z)/2; these are located at the centers of the
bic ‘‘boxes’’ of the direct lattice. The links of the dual lattic
are naturally associated with the square plaquettes of the
rect lattice. Using this correspondence we define a magn
field on the dual links bypbrr85(curla)h . The sense of the
lattice curl is taken counterclockwise looking from the po
r8 to r. The lattice divergence (divb) r gives the magnetic
charge inside the box atr. Naively this divergence vanishe
since each termarr 8 occurs twice, with opposite signs, bu
this is not the case becauseb is a periodic variable invarian
under b→b12. In fact we have (divb) r52nr for integer
nr ; the magnetic charge is automatically quantized. It is c
venient to takebrr8P@21,1), so thatnr50,61,62 on each
box. It is also possible to havenr523 in our convention,
but this measure-zero point in the configuration space
magnetic fields should be ignored. While electric charges
locally conserved in the low-energy manifold, there is
such conservation law for magnetic charge and we exp
nrÞ0 even in the ground state. While this means the gro
state always has some local fluctuations of magnetic cha
it does not necessarily contain monopoles, which a
smoothly varying defect configurations unaffected by a sm
amount of coarse-graining.

The model, Eq.~16!, looks identical to the standar
Hamiltonian formulation of compactU(1) lattice gauge
theory, but there is one difference of critical importance
the limit of interestU/K→`. Here, the electric field take
on half-integer rather than integer values. In the case of
ger electric fields, the vacuum in the large-U limit is trivial:
e50 everywhere with small fluctuations. In our model th
limit enforces the nontrivial constrainte561/2. This is an-
other expression of the inherent frustration, so we refer to
model as a ‘‘frustrated gauge theory.’’ This situation is ess
tially the same as that arising in the large-N limit of bipartite
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SU(N) antiferromagnets,31,32 and in the gauge theory de
scription of the square lattice QDM.29 There, one considers
an integer-valued electric field in a background of sta
charge; of course, our model can also be viewed this way
making a shift of the electric field.

To gain insight into the possible phases ofHc , we briefly
review the properties of the standard unfrustrated ga
theory, which has the same Hamiltonian as our model bu
integer electric field.33 There are two phases, separated b
transition at (U/K)c'1. For U/K.(U/K)c , the ‘‘strong-
coupling’’ side of the transition, the model enters a confini
phase smoothly connected to the trivialU5` vacuumerr 8
50. In this phase all excitations are gapped, and st
sources of the electric field are confined by a linear poten
For U/K,(U/K)c one enters the deconfining Coulom
phase, so named because static gauge charges interact
1/r Coulomb potential and are thus free to propagate. At l
energies, the effective description of the Coulomb phas
simply Gaussian QED, so there is a gapless, linearly disp
ing photon with two transverse polarizations.

In the Coulomb phase, magnetic monopoles are gap
and interact via a 1/r magnetic Coulomb potential. Th
monopoles incorporate the compact nature of the magn
field, which is not important at low energies in the deco
fined phase. In the confined phase, however, the magn
field fluctuates wildly, its periodicity is important, and th
monopoles have proliferated and condensed. This dis
guishes the two phases: in the Coulomb phase the mono
propagator decays exponentially, while in the confined ph
it goes to a constant. This distinction is more robust than
Wilson loop, which fails to differentiate between the phas
in the presence of matter fields.

Returning to the frustrated gauge theory, we can infer t
it also has a Coulomb phase at smallU/K. This should be so
because in the deconfined phase the discrete nature o
electric field is unimportant, so the half-integer nature oferr 8
will not play a role. We will be interested in whether th
Coulomb phase survives in the opposite limit of strong co
pling, perhaps stabilized by additional terms in the Ham
tonian.

D. Electric-magnetic duality

In recent work on other models withXY ring exchange, it
has been useful to make a novel ‘‘plaquette dualit
transformation.26,28In the case of the frustrated gauge theo
plaquette duality is in fact identical to the more famili
electric-magnetic duality forU(1) gauge theories. We sha
make use of the dual cubic lattice defined in the preced
section. We define oriented variables on the dual linksa rr8
PpZ and brr8P@21,1), which we take to be canonicall
conjugate:@b,a#5 i on the same dual link, zero otherwis
As discussed above,brr8 is the magnetic field, defined by

pbrr85~curla!h , ~20!

where the sense of the curl is again taken counterclockw
looking from r8 to r. The conjugate variable will play the
role of a ‘‘dual vector potential,’’ and is related to the electr
field by
4-6
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p~err 82err 8
0

!5~curla!h* , ~21!

where the curl is taken around thedual square plaquette en
circling the direct link joiningr to r 8, and again the orien
tation is given by the right-hand rule. Hereerr 8

0
561/2 is a

static, divergenceless background field; this is necessary
consistency witherr 8PZ11/2. With these definitions, the
dual commutation relations are consistent with the origi
ones.

In dual variables the Hamiltonian is

Hcd5
U

2p2 (
h*

@~curla!h* 1perr 8
0

#22K(
^rr8&

cos~pbrr8!,

~22!

where the first sum is over dual plaquettes. The constrain
zero electric charge is now automatically satisfied, sin
div e5div(e01curla/p)50. However, magnetic charg
can take on continuous values in the dual variables, and
should impose the constraint divbP2Z. This constraint
commutes withHcd since it is invariant under the dual gaug
transformationsa rr8→a rr81l r82l r , where l rPpZ. Note
that because magnetic charge is not locally conserved, we
not allowed to demand divb50.

It is useful, and enlightening, to write down the Euclide
action obtained by a Trotter expansion in eigenstates of
dual vector potential. As usual, one begins with the partit
function

Zcd5Tr„exp~2bHcd!P…. ~23!

HereP5) rPr is a projection operator imposing the quan
zation of magnetic charge:

Pr5 (
artPpZ

d„~div b!r22a rt /p…

5
1

2 (
artPpZ

exp@ ia rt~div b!r#. ~24!

Breaking the exponential in Eq.~23! into Nt5b/e time
slices, and insertingP once in every time slice, one has

Zcd5Tr„exp~2eHcd!P…Nt ~25!

5 (
$arm(t)%

exp~2Scd!, ~26!

where the indexm5t,x,y,z. The imaginary-time componen
of am comes from the Poisson-resummed form of the p
jector, Eq.~24!. The spatial components enter as the eig
values of the statesu$a ri(t)%& used to form the resolution o
the identity at each time slice. Following very similar m
nipulations to those in Appendix A of Ref. 26, one obtai
the dual action
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Scd5
1

p2
lnS 2

eK D (
t,^rr8&

~Dta rr81a rt2a r8t!
2

1
eU

2p2 (
t,h*

@~curla!h* 1perr 8
0

#2, ~27!

whereDt f [ f (t1e)2 f (t).
The action, Eq.~27!, is essentially a higher-dimensiona

generalization of the height model partition function arriv
at by similar manipulations in the context of the square l
tice QDM.29 Significantly, it differs in having a local rathe
than a global invariance, under spacetime-dependent
gauge transformations of the formam→am1Dml. In fact,
Scd has the same structure as noncompact lattice QED,
cept for the discrete nature of the fields. This encodes
important physics of the magnetic monopoles. In Sec.
below, it will be useful to imagine softening the constraint
discreteness on the fields to interpolate between the dual
tition function and an effective description of the Coulom
phase. With the soft constraint@implemented by the ‘‘correc-
tions’’ in Eq. ~55!#, the theory is identical to a more familia
dual representation ofU(1) gauge theory consisting of
noncompact gauge field minimally coupled to scalar mo
poles.

E. Pyrochlore gauge theory and duality

We now return to the pyrochlore ring modelHp . In this
case the diamond lattice with sites at the centers of the
rahedra~discussed in Sec. II A! plays the role the cubic lat
tice did for the cubic model. Denotingdiamond sites by
boldface characters, we soften the hard-core constraint on
bosons and go to quantum rotor variables living on the d
mond links:

Hp5
U

2 (
^rr 8&

~nrr 821/2!2

2K(̋ cos~f12f21f32f41f52f6!. ~28!

Here the second sum is over the hexagonal loops of the
mond lattice~Fig. 4!, and the numbering inside the cosin
proceeds around the perimeter of the given hexagon.
diamond lattice is bipartite, so we define an orientation
declaring that links naturally point out of the ‘‘up-pointing
sites and into the ‘‘down-pointing’’ ones~corresponding to
up- and down-pointing tetrahedra, respectively!. We define
an oriented electric field and vector potential exactly as
Eqs. ~14! and ~15!. The Hamiltonian then takes the form o
the diamond lattice frustrated gauge theory:

Hp5
U

2 (
^rr 8&

err 8
2

2K(̋ cosS (
rr 8P˝

	 arr 8D . ~29!

It is evident that the lattice curl now naturally lives on th
hexagons of the diamond lattice.

Again the electric charge has a simple interpretation in
spin language:
4-7
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~div e!r56St
z . ~30!

Tetrahedra withSt
z561 are now theSz51/2 spinons carry-

ing unit gauge charge. Single spinons can be created
string operator similar to Eq.~19!. For smallU/K the model
should again enter a deconfining phase where the spinon
free to propagate.

We define a dual lattice of plaquette variables by puttin
site at the center of every pyrochlore hexagon. This is als
pyrochlore lattice, and it will be useful to think of its sites
the links of a dual diamond lattice with sites labeled by se
charactersr. Each hexagon of the dual lattice encircles a li
of the direct lattice, and vice versa. As before, magne
charge lives on the dual lattice sites. The dual variab
again with the commutator@b,a#5 i on the same link, are
defined on the dual links by

p~err 82err 8
0

!5~curla!
˝* , ~31!

pbrr85~curla!
˝

, ~32!

with the sense of the lattice curls determined as in the cu
case. Here (divb) r52nr , with nr50,61. The Hamiltonian
takes the form

Hpd5
U

2p2 (̋
*

@~curla!
˝* 1perr 8

0
#22K(

^rr8&

cos~pbrr8!.

~33!

One can derive an action in eigenstates of the dual ve
potential as in the previous section, with the result:

Zpd5 (
$arr8(t)%

(
$art(t)%

exp~2Spd!, ~34!

and

Spd5
1

p2
lnS 2

eK D (
t,^rr8&

~Dta rr81a rt2a r8t!
2

1
eU

2p2 (
t,˝*

@~curla!
˝* 1perr 8

0
#2. ~35!

The constraint of magnetic charge quantization (divb) r
P2Z enters as before, giving rise to the temporal dual vec
potential fields inZpd .

III. EFFECTIVE THEORY

A. Coulomb phase effective action

It is well known that the low-energy description of th
Coulomb phase of compactU(1) gauge theory is noncom
pact QED with no matter fields. In our case it will be co
venient to work in dual variables to formulate the effecti
theory, which more naturally allows the inclusion of ma
netic charge fluctuations. Depending on the purpose at h
different formulations of the effective action will be usefu
To fix notation, we show them all here. In each case
partition function is of the form
06440
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r,m

E @dã r,m~t!#exp~2S 0!, ~36!

whereã is a real-valued field. It will often be convenient t
keep the full spatial lattice structure, in which case we c
defineã in terms of the microscopic variables by thetempo-
ral coarse-graining:

ã rm5@a rm# f2
a rm

0

2
. ~37!

The brackets@ # f denote an average over high-frequen
modes in imaginary time, and we have subtracted the tim
independent, nonfluctuating backgrounda rr8

0 PpZ defined by

1

p
~curla0!h* 522err 8

0 , ~38!

with ã rt
0 50. If ~as we always do in practice! we restrict our

attention to spatially periodicerr 8
0 with zero average electric

flux in every direction,a0 can also be taken to be periodi
This subtraction simplifies the relation between the elec
field and dual vector potential, since

perr 85@curl ~a2a0/2!#h* . ~39!

On a space-time lattice, the action looks almost identi
to Scd in Eq. ~27!:

S lat
0 5

gt

2 (
t

(
^rr8&

~Dtã rr81ã rt2ã r8t!
2

1
gs

2 (
t

(
h*

~curl ã !2. ~40!

The only difference from the microscopic model is that t
fields are now continuous. We will also have occasion
retain the spatial lattice structure but take the tim
continuum limit, in which case we write

S tc
0 5

1

2KE dt(
^rr8&

~]tã rr81ã rt2ã r8t!
2

1
U
2E dt(

h*
~curl ã !2. ~41!

The parameters here are related to those in Eq.~40! by K
5(egt)

21 and U5gs /e, and ã rt now has units of inverse
time. This action corresponds to the effective dual Ham
tonian ~in the sector with no magnetic charge!

H 05
K
2 (

^rr8&

b̃rr8
2

1
U
2 (

h*
~curl ã !2, ~42!

which can be obtained simply by expanding the cosine in
~22!. The lattice effective actions for the pyrochlore mod
look identical to Eqs.~40! and ~41!, where the only change
necessary is the replacement of the sums over dual sq
plaquettes with sums over dual hexagons.
4-8
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Finally, in order to take the spatial continuum limit, w
introduce a continuum four-vector fieldYm(r ,t), formally
defined by the replacements

ã ri→ l ~ei•Y!,

ã rt→Yt . ~43!

Here ei are the vectors connecting the siter to its nearest
neighbors, in either the cubic or diamond lattice, andl is a
microscopic length on the order of the lattice spacing. N
ı̈vely it seems we have thrown away too much information
the pyrochlore case, since there are four sites per unit
but only three spatial components of the continuum vec
field. However, there are alsotwo gauge degrees of freedom
per unit cell of the diamond lattice, corresponding to cha
ing (diva) r on the two different sublattices. This leave
us with two transverse degrees of freedom, the same num
as in the cubic model and the continuum theory. The
spacetime continuum theory is

S stc
0 5

1

2Kc
(

i
E dtd3r ~]tY i2] iYt!

2

1
Uc

2 (
i , j

E dtd3r ~] iY j2] jY i !
2, ~44!

whereKc5Kl and Uc5Ul @ l is the microscopic length in
Eq. ~43!#. The spatial/temporal components ofYm have units
of inverse length/time. The form is identical to the famili
~dual! Maxwell action for electromagnetism with photon v
locity vp5AUcKc. This action can be used to obtain lon
wavelength properties of the Coulomb phase of either mic
scopic model, but at the end of any calculation the allow
spatial components of all vector fields are determined by
lattice structure.

To calculate using any of these effective actions, it is c
venient to implement a gauge-fixing procedure. The w
known manipulations of Faddeev and Popov36 tell us that we
may add any function of the vector potential four-divergen
to the action. The standard choice, in our nonstandard n
tion, is

SFP5
1

2jUcK c
2E dtd3r ~]tYt1vp

2
“•Y!2. ~45!

If we choosej51, as usual the off-diagonal terms in th
action are canceled, and we obtain the simple photon pro
gator

^Ym~k,vn!Yn~k8,vn8!&

5
~2p!4d~vn1vn8!d~k1k8!Kcgmn

vn
21vp

2k2
, ~46!

where the Euclidean metric is defined bygtt5vp
2 , gt i5gi t

50, andgi j 5d i j . While these expressions hold in the co
tinuum, it is amusing to note that the obvious lattice regu
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ization of Eq.~45! also cancels all off-diagonal terms on th
cubic lattice. Working in the time-continuum action, we fin
the lattice propagator

^ãm~k,vn!ãn~k8,vn8!&5
~2p!4d~vn1vn8!d~k1k8!Kgmn

vn
21UKg~k!

,

~47!

where g(k)52( i(12coski). On the diamond lattice, eve
more complicated Faddeev-Popov terms seem only to ca
some of the off-diagonal terms.

Finally, it is important to note that this procedure is on
legitimate for calculating expectation values of operators
variant undercontinuousdual gauge transformations. Term
with only discrete dual gauge invariance~see Sec. III C!
must be handled more carefully; this issue arises in calcu
ing the monopole propagator in Sec. IV D.

B. RK point effective action

Given the microscopic gauge structure of our models, i
reasonable to conjecture that the low-energy effective
grees of freedom are simply noncompactU(1) gauge fields.
The effective action should take the form of an expansion
the lowest-order terms involving the dual vector potent
consistent with the symmetries. Generically this would ta
the form of Eq.~44!; however, as our analysis of the micro
scopic models takes advantage of the special propertie
the Rokhsar-Kivelson point to conclude that the ‘‘stiffnes
or Uc term for the electric field vanishes there, we must
clude a higher term. This leads us to propose that the
point of both models is described by the effective action

S RK
0 5

1

2Kc
(

i
E dtd3r ~]tY i2] iYt!

2

1
W c

2 E dtd3r „“3~“3Y!…2. ~48!

Here Wc is the coefficient of the new term, which~when
Uc50) is marginal in the renormalization-group sense a
must be included. While the theory remains gauge invaria
the photon dispersion now vanishesquadratically, v;k2.
The Uc term is relevant, as can be seen by the usual pow
counting procedure, so this action cannot describe a st
phase. A small positiveUc will drive the system into the
Coulomb phase, while a small negativeUc will result in an
electric-field ‘‘crystal’’; in the dimer language this is a sta
with long-range dimer order and no flippable plaquettes.
we argue in Sec. V, precisely this picture describes the ph
ics of the microscopic models near the RK point, with t
relationUc}(12V/Jring).

A very similar story is known to apply to thed52 square
lattice QDM.22 In that case, electric-magnetic duality leads
a height model partition function, which describes the flu
tuations of a discrete field living on the square latti
plaquettes in 211 dimensions. Just as above, softening
constraint of discreteness naturally leads to the Gaussian
fective action
4-9
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Sheight5E dtd2r @~]th!21k1~“h!21k2~¹2h!2#.

~49!

Whenk150 we have a description of the RK point, whic
has power-law dimer-dimer correlations. For small negat
k1 the system goes into the staggered valence bond cr
state. These have natural analogs in the three-dimens
case. However, a small positivek1 leads to a confining stat
with broken translation symmetry34,35via an instability of the
Gaussian theory. This occurs because Eq.~49! with k1.0
would describe the unstable Coulomb phase of p
(211)-dimensionalU(1) gauge theory. In three dimension
however, the analogous phase is stable and should exis
jacent to the RK point.

To calculate with Eq.~48! we again carry out a gauge
fixing procedure. We add the Faddeev-Popov term

SFP-RK5
1

2jK c
3E dtd3r ~]tYt1K c

2
“•Y!2. ~50!

Although this does not cancel all off-diagonal terms, it lea
to the relatively simple photon propagator

^Ym~k,vn!Yn~k8,vn8!&5~2p!4d~vn1vn8!d~k1k8!

3KcMmn~k,vn!, ~51!

where

Mtt5K c
2/~vn

21K c
2k2!,

Mt i5Mi t50,

Mi i 5
1

f ~vn ,k!
@m2vn

21ki
2k21m2K c

2~k22ki
2!#,

Mi j 5
1

f ~vn ,k!
@kikj~k22K c

2m2!# ~ iÞ j !, ~52!

and

f ~vn ,k!5~vn
21K c

2k2!~m2vn
21k4!, ~53!

with m5(KcWc)
21/2.

C. Corrections

While all gauge-invariant corrections toS stc
0 are irrel-

evant in the renormalization-group sense, in order to un
stand the detailed realization of theU(1) spin liquid~and the
nearby RK point! in any microscopic model it will generally
be important to consider corrections to the effective acti
Furthermore, we need to specify relations between the
croscopic and effective degrees of freedom. Naı¨vely we
could writeam;ãm1am

0 /2, but any corrections allowed b
symmetry will generically be present.

For ease of presentation, we focus on the cubic model;
lattice structure is unimportant for these results. The sym
tries of the microscopic model are listed in detail in Appe
dix A. It is important to note that, because the backgrounda0
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is not invariant under all lattice symmetries, the dual vec
potential transforms with additional shifts under these ope
tions. Furthermore, the dual effective degrees of freedomã

and b̃ transform exactly as their microscopic counterparts
Rather than attempt a painstaking enumeration of all

lowed corrections toS 0, we discuss some representative e
amples. The corrections naturally fall into two classes; th
invariant undercontinuousdual gauge transformations an
those not. In Hamiltonian language on the lattice, some ty
cal terms in the first class are

H 15
W
2

(
h

~curl ẽ!21W8(
h*

~curl b̃!21U8 (
^rr 8&

ẽrr 8
4

1K8(
^rr8&

b̃rr8
4

1•••. ~54!

Terms involving discrete line integrals of both vector pote
tials around closed loops larger than single plaquettes
also allowed, as are terms containing the divergence of
fields. While these terms are irrelevant, they can have qu
titative effects, presumably accessible in perturbation the
All such corrections are also irrelevant at the RK point, e
cept theW term, which contributes to theWc term in Eq.
~48!.

More interesting are those terms lacking continuous d
gauge invariance. Here we only consider the single-
terms; in the spacetime lattice action these take the form

S 252 (
t,^rr8&

(
q51

`

v2qcosq~a rr8
0

!cos~2qã rr8!

2(
t,r

(
q51

`

v2q
t cos~2qã rt!. ~55!

In the first term thea0 dependence is necessary to compe
sate the shifts inã under lattice symmetries. With appropr
ate choices of coefficients, when these corrections bec
large they have the effect of pinning the dual vector poten
to take on discrete values. This allows us to interpolate
plicitly between the effective theoryS lat

0 and the micro-
scopic partition function. Physically, the spatialv2q part of
S 2 is amagnetic charge hoppingterm. Its temporal compan
ion is related to the discreteness of magnetic charge. Th
fore, these corrections introduce magnetic charge fluc
tions into the effective theory. As should be expected wh
magnetic monopoles are gapped, when these fluctuation
small there is no associated instability. Formally, this sho
be the case because the correlation functions of cos(2qãm)
are local in space and time. For example,

^cos„2ã rx~t!…cos„2ã r8x~t8!…&0}d rr8dtt8 , ~56!

because continuous dual gauge invariance inS 0 makes each
cosine into an independent random variable.

Finally, we consider corrections to the scaling equalit
between microscopic and effective degrees of freedo
4-10
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Some representative contributions in the case of the d
vector potential are, in operator language

a rr8;~ã rr81a rr8
0 /2!1 (

q51

`

c2qcosq~a rr8
0

!sin~2qã rr8!

1 (
n,m50

`

cn,m
1 ~ b̃rr8!

2n~curl ẽ!h
2m111•••. ~57!

This should really be interpreted as an instruction for w
effective theory operators to use in the calculation of ga
invariant expectation values. These corrections are not
portant, and we will neglect them. The second term clea
only leads to local corrections, while the third term and o
ers like it lead only to subdominant power laws, which w
always be present on the lattice. The conclusion is the s
for corrections to the magnetic field, but for completeness
show some of the representative terms

eibrr8;expS i b̃ rr81 i (
n,m50

`

dn,m
1 ~curl ẽ!h

2n~ b̃rr8!
2m111••• D

•H 11 (
q51

`

d2qcosq~a rr8
0

!cos~2qã rr8!1•••J . ~58!

IV. PROPERTIES OF THE U„1… SPIN LIQUID

Using the effective theory developed above, we now tr
some of the more striking properties of theU(1) spin liquid.
Since the effective theories for both the generic Coulo
phase and the adjacent RK point are quadratic in the fie
all the calculations can be done by simple Gaussian integ

A. Excitations and emergent long-range interactions

As already mentioned, theU(1) spin liquid supports a
gappedSz51/2 spinon carrying electric gauge charge,
gapped topological point defect that plays the role of a m
netic monopole, and a gapless, linearly dispersing pho
with velocity vp . The spinon was discussed in Sec. II C, a
in the microscopic models takes the form of a tetrahedron~or
octahedron! carrying nonzeroSz. The gap to the spinons i
very large, of orderJz .

The monopole is a classical configuration of the magn
field emanating from a point with nonzero magnetic cha
at r0. For a compact gauge field on, say, the cubic lattice,
classical configurationA of the vector potential is given by
minimizing

E@A#52 (
^rr8&

cos~pBrr8! ~59!

in the presence of a specified distribution of magnetic cha
which enters via the constraint (divB) r52d rr0

. In these ex-

pressionspBrr85(curlA)h . Far from the center of the
monopole the magnetic field will be small, the energy
approximately a sum overB rr8

2 , and the minimum is ob-
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tained by solving the~discrete! Laplace equation of classica
electrostatics. The compact nature of the theory only mo
fies the field near the core.

In the effective theory, we can create a monopole with
operator

m̃r0
† 5expS i (

^rr8&

Brr8ã rr8D . ~60!

The exact choice ofB in this operator is somewhat arbitrary
the requirement for monopole creation is that the surf
integral of the magnetic field at large distances indicates
presence of one magnetic charge. This arbitrariness doe
matter when calculating long-time monopole correlato
which will be dominated by the contribution from th
lowest-energy monopole eigenstate~it is not hard to see that
in the effective theory, our operator has very good over
with this state!. As long as the magnetic field is chosen
spread the flux uniformly from the monopole center, lon
distance correlations should also be unaffected. Beca
magnetic charge is created atr0, this operator isnot invariant
under continuous dual gauge transformations. The mono
gap is of orderK, and in the microscopic models is likely t
be of orderJring as long asK does not renormalize too muc
from its bare value. Therefore the monopoles have a m
smaller gap than the spinons.

Using the correspondence between microscopic and ef
tive variables, we can write down a creation operator t
should have at least some overlap with the true microsco
monopole eigenstate:

mr0
† 5expS i (

^rr 8&

Arr 8err 8D . ~61!

This is written in terms of the direct variables to conne
with the spin language, where the monopoles are defect c
figurations in theXY component of the spin. Because of th
half-integer electric field, the sign ofm† is changed by a 2p
shift of any one of theArr 8 . However, this overall sign doe
not fluctuate since the electric fields change only by inte
steps.

Both the monopoles and spinons feel an emergentr
interaction, even though the microscopic Hamiltonians c
tain only local operators. Consider the field due to a confi
ration of a few static electric gauge charges~the same dis-
cussion could be repeated for magnetic charge!. This is given
by solving Poisson’s equation“•E5( iqid(r2r i) to obtain
Coulomb’s Law. By gauge invariance the longitudinal part
E does not fluctuate, so the field is simply given by its cla
sical value plustransversefluctuations. This zero-point en
ergy does not contribute to the energy difference between
charged state and the charge-free ground state, and on
covers the familiar 1/r Coulomb potential. In the RK poin
effective theory, this interaction is absent for the spinons,
still present for monopoles, because there is no energy
for longitudinal electric fields.

A word about the statistics of the charged excitations is
order. Certainly, both monopoles and electric charges as
cussed above are bosonic. However, a simple argum
4-11
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shows that adyon, a bound state of electric and magne
charge, has Fermi statistics.37 If such bound states exist an
have lower energy than pure electric charges, then one c
say that there are fermionic spinons. While this is a nonu
versal question with no bearing on the low-energy physics
can be relevant in understanding the possible transitions
of theU(1) spin liquid. The emergence of Fermi statistics
local bosonic models is also of great conceptual interes38

although in the present case it is not clear what, if any, lo
microscopic interaction will bind electric and magne
charge.

Finally we turn to the photon. In terms of the spins, it is
linearly dispersingSz50 collective mode oscillating be
tween the Ising andXY parts of the spin vector. Like
phonons, these gapless excitations make the contribution
the low-temperature specific heatCphoton(T)}(T/vp)3.
Since in real materials it should be possible to quantitativ
understand the phonon contribution toC(T) by measuremen
of elastic moduli,39 this signature of theU(1) spin liquid
should be easily accessible to experiments. Other poten
though likely more delicate, probes of the photon are lo
temperature thermal conductivity and Raman scattering.
nally, the photon manifests itself in the power-law corre
tions discussed in Sec. IV C.

B. U„1… topological order

In the theory ofZ2-fractionalized phases, the notion o
topological ground-state degeneracy5 has been very usefu
both as a conceptual tool and as a property that can be
rectly probed by experiments.6,15–17The degeneracy is asso
ciated with the topological sectors of a deconfiningZ2 gauge
field, so it is natural to ask about the generalization of th
ideas toU(1)-fractionalized states.

We will work with the microscopic Hamiltonian of cubi
frustrated gauge theory@Eq. ~16!# on a 3-torus, a cube withL
lattice sites on a side and periodic boundary conditions:

e[ r1Lei ], j5er j ,

exp@ ia [ r1Lei ], j #5exp~ ia r j !. ~62!

We define an operator to measure the electric flux throug
plane perpendicular to each of the three independent cy
of the torus. For example,

Fx
E5 (

ny ,nz50

L21

e[nyy1nzz],x , ~63!

with similar definitions forFy,z
E . These fluxes are constan

of the motion, and are in fact conserved byany local, gauge-
invariant dynamics. Furthermore, because there is no ele
charge in the ground state, by Gauss’ law we can make a
trary incremental deformations of the specified plane with
changing the flux. These fluxes define the electric topolog
sectors of the gauge theory.40

Now imagine the model is in the Coulomb phase, wh
in the ground stateF i

E50. We imagine threading one quan
tum F0

E of electric flux through the system in, say, thex
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direction. Because the energy is proportional to* rE
2, the

most favorable situation is for the flux to spread itself u
formly through the system, so thatEx5F0

E/L2. This electric
field is purely longitudinal and does not fluctuate, so there
a total energy costE;Uc(F0

E)2/L. Therefore, in the thermo
dynamic limit, all states with a finite number of electric flu
quanta threading each direction of the 3-torus become de
erate with the ground state. Just as in the case ofZ2 topo-
logical order, these states are locally identical to the grou
state~local correlation functions will be unaffected!, but glo-
bally distinct.

What aboutmagnetic topological sectors of the gaug
field? Because@brr8 ,F i

E#50, these can clearly be specifie
simultaneously with the electric sectors. We define magn
fluxesF i

B just as above:

Fx
B5 (

ny ,nz50

L21

b[nyy1nzz],x , ~64!

and similarly forFy,z
B . This expression is a~lattice! surface

integral over a plane bisecting the system, which has
topology of a 2-torus due to the periodic boundary con
tions. Because this is a closed surface andb is the curl of a
compact vector potential, the magnetic flux is quantiz
F i

B52ni
B .

However, there is an important difference from the case
electric flux: because magnetic charge fluctuates in
ground state,F i

B is not a constant of the motion in the mi
croscopic theory. Within the Coulomb phase, though,
magnetic flux defined in the effective theory does comm
with H 0, the effective Hamiltonian written in dual variable
Magnetic charge fluctuations can mix states with differe
values of the flux by creating a monopole-antimonopole p
and separating the particles along one lattice direction, o
to have them annihilate when they complete their perio
journey around the system~Fig. 6!. Because the monopole
are gapped, the rate for this process is suppressed expo
tially in the system size, and it does not occur for a lar
enough sample. As with the electric sectors, the magn
flux sectors become degenerate ground states asL→` with
energies scaling to zero as 1/L. In the microscopic theory, we
expect that̂ F i

B& will label the topological sectors within the

FIG. 6. Illustration of threading a magnetic flux quantu
through one direction of a periodic system by creating a monop
antimonopole pair~left!, and moving it apart until the charges retu
to the same position and annihilate. One is left with no monopo
and magnetic flux threading the system~right!.
4-12
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Coulomb phase; in confining phases magnetic charge flu
ates wildly andF i

B is no longer a good quantum numbe
even approximately.

To summarize, theU(1) spin liquid on a 3-torus has
topological degeneracy characterized by sixintegers, with
energies that vanish as

E;Uc

~F0
E!2

L
@~nx

E!21~ny
E!21~nz

E!2#

1Kc

~F0
B!2

L
@~nx

B!21~ny
B!21~nz

B!2#. ~65!

In the RK point effective actionUc vanishes, so the electri
topological sectors have zero energy, with only correctio
from irrelevant terms possible.

C. Spin-spin and plaquette-plaquette correlators

We first consider the two-pointSz correlation function
both in the Coulomb phase and at the RK point; the tra
verse part of the spin-spin correlator is not gauge invar
and vanishes. The mappings of Sec. II C tell us this is gi
by the electric-field correlator. In the cubic case we use
three-site unit cell containing$rx,ry,rz%. Because of the ori-
entation convention for the electric field, we haveSr i

z

5exp(iK0•r )er i , whereK05(p,p,p) and we taker50 in
the A sublattice. Therefore the spin-correlation function w
be shifted from the electric-field one byK0 in the Brillouin
zone. For the pyrochlore we use the unit cell of Sec. I
containing the four sites (R,i ), whereR labels the centers o
up-pointing tetrahedra~up-pointing diamond sites!. In this
caseSRi

z 5eRi .
We calculate the equal-time correlatorC i j

E(r2r 8)
5^Ei(r )Ej (r 8)& in the gauge-fixed continuum theory for th
Coulomb phase, whereEi5e i jk] jYk . We illustrate the cal-
culation with a single component

C zz
E ~R!5

Kc

2vp
E d3k

~2p!3

kx
21ky

2

k
eik•R

5
Kc

2vp
E

0

L dk k3

~2p!3E dV8sin2u8exp~ ikRcosg!,

~66!

where we have imposed the hard momentum cutoffL, g is
the angle betweenk and R, u8 is the angle betweenk and
thez axis, and theV8 integral is over the angular direction o
k. Expanding the exponential in Legendre polynomials
cosg, and using the addition theorem to rewrite these
terms of spherical harmonics, the integral can be done to

C zz
E ~R!5

K c

p2vpR4
~2 cos2u21!. ~67!

Here u is the angle betweenR and thez axis. We have
dropped terms oscillating at the cutoff wave vector, wh
are unphysical artifacts of the hard cutoff. Alternatively, w
can use a soft cutoff by insertinge2k/L in the integrand,
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integrating over allk space, taking the limitR@L21, and
keeping only the dominant powers ofR to recover the same
result. In the general case we find

C i j
E~R!5

K c

p2vpR6
~2RiRj2R2d i j !. ~68!

The striking angular dependence of this correlator is
manifestation of the inherent vectorial structure of theU(1)
spin liquid, which comes in turn from the vector fields
U(1) gauge theory. For the pyrochlore model in theU(1)
spin liquid phase we have

^SRi
z SR8 j

z &;~ei !k~ej ! lCkl
E ~R2R8!, ~69!

where ei are unit vectors connectingR with its nearest-
neighbordiamondsites. In the cubic case,

^Sr i
z Sr8 j

z &;exp@ iK0•~r2r 8!#Ci j
E~r2r 8!. ~70!

In the RK point effective theory, a similar calculatio
shows that both the radial and angular dependence of
correlator change. The correlator takes the familiar ‘‘dipol
form

C i j
E2RK~R!5

K cm

8pR5
~3RiRj2R2d i j !, ~71!

falling off as 1/R3.
It is also interesting to calculate the correlations of t

kinetic-energy density. In our ring exchange models t
naturally lives on the plaquettes and in the cubic case has
form

« rr85
1
2 ~S1

1S2
2S3

1S4
21H.c.!5cosbrr8 . ~72!

In the pyrochlore model, Eq.~72! looks the same, but with
ring exchange on the hexagonal plaquettes as in Eq.~9!.
Long-range order atkÞ0 in ^« ri« r8 j& would indicate a
plaquette density wave state with broken translation sym
try. To simplify notation we work out the cubic case, whe

^« ri« r8 j&;^cos~ b̃ri !cos~ b̃r8 j !&0

5exp~2^b̃2&0!cosh~^b̃ri b̃r8 j&0!. ~73!

The prefactor involvinĝ b̃2&0 is a nonuniversal constant. A
large separation, the second factor can be evaluated in
continuum theory, giving

^« ri« r8 j&;C$11@C i j
B~r2r8!#21•••%. ~74!

We can immediately write down the magnetic-field co
relator by duality, which simply interchangesUc and Kc
within the Coulomb phase. Therefore

C i j
B~R!5

Uc

Kc
C i j

E~R!, ~75!

and the kinetic-energy density exhibits power-law 1/R8 cor-
relations and a nontrivial angular dependence.

The RK point theory does not have this self-duality pro
erty, so we need to evaluate another integral to find
4-13
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magnetic-field correlator. Using a hard cutoff, one findsonly
unphysical oscillatory terms. Using thee2k/L soft cutoff, the
result is C i j

B2RK(R)}1/LR6. This cutoff dependence indi
cates that the angular dependence is probably nonunive
since there should be other 1/R6 contributions with nontrivial
angular factors that have been left out of the continu
theory.

D. Monopole propagator

In this section we calculate the monopole propagator
verify that it falls off exponentially in space and imagina
time, both in the Coulomb phase and at the RK point. Thi
one of the key properties of theU(1) spin liquid, since at the
transition to any nearby confining phase the monopoles
proliferate and condense. It is most convenient to focus
the equal-time monopole propagator^mR

†mR8&, working on
the spacetime lattice. ForRÞR8, this expectation valuevan-
ishestaken with respect toS lat

0 because it creates magnet
charge at two points. To understand the true behavior
need to include magnetic charge fluctuations and add
corrections, Eq.~55!, to the Gaussian action.

For simplicity, we consider only the restricted set of co
rection terms

2dS5v2
t(

t,r
cos~2ã rt!1v2 (

t,^rr8&

cos~a rr8
0

!cos~2ã rr8!.

~76!

We want to calculate the propagator in perturbation theor
dS,

^m̃R
†m̃R8&5

1

Z)
t,r,m

E @dã r,m~t!#

3FexpS i (
^rr8&

Brr8ã rr8D exp~2S lat
0 2dS!G ,

~77!

whereB is the classical magnetic field due to a monopo
antimonopole pair atR and R8, respectively. To obtain a
nonvanishing contribution, we need to bring down correct
terms until the complex exponential has been modified
create no magnetic charges. To lowest order we obtain

^mR
†mR8&;v2

uR82Ru K expS i (
^rr8&

Brr8ã rr8D )
rr85R

R8

→ cos~2ã rr8!L
0

,

~78!

where the product of cosines is taken over the shortest
connectingR andR8; for simplicity we restrict our attention
to geometries where this is unique, although this is iness
tial. We have also dropped the background fielda0, which
gives only an overall sign. The gauge-invariant part of
expectation value comes from the term in the product
cosines that threads one magnetic flux quantum fromR to
R8, giving a new magnetic fieldB8 with zero divergence,
and allowing us to express the result as the expectation v
of a gauge-invariant operator:
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^mR
†mR8&;S v2

2 D uR2R8u K expS i (
^rr8&

Brr8
8 ã rr8D L

0

. ~79!

What the perturbation theory has done is exactly connect
monopole and antimonopole with a Dirac string.

The exponential decay is clear from the prefactor in E
~79!. To evaluate the corrections to this, we apply t
Faddeev-Popov procedure to the functional integral for
gauge-invariant expectation value, and calculate using
photon propagator. We couldnot have done this at the outse
since the original operator was not gauge invariant. It is m
convenient to integrate by parts inside the exponentia
obtain a result in terms of the classical vector potential a
the electric field:

K expS i (
^rr 8&

Arr 8
8 ẽrr 8D L

0

5expS 2
1

2 (
r ,r8,i , j

Ar i8 Ar8 j
8 ^ẽr i ẽr8 j&0D . ~80!

The necessary integral is quite difficult to evaluate, so
resort to power counting to determine the largest poss
contribution. Consider a spatial separation ofR between
monopole and antimonopole. One contribution will com
from the region near the pair, giving a factor ofR6 from the
integration,R22 from the two vector potential factors, an
R24 from the electric-field correlator in the Coulomb phas
These factors multiply to give a constant, so we expect t
the largest possible contribution to the integral is logarithm
in R, which contributes only a power-law prefactor to th
propagator. Other contributions involving regions far aw
from the pair make subdominant contributions. At the R
point there is an extra power ofR from the electric-field
correlator, and the dominant possible contribution is linea
R and gives a correction to the correlation length.

Finally it is clear from these considerations that t
unequal-time propagator is not substantially different, a
decays exponentially in space and time.

V. EXACT GROUND-STATE WAVE FUNCTION

In this section we return to the microscopic spin mode
and use the exact ground state at the Rokhsar-Kivelson p
to extract information about the physics nearby. We be
with a discussion of the structure of the wave function a
some simple properties that can be seen analytically, t
proceed to a discussion of the numerical evaluation of s
eral quantities. In addition to various equal-time correlati
functions, we make use of a remarkable property of RK-ty
points discovered by Henley41 to approximately evaluate th
imaginary-time monopole propagator.

We will consider finite-size cubic and pyrochlore lattic
in this section. To fix notation, for the cubic latticeL denotes
the number of sites on a side of a periodic system. In
pyrochlore case we take periodic boundary conditions so
R and R1Lai are identified, and we can think ofL as the
number of tetrahedra along one periodic direction.
4-14
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A. General properties

The RK wave function is an equal-weight superpositi
~with positive coefficients! of all possible dimer coverings
consistent with the local dimer constraint. In the spin mod
the electric field can only take on the values61/2, and it is
convenient to visualize dimer coverings as zero-diverge
configurations of an electric field that can point only forwa
or backward on each link. Within the vast superposition th
are components of every electric topological sector. Si
these are not mixed by the dynamics they should be thou
of as degenerate but distinct ground states. The RK p
exhibits the electric sectors ofU(1) topological order, and a
in the Gaussian RK action they are exactly degenerate e
in a finite-size system.

To understand what sector to focus on, it is profitable
consider first-order perturbation theory indVNf away from
the RK point. The first-order shift in the ground-state ene
is dE5dV^Nf&, where^Nf& is the average number of flip
pable plaquettesin a given sector. For dV.0, sectors with
no flippable plaquettes, and hence no dynamics, will have
lowest energy, and we reach the usual conclusion that a
lence bond crystal obtains on this side of the RK point. F
dV,0, however, the sector with the greatest average flip
bility wins out. This is in some sense the most disorde
sector, and should haveF i

E50; several numerical check
support this conclusion. We are interested indV,0, so we
focus on the zero-flux sector.

We also wish to consider sectors that violate the ze
divergence constraint and contain spinons. Within each s
sector, the lowest-energy state is again given by an eq
weight superposition of all electric-field configurations co
sistent with a background charge density specifying
spinon positions. These are exact eigenstates with en
Jz/2 times the number of spinons, which in a finite-size s
tem is always even. Consider in particular a sector with t
spinons. There is clearly zero energy cost no matter how
spinons are moved around, so the RK point is deconfined
has no Coulomb potential between static electric charg
Again, this is consistent with the effective action, Eq.~48!.

Finally, we calculate the variational energy of the ma
netic topological sectors. In general, we create a class
configuration of the vector potential by acting on the R
ground state with the operatorO5exp(i(^rr 8&Arr 8err 8), just
as for the special case of monopole creation in Eq.~61!. Of
course we expect only that the resulting state has some o
lap with the desired eigenstate of the gauge theory. Den
the RK wave function by

ucRK&5
1

AN (
$er i %

u$er i%&, ~81!

where the sum is over all configurations of the electric fi
in the desired sector andN is the number of states contrib
uting to the sum. DefiningNf@$e%# to be the number of flip-
pable plaquettes in a given configuration, andPf@$e%,h# to
be one if the specified plaquette is flippable and zero oth
wise, the variational energy of interest is given by
06440
ls

e

e
e
ht
nt

en

o

y

e
a-
r
a-
d

-
ch
al-
-
e
gy
-
o
e

nd
s.

-
al

er-
te

r-

Evar@A#5^cRKuO †HRKOucRK&

5
Jring

N (
$e%

FNf@$e%#2(
h

Pf@$e%,h#

3expS 2i (
rr 8Ph

Arr 8err 8D G
5

Jring

N (
$e,h

Pf@$e%,h#@12cos„~curlA!h…#.

~82!

Here we use notation appropriate to the cubic model;
generalization to the pyrochlore is obvious.

Specifically, consider the case whereO threads one quan
tum of magnetic flux through thex direction in the cubic
model. Then curlA52p/L2 for plaquettes in thex direction
and zero otherwise, and

Evar5nfL
3Jring„12cos~2p/L2!…, ~83!

where nf is the average flippability per plaquette. ForL
→` this energy goes to zero as 1/L as expected, and furthe
gives a rough value for the ‘‘magnetic stiffness’’ at the R
point: K'nfJring . Using the numerical methods discuss
below, for the cubic model in the zero-flux sector we fin
nf'0.260. For the pyrochlore a similar calculation sho
K'2nfJring ; the factor of 2 arises because the flux pas
through two kinds of hexagons. In this case we find nume
cally nf'0.175.

B. Monte carlo algorithms and ergodicity

Because the RK wave function has positive and eq
weights, equal-time properties can be evaluated by infin
temperature Monte Carlo for the associatedclassicaldimer
model. The simplest possible Monte Carlo step is to~1! ran-
domly choose a plaquette;~2! if the plaquette is flippable,
flip it, otherwise do nothing. As desired, this algorithm pr
serves the electric fluxF i

E . For the measurement of th
quantities discussed below, the algorithm was run for
many as 1011 Monte Carlo steps at a given system size.
some cases these long runs were necessary to achieve
accuracy because the desired quantity was very small.

It is not clear whether the single ring-move algorithm
ergodic within each electric-field sector. ForL52 cubic and
pyrochlore systems we have performed an exact enumera
of all allowed configurations. In the cubic case the zero-fl
sector contains 880 states; 864 of these have flippa
plaquettes~with nf51/3 on average!, and are connected un
der single ring-moves. The other 16 states have no flippa
plaquettes. For the pyrochlore model there are 384 zero-
states connected under single ring-moves (nf51/4) and 12
zero-flux states with no flippable hexagons. Evidently t
single ring-move algorithm is not ergodic within the zer
flux sector, but it does not matter if we fail to access sta
with no flippable plaquettes. In our simulations we gener
initial configurations for larger lattices by periodically re
peating a state from the flippable part of theL52 zero-flux
4-15
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sector, so more insidious problems could occur if this sec
breaks up into multiple flippable subsectors in larger lattic
each closed under single ring-moves.

For an analogous two-dimensional model, it is possible
prove that single ring-moves are ergodic in each electric
sector~see Appendix B!. In the absence of a similar result i
three dimensions, we have checked some of our results
the cubic model with an algorithm due to Barkema and Ne
man that we believe is probably ergodic.42 This algorithm is
illustrated in Fig. 7; in the present case the basic idea i
flip loops of arbitrary length~including single-rings!, keep-
ing only noncontractible loops that do not changeF i

E . All
properties measured using both algorithms gave the s
results; we present two examples in the following secti
While we have not implemented an algorithm with ‘‘loo
moves’’ for the pyrochlore model, due to the great similar
of all measured properties to their cubic analogs it see
unlikely that ergodicity is an issue.

C. Equal-time properties

We measured the electric-field–electric-field correlator
both the cubic and pyrochlore models. To extract
asymptotic dependence most simply we focused on the
relators measured at a separation of half the system siz
should be noted that one cannot trivially extract the angu
dependence discussed in Sec. IV C by this method, since
two electric-field vectors in the correlator will be connect
by many paths with length scaling asL but with different
angles. For the cubic model we show our results
^ex(Lx/2)ex(0)& in Fig. 8. Data from both algorithms ar
shown and the agreement with the 1/R3 decay predicted by

FIG. 7. Illustration of the loop move algorithm of Barkema a
Newman looking at one plane of the cubic model. One rando
chooses a starting pointA and executes a random walk along t
lattice bonds, moving only along the direction of the electric-fie
vectors. Once the random walk intersects itselfB, the tail is re-
moved and the electric field is reversed everywhere along the
sulting loop, preserving the zero-divergence constraint. If only c
tractible loops are desired~as in our simulations within the zero-flu
sector!, one can simply throw away noncontractible loops and
peat these steps until a contractible loop results; this does not a
detailed balance. The single ring-move only reverses the ele
fields around elementary plaquettes such as that atC.
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the effective theory is very good. The same conclus
obtains for the pyrochlore model~but with only the single
ring-move algorithm!. In that case the correlator measur
was ^e0(La1/2)e0(0)&; the data are shown in Fig. 9. Mea
surements of other orientations of the electric-field correla
in both models all showed the same 1/R3 decay.

To measure the equal-time monopole propagator it is n
essary to address some subtleties that arise when putting
jects with gauge charge in a finite-size system. First, it
clear that because the system is a compact manifold with
boundary, it must have zero total magnetic charge. Since
operatormR

†mR8 creates a monopole-antimonopole pair, th
is not a problem for the propagator. However, consider
cubic lattice and letR2R85nxxÞ0. For any value ofnx

there will be planes whereFx
BÞ2pnx

B , which is not allowed
for a compact vector potential as discussed in Sec. IV B.

y

e-
-

-
ct
ic

FIG. 8. Log-log plot of the equal-time electric-field correlator
the RK point of the cubic model, in the orientation discussed in
text. The circles denote data from the single ring-move algorith
while the diamonds were obtained by the loop move algorith
Error bars are on the order of the symbol size. The line is a guid
the eye with slope23 to show the very good agreement with th
1/R3 decay expected from the effective action.

FIG. 9. Log-log plot of the pyrochlore RK point electric-fiel
correlator in the orientation discussed in the text. As in Fig. 8,
line is a guide to the eye with slope23.
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can ameliorate this problem by creating adouble-strength
monopole-antimonopole pair, but even in this case the o
allowed separation isnx5L/2. Because of these complica
tions, in the cubic case we only measure the double-stre
propagator at a separation of half the system size,

Gc
M~L/2!5^~m(R1Lx/2)

† !2~mR!2&. ~84!

By time-reversal or Ising symmetry,Gc
M is real. We obtained

the vector potential appropriate for Eq.~84! by first solving a
discrete Poisson’s equation by numerical matrix inversi
then feeding the solution into Eq.~59!. This was minimized
by a combination of simulated annealing and direct minim
zation ~i.e., zero-temperature simulated annealing!. Because
of the very rapid decay, it was only practical to measureGc

M

for L<8; results are shown in Fig. 10 and are consist
with exponential decay with power-law corrections.

On the pyrochlore lattice it is not possible to have doub
strength magnetic charges in the microscopic model~see
Sec. II E!, so for consistency with flux quantization we mu
consider a more complicated geometry. We look at the
lowing propagator, which creates two monopoles on adjac
up- and down-pointing~dual! diamond sites, and similarly
two antimonopoles separated by a distanceL/2:

Gp
M~L/2!5^m(R1La0/2)

† m(R81La0/2)
† mRmR8&, ~85!

whereR is an up-pointing diamond site andR8 is the down-
pointing site directly above. The results are shown in Fig.
and are consistent with exponential decay; we do not bel
the apparent lack of substantial power-law corrections is
nificant, since the coefficient of these corrections is presu
ably nonuniversal.

In the cubic model, we also measured the potential
tween a pair of static spinons in first-order perturbat

FIG. 10. Cubic model equal-time monopole propagator. T
vertical axis is the logarithm of the absolute value of the doub
strength propagator discussed in the text and the horizontal ax
system size. Data for both the single ring-move~circles! and loop
move~diamonds! algorithms are shown. For the loop move data t
error bars are smaller than the symbol size, and for the first
single ring-move data points they are obscured by the other s
bols. The results are consistent with exponential decay with pow
law corrections.
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theory away from the RK point. In the notation of Sec. V A
we considerdV,0. The coefficient ofudVu in the spinon-
spinon potential is given by

Vspinon~R!5^Nf~no spinons!2Nf~spinons!&. ~86!

To measure this quantity, we generated sectors with oneSz

51/2 spinon atr50 and another atr5(L/2)x1(L/221)y
for L>4. The results are shown in Fig. 12, and are cons
tent with a 1/r Coulomb potential. While the perturbatio
theory does not necessarily ‘‘know’’ whether a deconfini
phase with a Coulomb potential can be stable, it does in
cate Uc.0 for small dV,0. Since the Coulomb phaseis
stable, we conclude it indeed exists adjacent to the RK p
over a finite range 0.dV.dVmin .

D. Monopole lap

In our models it is possible to approximately measu
quantum imaginary-time correlation functions using only t

e
-
is

o
-

r-

FIG. 11. Pyrochlore equal-time monopole propagator. The v
tical axis is the logarithm of the absolute value of the propaga
Eq. ~85!. The results are consistent with exponential decay, with
indication of power-law corrections.

FIG. 12. Plot of the spinon-spinon potential defined in Eq.~86!
for several system sizes of the cubic model. The horizontal axi
the distance between the spinons,R5AL2/22L11. The curve is a
fit of the data to the functional formV11V2 /R.
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classical Monte Carlo dynamics. The key observation, du
Henley,41 is that at the RK point the master equation descr
ing the Monte Carlo dynamics of the single ring-move alg
rithm is identical to the imaginary-time Schro¨dinger equa-
tion. We will be interested in monopole correlation functio
built from the equal-time correlators constructed above.
the cubic case, for example, we measure

Cc
M~t!5^ÔMexp~2tHRK!ÔM

† &, ~87!

whereÔM
† 5(m(R1Lx/2)

† )2(mR)2. The analogous definition o
Cp

M(t) for the pyrochlore model is constructed from th
equal-time propagator, Eq.~85!.

To extract information about the spectrum from the sim
lation, it is useful to relate the units of classical Monte Ca
time to quantum imaginary time. LetNp be the total number
of plaquettes in the system. If we begin with some elect
field configuration$e% and execute one Monte Carlo step, t
probability of remaining in the same state is (
2Nf@$e%#/Np), while that of making a transition to each o
the states accessible by flipping one plaquette is 1/Np . We
now consider the time-discretized imaginary-time Sch¨-
dinger equation and fix the time stepDt to recover the same
values, which now enter as probabilityamplitudes. We con-
sider

exp~2DtHRK!u$e%&5@12DtHRK1O„~DtHRK!2
…#u$e%&

5~12JringDtNf !u$e%&

1JringDt(
$e8%

u$e8%&, ~88!

where the final sum is over those electric-field configuratio
connected to$e% by a single ring-move. It is only valid to
neglect the higher-order terms inDtHRK when Nf /Np!1;
in fact, the correspondence between thediscrete-time quan-
tum dynamics and the Monte Carlo dynamics~which are
necessarily discrete in our simulation! is only strictly valid in
this limit. In our modelsNf /Np is of order 1/5, so we expec
at best to make quantitative errors of about 10%, and
worst to get the wrong answer. This problem cannot be a
viated by the means at hand because the discrete clas
algorithm fixes the time step for the quantum dynamics.
more careful treatment would require a direct simulation
the master equation with control overDt, or quantum Monte
Carlo.

If we nevertheless expand the exponential, settingDt
5(JringNp)21 correctly matches the classical probabiliti
and quantum amplitudes. Using this relation, we write do
the appropriate quantity to simulate to measure
imaginary-time correlator

CM~t5t/JringNp!

5
1

N (
$e%

1

NT(t,$e%)
F (T(t,$e%)

@O M~$e%!#* O M
„T~ t,$e%!…G .

~89!
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Heret is an integer number of steps in Monte Carlo time, a
T(t,$e%) labels all possible Monte Carlo time evolutions
time t starting from the configuration$e%. The number of
such evolutions isNT(t,$e%) , and N is the total number of
electric-field configurations in the zero-flux sector. Final
we have definedÔMu$e%&5O M($e%)u$e%&.

We have measured the monopole imaginary-time corr
tors for both the cubic and pyrochlore models; results
shown in Figs. 13 and 14. Note that the extreme long-ti
behavior is not related to the gap; instead,ÔMucRK& will
have some overlap with the ground state, causingCM(t) to
approach a constant ast→`. As we go to larger system
sizes and the spatial separation of the monopole
antimonopole pair in the correlator increases, there is a c
exponential decay persisting for longer times. This is illu

FIG. 13. Logarithmic plot of the approximate monopol
antimonopole imaginary-time correlatorCc

M(t) for the cubic
model. The horizontal axis is imaginary time in units ofJring

21 . Data
are shown forL54,6,8; as discussed in the text, asL increases the
exponential decay in imaginary time becomes cleaner, sugges
the monopole is indeed gapped.

FIG. 14. Logarithmic plot of Cp
M(t), the approximate

monopole-antimonopole imaginary-time correlator in the py
chlore model. The horizontal axis is imaginary time in units
Jring

21 .
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PYROCHLORE PHOTONS: THEU(1) SPIN LIQUID . . . PHYSICAL REVIEW B69, 064404 ~2004!
trated for several system sizes of the cubic model in Fig.
From the numerical data one can extract a rough value
the energy of the monopole-antimonopole configuration
in at t50; in both cases this is about 4.5Jring . While these
results are approximate, it is unlikely that the monopoles
somehow gapless, given the circumstantial evidence fo
gap, particularly the very rapid exponential decay of t
equal-time propagator.

VI. DISCUSSION

In this paper we have argued for the existence of a fr
tionalized quantum disordered state, theU(1) spin liquid, in
spin models with a globalU(1) symmetry. While we found
it necessary to add an extra interaction to the easy-axis l
of the pyrochlore Heisenberg model to proceed analytica
we speculate that this may be only a crutch and that the p
easy-axis model is in theU(1) spin liquid phase. Both the
pyrochlore and cubic models have no sign problem, so
issue could be resolved by quantum Monte Ca
simulations.43 While it would be a remarkable result if th
easy-axis pyrochlore Heisenberg antiferromagnet wer
U(1) spin liquid, we believe the results in this paper a
enough of an ‘‘existence proof’’ that the phase is likely to
present in less tractable but more realistic microscopic m
els.

The converse problem, of determining the general
quirements for a spin model to exhibit an emergentU(1)
gauge structure, is of course more challenging. It would
pear that, since monopole excitations are required to ena
transition to a neighboring confined phase, any such ga
theory must be compact, and hence appearon the lattice.
Thus, unlike emergent global symmetries, which can app
at low energies and long wavelengths, an emergentU(1)
gauge structure would appear to admit only a limited deg
of spatial coarse-graining. Given the additional need
spin-carrying degrees of freedom, the unit cell of an em
gent gauge theory in a pure spin model would appea
necessarily contain more than a singleS51/2 spin. Based on
the present examples, which take advantage of the bipa
structure of the cubic and diamond lattices, it is tempting
speculate that the models should contain a natural bipa
sublattice. It is easy to see, however, that the emergent g
structure in these models is stable to adding arbitrary w
additional multispin interactions, including those that bre
any bipartite symmetries. Further understanding, includ
the important issue of whether theU(1) spin liquid is pos-
sible in a magnet with globalSU(2) symmetry, and if yes
what its properties might be, must await further study.

Certainly, the most interesting issue is whether theU(1)
spin liquid can be found in a real material. The simple
signature is the additiveT3 contribution to the specific hea
from the photon. Because it is likely to be possible to qu
titatively understand thephononspecific heat via indepen
dent measurements,39 this could provide a relatively clea
and simple test for emergent photons. Further theoret
work may be necessary to understand more delicate pr
of the photon, such as heat current and~possibly! Raman
scattering; phonon-‘‘photon’’ interactions and disorder m
06440
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play a nontrivial role. While disorder may be important f
some experimental properties, we remark that simple a
ments demonstrate that disorder does not destabilize
U(1) gauge structure or the gapless photon.

Since topological order can coexist with convention
broken symmetry, spin liquids are not the only good plac
to look for emergent photons. One can imagine, for exam
condensing spin-carrying but gauge-neutral excitations
our models this would lead to an ordered magnetic state w
gapless spin waves and aU(1) gauge structure. Understand
ing the possibilities for and properties of phases near
U(1) spin liquid is another problem worthy of consideratio
if contact is to be made with experiment. Very recently, Se
hil, Vojta and Sachdev have made the interesting sugges
that U(1)-fractionalization may provide the answer to som
of the puzzles of heavy-fermion materials.44 We leave these
intriguing issues aside to remark thatU(1)-fractionalized
states are a remarkable possibility for the physics of stron
correlated electrons inthree dimensions, heretofore a rela
tively unexplored area.

Finally, we note that Huse, Krauth, Moessner, and Son
are considering a model closely related to ours.45
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APPENDIX A: ENUMERATION OF SYMMETRIES

We enumerate below the action of the various symmet
of the cubic model on all the microscopic operators, both
dual and original variables.

~1! Discrete translations,r→r1R: The electric-field
transforms aser i→er1R,i , with similar expressions forb and
a. Because of the non-translation-invariant backgrounda0,
the dual vector potential obeys the more complicated tra
formation law

a ri→aR1r,i1daR1r,i , ~A1!

where the shiftda is defined to satisfy

1

p
~curlda!r1R,i5er1R,i

0 2er i
0 . ~A2!

~2! Lattice rotations: LetR rotate the lattice into itself
about some fixed origin. For example, take the origin to
r50 and make ap/2 rotation about thez axis. Then
R@nxx1nyy1nzz,x#5@2nyx1nxy1nzz,y#, and so on. We
have er i→eR[ r i ] , and similarly for b and a. Again a ri
→aR[ ri ]1daR[ ri ] , with (curlda)R[ r i ]5p(eR[ r i ]

0 2er i
0 ).
4-19
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HERMELE, FISHER, AND BALENTS PHYSICAL REVIEW B69, 064404 ~2004!
~3! Reflections: LetF denote reflection about a plane wi
normal vectorx, y, or z. For definiteness, choose the pla
with normalx at x50, then

erx→eF(r ),2x52eF(r )2x,x ,

er i→eF(r ),i ~A3!

for i 5y,z. The vector potential obeys a similar transform
tion law. The magnetic field and dual vector potential a
pseudovectorsand transform under reflections with an add
tional minus sign. Again,a transforms with an appropriat
shift da to compensate for changes in the background un
reflections.

~4! Gauge and dual gauge invariance: Under gauge tr
formations,arr 8→arr 81x r82x r , wherex is a phase defined
on the cubic sites. Similarly we have the dual gauge tra
formationsa rr8→a rr81l r82l r , with l rPpZ. In the action
the dual gauge transformations can be spacetime depen
with

a ri~t!→a ri~t!1l r1ei
~t!2l r~t!,

a rt→a rt1l r~t1e!2l r~t!. ~A4!

~5! Ising ~or particle-hole! symmetry:e→2e, a→2a,
andb→2b. Also a→a02a.

~6! Time reversal: Since spin operators obeyS→2S un-
der time reversal, we havee→2e, a→a1p, and b→b.
For consistency with the electric-field transformation la
a→a02a. In the action the latter relation continues to ho
as long as we also sendt→2t. Furthermore, the tempora
component of the dual vector potential transforms
a rt(t)→2a rt(2t2e). Note that the situation here is th
reverse of that in real electromagnetism, whereB changes
sign under time reversal andE is invariant.

These symmetries are all present in analogous form
the diamond lattice gauge theory. There is also an additio
global symmetry, which exchanges the two sublattices of
and down-pointing sites.

APPENDIX B: ERGODICITY OF SINGLE RING-MOVES
IN A SQUARE LATTICE MODEL

We consider the classical dimer model on the square
tice at infinite temperature, with two dimers touching eve
site. This is thed52 analog of the RK point of our cubic
model. We work in the electric-field language, whereer i
561/2 with i 5x,y, and (dive) r50. Consider anL3L
g,

.

06440
-
e

er

s-

s-

nt,

,
,

s

in
al
-

t-

system (L even! with periodic boundary conditions
e[ r1Lei ], j5er j , whereei5x,y. The zero-flux sector is speci
fied by the condition

(
nx50

L21

enxx,y5 (
ny50

L21

enyy,x50. ~B1!

We will show that any two states in this sector are connec
by a sequence of ring exchange moves on single sq
plaquettes.

The key step is to go to a height representation on the d
lattice with sites at the plaquette centersr5r1(x1y)/2. We
define

h~r1x!2h~r!522e[ r1(x2y)/2],y ,

h~r1y!2h~r!52e[ r1(y2x)/2],x . ~B2!

The content of this definition is that the height increas
decreases by 1 if we cross a link of the direct lattice w
electric field pointing to the right/left. If we fix the value o
the height on one site of the dual lattice these definitio
determine it uniquely everywhere. The height is well defin
because the electric field has zero divergence, and can
sistently be taken to have periodic boundary conditions
cause we are in the zero-flux sector.

A flippable plaquette has a height either above or bel
all of its four neighbors, depending on its orientation. The
fore, in a given configuration, the plaquettes with minimu
and maximum height will always be flippable, and eve
configuration has at least two flippable plaquettes. There
also two states with every plaquette flippable; up to ove
shifts of the height these have

h@nxx1nyy1~x1y!/2#56 1
2 @11~21!nx1ny#. ~B3!

These two configurations are connected by single ri
moves, since we can flip all the maximum height plaquet
in one to go to the other.

To complete the proof, we label configurations byDh
5hmax2hmin . This clearly takes on the minimum possib
value of unity in only the two maximally flippable state
Suppose we are in some other state withDh.1. Then we
can flip plaquettes of maximum height untilDh is reduced
by 1. This procedure can be repeated untilDh51 and we
reach one of the maximally flippable states. We have t
shown that any two states are connected by a sequenc
single ring-moves, because the maximally flippable states
connected to all states and to each other.
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