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Pyrochlore photons: TheU(1) spin liquid in a S=3; three-dimensional frustrated magnet
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We study theS=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis
exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model
has aU(1) gauge symmetry generated by certain local rotations abowtakis in spin space. Upon addition
of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-
sharing octahedra, we can write down the exact ground-state wave function with no further approximations.
Using the properties of the soluble point we show that these models entér(the spin liquid phase, a
fractionalized spin liquid with an emergeld(1) gauge structure. This phase supports gaj§sedL/2 spinons
carrying theU(1) “electric” gauge charge, a gapped topological point defect or “magnetic” monopole, and a
gapless “photon,” which in spin language is a gapless, linearly dispeiSing) collective mode. There are
power-law spin correlations with a nontrivial angular dependence, as wdl{ Bstopological order. This state
is stable toall zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a
convenient lattice version of electric-magnetic duality, we develop the effective description 0f 1Hespin
liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the
universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wave
function. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and
for making contact with experiments.
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[. INTRODUCTION order does not require a liquid ground state and can coexist
with conventional long-range order, we believe it is probably
The search for quantum spin liquid states in frustrateccommon in spin liquids and hence in some of the nearby
magnets can be traced back at least as far as the early sugrdered states. Very recently, many of these ideas have been
gestion of a resonating valence bond state in the triangulgsut on firmer ground by the emergence of several micro-
lattice Heisenberg modélAlmost 15 years later, the sugges- scopic models supporting stable fractionalized phases in two
tion of such a state in the undoped higjp-cuprateset off  and three dimensiorfs*
an explosion of interest in two-dimensional spin liquids., Despite these recent theoretical successes, an unambigu-
Mott insulators at half filling withno broken symmetries  ous experimental realization of these ideas is still lacking.
Frustrated Heisenberg models on the square, triangular, aiddeed, spin liquid states seem rather rare; is topological or-
kagomelattices have all received significant attention as cander rare as well? Faf,-fractionalized states this question is
didate systems for quantum disordered ground states. Whildifficult to answer, because the gapped visons have no effect
there has been comparatively little theoretical work on quanen easily measurable low-energy properties. Clever propos-
tum spin liquids in three-dimensional frustrated magnetsals have been matfeand carried odf” to directly detect
materials with magnetic ions on the pyrochlore lattiEég.  topological order in the cupratéwith negative results thus
2) may be good candidates for spin liquids and other exotidar), but these experiments are difficult and rely on properties
states. To give one example, recent neutron-scattering expeonf the phases proximate to a topologically ordered stase.
ments on ZnGIO,, a S= 3/2 pyrochlore Heisenberg antifer- topological order is difficult enough to observe that it is im-
romagnet, suggest a nontrivial disordered Stabove a tran-  possible to say at present how rare or common it is.
sition to Neel order accompanied by a lattice distorficat Fortunately it may be possible to shed some light on the
12.5 K. experimental situation. In this paper, we present two models
Meanwhile, much work has been devoted to understandef three-dimensional S1/2 frustrated magnets, one on the
ing the properties of possible spin liquid states, independemtyrochlore lattice, the other on a related network of corner-
of their existence in particular microscopic models. Most ofsharing octahedréhe links of the cubic lattice, as shown in
the proposed spin liquid states support deconfiBedl/2  Fig. 5. Both these models exhibit a fractionalized phase, the
spinons; such states are fractionalized, in that some of thg(1) spin liquid. This state has an emergéntl) gauge
elementary excitations carry quantum numbers that are fractructure that gives rise to several remarkable properties:
tions of those allowed in a finite-size system. Fractionalizedhere is agapless“artificial photon” excitation, a gapped
states can be precisely characterized by thejpological spinon carrying “electric” gauge charge, a gapped “mag-
order,® which in the simplest scenario is associated with thenetic” monopole, an emergentrlfCoulomb” potential be-
topological sectors of an emergent, deconfinifig gauge tween pairs of spinons and monopoles, &{d ) topological
field® The “vison,” a gapped vortexlike excitation that car- order. If this phase exists in a real material, the gapless pho-
ries theZ, flux,” must also be present. While topological ton should have important implications for low-energy ther-
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modynamics, transport, and spectroscopy; therefd(é) U(1) Spin Liquid
fractionalization may be easier to find in experiments. Such $

states, thus far realized in largespin model® and bosonic 777 Ising order
Hubbard-type model¥ 12 arise as the deconfined or Cou- -] | -
lomb phase of compadt/(1) lattice gauge theory. While 0 1 V/Jring

most work on spin liquids has focused ds<2, motivated
by the cuprates and the conventional wisdom that quantum
fluctuations are more effective at destroying long-range order

in low dimensions, thaJ(1) spin liquid only occurs ind

=3; for d=2 the Coulomb phase of compdd{(1) gauge FIG. 1. Phase diagram for both models. The paramétéy;,q
theory(with gapped matteris always unstable due to instan- is the relative strength of the Rokhsar-Kivelson potential and the
ton effectst® XY ring exchange that obtains in the easy-axis limit of the Heisen-

Both models are of intrinsic interest as examples of tracberg model. The soluble point is located\ét)i,q=1, which is a
table but nontrivial frustrated magnets. The pyrochloresPecial deconfined point of the adjac&i(1) spin liquid. Just to
model is particularly appealing due to its simplicity: its deri- the right of the soluble point the models go into an Ising ordered
vation begins with the nearest-neight®+1/2 Heisenberg ;tate. SqﬁlClentIy far to the left we _expect Ising order_, while at
antiferromagnet. Taking the limit of large easy-axis exchangdtermediate values o¥/J;iyq states with broken translation sym-
anisotropyJ,>J, simplifies the problem by breaking the lmfcitryf b#t no magnetic order are a'?° POS.S'ble'. 'mmed'ately to the
spectrum into extensively degenerate manifolds with Iarg(?zutountk:ojvot)luebiteer?to Ic)r}tir:gé;rg;iesg:gg;:glrj\;d exists over a finite
separations 00(J,). It is then possible to write an effective '

Hamiltonian describing the splitting of the low-energy mani-
fold, using standard techniques of degenerate perturbati
theory inJ, . This effective Hamiltoniarhasa U (1) gauge

structure, which forms the foundation for our subsequen(/ : : - :
. o . ; : arious othe - -
analysis?® Another point of view, equivalent at the level of ou r low-energy properties bi(1)-fractionalized

. : Lo . phasegeither theU (1) spin liquid, or phases with coexisting
ﬁ]eor:grb222?61?552“/;%5@?;2? m;hﬁmggg: 'mggi?grog? t';f:)onventional and topological ordetf such a phase exists in
general < 108, 1 w gy O NG real material, we speculate that it may be possible to probe
model isunitarily equivalentto a U(1) gauge theory. It is

not obvious how to treat the resulting model analytically, but photons” with photons via Raman scattering.
upon addition of an extra six-site interaction term it can be
tuned to a soluble point where it is possible to write an exact
ground-state wave function with no further approximations. We begin Sec. Il with a derivation of the pyrochlore
The models can be reinterpreted as quantum dimer modetaodel starting from the Heisenberg antiferromagnet. In Sec.
(QDM’s), and the extra term as the analog of the Rokhsartl B the cubic (or corner-sharing octahedranodel is dis-
Kivelson (RK) potential in the square lattice QDR As will cussed. The remainder of Sec. Il is concerned with demon-
be explained in detail below, the properties of the solublestrating the equivalence of the spin models to frustrated com-
point allow us to locate th&J(1) spin liquid adjacent to it. pact U(1) gauge theories and developing a useful lattice
Since this state is stable tll zero-temperature perturba- version of electric-magnetic duality.

tions, it persists over a finite extent of the phase diagram Beginning from the dual description, Sec. lll develops the
(Fig. 2). Furthermore, stability to large but finitg, implies  effective description of th& (1) spin liquid and the soluble
that theU (1) gauge structure persists in the absence of mipoint in terms of Gaussian quantum electrodynamics. Cor-
croscopic local symmetries and is truly emergent. On theections to effective action and to the scaling equalities be-
purely theoretical side, we believe these models give the firdgtveen microscopic and effective degrees of freedom are dis-
examples ofU(1) gauge theories that have a deconfiningcussed in Sec. Il C. Section IV contains a discussion of the
phase even in the limit of infinitely strong bare coupling. Theuniversal properties of th&/(1) spin liquid, including its
first suchZ, gauge theory was discovered only recently byU(1) topological order. In Sec. V we present our analysis of
Moessner and Sondhi. the soluble point ground-state wave function, which gives

The effective theory of thdJ(1) spin liquid and the strong support for the validity of our effective picture. We
soluble RK point is simply Gaussian quantum electrodynameonclude in Sec. VI with a discussion of open issues, focus-
ics (QED). At the RK point, which is itself a special decon- ing on the challenging problems of understanding this phys-
fined limit of the generic phase, the “electric stiffness,” or ics in a broader range of models and looking for
coefficient of E? in the Hamiltonian, vanishes. This is a U(1)-fractionalized phases in real materials.
higher-dimensional generalization of the effective picture of
the szqzuare lattice QDM in terms of a coarse-grained height Il. MODELS AND MAPPINGS
field.

The U(1) spin liquid has power-law correlations with
nontrivial angular dependenc¥,(1) topological order, and We begin with the nearest-neighb&=1/2 Heisenberg
supports gappe8’= 1/2 spinons, a gapped topological point antiferromagnet on the pyrochlore lattice. This structure is a
defect(the “magnetic” monopolg and a gaples§’=0 col-  three-dimensional network of corner-sharing tetrahéBig.

lective mode corresponding to the photon of the gauge
OtrPIeory. The latter excitation makes an additivé contribu-
tion to the low-temperature specific heat and should affect

A. Outline

A. Pyrochlore model
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FIG. 2. The pyrochlore latticéleft) and one up-pointing tetra- ~

hedron(right). One sublattice of tetrahedra is shaded and the other
transparent. The thickened bonds show the location of a pyrochlore

hexagon. Each suqh hexagon is a membe_r of one of fpur Orlentac?rder degenerate perturbation theory for the easy-axis pyrochlore
tions of kagomeattice planes. The numbering of sites in the up-

inting tetrahed the right is th i din the t tHeisenberg antiferromagnet. Proces&@@sand (b) give only trivial
Eom. El(g) 1e2rathe ;on ;n c nlgtt' 'S etconv§r1t|qn tjhsed.m t'e €Xlconstant shifts of the energy. Procdsy leads to anXY ring ex-
or1=0,1,2, the fcc bravais fattice vectay points in the direction change term acting on hexagonal plaquettes.
given by looking from site 3 to site

FIG. 3. Depiction of the processes contributing to the third-

tion theory. The first-order contribution is easily seen to van-
ish. We will need to go to third order, where we have the
general expression

2). It can be obtained by translating one “up-pointing” tet-
rahedron(shown on the right of Fig.)2through the fcc Bra-
vais lattice vectorsR=ngyay+n,a;+n,a,. We choosea,
=X, a;=x/2+3y/2, and a,=x/2+y/2\/3+ \2/3z. Basis

P P P
vectors for the reciprocal lattice are defined Hy Hett=(1—P) —H’gH’JrH’gH’gH’ (1-P).
= \2meja;X g, so thata-b;=275;. The four sites in ! ! ! ®)
each unit cell are distinguished by an index0, . ..,3, as

indicated in Fig. 2. Lattice sites are denoted either by singldlere P projects onto the orthogonal complement of the
italic letters such a$ or by pairs R,i) when we wish to ground-state manifold. To describe the processes contribut-

specify the position of a site within the unit cell. ing in Eq.(5), it is useful to work in the standard hard-core
Up to a constant the Hamiltonian can be written as a sunfposon language for the spins, whe&&= +1/2 corresponds
over tetrahedra: to the presence/absence of a boson. Each terf’imops

bosons along nearest-neighbor bonds; acting on a state in the
= 2 (S)?2 B low-energy manifold, each hop creates two tetrahedra with
24 ' S{#0. At second order ir{’, bosons can hop and then
return along the same borj#ig. 3@)]. This can always oc-

}Nh?reSh:Eietls is thfe total spilr] on ti?e tetrahedrenFol- o, on four bonds in every tetrahedron, thus giving only a
owing the analysis of a generalized kagotieisenberg an-  .,ngtant contribution to the energy. At third order another

fciferromagnet in Ref. 9, we introduce easy-axis exchange asonstant contribution arises from single bosdns holes
Isotropy: hopping around triangular facéig. 3b)]. There is also a
_ / nontrivial ring exchangeprocess acting on the hexagonal
H=H,+H', 2 ; o
plaquettes(see Fig. 2, where hexagons containing three
evenly spaced bosons can be rotated as shown in Fy. 3

Jz Z\ 2 i i i i i
Hi=> > (SH? (3)  The resulting effective Hamiltonian is
t
Her= (3213 (31 13,= DN,
’ JL +Q—
H :?;) (S'S +H.c), (4
ij

+ing2 (5%, 878,858 +He),  (6)
whereJ,>J, . This reduces the glob&U(2) invariance to
U(1)xZ,. We first consider the point, =0, where{ re-  whereN; is the total number of tetrahedra,,ing=3Jf/2J§
duces to a classical Ising model, with ground states specifiednd the sum is over hexagonal plaquettes. The labeling of the
by S{=0 on all tetrahedra. It was argued by AnderSdhat,  spin operators inside the sum is given by moving around
almost identically to Pauling’s model for water i¢ethis  each hexagon in an arbitrary direction. Note thif,;;,S7]
Ising model has an extensive ground-state degendiacy =0, as must be true faany effective Hamiltonian acting in
finite T=0 entropy per site the low-energy manifold, whatever the form Af .

A small J, >0 introduces quantum fluctuations and lifts =~ We focus on the extreme easy-axis limit described by
the extensive degeneracy; this splitting is encapsulated in aHes¢, but note in passing that a finite but larde would
effective Hamiltonian using standard techniques of perturbaintroduce small fluctuations out of the ground-state manifold.
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While these will not affect universal properties, they can
matter for the short-distance correlation functions of some
microscopic operators. This can be understood formally by a
more sophisticated execution of the perturbation theody in
that accounts for splitting of the low-energy manifold and
mixing of higher states on an equal footiftgThe main re-
sult is that the problem at finitd, can be mapped, by a
unitary transformation, order by order ih onto a trans-
formed Hamiltonian acting only within the low-energy mani-
fold where S;=0. This mapping accounts for finitd, by
generating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these correc-
tions for simplicity and use only the results of the standard
degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign FIG. 4. A small piece of the diamond lattice. The links form

of the ring term by a unitary transformation. On any given hexagonal loops corresponding to the pyrochlore hexagons. These
site we can make the transformatioc®—<? and S& are the shortest possible closed paths on the diamond lattice. The

—.—S* by making aw rotation about thez axis in spin hexagon with three thickened bonds depicts the dimer positions on

space. One transformation with the desired effect, consisting fliPPable hexagon. The alternating full and empty bonds corre-
of 7 rotations on a pattern of sites, is pond to alternating up and down spins.

S (77 The RK point obtains forHgx=Hy+ JiingNs (i.e., V
=Jiing), and the ground state is an equal-weight superposi-
* . * tion of all possible dimer coverings of the lattice that satisfy
Spi—expiQ;-R)Sg;, 8 . . . ; ;
ri— XRIQ-R) Sy ® the constraint of two dimers touching every site. In the spin
whereQy=Q;=(b;+b,)/2 andQ,=Q;=0. language, this wave function can be written as the projection

After this transformation the Ham|lton|an takes the form of a transverse ferromagnet:

Hy=—Jing 2 (SIS, S, S5 +He), (9 lurd=1-PII |5'=112), (10)

where the constant terms have been dropped. Models similavhere, as in Eq(5), (1—7P) projects onto theS{=0 mani-
to this one on the kagontesquar€®?’ triangular’®® and  fold. For completeness, we also exprégsin terms of spin
other lattices! whereXY ring exchange of spins or bosons operators:N¢=2 5 Pyip(O), where Py;,(O) gives unity
is a dominant term, have recently been shown to exhibit @acting on a flippable hexagon and zero otherwise. One has
variety of unusual phases and critical behavior. The physics
of the pyrochlore ring exchange model should be accessible
to quantum Monte Carlo studies; while the original Hamil- Pip(O)= 2 H
. . . +1jeO
tonian in Eq.(2) has a sign problent{, does not.
H, can be reinterpreted as a quantum dimer model on thgve will be interested in the properties of the generalized ring

dlamond IattICE(Flg 4) with two dimers tOUChlng every site. model H +HV in the V|C|n|ty of the soluble p0|nt
To see this, observe that the centers of the pyrochlore tetra-

hedra form a diamond lattice. Each nearest-neighbor dia-
mond link passes through exactly one pyrochlore site, so we Largely to simplify the geometry of the presentation, we
can reinterpret the pyrochlore spins as diamond link variintroduce an alternate model that we find has many of the
ables. The smallest closed loops in this lattice contain sixame properties as its pyrochlore analog. The model is the
links and correspond to the pyrochlore hexagons. We say @DM on the cubic lattice, witlthree dimers touching every
dimer is present on a given bondS$f=1/2 or absent ifS"  site. We consider only the most local dynamics, which ro-
=—1/2. S{=0 becomes the constraint that every diamondtates the configuration on square plaguettes with two dimers
site touches two dimers, and the ring exchange move is then opposite sides, and the corresponding Rokhsar-Kivelson
most local dynamics preserving this constraint. Each term igpotential that counts flippable squares. Reversing the map-
H,, acts on a “flippable” hexagon, one containing alternatingping above, we can also think of this as a spin model with
fu|| and empty bonds as in Fig. 4, by rotating the dimersS=1/2 on the links of a cubic lattice, or, equivalently, on the
around it. Nonflippable hexagons are annihilated. sites of a lattice of corner-sharing octahedra with their cen-
As first realized by Rokhsar and Kivelson, dimer modelsters at the cubic site§ig. 5. The octahedra play the role of
generically have a point in their parameter space where it ithe pyrochlore tetrahedra, with the total spin on e&h
possible to write down the exact ground-state wave=0. We denote cubic sites by boldface letters likand
function?! To reach this point in our model, we add the termidentify the links by specifying either pairs of adjacent sites,
Hy=VN;, whereN; is the number of flippable hexagons. or one site and the direction of the link. For example, the link

+ o(— 1)182) (12)

B. Cubic model
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The gauge structure suggests we may gain insight by
thinking about the model asld(1) lattice gauge theory, an
approach that proved helpful in understanding the square lat-
tice QDM 2 In fact, it is possible to formally rewrité(, as a
A AN pure gauge theory on the cubic lattice. To see this, we find it
SN convenient to soften the hard-core constraint on the bosons
R B AN oA by explicitly introducing an on-site repulsion term in the

- pry Hamiltonian. We also go to quantum rotor variables,
) Ry N €Z and ¢, e[—m,m), with commutation relations
b ~ [ i nej]=i6ij6, . (Here and elsewhere we commit a
standard abuse of notation and formally denote a constraint
on the eigenvalues of an operator as a constraint on the op-
erator itself)y Using the relationsS?=n—1/2 andS*=exp
(xi¢), we have

FIG. 5. lllustration that thdinks of the cubic lattice are equiva-
lent to thesitesof a lattice of corner-sharing octahedra.

connecting a site with its nearest neighbor in the positixe Z (ny o —1/2)%2— KE COS p1— ot p3— ha),
direction ( +x) is denoted by I(,r +x) or (r,x). Using this <rr’> 13
notation, we express the dimer kinetic term as a four>site (13

ring exchange for the spins: where the numbering inside the cosine proceeds around the

perimeter of the given square. This is a faithful representa-
B tion of the spin model, Eq12), in the limit U/K— <0, which
He=~ ”“92 (SIS, S3S +H.c) just imposes the hard-core constramt =0,1.
We now define an orientation on the cubic links, which
_ o . _ we take to point out of thé sublattice and into th& sub-
‘]”“gzr (SoSrxySreyaSytHE+ ), (12 atice. This allows us to define oriented link variables by

where the numbering in the first line runs around the perim- € =*=(Nyr —1/2), (14)
eter of each square plaquette, and in the second line only one

orientation of plaquette is shown explicitly. As before, we A=y . (15
will be interested in the vicinity of the soluble point &, . . o

+Hy. Here we take the plus/minus sign wheries in the A/B

sublattice. Since,, = —¢,/,, these variables can be thought

It is also interesting to note that, as faf,, the pure ring X -
exchange modek, can be derived as the easy-axis limit of of as components of vector fields taken along the links of the
¢ ttice. Putting these definitions into the Hamiltonian, we

a Heisenberg antiferromagnet. In this case one begins wijf
spins on the network of corner-sharing octahedra with'aV®
nearest-neighbor exchange, and an additional exchange of

the same sign and magnitude between spins at opposite
e ,—K2, co Ay 16
points of the same octahedron. The Hamiltonian can be writ- <§> " z ,r%D " (18
ten as a sum over octahedra, and the analysis proceeds ex-
actly as before. The sum inside the cosine is taken in an oriented fashion

around the links of the given square plaquette, and is thus a
discrete line integral o, . along a smallest possible closed

C. Frustrated U(1) gauge theor L . . .
(1) gaug y path. This is a lattice version of the curl, so we define

Both the cubic and pyrochlore models have an ekHqt)
gauge invariance, as is generally the case in dimer models. In
the pyrochlore model, this arises because of the local integer (curla)n= 2 ay. (17)
conserved quantit®; . The local symmetry is generated by ' em
rotations about the axis in spin space on all the sites in a
given tetrahedronG,(«) =exp(aS). These generators com-
mute with one another and the Hamiltonian. It is important to
emphasize that this gauge symmetry is generatguhygical
transformations and has nothing to do with any redundanjg

Equation (16) is invariant under gauge transformations
written in the usual forma,,r—a, + x, —x,. Therefore
ar,, behaves like a vector potential, and sirig, ,e; ]

, €, plays the role of an electric field. Since the vector
otential is a 2r periodic phase, this is evidently@mpact
auge theory. The electric charge is given by the lattice di-
ergence ok,

in our description. These statements also hold for the cubi
model, with octahedra substituted for tetrahedra. For no
we shall focus on the cubic model for ease of presentation.
All of the statements in this and the following section can be
generalized simply to the pyrochlore case; this is summa- (div e),= E er=*S{ct (18
rized in Sec. Il E below. rer
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where the sum is over the sites adjacent.tdn the ground SU(N) antiferromagnets®? and in the gauge theory de-

state there is no gauge charge sirfée,=0, and single scription of the square lattice QDRA.There, one considers

gauge charges have a large gap of ordler an integer-valued electric field in a background of static
Supposer is a site in theA sublattice. Acting withS|,  charge; of course, our model can also be viewed this way by

creates two octahedra witf =1, atr andr+x. In the making a shift of the electric field. _

gauge theory language, there is a positive electric charge at 10 9ain insight into the possible phasestf, we briefly

and a negative one at+x, where the sign of the charge "€View the properties of the standard unfrustrated gauge

comes from the orientation convention, Ed4). We can theory, which has the same Hamiltonian as our model but an

now act with the infinite string operator integer electric field® There are two phases, separated by a
transition at J/K),~1. For U/K>(U/K)., the “strong-
o coupling” side of the transition, the model enters a confining

= + - phase smoothly connected to the trividl=c vacuume,,,
Osuing nl:Io Ster @2y e (19 =0. In this phase all excitations are gapped, and static
sources of the electric field are confined by a linear potential.
This hops the gauge charge originallyratx off to «, leav-  For U/K<(U/K). one enters the deconfining Coulomb
ing an isolateds’=1 octahedron at. The twoS*=1 octa-  phase, so named because static gauge charges interact via a
hedra together carr§;,,,=1, so the single remaining octa- 1/r Coulomb potential and are thus free to propagate. At low
hedron is evidently &?=1/2 spinon®3° The spinons are energies, the effective description of the Coulomb phase is
single electric gauge charges and can propagate freely in simply Gaussian QED, so there is a gapless, linearly dispers-
deconfining phase of the gauge theory; such a state is thergrg photon with two transverse polarizations.
fore fractionalized. We note that, because spinons cannot hop In the Coulomb phase, magnetic monopoles are gapped
from one sublattice to the other, there are in fact two spinorand interact via a i/ magnetic Coulomb potential. The
flavors. monopoles incorporate the compact nature of the magnetic
Because the theory is compact, magnetic charge is alsiteld, which is not important at low energies in the decon-
allowed. We define dual lattice sites by serif characters fined phase. In the confined phase, however, the magnetic
=r+(x+y+2)/2; these are located at the centers of the cufield fluctuates wildly, its periodicity is important, and the
bic “boxes” of the direct lattice. The links of the dual lattice monopoles have proliferated and condensed. This distin-
are naturally associated with the square plaquettes of the diguishes the two phases: in the Coulomb phase the monopole
rect lattice. Using this correspondence we define a magnetigropagator decays exponentially, while in the confined phase
field on the dual links byrb,, = (curla);. The sense of the it goes to a constant. This distinction is more robust than the
lattice curl is taken counterclockwise looking from the point Wilson loop, which fails to differentiate between the phases
r' to r. The lattice divergence (db), gives the magnetic in the presence of matter fields.
charge inside the box at Naively this divergence vanishes  Returning to the frustrated gauge theory, we can infer that
since each terna,, occurs twice, with opposite signs, but it also has a Coulomb phase at smalK. This should be so
this is not the case becaubés a periodic variable invariant because in the deconfined phase the discrete nature of the
underb—b+2. In fact we have (dib),=2n, for integer electric field is unimportant, so the half-integer naturepf
n,; the magnetic charge is automatically quantized. It is conwill not play a role. We will be interested in whether the
venient to takeb, e[ —1,1), so thah,=0,+1,=-2 on each Coulomb phase survives in the opposite limit of strong cou-
box. It is also possible to have.= —3 in our convention, pling, perhaps stabilized by additional terms in the Hamil-
but this measure-zero point in the configuration space ofonian.
magnetic fields should be ignored. While electric charges are
locally conserved in the low-energy manifold, there is no D. Electric-magnetic duality

such conservation law for magnetic charge and we expect In recent work on other models witkY rina exchanae. it
n,#0 even in the ground state. While this means the groun « 9 ge, I y
as been useful to make a novel “plaquette duality

state always has some local fluctuations of magnetic chargg, ¢ -i026.28| the case of the frustrated gauge theory,

it does not necessarily contain monopoles, which are L . : o
. : . laguette duality is in fact identical to the more familiar
smoothly varying defect configurations unaffected by a smalP ) . : .
amount of coarse-graining. electric-magnetic duality fc.)U(l). gauge theques. We shaI_I
make use of the dual cubic lattice defined in the preceding

The model, Eqg.(16), looks identical to the standard ) ; . . .
S : : section. We define oriented variables on the dual links
Hamiltonian formulation of compact(1) lattice gauge c 7 and by e[~ 1,1), which we take to be canonically

theory, but there is one difference of critical importance in ~ ™. . . . .
the limit of interestU/K— . Here, the electric field takes coMugateib,a]=i on the same dual link, zero otherwise.
on half-integer rather than integer values. In the case of int@‘-S discussed abovéy: is the magnetic field, defined by
ger electric fields, the vacuum in the largelimit is trivial:
e=0 everywhere with small fluctuations. In our model this
limit enforces the nontrivial constraimt= =1/2. This is an- where the sense of the curl is again taken counterclockwise
other expression of the inherent frustration, so we refer to théooking fromr’ to r. The conjugate variable will play the
model as a “frustrated gauge theory.” This situation is essenrole of a “dual vector potential,” and is related to the electric
tially the same as that arising in the larlyelimit of bipartite  field by

b, = (curla)g, (20
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0
m(e, —e. )= (curla)g«, (21 1 2
! Scd:_zln K 2 (Ararr’+arr_ar’r)2
T

where the curl is taken around tkdeial square plaquette en- ()

circling the direct link joiningr to r’, and again the orien- €U o
tation is given by the right-hand rule. Hee§ , = +1/2 is a t > [(curla)os+ e, 12, (27)
o L 272 [O*
static, divergenceless background field; this is necessary for :
consistency withe, , e Z+1/2. With these definitions, the whereA f=f(7+¢€)—f(7).
dual commutation relations are consistent with the original The action, Eq(27), is essentially a higher-dimensional
ones. generalization of the height model partition function arrived
In dual variables the Hamiltonian is at by similar manipulations in the context of the square lat-
tice QDM 2° Significantly, it differs in having a local rather
U than a global invariance, under spacetime-dependent dual
Hoa=—— > [(curla)gx+ 7€) 12— K>, codmby), gauge transformations of the form, —a,+A \. In fact,
27° g* (re"y S.q has the same structure as noncompact lattice QED, ex-
(22)  cept for the discrete nature of the fields. This encodes the
important physics of the magnetic monopoles. In Sec. Il
where the first sum is over dual plaguettes. The constraint gie|ow, it will be useful to imagine softening the constraint of
zero electric charge is now automatically satisfied, sincejiscreteness on the fields to interpolate between the dual par-
dive=div(e+curla/m)=0. However, magnetic charge tjtion function and an effective description of the Coulomb
can take on continuous values in the dual Variables, and Or}ﬂ]ase_ With the soft Constrai[‘imp|emented by the “correc-
should impose the constraint div=27. This constraint tions” in Eq. (55)], the theory is identical to a more familiar
commutes Witmcd since it is invariant under the dual gauge dual representation dﬂ(l) gauge theory Consisting of a
transformationse,s— a + Ny =\, Where \,e wZ. Note  noncompact gauge field minimally coupled to scalar mono-
that because magnetic charge is not locally conserved, we agles.
not allowed to demand div=0.
It is useful, and enlightening, to write down the Euclidean
action obtained by a Trotter expansion in eigenstates of the

dual vector potential. As usual, one begins with the partition Ve now return to the pyrochlore ring modal, . In this
function case the diamond lattice with sites at the centers of the tet-

rahedra(discussed in Sec. Il Aplays the role the cubic lat-
tice did for the cubic model. Denotindiamond sites by
boldface characters, we soften the hard-core constraint on the
bosons and go to quantum rotor variables living on the dia-

E. Pyrochlore gauge theory and duality

Zeg=Tr(exp(— BHca) P). (23

Here P=II,P, is a projection operator imposing the quanti-

. . mond links:
zation of magnetic charge:
U
Ho=> > (N —1/2)2
P= >, &((divb),—2a,,/m) (")
a € 7wl
1 —K2 coddy— o+ b3~ dat ds—bg). (29
=5 2 exfiag(divb)]. (24) ©

Here the second sum is over the hexagonal loops of the dia-
mond lattice(Fig. 4), and the numbering inside the cosine
Breaking the exponential in E¢23) into N,=p/e time  proceeds around the perimeter of the given hexagon. The
slices, and inserting® once in every time slice, one has  diamond lattice is bipartite, so we define an orientation by
declaring that links naturally point out of the “up-pointing”
Zeq=Tr(exp( — eHqq) PN (25) sites and into the “down-pointing” one&orresponding to
up- and down-pointing tetrahedra, respectiyelje define
an oriented electric field and vector potential exactly as in

= E expl— S.q), (26) Egs.(14) and(15). The Hamiltonian then takes the form of
{ar, (1)} the diamond lattice frustrated gauge theory:
where the indeyu = 7,X,y,z. The imaginary-time component _B 2
of @, comes from the Poisson-resummed form of the pro- Hy= 2 <§> Errs K% co rrgoa"’ : (29

jector, Eq.(24). The spatial components enter as the eigen-
values of the statel§«,;(7)}) used to form the resolution of It is evident that the lattice curl now naturally lives on the
the identity at each time slice. Following very similar ma- hexagons of the diamond lattice.

nipulations to those in Appendix A of Ref. 26, one obtains  Again the electric charge has a simple interpretation in the
the dual action spin language:
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dive),=*$f. 30 B

(dive), == (30 2.1 1] J [da, .(7)]exp—S%, (36
Tetrahedra witl5{= =1 are now theS’=1/2 spinons carry- T

ing unit gauge charge. Single spinons can be created by gnere7, is a real-valued field. It will often be convenient to

string operator similar to Eq19). For smallU/K the model o the full spatial lattice structure, in which case we can

should again enter a deconfining phase where the spinons are,. ~ . . . .
free to propagate. definea in terms of the microscopic variables by tteanpo-

We define a dual lattice of plaguette variables by putting a{al coarse-graining:

site at the center of every pyrochlore hexagon. This is also a o°
pyrochlore lattice, and it will be useful to think of its sites as a=[an,li— =2, (37)
the links of a dual diamond lattice with sites labeled by serif * . 2

characters. Each hexagon of the dual lattice encircles a link,o brackets ]; denote an average over high-frequency

of the d?rect lattice, and vicg versa. As before, ma_gneticmodes in imaginary time, and we have subtracted the time-
charge lives on the dual lattice sites. The dual variables,

again with the commutatdib,a]=i on the same link, are independent, nonfluctuating backgroumﬁi e 77 defined by
defined on the dual links by
(38)

1
0 _ 0
;(curla Jox=—2€,,,

m(ey —ed)=(curla@)ox, (31)

with @2 =0. If (as we always do in practigeve restrict our

attention to spatially periodie?r, with zero average electric
with the sense of the lattice curls determined as in the cubiflux in every direction,a® can also be taken to be periodic.
case. Here (dib),=2n,, with n,=0,=1. The Hamiltonian This subtraction simplifies the relation between the electric

takes the form field and dual vector potential, since

b, =(curla)s, (32

U ey =[curl (a— a®/2)]gx«. (39
Hpa==— 2 [(curla)ox + ), 12— K >, cogmhy). . . _ o
2 o* (re" On a space-time lattice, the action looks almost identical
(B3 toS.4in Eq. (27):

One can derive an action in eigenstates of the dual vector

: : ; - X ) g, ~ o~ o~
potential as in the previous section, with the result: Sloatzj > > (At a,—an,)?
T
Zpa= 2 exp(—Spa), (34) g ~
PE e (D} {ar )} P +§ > (curla)? (40)
T O*
and . ) ) )
The only difference from the microscopic model is that the
1 2 fields are now continuous. We will also have occasion to
Spdz—zln(—) > (At o= ap,)? retain the spatial lattice structure but take the time-
™ eK (") continuum limit, in which case we write
GU 0 1 ~ ~ ~
+ 277_2 T§* [(Curl Cl’)o* + 71-err ’]2' (35) S?C:RJ dTZ (r?,.ar,r + &y GfrrT)z

(")
The constraint of magnetic charge quantization @Div -
e 27 enters as before, giving rise to the temporal dual vector ) dTE* (curler)?. (41)
potential fields inZ,. .
The parameters here are related to those in(EQ). by K
Ill. EFFECTIVE THEORY =(eg,) ! andU/=g/e, anda,, now has units of inverse
time. This action corresponds to the effective dual Hamil-

A. Coulomb phase effective action tonian (in the sector with no magnetic chajge

It is well known that the low-energy description of the

Coulomb phase of compatt(1) gauge theory is noncom- o K ~y U ~
pact QED with no matter fields. In our case it will be con- Ho=% 2 bt 5 2* (curla)?, (42)
venient to work in dual variables to formulate the effective {m) -

theory, which more naturally allows the inclusion of mag- which can be obtained simply by expanding the cosine in Eq.
netic charge fluctuations. Depending on the purpose at han@?2). The lattice effective actions for the pyrochlore model
different formulations of the effective action will be useful. look identical to Eqs(40) and(41), where the only change

To fix notation, we show them all here. In each case thenecessary is the replacement of the sums over dual square
partition function is of the form plaguettes with sums over dual hexagons.
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Finally, in order to take the spatial continuum limit, we ization of Eq.(45) also cancels all off-diagonal terms on the
introduce a continuum four-vector field ,(r,7), formally  cubic lattice. Working in the time-continuum action, we find

defined by the replacements the lattice propagator
ai—l(a-Y), - - 2m)* 8w+ o)) S(k+k')Kg,,
i—1(8-Y) kot o)~ 2TV et 00 A KK
~ whtUKg(K)
a,—Y . (43 (47)

Here g are the vectors connecting the sitéo its nearest whereg(k)=2%;(1—cosk;). On the diamond lattice, even
neighbors, in either the cubic or diamond lattice, énsla  more complicated Faddeev-Popov terms seem only to cancel
microscopic length on the order of the lattice spacing. Nasome of the off-diagonal terms.

ively it seems we have thrown away too much information in  Finally, it is important to note that this procedure is only
the pyrochlore case, since there are four sites per unit cellegitimate for calculating expectation values of operators in-
but only three spatial components of the continuum vectorariant undercontinuousdual gauge transformations. Terms
field. However, there are alswo gauge degrees of freedom with only discrete dual gauge invarian¢see Sec. Il ¢

per unit cell of the diamond lattice, corresponding to changmust be handled more carefully; this issue arises in calculat-
ing (dive), on the two different sublattices. This leaves ing the monopole propagator in Sec. IV D.

us with two transverse degrees of freedom, the same number
as in the cubic model and the continuum theory. The full

. . . B. RK point effective action
spacetime continuum theory is

Given the microscopic gauge structure of our models, it is

1 reasonable to conjecture that the low-energy effective de-
Sgtc=i 2 f drd3r(9,Y—a,Y ,)? grees of freedom are simply noncompaldtl) gauge fields.
¢! The effective action should take the form of an expansion in
U, the lowest-order terms involving the dual vector potential
+ > .E<J d7d3r((9in - &jYi)z, (44) consistent with the symmetries. Generically this would take

the form of Eq.(44); however, as our analysis of the micro-
scopic models takes advantage of the special properties of
the Rokhsar-Kivelson point to conclude that the “stiffness”
or U, term for the electric field vanishes there, we must in-
clude a higher term. This leads us to propose that the RK
point of both models is described by the effective action

where .= Kl andU.=Ul [I| is the microscopic length in
Eq. (43)]. The spatial/temporal componentsYof, have units
of inverse length/time. The form is identical to the familiar
(dual) Maxwell action for electromagnetism with photon ve-
locity v,= VUK. This action can be used to obtain long-
wavelength properties of the Coulomb phase of either micro-

scopic model, but at the end of any calculation the allowed SgK:i E J' drd3r(d,Y;— 8,Y ,)2
spatial components of all vector fields are determined by the 2K 4T
lattice structure.
To calculate using any of these effective actions, it is con- + WCJ drd3r (VX (VX Y))2. (48)
venient to implement a gauge-fixing procedure. The well- 2

known manipulations of Faddeev and Pof?dell us that we ) o )
may add any function of the vector potential four-divergencéi€re W is the coefficient of the new term, whidtwhen

to the action. The standard choice, in our nonstandard notdf=0) is marginal in the renormalization-group sense and
tion, is must be included. While the theory remains gauge invariant,

the photon dispersion now vanishgsadratically, w~ k2.
Thel{, term is relevant, as can be seen by the usual power-
f d7d3r(4,Y ,+v2V-Y)2 (45) counting procedure, so this action cannot describe a stable
T p . . . .
phase. A small positivé/, will drive the system into the
i i Coulomb phase, while a small negati¢g will result in an
If we chooseé=1, as usual the off-diagonal terms in the gjectric-field “crystal”; in the dimer language this is a state
action are canceled, and we obtain the simple photon propggith |ong-range dimer order and no flippable plaquettes. As

1

Sep=—"—
ek

gator we argue in Sec. V, precisely this picture describes the phys-
o, ics of the microscopic models near the RK point, with the
(Y u(k,0n) Y, (K, @p)) relatione> (1—V/Jing)-
A very similar story is known to apply to the¢=2 square
4 ' ’
_ (2m)75(wn+ wp) S(K+K)Kg,, (4g  lattice QDM??In that case, electric-magnetic duality leads to

a height model partition function, which describes the fluc-
tuations of a discrete field living on the square lattice
where the Euclidean metric is defined gyT:vf,, 0,i=0i, plaquettes in 21 dimensions. Just as above, softening the
=0, andg;; = d;; . While these expressions hold in the con- constraint of discreteness naturally leads to the Gaussian ef-
tinuum, it is amusing to note that the obvious lattice regularfective action

wﬁ-ﬁ- ngz
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) ) ) o is not invariant under all lattice symmetries, the dual vector
Sheight:J d7dr[(d;h)*+ k1 (Vh)“+ ko(V<h)“]. potential transforms with additional shifts under these opera-

(49)  tions. Furthermore, the dual effective degrees of freedom

When ;=0 we have a description of the RK point, which andb transform exactly as their mi_croscopic counterparts.
has power-law dimer-dimer correlations. For small negative Rather than attemé)t a painstaking enumeration of all al-
«, the system goes into the staggered valence bond crystkﬂwed corrections t&”, we discuss some representative ex-
state. These have natural analogs in the three-dimension@"Ples. The corrections naturally fall into two classes; those
case. However, a small positivg leads to a confining state invariant undercor_1tmu_ousdua| gauge transfor_matlons and_
with broken translation symmef{®via an instability of the those not._ln Ham|lton|an language on the lattice, some typi-
Gaussian theory. This occurs because @§) with «,>0  Cal terms in the first class are
would describe the unstable Coulomb phase of pure
(2+1)-dimensional (1) gauge theory. In three dimensions,
however, the analogous phase is stable and should exist ad-
jacent to the RK point.

To calculate with Eq(48) we again carry out a gauge-
fixing procedure. We add the Faddeev-Popov term

W

= ’ Ind ’ =4

Hl:? % (curle)2+W' >, (curlb)2+u’ X &,
o* (')

A N
+K <2> b+ (54)
'

Terms involving discrete line integrals of both vector poten-

tials around closed loops larger than single plaquettes are
also allowed, as are terms containing the divergence of the
Although this does not cancel all off-diagonal terms, it leadsfields. While these terms are irrelevant, they can have quan-

1
— 3 2 2
SFP'RK_zgicJ drd®(9,Y,+K2V-Y)2. (50

c

to the relatively simple photon propagator titative effects, presumably accessible in perturbation theory.
L 4 , , All such corrections are also irrelevant at the RK point, ex-
(Y u(k,@n) Yo (K", @p))=(2m)" 0(wn+ wp) S(k+K') cept theW term, which contributes to th&), term in Eq.
X KoM, (K, 0p), 51 (48, . . .
MK, @n) 6 More interesting are those terms lacking continuous dual
where gauge invariance. Here we only consider the single-site

5 o 20 2 terms; in the spacetime lattice action these take the form
M, =K (wn+Kk?),

M,i=M,.=0, §2=—3 qzl v2qC08\( @, )cos 2q )
(') 4=
1
Mii=——=[m2w2+ KK+ m2K 2(k*— kD], . ~
ii f(wn,k)[ n R o( i)] —Er qzl vgqcos{anrT). (55
M, :m[ki ki(k®—K2m?)] (i#j), (52  In the first term thex® dependence is necessary to compen-
n sate the shifts irv under lattice symmetries. With appropri-
and ate choices of coefficients, when these corrections become
) 2o 5 2 4 large they have the effect of pinning the dual vector potential
f(wn, k)= (05 + K2k (M wr+ k%), (53 to take on discrete values. This allows us to interpolate ex-
with m= (K V,) ~ Y2 plicitly between the effective theong(, and the micro-

scopic partition function. Physically, the spatigl, part of
S2is amagnetic charge hoppinigrm. Its temporal compan-
ion is related to the discreteness of magnetic charge. There-
While all gauge-invariant corrections 182, are irrel-  fore, these corrections introduce magnetic charge fluctua-
evant in the renormalization-group sense, in order to undeitions into the effective theory. As should be expected when
stand the detailed realization of thi1) spin liquid(and the =~ magnetic monopoles are gapped, when these fluctuations are
nearby RK pointin any microscopic model it will generally small there is no associated instability. Formally, this should
be important to consider corrections to the effective actionbe the case because the correlation functions of q’E@QZ
Furthermore, we need to specify relations between the miare local in space and time. For example,
croscopic and effective degrees of freedom. db1 we
could write a,~ aM+_a2/2, but any corrections allowed by (COL2ay(7))CO 20 (7)) 0% Op1 B, (56)
symmetry will generically be present.
For ease of presentation, we focus on the cubic model; theecause continuous dual gauge invariancé rmakes each
lattice structure is unimportant for these results. The symmeeosine into an independent random variable.
tries of the microscopic model are listed in detail in Appen-  Finally, we consider corrections to the scaling equalities
dix A. It is important to note that, because the backgroufd between microscopic and effective degrees of freedom.

C. Corrections
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Some representative contributions in the case of the dudhined by solving thédiscretg Laplace equation of classical

vector potential are, in operator language electrostatics. The compact nature of the theory only modi-
fies the field near the core.
_ o * o _ In the effective theory, we can create a monopole with the
e~ (@ + ap,12)+ 2, €408 ay,)sin(2qay) operator
gq=1
o0 ~ T o . ~
~ ~ m, =exp i Bragy|. 60
+n;_0 C,l]’m(brr/)zn(curl e)2Dm+l+ . (57) ) F{ %) rr’ Xy ) ( )

) ) ) ) The exact choice oF in this operator is somewhat arbitrary;
This should really be interpreted as an instruction for whag,e requirement for monopole creation is that the surface
effective theory operators to use in the calculation of gaugg,ieqral of the magnetic field at large distances indicates the
invariant expectation values. These corrections are not '";E:esence of one magnetic charge. This arbitrariness does not
portant, and we will neglect them. The second term clearly, ier \when calculating long-time monopole correlators,
only leads to local corrections, while the third term and oth-, 1.1 will be dominated by the contribution from the
ers like it lead only to subdominant power Iaws, v_vhich will lowest-energy monopole eigenstétas not hard to see that,
always be present on the lattice. The conclusion is the samg yhe effective theory, our operator has very good overlap
for corrections to the magnetlc.ﬁeld, but for completeness W&yith this state. As long as the magnetic field is chosen to
show some of the representative terms spread the flux uniformly from the monopole center, long-
distance correlations should also be unaffected. Because
magnetic charge is createdrgt this operator isiotinvariant
under continuous dual gauge transformations. The monopole
gap is of order’C, and in the microscopic models is likely to

” 0 - be of orderd,;,4 as long asC does not renormalize too much
1+ 21 daqC08! (@, )cod2qay)+--- 1. (58 from its bare value. Therefore the monopoles have a much

- smaller gap than the spinons.

Using the correspondence between microscopic and effec-
IV. PROPERTIES OF THE U(1) SPIN LIQUID tive variables, we can write down a creation operator that
hould have at least some overlap with the true microscopic
onopole eigenstate:

e‘brr’~exp( ib,+i > di (curle)@(b,)2m 1+ ..
n,m=0 ’

Using the effective theory developed above, we now trea;
some of the more striking properties of tb€1) spin liquid.
Since the effective theories for both the generic Coulomb
phase and the adjacent RK point are quadratic in the fields, mf0=exp(i E A,,,e”,). (62
all the calculations can be done by simple Gaussian integrals. (rr’)

o _ _ This is written in terms of the direct variables to connect
A. Excitations and emergent long-range interactions with the spin language, where the monopoles are defect con-

As already mentioned, thel(1) spin liquid supports a figurations in theX'Y component of the spin. Because of the
gapped °=1/2 spinon carrying electric gauge charge, ahalf-integer electric field, the sign of is changed by a2
gapped topological point defect that plays the role of a magshift of any one of the4,,, . However, this overall sign does
netic monopole, and a gapless, linearly dispersing photoROt fluctuate since the electric fields change only by integer
with velocity v, . The spinon was discussed in Sec. Il C, andSteps. _
in the microscopic models takes the form of a tetrahedoon ~ Both the monopoles and spinons feel an emergent 1/
octahedroh carrying nonzerds?. The gap to the spinons is interaction, even though the microscopic Hamiltonians con-
very large, of orded, . tain only local operators. anS|der the field due to a conﬂgu—

The monopole is a classical configuration of the magneti¢ation of a few static electric gauge chardéise same dis-
field emanating from a point with nonzero magnetic chargefussion could be repeated for magnetic chargeis is given
atr,. For a compact gauge field on, say, the cubic lattice, th&y solving Poisson’s equatiov- E=ZX;q; 5(r —r;) to obtain
classical configuratiood of the vector potential is given by Coulomb’s Law. By gauge invariance the longitudinal part of
minimizing E does not fluctuate, so the field is simply given by its clas-

sical value plugransversefluctuations. This zero-point en-
ergy does not contribute to the energy difference between the
E[A]=— Z cog 7By) (59) charged state and the charge-free ground state, and one re-
(") covers the familiar X/ Coulomb potential. In the RK point
: . o , effective theory, this interaction is absent for the spinons, but
in the presence of a specified distribution of magnetic chargéyj present for monopoles, because there is no energy cost
which enters via the constraint (dB),=25rr0. In these ex- ¢, longitudinal electric fields.
pressions 7B, = (curl A);. Far from the center of the  Aword about the statistics of the charged excitations is in
monopole the magnetic field will be small, the energy isorder. Certainly, both monopoles and electric charges as dis-
approximately a sum oveBrzr,, and the minimum is ob- cussed above are bosonic. However, a simple argument
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shows that adyon a bound state of electric and magnetic

charge, has Fermi statisti¢sIf such bound states exist and . -
have lower energy than pure electric charges, then one coul

say that there are fermionic spinons. While this is a nonuni- >
versal question with no bearing on the low-energy physics, it ﬁ\

can be relevant in understanding the possible transitions oy - - |
of theU(1) spin liquid. The emergence of Fermi statistics in \\>_./

local bosonic models is also of great conceptual intefest,

although in the present case it is not clear what, if any, local

microscopic interaction will bind electric and magnetic
charge.

Finally we turn to the photon. In terms of the spins, itisa FIG. 6. lllustration of threading a magnetic flux quantum
linearly dispersingS’=0 collective mode oscillating be- through one direction of a periodic system by creating a monopole-
tween the Ising andXY parts of the spin vector. Like antimonopole paitleft), and moving it apart until the charges return
phonons these gapless excitations make the contribution tdo the same'position and.annihilate. Ohe is left with no monopoles
the low-temperature specific hea@photor‘(T)m(T/vp)3- and magnetic flux threading the systénght).

Since in real materials it should be possible to quantitatively ) )

understand the phonon contribution@¢T) by measurement direction. Because the energy is proportionalf{&?, the
of elastic modulf? this signature of thdJ(1) spin liquid most favorable situation is for the flux to spread itself uni-
should be easily accessible to experiments. Other potentiglormly through the system, so thig=g/L2. This electric
though |||(e|y more delicate, probes of the photon are |ow.ﬁe|d is purely Iongitudinal and does not fluctuate, so there is
temperature thermal conductivity and Raman scattering. Fia total energy cost~4,(®g)?/L. Therefore, in the thermo-
nally, the photon manifests itself in the power-law correla-dynamic limit, all states with a finite number of electric flux
tions discussed in Sec. IV C. gquanta threading each direction of the 3-torus become degen-
erate with the ground state. Just as in the casg,ofopo-
logical order, these states are locally identical to the ground
_ _ _ state(local correlation functions will be unaffectgdut glo-

In the theory ofZ,-fractionalized phases, the notion of bally distinct.
topological ground-state degeneradyas been very useful ~ What aboutmagnetictopological sectors of the gauge
both as a conceptual tool ang_%s a property that can be dij|g? Becauséb, ,®F]=0, these can clearly be specified

rectly probed by exper_imen? ~~"'The degeneracy is asso- gjmjtaneously with the electric sectors. We define magnetic
ciated with the topological sectors of a deconfinfyggauge fluxes B just as above:
, :

field, so it is natural to ask about the generalization of these

Y v VY

B. U(1) topological order

ideas toU(1)-fractionalized states. L-1
We will work with the microscopic Hamiltonian of cubic PE= > Brn y+n,2.x (64)
frustrated gauge theof§eq. (16)] on a 3-torus, a cube with ny.ng=0 Y

integral over a plane bisecting the system, which has the

Clr+igli= 6> topology of a 2-torus due to the periodic boundary condi-
tions. Because this is a closed surface and the curl of a
exp[ia[HLg]yj]:exp(iarj). (62 compact vector potential, the magnetic flux is quantized,
dB=2n8.

. . I
We define an operator to measure the electric flux through a However, there is an important difference from the case of
plane perpendicular to each of the three independent cyclegectric flux: because magnetic charge fluctuates in the

of the torus. For example, ground state®? is not a constant of the motion in the mi-
L1 croscopic theory. Within the Coulomb phase, though, the
PE= S e 63) m_agnetic flux defined in th_e ef_fective_ theqry does commute

X oy o A with 7 °, the effective Hamiltonian written in dual variables.

Magnetic charge fluctuations can mix states with different
with similar definitions for(I)EZ. These fluxes are constants values of the flux by creating a monopole-antimonopole pair
of the motion, and are in fact conserveddayy local, gauge- and separating the particles along one lattice direction, only
invariant dynamics. Furthermore, because there is no electrio have them annihilate when they complete their periodic
charge in the ground state, by Gauss’ law we can make arbjeurney around the systelifig. 6). Because the monopoles
trary incremental deformations of the specified plane withoutrre gapped, the rate for this process is suppressed exponen-
changing the flux. These fluxes define the electric topologicaiially in the system size, and it does not occur for a large
sectors of the gauge thed!. enough sample. As with the electric sectors, the magnetic

Now imagine the model is in the Coulomb phase, whereflux sectors become degenerate ground statés-as with
in the ground stat@iE=0. We imagine threading one quan- energies scaling to zero ad.1/In the microscopic theory, we
tum <IJ§ of electric flux through the system in, say, tke expect tha((l)iB) will label the topological sectors within the
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Coulomb phase; in confining phases magnetic charge fluctuntegrating over alk space, taking the limiR>A "1, and
ates wildly andCIDiB is no longer a good quantum number, keeping only the dominant powers Bfto recover the same
even approximately. result. In the general case we find

To summarize, thaJ(1) spin liquid on a 3-torus has a
topological degeneracy characterized by silegers with

energies that vanish as Cij(R)= 7Tzvae(ZRi Rj—R%8ij). (68)
Py (¢g)2[(nE)2+(nE)2+(nE)2] The striking angular dependence of this correlator is a
© L X y z manifestation of the inherent vectorial structure of thel)
(0B)? spin liquid, which comes in turn from the vector fields of
0 B\2, /B\2, [ -B\2 U(1) gauge theory. For the pyrochlore model in ti¢l)
Re L [(n)™+(ny)™+ (nz)]. (65) spin liquid phase we have
In the RK point effective actiod, vanishes, so the electric <SZRiSZRrj>”(Q)k(ej)|CE|(R—R’), (69)
topological sectors have zero energy, with only corrections
from irrelevant terms possible. where g are unit vectors connectin® with its nearest-

neighbordiamondsites. In the cubic case,

C. Spin-spin and plaquette-plaquette correlators . , ,
Pirepm and pradretie-pad (SS% )~ exdiKo- (r—r)ICE(r—r). (70

We first consider the two-poin&”* correlation function
both in the Coulomb phase and at the RK point; the trans- In the RK point effective theory, a similar calculation
verse part of the spin-spin correlator is not gauge invarianshows that both the radial and angular dependence of the
and vanishes. The mappings of Sec. Il C tell us this is givergorrelator change. The correlator takes the familiar “dipole”
by the electric-field correlator. In the cubic case we use thdorm
three-site unit cell containinfrx,ry,rz}. Because of the ori- .
entation convention for the electric field, we ha®; E-RKpy— ~eM o o
=exp(K,y-r)e,, whereK,=(m,,7) and we takeg =0 in Cij T(R) 7TRS(?’R'R‘ R%3i), 7D
the A sublattice. Therefore the spin-correlation function will
be shifted from the electric-field one B¢, in the Brillouin
zone. For the pyrochlore we use the unit cell of Sec. Il A
containing the four sitesR,i), whereR labels the centers of
up-pointing tetrahedrdup-pointing diamond sitgs In this
caseSy = €g; -

We calculat_e the equa]—time cprrelatou”:’iEj(r—r’) e =3(SS,S;S, +H.c)=cosb,, . (72
=(Ei(r)E;(r")) in the gauge-fixed continuum theory for the
Coulomb phase, wherg;= € d; Y. We illustrate the cal-
culation with a single component

falling off as 1R®.

It is also interesting to calculate the correlations of the
kinetic-energy density. In our ring exchange models this
naturally lives on the plaquettes and in the cubic case has the
form

In the pyrochlore model, Eq72) looks the same, but with
ring exchange on the hexagonal plaquettes as in (8.
Long-range order ak+#0 in (g4&.;) would indicate a
K, d3k k)2(+ k§ plaguette density wave state with broken translation symme-

CE(R)= % 5 K kR try. To simplify notation we work out the cubic case, where
pt (2) ~ ~
B ]Cc JA dkk3f 4o .nzg, R <8ri8r’j>~<Coibri)coibr’j)>0
20,0 (2] AT exRIkRe0SY), —exp— (B costi(Bbro). (73

(66)  The prefactor involvingb?), is a nonuniversal constant. At
large separation, the second factor can be evaluated in the

where we have imposed the hard momentum cukgffy is continuum theory, giving

the angle betweek andR, ¢’ is the angle betweek and

thez axis, and the&)’ integral is over the angular direction of <8ri8rrj>~C{1+[Cﬁ(f— 12+ (74)

k. Expanding the exponential in Legendre polynomials of ) ) . -

cosy, and using the addition theorem to rewrite these in'/€ can immediately write down the magnetic-field cor-
which simply interchangé#. and K,

terms of spherical harmonics, the integral can be done to fingelator by duality,
within the Coulomb phase. Therefore

_ K _ Us
cEZ(R)_Wzva4(2co§o 1). (67) CE(RFECCE(R)' (75)

Here 6 is the angle betweeR and thez axis. We have and the kinetic-energy density exhibits power-law®.tor-
dropped terms oscillating at the cutoff wave vector, whichrelations and a nontrivial angular dependence.

are unphysical artifacts of the hard cutoff. Alternatively, we The RK point theory does not have this self-duality prop-
can use a soft cutoff by inserting A in the integrand, erty, so we need to evaluate another integral to find the
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magnetic-field correlator. Using a hard cutoff, one fiody
unphysical oscillatory terms. Using tlee ¥'A soft cutoff, the
result is C5~ R (R)1/AR®. This cutoff dependence indi-

cates that the angular dependence is probably nonuniversa

since there should be otheiRf/contributions with nontrivial

PHYSICAL REVIEW B69, 064404 (2004

Zy”,) > . (79
| 0

What the perturbation theory has done is exactly connect the

[R—R'|
2) <ex;{i B!

'

>

)

<mLmR’>~ 2

angular factors that have been left out of the continuurfenopole and antimonopole with a Dirac string.

theory.

D. Monopole propagator

In this section we calculate the monopole propagator ang

verify that it falls off exponentially in space and imaginary

The exponential decay is clear from the prefactor in Eq.
(79). To evaluate the corrections to this, we apply the
Faddeev-Popov procedure to the functional integral for the
gauge-invariant expectation value, and calculate using the
hoton propagator. We coultbt have done this at the outset
since the original operator was not gauge invariant. It is most

time, both in the Coulomb phase and at the RK point. This isconvenient to integrate by parts inside the exponential to

one of the key properties of thé(1) spin liquid, since at the
transition to any nearby confining phase the monopoles wil

obtain a result in terms of the classical vector potential and

proliferate and condense. It is most convenient to focus on

the equal-time monopole propagat@nsmg:), working on
the spacetime lattice. F&t# R’, this expectation valuean-
ishestaken with respect t&}}, because it creates magnetic
charge at two points. To understand the true behavior wi
need to include magnetic charge fluctuations and add th
corrections, Eq(55), to the Gaussian action.

For simplicity, we consider only the restricted set of cor-
rection terms

>, cogal,)cod2a,).

—85=v3>, cod2a,,)+v,
T r(rr’)
(76)

the electric field:
exp i X Ar’r,~er,,)>
) 0

—od 3 3 A, B

r,rl i
The necessary integral is quite difficult to evaluate, so we
resort to power counting to determine the largest possible
contribution. Consider a spatial separation Rfbetween
monopole and antimonopole. One contribution will come
from the region near the pair, giving a factorRf from the
integration,R™2 from the two vector potential factors, and

e

1
e _Z

5 ) . (80

We want to calculate the propagator in perturbation theory ifR™* from the electric-field correlator in the Coulomb phase.

68,
TP f -
<mRmR’>_ZT,r,,u, [ ar,,u(T)]

exp i, By oy
(')

X

)exp(—S."at—a&}

(77

where B is the classical magnetic field due to a monopole-
antimonopole pair aR and R’, respectively. To obtain a

These factors multiply to give a constant, so we expect that
the largest possible contribution to the integral is logarithmic
in R, which contributes only a power-law prefactor to the
propagator. Other contributions involving regions far away
from the pair make subdominant contributions. At the RK
point there is an extra power & from the electric-field
correlator, and the dominant possible contribution is linear in
R and gives a correction to the correlation length.

Finally it is clear from these considerations that the
unequal-time propagator is not substantially different, and
decays exponentially in space and time.

nonvanishing contribution, we need to bring down correction

terms until the complex exponential has been modified to

create no magnetic charges. To lowest order we obtain

B emin).

(78)

RI
H COS{ZZW)

' =R

X | z Brrrarrr

<mJ|-£emR'>~U‘2R _R< e
(')

V. EXACT GROUND-STATE WAVE FUNCTION

In this section we return to the microscopic spin models,
and use the exact ground state at the Rokhsar-Kivelson point
to extract information about the physics nearby. We begin
with a discussion of the structure of the wave function and
some simple properties that can be seen analytically, then
proceed to a discussion of the numerical evaluation of sev-

where the product of cosines is taken over the shortest pa#ral quantities. In addition to various equal-time correlation
connectingR andR’; for simplicity we restrict our attention functions, we make use of a remarkable property of RK-type
to geometries where this is unique, although this is inesserpoints discovered by Henl&yto approximately evaluate the

tial. We have also dropped the background fieft§ which
gives only an overall sign. The gauge-invariant part of the

imaginary-time monopole propagator.
We will consider finite-size cubic and pyrochlore lattices

expectation value comes from the term in the product oin this section. To fix notation, for the cubic lattitedenotes

cosines that threads one magnetic flux quantum fRMo
R’, giving a new magnetic field' with zero divergence,

the number of sites on a side of a periodic system. In the

pyrochlore case we take periodic boundary conditions so that

and allowing us to express the result as the expectation valuR and R+ La; are identified, and we can think &f as the

of a gauge-invariant operator:

number of tetrahedra along one periodic direction.
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A. General properties Evarl Al=(#¥rkl O "HrkOl Yri)
The RK wave function is an equal-weight superposition 3
(with positive coefficients of all possible dimer coverings =23 > INi[{e}]- > Pil{e},O0]
consistent with the local dimer constraint. In the spin models N 0

the electric field can only take on the valued/2, and it is
convenient to visualize dimer coverings as zero-divergence ><exp( 2i > Arr,e”,)
configurations of an electric field that can point only forward

or backward on each link. Within the vast superposition there

are components of every electric topological sector. Since ~ Jring Z
these are not mixed by the dynamics they should be thought TN &b
of as degenerate but distinct ground states. The RK point

exhibits the electric sectors tf(1) topological order, and as (82)

in the Gaussian RK action they are exactly degenerate evaere we use notation appropriate to the cubic model; the
in a finite-size system. o . generalization to the pyrochlore is obvious.

To understand what sector to focus on, it is profitable to Specifically, consider the case whePethreads one quan-
consider first-order perturbation theory #¥Ny away from  tym of magnetic flux through th& direction in the cubic

the RK point. The first-order shift in the ground-state energymodel. Then curlt=27/L2 for plaquettes in the direction
is 6E=6V(Ny), where(Ny) is the average number of flip- and zero otherwise, and

pable plaquettes a given sectarFor §V>0, sectors with

noflippable plaquettes, and hence no dynamics, will have the Epar=niL33ing(1—cog27/L2)), (83)

lowest energy, and we reach the usual conclusion that a va-

lence bond crystal obtains on this side of the RK point. Fowhere n; is the average flippability per plaquette. For

8V<0, however, the sector with the greatest average flippa— this energy goes to zero ad 1as expected, and further

bility wins out. This is in some sense the most disorderedjives a rough value for the “magnetic stiffness” at the RK

sector, and should hav@iEzo; several numerical checks point: K~n¢J,,q. Using the numerical methods discussed

support this conclusion. We are interestedSvi<0, so we below, for the cubic model in the zero-flux sector we find

focus on the zero-flux sector. n{~0.260. For the pyrochlore a similar calculation shows
We also wish to consider sectors that violate the zeroK~2nJing; the factor of 2 arises because the flux passes

divergence constraint and contain spinons. Within each suctirough two kinds of hexagons. In this case we find numeri-

sector, the lowest-energy state is again given by an equa¢ally ny~0.175.

weight superposition of all electric-field configurations con-

sis}ent with_ a background charge d_ensity specifying the B. Monte carlo algorithms and ergodicity

spinon positions. These are exact eigenstates with energy . i

J,/2 times the number of spinons, which in a finite-size sys- Because the RK wave function has positive and equal

tem is always even. Consider in particular a sector with twoV€19Nts, equal-time properties can be evaluated by infinite-

spinons. There is clearly zero energy cost no matter how thigmperature Monte Carlo'for the assomatﬁaisspaldlmer
spinons are moved around, so the RK point is deconfined a odel. The simplest possple_Monte Carlo step |$_11)oran-
has no Coulomb potential between static electric charge _O"?'V choos_e a pIaquet_téZ) if the plaquet_te IS fl|ppable,
Again, this is consistent with the effective action, E4g). flip it, otherwise d_o nothw;g. As desired, this algorithm pre-
Finally, we calculate the variational energy of the mag-S€"ves the electric fluxbi”. For the measurement of the
netic topological sectors. In general, we create a classicguantities discussed below, the algorithm was run for as
configuration of the vector potential by acting on the RKMany as 18" Monte Carlo steps at a given system size. In
ground state with the operat@=exp(=, Ay €y ), just some cases these long runs were necessary to achieve good
as for the special case of monopole creation in B4). Of accuracy because the desired quantity was very small.

course we expect only that the resulting state has some over- It IS not clear whether the single ring-move algorithm is

lap with the desired eigenstate of the gauge theory. Denotgrgodic within each electric-field sector. Hor2 cubic and _
the RK wave function by pyrochlore systems we have performed an exact enumeration

of all allowed configurations. In the cubic case the zero-flux
sector contains 880 states; 864 of these have flippable
1 plaquettegwith n;=1/3 on average and are connected un-
YR = \/—N E {eni}), (82) der single ring-moves. The other 16 states have no flippable
{eri) plaguettes. For the pyrochlore model there are 384 zero-flux
states connected under single ring-moves<1/4) and 12
where the sum is over all configurations of the electric fieldzero-flux states with no flippable hexagons. Evidently the
in the desired sector antl”is the number of states contrib- single ring-move algorithm is not ergodic within the zero-
uting to the sum. Defining\¢[{e}] to be the number of flip- flux sector, but it does not matter if we fail to access states
pable plaquettes in a given configuration, @dl{e},[0] to  with no flippable plaquettes. In our simulations we generate
be one if the specified plaquette is flippable and zero othernitial configurations for larger lattices by periodically re-
wise, the variational energy of interest is given by peating a state from the flippable part of the-2 zero-flux

m'ed

P:{e},O0][1—cod(curl A))].
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o Single Ring Moves
<& Loop Moves

&
T

log <e (L/2) ¢ (0) >
7

2.5

2
FIG. 7. lllustration of the loop move algorithm of Barkema and log(L72)

Newman looking at one plane of the cubic model. One randomly £ g | og-log plot of the equal-time electric-field correlator at
chooses a starting poik and executes a random walk along the yho Rk noint of the cubic model, in the orientation discussed in the
lattice bonds, moving only along the direction of the electric-field ;o The circles denote data from the single ring-move algorithm,
vectors. Once the random walk intersects itdglfthe tail is re-  \yhiie the diamonds were obtained by the loop move algorithm.
moved and the electric field is reversed everywhere along the rez o hars are on the order of the symbol size. The line is a guide to
sulting loop, preserving the zero-divergence constraint. If only CONthe eye with slope-3 to show the very good agreement with the
tractible loops are desirgds in our simulations within the zero-flux ;=3 decay expected from the effective action.
sectoj, one can simply throw away noncontractible loops and re-
peat these steps until a contractible loop results; this does not affegha  affective theory is very good. The same conclusion
o_IetaiIed balance. The single ring-move only reverses the eIectriBbtainS for the pyrochlore modébut with only the single
fields around elementary plaquettes such as tha at ring-move algorithm In that case the correlator measured
was (eg(Lai/2)ey(0)); the data are shown in Fig. 9. Mea-
sector, so more insidious problems could occur if this sectosurements of other orientations of the electric-field correlator
breaks up into multiple flippable subsectors in larger latticesin both models all showed the saméki/decay.
each closed under single ring-moves. To measure the equal-time monopole propagator it is nec-
For an analogous two-dimensional model, it is possible tassary to address some subtleties that arise when putting ob-
prove that single ring-moves are ergodic in each electric flujects with gauge charge in a finite-size system. First, it is
sector(see Appendix B In the absence of a similar result in clear that because the system is a compact manifold with no
three dimensions, we have checked some of our results fgfoundary, it must have zero total magnetic charge. Since the
man that we believe is probably ergodfcThis algorithm is  ig not a problem for the propagator. However, consider the
illustrated in Fig. 7; in the present case the basic idea is tQypjc |attice and leR—R' =n,x#0. For any value of,
flip loops of arbitrary lengttincluding single-rings keep-  here will be planes wher®E+2mn8, which is not allowed
ing only noncontractible loops that do not chanbf. Al ¢4 5 compact vector potential as discussed in Sec. IV B. We
properties measured using both algorithms gave the same
results; we present two examples in the following section. s . .
While we have not implemented an algorithm with “loop
moves” for the pyrochlore model, due to the great similarity
of all measured properties to their cubic analogs it seems
unlikely that ergodicity is an issue.

1

(L/2) e(0)>

C. Equal-time properties

We measured the electric-field—electric-field correlator in &
both the cubic and pyrochlore models. To extract the &
asymptotic dependence most simply we focused on the cor s
relators measured at a separation of half the system size.
should be noted that one cannot trivially extract the angular
dependence discussed in Sec. IV C by this method, since th ! , !
two electric-field vectors in the correlator will be connected L3 log(L/2) 2
by many paths with length scaling &sbut with different
angles. For the cubic model we show our results for FiG. 9. Log-log plot of the pyrochlore RK point electric-field
(ex(Lx/2)e,(0)) in Fig. 8. Data from both algorithms are correlator in the orientation discussed in the text. As in Fig. 8, the
shown and the agreement with theRd/decay predicted by line is a guide to the eye with slope3.

2.5
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FIG. 10. Cubic model equal-time monopole propagator. The FIG. 11. Pyrochlore equal-time monopole propagator. The ver-
vertical axis is the logarithm of the absolute value of the double-tical axis is the logarithm of the absolute value of the propagator,
strength propagator discussed in the text and the horizontal axis &q. (85). The results are consistent with exponential decay, with no
system size. Data for both the single ring-mde&cles and loop  indication of power-law corrections.
move (diamond$ algorithms are shown. For the loop move data the
error bars are smaller than the symbol size, and for the first twaheory away from the RK point. In the notation of Sec. V A,

single ring-move data points they are obscured by the other symwye considersV<0. The coefficient of 5V| in the spinon-
bols. The results are consistent with exponential decay with powerspinon potential is given by
law corrections.

Vspinod R) =(N;(no spinong— N¢(spinong).  (86)

To measure this quantity, we generated sectors withSne

Y12 spinon atr=0 and another at=(L/2)x+(L/2—1)y

{ﬁr L=4. The results are shown in Fig. 12, and are consis-

ent with a 1f Coulomb potential. While the perturbation

theory does not necessarily “know” whether a deconfining

M ={(m' 2 2 phase with a Coulomb potential can be stable, it does indi-

Ge (L12)={(Mig-rLz)" (M) (69 catelU,>0 for small sV<0. Since the Coulomb phass

By time-reversal or Ising symmetr,’ is real. We obtained stable, we conclude it indeed exists adjacent to the RK point

the vector potential appropriate for E&4) by first solving a  over a finite range & 5V> 6V pip.
discrete Poisson’s equation by numerical matrix inversion,

then feeding the solution into E¢G9). This was minimized
by a combination of simulated annealing and direct minimi- o ) .
zation (i.e., zero-temperature simulated annealirBecause In our models it is possible to approximately measure
of the very rapid decay, it was only practical to meas(Bﬁé quantum imaginary-time correlation functions using only the
for L=<8; results are shown in Fig. 10 and are consistent .
with exponential decay with power-law corrections.

On the pyrochlore lattice it is not possible to have double-
strength magnetic charges in the microscopic madeke
Sec. Il B, so for consistency with flux quantization we must
consider a more complicated geometry. We look at the fol- _
lowing propagator, which creates two monopoles on adjacen®.
up- and down-pointingdua) diamond sites, and similarly §
two antimonopoles separated by a distahé: >

can ameliorate this problem by creatingdauble-strength
monopole-antimonopole pair, but even in this case the onl
allowed separation is,=L/2. Because of these complica-
tions, in the cubic case we only measure the double-streng
propagator at a separation of half the system size,

D. Monopole lap

0.86 —

0.84 —

;
Gy (L/2)=(mg Lag2M(R +Lag2)MRMR7), (85

whereR is an up-pointing diamond site aitl is the down-
pointing site directly above. The results are shown in Fig. 11, ., , ! , !
and are consistent with exponential decay; we do not believe 2 R s A . 6
. . L pinon-spinon separation)
the apparent lack of substantial power-law corrections is sig-
nificant, since the coefficient of these corrections is presum- F|G. 12. Plot of the spinon-spinon potential defined in &B§)
ably nonuniversal. for several system sizes of the cubic model. The horizontal axis is
In the cubic model, we also measured the potential bethe distance between the spinoRs; L?2—L+1. The curve is a
tween a pair of static spinons in first-order perturbationfit of the data to the functional forr'; +V, /R.
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classical Monte Carlo dynamics. The key observation, due tc oo - T - T
Henley*! is that at the RK point the master equation describ- L T, o L4
ing the Monte Carlo dynamics of the single ring-move algo- S 93;955 o rcs |
rithm is identical to the imaginary-time Schdinger equa- e‘}feaéa
tion. We will be interested in monopole correlation functions r 9;’:6:35%%
built from the equal-time correlators constructed above. In & -4t e, Te., Eee“%ee.e -
the cubic case, for example, we measure > Co. Tee.. Seeee
? ®. 09099’
M/ \_/p oyt = 6 e -+ 3
Ce (1) =(Onexp — 7Hgrk) Oy)» (87 | “e.
L
E
whereOf; = (Mg Ly2)2(MR)2. The analogous definition of B Tag . ]
C,'}"(r) for the pyrochlore model is constructed from the - T 51
equal-time propagator, E¢85). 10 s ! s I . ! .
To extract information about the spectrum from the simu- ¢ 03 - ' 2

ring

lation, it is useful to relate the units of classical Monte Carlo
time to quantum imaginary time. Lét, be the total number FIG. 13. Logarithmic plot of the approximate monopole-
of plaguettes in the system. If we begin with some electric-antimonopole imaginary-time correlato€) () for the cubic
field configurationfe} and execute one Monte Carlo step, themodel. The horizontal axis is imaginary time in unitslgf, . Data
probability of remaining in the same state is (1 are shown folL=4,6,8; as discussed in the text,lagcreases the
—Ng[{e}]/Np), while that of making a transition to each of exponential decay in imaginary time becomes cleaner, suggesting
the states accessible by flipping one plaquette i, 1\We  the monopole is indeed gapped.

now consider the time-discretized imaginary-time Sehro

dinger equation and fix the time stéyr to recover the same Heret is an integer number of steps in Monte Carlo time, and
values, which now enter as probabiligynplitudes We con- 71t fe}) labels all possible Monte Carlo time evolutions of
sider time t starting from the configuratiofe}. The number of
such evolutions iNgq ey, and A is the total number of
exp(— A THg|{e}) =[1— A7Hgx+ O(ATHRK)?)]|{€}) electric-field configurations in the zero-flux sector. Finally,
— (1= JyngA 7Ny {e}) weVCave defined™|{e})=0OM({e})l{e}). _
e have measured the monopole imaginary-time correla-
tors for both the cubic and pyrochlore models; results are
JrJringATZ {e'}), (88) shown in Figs. 13 and 14. Note that the extreme long-time
e behavior is not related to the gap; insteé@l\,"lszK) will
where the final sum is over those electric-field configurationd1ave some overlap with the ground state, causifgr) to
connected tde} by a single ring-move. It is only valid to approach a constant as—~. As we go to larger system
neglect the higher-order terms irHg whenN¢/N,<1;  sizes and the spatial separation of the monopole-
in fact, the correspondence between tligcretetime quan- — antimonopole pair in the correlator increases, there is a clean
tum dynamics and the Monte Carlo dynamiasghich are  exponential decay persisting for longer times. This is illus-
necessarily discrete in our simulatjas only strictly valid in
this limit. In our modelsN¢ /N, is of order 1/5, so we expect
at best to make quantitative errors of about 10%, and at
worst to get the wrong answer. This problem cannot be alle-
viated by the means at hand because the discrete classic
algorithm fixesthe time step for the quantum dynamics. A
more careful treatment would require a direct simulation of
the master equation with control ov&rr, or quantum Monte =

(W

Carlo. ¢
If we nevertheless expand the exponential, setting =
=(\erng)*l correctly matches the classical probabilities
and quantum amplitudes. Using this relation, we write down
the appropriate quantity to simulate to measure the
imaginary-time correlator
1% ' 0!5 ' I1 ' 1!5 ' 2
CM(7=t/34ingNp) T iing
1 1 FIG. 14. Logarithmic plot of CM(7), the approximate
:/T/' & Ny o) ﬂ%}) [OM({e})]*OM(ﬂL{e})) : monopole-antimonopolt_e imagina_ry-_tinse cqrrelatqr in_ the pyro-
' chlore model. The horizontal axis is imaginary time in units of
89 Jning-
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trated for several system sizes of the cubic model in Fig. 13play a nontrivial role. While disorder may be important for
From the numerical data one can extract a rough value fasome experimental properties, we remark that simple argu-
the energy of the monopole-antimonopole configuration puments demonstrate that disorder does not destabilize the
in at 7=0; in both cases this is about 4,5, . While these  U(1) gauge structure or the gapless photon.
results are approximate, it is unlikely that the monopoles are Since topological order can coexist with conventional
somehow gapless, given the circumstantial evidence for Aroken symmetry, spin liquids are not the only good places
gap, particularly the very rapid exponential decay of theto look for emergent photons. One can imagine, for example,
equal-time propagator. condensing spin-carrying but gauge-neutral excitations; in
our models this would lead to an ordered magnetic state with
gapless spin waves andH1) gauge structure. Understand-
ing the possibilities for and properties of phases near the
In this paper we have argued for the existence of a fraclU (1) spin liquid is another problem worthy of consideration
tionalized quantum disordered state, thel) spin liquid, in  if contact is to be made with experiment. Very recently, Sent-
spin models with a globdl(1) symmetry. While we found hil, Vojta and Sachdev have made the interesting suggestion
it necessary to add an extra interaction to the easy-axis lim#hatU(1)-fractionalization may provide the answer to some
of the pyrochlore Heisenberg model to proceed analyticallyof the puzzles of heavy-fermion materiéfswe leave these
we speculate that this may be only a crutch and that the puritriguing issues aside to remark thel(1)-fractionalized
easy-axis model is in theJ(1) spin liquid phase. Both the states are a remarkable possibility for the physics of strongly
pyrochlore and cubic models have no sign problem, so thi§orrelated electrons ithree dimensions, heretofore a rela-
issue could be resolved by quantum Monte Carlotively unexplored area.
simulations’® While it would be a remarkable result if the  Finally, we note that Huse, Krauth, Moessner, and Sondhi
easy-axis pyrochlore Heisenberg antiferromagnet were @re considering a model closely related to diirs.
U(1) spin liquid, we believe the results in this paper are

VI. DISCUSSION
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gauge structure would appear to admit only a limited degree
of spatial coarse-graining. Given the additional need for  APPENDIX A: ENUMERATION OF SYMMETRIES
spin-carrying degrees of freedom, the unit cell of an emer- . ) )
gent gauge theory in a pure spin model would appear to We enumerate below the action of the_: various symmetries
necessarily contain more than a sin§te 1/2 spin. Based on of the cub|c_ n_10de| on all the microscopic operators, both in
the present examples, which take advantage of the bipartiféU@l and original variables. o
structure of the cubic and diamond lattices, it is tempting to (1) Discrete translationsy—r+R: The electric-field
speculate that the models should contain a natural bipartité@nsforms ag— e g ;, with similar expressions fds and
sublattice. It is easy to see, however, that the emergent gau%b Because of the non-translation-invariant bacl_<gr0uﬁd
structure in these models is stable to adding arbitrary weake dual vector potential obeys the more complicated trans-
additional multispin interactions, including those that breakformation law
any bipartite symmetries. Further understanding, including
the important issue of whether thé(1) spin liquid is pos- @i— AR T OQRLr (A1)
sible in a magnet with globaU(2) symmetry, and if yes,
what its properties might be, must await further study.

Certainly, the most interesting issue is whether the) 1
spin I|qU|d_ can be f_o_und in a_rea_l material. The_ _S|mplest Z(curl 5a)r+Ri:e?+Ri_e9i_ (A2)
signature is the additiv&° contribution to the specific heat ™ ' '
from the photon. Because it is likely to be possible to quan-
titatively understand th@hononspecific heat via indepen- ~ (2) Lattice rotations: LetR rotate the lattice into itself
dent measurement, this could provide a relatively clear about some fixed origin. For example, take the origin to be
and simple test for emergent photons. Further theoreticdl=0 and make am/2 rotation about thez axis. Then
work may be necessary to understand more delicate probdg[ n,x+nyy+n,z,x]=[ —nyx+n,y+n,zy], and so on. We
of the photon, such as heat current apdssibly Raman have e;—egj;, and similarly forb and a. Again «;
scattering; phonon-“photon” interactions and disorder may— ag;+ da gy, with (curl 6a)R[ri]=7r(e%[ri]—e?i).

where the shiftSa is defined to satisfy
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(3) Reflections: LetF denote reflection about a plane with system { even with periodic boundary conditions:
normal vectorx, y, or z. For definiteness, choose the planee[rﬂ_q]'j:e,j , Whereg =X,y. The zero-flux sector is speci-

with normalx at x=0, then fied by the condition
Crx— ), —x= T A —x,x> L-1 L-1
Z enxx,y: E enyy,xzo- (B1)
€ €xr),i (A3) =0 -0

for i=y,z. The vector potential obeys a similar transforma-We will show that any two states in this sector are connected

tion law. The magnetic field and dual vector potential areby a sequence of ring exchange moves on single square

pseudovectorand transform under reflections with an addi- plaquettes.

tional minus sign. Againg transforms with an appropriate ~ The key step is to go to a height representation on the dual

shift Sa to compensate for changes in the background undéattice with sites at the plaquette centersr +(x+y)/2. We

reflections. define
(4) Gauge and dual gauge invariance: Under gauge trans-

formationsa,.-—a, '+ x;» — xr » wherey is a phase defined

on the cubic sites. Similarly we have the dual gauge trans-

h(r+x)—h(r)=—2e; 1 (x—y)r21.y»

formationsa,,— ayr+ N —\;, with \;e rZ. In the action h(r+y) =h(r=2€; (y-xr2).x- (B2)
the dual gauge transformations can be spacetime dependemhe content of this definition is that the height increases/
with decreases by 1 if we cross a link of the direct lattice with

electric field pointing to the right/left. If we fix the value of
the height on one site of the dual lattice these definitions
determine it uniquely everywhere. The height is well defined

a’ri(T)_’ari(T)+)\r+e~l(T)_)\r(T)a

= o N(TH €)= N(7). (A4)  pecause the electric field has zero divergence, and can con-
(5) Ising (or particle-holé symmetry:e——e, a——a sistently be taken to have periodic boundary conditions be-
9 P 0 y y ' ' cause we are in the zero-flux sector.

andb— —b. Also a—a”—a.

(6) Time reversal: Since spin operators olf#&y — S un-
der time reversal, we have——e, a—a+, andb—bhb.
For consistency with the electric-field transformation law,

A flippable plaguette has a height either above or below
all of its four neighbors, depending on its orientation. There-
fore, in a given configuration, the plaquettes with minimum
0 ) X . 'and maximum height will always be flippable, and every
a—a"—a. In the action the latter relation continues to hold, i ration has at least two flippable plaquettes. There are

as long as we also send- —r. Furthermqre, the temporal also two states with every plaquette flippable; up to overall
component of the dual vector potential transforms ahifts of the height these have

a,(1)— —a,(— 7—€). Note that the situation here is the

reverse of that in real electromagnetism, whBrehanges h[nXx+nyy+ (x+y)/2]= +3[1+(-1)™"]. (B3

sign under time reversal ariel is invariant. ) ) ) )
These symmetries are all present in analogous forms ifNeseé two configurations are connected by single ring-

the diamond lattice gauge theory. There is also an additiond"0Ves, since we can flip all the maximum height plaquettes

global symmetry, which exchanges the two sublattices of uplh ©ne to go to the other. _ _
and down-pointing sites. To complete the proof, we label configurations Ay

=hmax— Nmin- This clearly takes on the minimum possible
APPENDIX B: ERGODICITY OF SINGLE RING-MOVES value of unity in pnly the two maximal[y flippable states.
IN A SQUARE LATTICE MODEL Suppc_)se we are in some _other state vsmh?l: Then we
can flip plaguettes of maximum height untih is reduced
We consider the classical dimer model on the square latey 1. This procedure can be repeated uati=1 and we
tice at infinite temperature, with two dimers touching everyreach one of the maximally flippable states. We have thus
site. This is thed=2 analog of the RK point of our cubic shown that any two states are connected by a sequence of
model. We work in the electric-field language, whesg  single ring-moves, because the maximally flippable states are
==+1/2 with i=x,y, and (dive),=0. Consider anL XL connected to all states and to each other.
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