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Domain wall mobility in nanowires: Transverse versus vortex walls

R. Wieser, U. Nowak, and K. D. Usadel
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany
~Received 12 May 2003; revised manuscript received 30 October 2003; published 11 February 2004!

The motion of domain walls in ferromagnetic, cylindrical nanowires is investigated numerically by solving
the Landau-Lifshitz-Gilbert equation for a classical spin model in which energy contributions from exchange,
crystalline anisotropy, dipole-dipole interaction, and a driving magnetic field are considered. Depending on the
diameter, either transverse domain walls or vortex walls are found. The transverse domain wall is observed for
diameters smaller than the exchange length of the given material. Here, the system behaves effectively one
dimensional and the domain wall mobility agrees with a result derived for a one-dimensional wall by Slonc-
zewski. For low damping the domain wall mobility decreases with decreasing damping constant. With increas-
ing diameter, a crossover to a vortex wall sets in which enhances the domain wall mobility drastically. For a
vortex wall the domain wall mobility is described by the Walker formula, with a domain wall width depending
on the diameter of the wire. The main difference is the dependence on damping: for a vortex wall the domain
wall mobility can be drastically increased for small values of the damping constant up to a factor of 1/a2.
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Arrays of magnetic nanowires are possible candidates
patterned magnetic storage media.1,2 For these nanowires an
also for other future magnetoelectronic devices the und
standing of domain wall motion and mobility is important f
the controlled switching of the nanostructure. In a rec
experiment, the velocity of a domain wall in a NiFe/Cu/NiF
trilayer was investigated using the giant magneto-resista
~GMR! effect.3 The measured velocities were compared w
the Landau-Lifshitz formula for domain wall motion.4 This
comparison was used to determine the damping constan
the trilayer, a quantity that is usually not knowna priori.
However, several formulas for the velocity of a domain w
can be found in the literature4–8 which are derived in differ-
ent limits and all in~quasi-! one-dimensional models, ne
glecting the possible influence of nonuniform spin structu
within the domain wall. Thus the question arises in how
these formulas are applicable to real three-dimensional
main structures. To shed some light onto this problem,
numerically investigate the domain wall mobility in nanow
ires starting from a three-dimensional local spin model.

In the following we consider a classical spin model w
energy contributions from exchange, crystalline anisotro
dipole-dipole interaction, and a driving magnetic field. Su
a spin model for the description of magnetic nanostructu9

can be justified following different lines: on the one hand
is the classical limit of a quantum-mechanical, localized s
model; on the other hand, it might be interpreted as the
cretized version of a micromagnetic continuum mod
where the charge distribution for a single cell of the d
cretized lattice is approximated by a point dipole. For cert
magnetic systems their description in terms of a lattice
magnetic moments may even be based on the mesosc
structure of the material, especially when a particulate m
dium is described.

However, our intention is not to describe a particu
material but to investigate a general model Hamiltoni
which is
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where theSi5mi /ms are three-dimensional magnetic m
ments of unit length on a cubic lattice.

The first sum is the ferromagnetic exchange betwe
nearest neighbors with coupling constantJ. The second sum
is the coupling of the spins to an external magnetic fieldB,
the third sum represents a uniaxial anisotropy, here, w
De.0, favoring thez axis as the easy axis of the system, a
the last sum is the dipolar interaction wherew
5m0ms

2/(4pa3) describes the strength of the dipole-dipo
interaction. Theei j are unit vectors pointing from lattice sit
i to j andr i j is the distance between these lattice sites in u
of the lattice constanta.

The underlying equation of motion for magnetic m
ments, which we consider in the following, is the Landa
Lifshitz-Gilbert ~LLG! equation,

]Si

]t
52

g

~11a2!ms

Si3@H i~ t !1a„Si3H i~ t !…#, ~2!

with the gyromagnetic ratiog51.7631011 (T s)21, the di-
mensionless damping constanta ~after Gilbert!, and the in-
ternal fieldH i(t)52]H/]Si .

In the following we present results from the simulation
cylindrical systems being parallel to thez axis with a length
of 256 lattice sites~except for Fig. 6 where results for
system size of 500 lattice sites are shown! and different di-
ametersd. Our systems are defined on a cubic lattice a
consist of dipoles at those lattice sites which reside wit
the cylinder of given diameter and length. Due to shape
well as crystalline anisotropy the equilibrium magnetizati
is aligned with the long axis of the system. However, we s
©2004 The American Physical Society01-1
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the simulation with an abrupt, head-to-head domain wal
initial configuration, letting the wall relax until a stable sta
is reached. The distance of the initial wall position from t
end is '1/3 of the system length. Then we switch on t
driving magnetic fieldB along the easy axis and wait until
stationary state is reached for some time interval in wh
the velocityv of the wall is constant while the wall is mov
ing through the central part of the wire. We calculate t
domain wall velocity from the magnetization versus tim
data, averaged over a period of time where no influence
the finite system size on the domain wall can be observ
i.e., until the wall approaches the other end of the wire.

Inspection of the stationary state of the moving dom
wall shows that, depending on the ratiov/J, either trans-
verse domain walls or vortex walls are found. Representa
spin configurations are shown in Fig. 1 for the static lim
(B50). The transverse domain wall~left hand side! is ob-
served for diameters smaller than the exchange len
dex /a5pAJ/@6vz(3)# of the system,10 wherez(3)'1.2 is
Riemann’s Zeta function@see also Ref. 11 for the exchang
length in continuum theory where 3z(3) is replaced byp].
Here all spins within cross-sectional planes perpendicula
the wire axis are parallel so that the system is effectively
dimensional. Note, that the spin precession leads to a rota
of the spin direction within the wall while it is moving.

With increasing dipolar interaction, a crossover to a v
tex wall sets in~right-hand side of Fig. 1!, which is now
energetically favorable since the vortex structure leads
flux closure. These findings are in agreement with cor
sponding spin model simulations of thermally activat
reversal10 and micromagnetic results12,13 obtained from
simulations of the LLG equation using a micromagnetic co
tinuum model.

FIG. 1. Snapshots of a transverse~left, v/J50.003) and a vor-
tex ~right, v/J50.2) wall. The diameterd58 is kept constant
while the exchange length of the system is varied. Shown is on
part of the system below the current wall position.De /J50.05.
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In the following we turn to the investigation of the influ
ence of the domain wall width and structure on its veloci
Figure 2 compares the dependence of the domain wall w
D and domain wall velocityv on the strength of the dipola
coupling. Here, the domain wall width was determined n
merically by fitting a tanh profile to the easy-axis magne
zation of the moving wall in the stationary state where t
magnetization is averaged over cross-sectional planes. H
ever, it should be mentioned that for large dipolar interact
in a vortex wall the wall profile cannot accurately be d
scribed by a simple tanh profile. Note, that even in the lim
v→0 the wall is stabilized by the additional crystalline a
isotropyDe .

For a spin chain (d51) the domain wall is necessaril
always planar while for the system with a larger diamete
crossover to a vortex wall occurs. The crossover can be id
tified as a jump of the domain wall velocity for thed58
data. Figure 2 demonstrates that for a transverse wall
domain wall velocity is proportional to the wall width. For
vortex wall this is at least qualitatively the case. Widths a
velocities of transverse walls decrease with increasing d
lar interaction while for vortex walls the opposite is true. T
crossover itself leads to a jump of the wall velocity not t
wall width.

For a transverse wall the domain wall velocity is we
described by an equation derived by Slonczewski as
lower limit for one-dimensional domain wall motion,5

v5
g

a11/a
DBB. ~3!

Here,DB is the well-known Bloch wall width,

DB5aA J

2@De13vz~3!#
, ~4!

where, for our case, the denominatorDe13vz(3) estimates
the effective anisotropy coming from shape as well as cr
talline contributions@as before in a continuum theory 3z(3)
is replaced byp]. Both the above equations are drawn

a

FIG. 2. Domain wall velocity and domain wall width vs dipola
coupling for a spin chain and a cylindrical system, respective
De /J50.05, msB/J50.05, a51. The solid lines correspond to
Eqs.~4! and ~3!; error bars are smaller than the symbol size.
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Fig. 2 as solid lines and they agree very well with the n
merical data for transverse walls.

In the following we focus on the mobility of vortex walls
The crossover from the transverse to the vortex wall can
be observed while varying the diameter of the system, ke
ing the exchange length constant. Since for sufficiently sm
driving fields the domain wall velocity is proportional to th
field in Fig. 3 we directly show the domain wall mobilit
dv/dB versus the diameter of the system. Obviously th
are two distinct regions with distinct wall mobility behavio
For low diameters, where the transverse wall is found,
system behaves effectively one dimensional and in the l
d→1 the domain wall mobility follows Eq.~3!. With in-
creasing the diameter, the observed width of the transv
domain wall increases little due to the dipolar interactio
leading to small deviations from the analytic Slonczew
result assuming a Bloch wall width. Nevertheless, we c
firmed numerically that Eq.~3! is still valid when the Bloch
wall width DB is replaced by the actual~numerically deter-
mined! width of the transverse wall.

Increasing the diameter of the system, a crossover f
the transverse to the vortex wall is observed with a dra
increase of the domain wall mobility. As seen in Fig. 2, t
reason for this effect is not a comparably drastic change
the wall width. Instead, as we will discuss in the followin
for a vortex wall the domain wall mobility follows a law
with a different dependence on the damping consta
namely, the Landau-Lifshitz formula,4

dv
dB

5
g

a
D, ~5!

where in our caseD is the actual domain wall width of the
vortex wall. The above equation is a limit of the more ge
eral Walker equation,6–8

v5
gBa

a
A J

2~De1Dh sin2f!
, ~6!

FIG. 3. Domain wall mobility vs diameter of cylindrical sys
tems. The model parameters arev/J50.003, De /J50.1, a51.
The constant line corresponds to Eq.~3!; the dashed lines are guide
to the eye. Error bars are smaller than the symbol size.
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which was derived for sufficiently small driving fields for
system with an additional hard-axis anisotropyDh . This an-
isotropy forces the equilibrium magnetization into an ea
plane. Walkers formula is valid as long as the spin mot
takes place in one plane, which is defined by a constant a
f to the easy plane of the system.f is given as

sinf cosf5
msB

a2Dh
, ~7!

where this equation also defines a condition for the valid
of the walker formula. For a givena there exists a maximum
field value ~or vice versa, for a given field a minimuma
value! beyond which the spin motion is no longer restrict
to one plane and instead an irregular precessional mo
starts.6 Note, that the Landau-Lifshitz formula is thef50
limit of the Walker equation, i.e., the limit of a strong har
axis anisotropy which forces the spin motion into the ea
plane.

The above equations were derived for one-dimensio
systems and the question arises why these formulas sh
be valid for the motion of a vortex wall with a nonuniform
spin structure in cross-sectional planes. For a qualitative
derstanding, we note that the motion of the spins within e
spin chain which is parallel to the wire axis is indeed r
stricted to a certain plane passing through the spins positi
For a spin chain at the surface of the cylinder, and in
limit of small driving fields, these are tangential planes of t
cylinder surface. The responsible force that keeps the s
motion of each chain in this plane is for a vortex wall not
hard-axis anisotropy—as in the original calculation—but t
energetical principle that forms the vortex, i.e., the combi
tion of exchange and dipolar interaction. Since this is
condition under which Walkers formula was derived,
seems plausible that Eq.~6! describes the wall mobility in
the case of an extended spin system as long as the spin
tion during the reversal takes place in one plane. For a tra
verse wall, on the other hand, the situation is different:
precession of the wall leads to the fact that the motion
each single spin consists of precession and relaxation with
restriction to one single plane. These two different paths
the reversal of a spin are sketched in Fig. 4.

The main difference between Eqs.~3! and ~5! is the de-
pendence on damping. This is demonstrated in Fig. 5 wh
shows the ratio of the calculated wall mobility and the n
merically determined domain wall width for two differen
strengths of dipolar interaction, leading to the two differe
wall shapes. In the high-damping limit both formulas agr
For a transverse wall the mobility shows a maximum ata
51 and for lower damping the domain wall mobility de
creases with decreasing damping constant. In the limia
→0, only a precession of the domain wall remains witho
an effective wall motion along the wire.

For a vortex wall the domain wall mobility increases wi
decreasing damping constant following a 1/a law as long as
one is above a critical valueac . As was discussed in con
nection with Eq.~7!, this valueac sets the limit of pure
relaxational spin motion. As was discussed before, the rol
the hard-axis anisotropyDh in Eq. ~7! in our case is played
1-3
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by the combination of exchange and dipolar interacti
which forms the vortex and forces the spin motion into o
plane. We would like to stress that for experimental syste
the low-damping limit is more relevant. Here, the differen
between the two domain wall mobilities~reduced to the do-
main wall width! can be extremely large, up to a factor
1/a2.

For smaller values ofa below the critical one, the mobil
ity decreases again and finally converges to a finite va
since even fora50 the wall can move. In this limit the LLG
equation conserves the energy of the system, and lowe
the Zeeman energy leads to an increase of exchange en
leaving an excited spin system behind the wall. These ob
vations are also in agreement with the calculations
Schryer and Walker.6

This effect is demonstrated in Fig. 6. Here, profiles of t
moving walls are shown as well as the so-called wind
number

FIG. 5. Reduced domain wall mobility vs damping consta
The model parameters arev/J50.01 ~transverse wall! and v/J
50.7 ~vortex wall!, respectively,De /J50.05, msB/J50.05, d
54. Error bars are smaller than the symbol size.

FIG. 4. Two different paths for the reversal of a spin. While~2!
is dominated by precession, as in a transverse wall, path~1! is
restricted to one plane as in a vortex wall.
06440
,
e
s

e

ng
rgy,
r-
f

e
g

n5
1

2pRE ~rot S!zdxdy,

which is calculated numerically over all perpendicular plan
of the wire. The winding number is a measure for the ex
tence of vortices.n51 means that all spins along the boun
ary are aligned building a ring with perfect flux closure. Fi
ure 6~a! shows the high-damping limit with a perfect vorte
in the center of the wall. In the very low-damping limit Fig
6~b!, the situation is much more complicated. Here, beh
the moving wall~smallerz) an excited spin system is lef
with vortex-type spin waves, which are ejected from t
moving wall.

To conclude, in agreement with prior work10,12,13we have
found different wall structures for driven domain walls
cylindrical systems, transverse and vortex walls, depend
on the diameter of the system as compared to the excha
length of the given material. While for vortex walls the d
main wall velocity is described by the formula from Walke
transverse walls follow a formula from Slonczewski. In bo
cases the domain wall velocity is proportional to the dom
wall width. The main difference is the dependence on
damping constant. For small values of the damping cons
this difference can lead to drastic differences where the
locity of the vortex wall is up to a factor of 1/a2 larger. The
reason for this difference is probably the fact that each s
motion in the case of the vortex wall is completely with
one single plane as is the case for the model where
Walker formula was derived for, while this is not the case
a transverse wall where the precession of the wall leads
three-dimensional spin motion.

The authors thank D. Garanin and S. Lu¨beck for helpful
discussions. This work was supported by the Deutsche
schungsgemeinschaft~Grant Nos. SFB 491 and NO290!.

.

FIG. 6. Profiles and winding numbers of moving vortex walls
~a! the high-damping limit (a51) and ~b! the low-damping limit
(a50). d58, v/J50.2, De /J50.05, msB/J50.1.
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