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Domain wall mobility in nanowires: Transverse versus vortex walls
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The motion of domain walls in ferromagnetic, cylindrical nanowires is investigated numerically by solving
the Landau-Lifshitz-Gilbert equation for a classical spin model in which energy contributions from exchange,
crystalline anisotropy, dipole-dipole interaction, and a driving magnetic field are considered. Depending on the
diameter, either transverse domain walls or vortex walls are found. The transverse domain wall is observed for
diameters smaller than the exchange length of the given material. Here, the system behaves effectively one
dimensional and the domain wall mobility agrees with a result derived for a one-dimensional wall by Slonc-
zewski. For low damping the domain wall mobility decreases with decreasing damping constant. With increas-
ing diameter, a crossover to a vortex wall sets in which enhances the domain wall mobility drastically. For a
vortex wall the domain wall mobility is described by the Walker formula, with a domain wall width depending
on the diameter of the wire. The main difference is the dependence on damping: for a vortex wall the domain
wall mobility can be drastically increased for small values of the damping constant up to a factaf of 1/
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Arrays of magnetic nanowires are possible candidates for

patterned magnetic storage metifsEor these nanowires and H= _J% S-S~ usB- Z S— DeZ (SH?
also for other future magnetoelectronic devices the under- .
standing of domain wall motion and mobility is important for 3(S-e)(e-S)-S-S
o AR i
the controlled switching of the nanostructure. In a recent _“’Z 3 ) (1)
i<j ;

experiment, the velocity of a domain wall in a NiFe/Cu/NiFe i

trilayer was investigated using the giant magneto-resistancgnere theS = /s are three-dimensional magnetic mo-
(GMR) effect® The measured velocities were compared Withyents of unit length on a cubic lattice.

comparison was used to determine the damping constant @farest neighbors with coupling constanfhe second sum
the trilayer, a quantity that is usually not knovenpriori. s the coupling of the spins to an external magnetic f@/d

However, several formulas for the velocity of a domain wallthe third sum represents a uniaxial anisotropy, here, with

can be found in the literatute® which are derived in differ- D,>0, favoring thez axis as the easy axis of the system, and

ent limits and all in(quasiy one-dimensional models, ne- the last sum is the dipolar interaction wheres

glecting the possible influence of nonuniform spin structures= uou?/(47a®) describes the strength of the dipole-dipole

within the domain wall. Thus the question arises in how farinteraction. Theg; are unit vectors pointing from lattice site

these formulas are applicable to real three-dimensional dd-to j andr;; is the distance between these lattice sites in units

main structures. To shed some light onto this problem, wef the lattice constard.

numerically investigate the domain wall mobility in nanow-  The underlying equation of motion for magnetic mo-

ires starting from a three-dimensional local spin model. ~ ments, which we consider in the following, is the Landau-
In the following we consider a classical spin model with Lifshitz-Gilbert (LLG) equation,

energy contributions from exchange, crystalline anisotropy,

dipole-dipole interaction, and a driving magnetic field. Such IS 0%

a spin model for the description of magnetic nanostrucfures a ms X[Hi(h+a(SXH(1)], (2

can be justified following different lines: on the one hand, it S

is the classical limit of a quantum-mechanical, localized spirwith the gyromagnetic ratia/=1.76x 10! (Ts)"?, the di-

model; on the other hand, it might be interpreted as the dismensionless damping constant(after Gilberj, and the in-

cretized version of a micromagnetic continuum modelternal fieldH;(t) = —dH/dS; .

where the charge distribution for a single cell of the dis- In the following we present results from the simulation of

cretized lattice is approximated by a point dipole. For certaircylindrical systems being parallel to tlzeaxis with a length

magnetic systems their description in terms of a lattice ofof 256 lattice sites(except for Fig. 6 where results for a

magnetic moments may even be based on the mesoscopmgstem size of 500 lattice sites are shpwand different di-

structure of the material, especially when a particulate meametersd. Our systems are defined on a cubic lattice and

dium is described. consist of dipoles at those lattice sites which reside within
However, our intention is not to describe a particularthe cylinder of given diameter and length. Due to shape as

material but to investigate a general model Hamiltonianwell as crystalline anisotropy the equilibrium magnetization

which is is aligned with the long axis of the system. However, we start
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FIG. 2. Domain wall velocity and domain wall width vs dipolar
coupling for a spin chain and a cylindrical system, respectively.
D./J=0.05, usB/J=0.05, «=1. The solid lines correspond to
Egs.(4) and(3); error bars are smaller than the symbol size.

In the following we turn to the investigation of the influ-
ence of the domain wall width and structure on its velocity.
Figure 2 compares the dependence of the domain wall width

FIG. 1. Snapshots of a transver$eft, »/J=0.003) and a vor- A and domain wall velocity on the strength of the dipolar
tex (right, /J=0.2) wall. The diameted=8 is kept constant coupling. Here, the domain wall width was determined nu-
while the exchange length of the system is varied. Shown is only anerically by fitting a tanh profile to the easy-axis magneti-
part of the system below the current wall positi@n./J=0.05. zation of the moving wall in the stationary state where the
magnetization is averaged over cross-sectional planes. How-
%ver, it should be mentioned that for large dipolar interaction
in a vortex wall the wall profile cannot accurately be de-
scribed by a simple tanh profile. Note, that even in the limit

the simulation with an abrupt, head-to-head domain wall a:
initial configuration, letting the wall relax until a stable state
is reached. The distance of the initial wall position from the
en.d. is~1/3 Of.th(.e system length. Then_we SW'tC.h on.thew_>0 the wall is stabilized by the additional crystalline an-
dnv!ng magnet|c.f|eIcB along the easy axis gnd Walt_untll a isotropy D .
alonery stle i reacned or Some e el 0 Wt Fora sin chain =1 the domain wall i necessarly
ing through the central part of the wire. We calculate thealways planar while for the system with a larger dlameter a
domain wall velocity from the magnetiiation Versus time oo ssover to a vortex wall oceulrs. The crossover can be iden-
data, averaged over a period of time where no influence o fied as a jump of the domain wall velocity for tr=38
the f,inite system size on the domain wall can be observe ata. _Flgure 2 demqnstrates 'that for a transve_rse wall the
omain wall velocity is proportional to the wall width. For a

.e., until the wall approaches the other end of the wire. vortex wall this is at least qualitatively the case. Widths and

Inspection of the stationary state of_the moving dom"’“nvelocities of transverse walls decrease with increasing dipo-
wall shows that, depending on the ratigJ, either trans-

verse domain walls or vortex walls are found. Representativ
spin configurations are shown in Fig. 1 for the static limit

(B=0). The transverse domain wallkft hand sidg is ob- For a transverse wall the domain wall velocity is well

served for diameters smaller than the exchange IengtB . : ) :

- 0 ~ : escribed by an equation derived by Slonczewski as the
dex/a=7J/[6w{(3)] of the systent) where((3)~1.2is |5 er limit for one-dimensional domain wall motién,
Riemann’s Zeta functiofsee also Ref. 11 for the exchange

length in continuum theory where{83) is replaced byr].

Here all spins within cross-sectional planes perpendicular to v= LABB. 3

the wire axis are parallel so that the system is effectively one a+tlla

dimensional. Note, that the spin precession leads to a rotati

of the spin direction within the wall while it is moving.
With increasing dipolar interaction, a crossover to a vor-

tex wall sets in(right-hand side of Fig. 1 which is now Ane / J 4

energetically favorable since the vortex structure leads to a =4 2[Det3wl(3)T

flux closure. These findings are in agreement with corre-

sponding spin model simulations of thermally activatedwhere, for our case, the denominai®g+ 3w{(3) estimates

reversal® and micromagnetic results’® obtained from the effective anisotropy coming from shape as well as crys-

simulations of the LLG equation using a micromagnetic con+alline contributiondas before in a continuum theory, )

tinuum model. is replaced byr]. Both the above equations are drawn in

lar interaction while for vortex walls the opposite is true. The
Brossover itself leads to a jump of the wall velocity not the
wall width.

o] . .
IQere,AB is the well-known Bloch wall width,
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4 — which was derived for sufficiently small driving fields for a

system with an additional hard-axis anisotrdpy. This an-

. isotropy forces the equilibrium magnetization into an easy

plane. Walkers formula is valid as long as the spin motion
- takes place in one plane, which is defined by a constant angle

. ¢ to the easy plane of the systewh.is given as

Y

/0’ vortex wall wsB
sing cos¢= 22D, (7)

(dv/dB) Aa

transverse -~

Fowall . ) T
PP - Slonczewski (analytical)
g

e

where this equation also defines a condition for the validity
of the walker formula. For a givea there exists a maximum
0 2 4'1 é é 1'0 1'2 1'4 1'6 18 field value (or vic_e versa, fpr a g_iven field a minimum
d/a valug beyond which the spin motion is no longer restricted
to one plane and instead an irregular precessional motion
FIG. 3. Domain wall mobility vs diameter of cylindrical sys- starts® Note, that the Landau-Lifshitz formula is thg=0

0

tems. The model parameters ap¢J=0.003, D,/J=0.1, a=1. limit of the Walker equation, i.e., the limit of a strong hard-
The constant line corresponds to E8); the dashed lines are guides axis anisotropy which forces the spin motion into the easy
to the eye. Error bars are smaller than the symbol size. plane.

The above equations were derived for one-dimensional

Fig. 2 as solid lines and they agree very well with the nu-systems and the question arises why these formulas should
merical data for transverse walls. be valid for the motion of a vortex wall with a nonuniform

In the following we focus on the mobility of vortex walls. spin structure in cross-sectional planes. For a qualitative un-
The crossover from the transverse to the vortex wall can alsderstanding, we note that the motion of the spins within each
be observed while varying the diameter of the system, keepspin chain which is parallel to the wire axis is indeed re-
ing the exchange length constant. Since for sufficiently smalétricted to a certain plane passing through the spins positions.
driving fields the domain wall velocity is proportional to the For a spin chain at the surface of the cylinder, and in the
field in Fig. 3 we directly show the domain wall mobility limit of small driving fields, these are tangential planes of the
dv/dB versus the diameter of the system. Obviously therecylinder surface. The responsible force that keeps the spin
are two distinct regions with distinct wall mobility behavior. motion of each chain in this plane is for a vortex wall not a
For low diameters, where the transverse wall is found, théhard-axis anisotropy—as in the original calculation—but the
system behaves effectively one dimensional and in the limienergetical principle that forms the vortex, i.e., the combina-
d—1 the domain wall mobility follows Eq(3). With in-  tion of exchange and dipolar interaction. Since this is the
creasing the diameter, the observed width of the transverssondition under which Walkers formula was derived, it
domain wall increases little due to the dipolar interaction,seems plausible that E¢6) describes the wall mobility in
leading to small deviations from the analytic Slonczewskithe case of an extended spin system as long as the spin mo-
result assuming a Bloch wall width. Nevertheless, we contion during the reversal takes place in one plane. For a trans-
firmed numerically that Eq3) is still valid when the Bloch  verse wall, on the other hand, the situation is different: the
wall width Ag is replaced by the actughumerically deter- precession of the wall leads to the fact that the motion of
mined width of the transverse wall. each single spin consists of precession and relaxation with no

Increasing the diameter of the system, a crossover fromestriction to one single plane. These two different paths for
the transverse to the vortex wall is observed with a drastithe reversal of a spin are sketched in Fig. 4.
increase of the domain wall mobility. As seen in Fig. 2, the The main difference between Eq8) and (5) is the de-
reason for this effect is not a comparably drastic change gbendence on damping. This is demonstrated in Fig. 5 which
the wall width. Instead, as we will discuss in the following, shows the ratio of the calculated wall mobility and the nu-
for a vortex wall the domain wall mobility follows a law merically determined domain wall width for two different
with a different dependence on the damping constantstrengths of dipolar interaction, leading to the two different

namely, the Landau-Lifshitz formulfh, wall shapes. In the high-damping limit both formulas agree.
For a transverse wall the mobility shows a maximumuat
dv vy =1 and for lower damping the domain wall mobility de-
d_B:ZA' ©) creases with decreasing damping constant. In the limit

—0, only a precession of the domain wall remains without

where in our cas@ is the actual domain wall width of the an effective wall motion along the wire. _
vortex wall. The above equation is a limit of the more gen- For a vortex wall the domain wall mobility increases with

eral Walker equatiofi;® decreasing damping constant following a 14w as long as
one is above a critical valuea,. As was discussed in con-
nection with Eq.(7), this value a. sets the limit of pure
— VBa\/ J 6 relaxational spin motion. As was discussed before, the role of
a 2(De+Dy, sin2¢>)' the hard-axis anisotropl,, in Eq. (7) in our case is played

064401-3



R. WIESER, U. NOWAK, AND K. D. USADEL PHYSICAL REVIEW B69, 064401 (2004

1.0 o
a) - M,
05t - n
<
L 0.0
0.5
1.0 L
0 200 400
z/a
<
=
FIG. 4. Two different paths for the reversal of a spin. Wki¢
is dominated by precession, as in a transverse wall, fBths
restricted to one plane as in a vortex wall. 0 200 400

z/a

by the combination of exchange and dipolar interaction, FiG, 6. Profiles and winding numbers of moving vortex walls in
which forms the vortex and forces the spin motion into one(g) the high-damping limit &=1) and(b) the low-damping limit
plane. We would like to stress that for experimental systemga=0). d=8, w/J=0.2, Do/J=0.05, uB/J=0.1.

the low-damping limit is more relevant. Here, the difference

between the two domain wall mobilitigseduced to the do- 1

maizn wall width can be extremely large, up to a factor of n= 27T_RJ (rot S),dxdy,

1/a“.

_ For smaller values ok below the critical one, the mobil- i is calculated numerically over all perpendicular planes
ity decreases again and finally converges to a finite valugy the wire. The winding number is a measure for the exis-
since even forr=0 the wall can move. In this limit the LLG _tence of vorticesn=1 means that all spins along the bound-
equation conserves the energy of the system, and loweringy are aligned building a ring with perfect flux closure. Fig-
the Zeeman energy leads to an increase of exchange energiye 6(a) shows the high-damping limit with a perfect vortex
leaving an excited spin system behind the wall. These obsefn the center of the wall. In the very low-damping limit Fig.
vations are also in agreement with the calculations of(b), the situation is much more complicated. Here, behind
Schryer and Walkef. the moving wall(smallerz) an excited spin system is left
This effect is demonstrated in Fig. 6. Here, profiles of thewith vortex-type spin waves, which are ejected from the
moving walls are shown as well as the so-called windingmoving wall.
number To conclude, in agreement with prior woPk?3we have
found different wall structures for driven domain walls in
cylindrical systems, transverse and vortex walls, depending
- on the diameter of the system as compared to the exchange

121 23223%6 | length of the given material. While for vortex walls the do-
= (o 1) main wall velocity is described by the formula from_ Walker,
10 F — o . transverse walls follow a formula from Slonczewski. In both
cases the domain wall velocity is proportional to the domain
87 wall width. The main difference is the dependence on the
Q damping constant. For small values of the damping constant
3 o1 this difference can lead to drastic differences where the ve-
= 4l locity of the vortex wall is up to a factor of &7 larger. The
reason for this difference is probably the fact that each spin
2t motion in the case of the vortex wall is completely within
one single plane as is the case for the model where the
0 e @OOOORT T T Walker formula was derived for, while this is not the case for

0 1 2 ;
a transverse wall where the precession of the wall leads to a

three-dimensional spin motion.
FIG. 5. Reduced domain wall mobility vs damping constant.

The model parameters awe/J=0.01 (transverse wall and /J The authors thank D. Garanin and S.beek for helpful
=0.7 (vortex wall, respectively,D,/J=0.05, uB/J=0.05 d  discussions. This work was supported by the Deutsche For-
=4. Error bars are smaller than the symbol size. schungsgemeinschafGrant Nos. SFB 491 and NO2R0
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