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Phase transitions and cooperative Jahn-Teller effects in fullerene anions
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Fullerene-based solids are known to undergo a range of structural, orientational, magnetic, and supercon-
ducting phase transitions. One important factor in many of these phase transitions is a combination of intramo-
lecular and intermolecular vibronic couplings. The former can be described in terms of an on-site Jahn-Teller
effect, while the latter can be described as a cooperative Jahn-Teller effect. We will look at the Jahn-Teller
effects applicable to all negatively charged states of fullerene ions to show that, depending on the values of the
vibronic coupling strengths, cooperative distortions can result in individual C60 molecules being distorted in the
same or opposite sense to their nearest neighbors. More complicated phases can also occur under certain
coupling conditions, particularly when symmetry-lowering distortions are present. This opens the possibility
that new states of fullerene solids could be observed experimentally in the future.

DOI: 10.1103/PhysRevB.69.064303 PACS number~s!: 71.70.Ej, 61.48.1c, 71.38.2k
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I. INTRODUCTION

Isolated fullerene molecules have the now well-kno
icosahedralI h symmetry of a soccer ball. The interactio
between the electrons of the C60 molecule and vibrations o
the C60 nuclei can be quite strong. This is believed to ha
important consequences for many properties of
fullerenes. The vibronic interactions can locally distort t
C60 molecule. However, tunnelling between different d
torted configurations restores theI h symmetry for an isolated
molecule and thus no static distortion is observed. This
known as the dynamic Jahn-Teller~JT! effect. However, the
situation is somewhat different when C60 forms a solid.
There will then be interactions between C60 molecules and/or
with other atoms or molecules introduced into the solid l
tice. In these polycentric cases, a cooperative JT effect
lock in place the JT distortions of each molecule, resulting
nonzero static distortions. An example of a structure tha
likely to result in three-dimensional~3D! ferromagnetic or-
dering of C60 molecules is given in Ref. 1.

Cooperative JT effects are seen in a large number of c
tals, such as rare-earth zircons and spinels. In general,
known that cooperative JT effects can lead to different m
roscopic states, as discussed in a number of books
reviews.2–4 At low temperature, ordering of local distortion
may lead to a macroscopic deformation of a crystal. Str
tural distortions are accompanied by a corresponding fe
antiferro or ferrimagnetic ordering of the orbit~or pseu-
dospin as it is often called!. At higher temperatures, therma
fluctuations destroy the correlations between the distorti
leading to a structural phase transition, which can be un
stood using a simple Ginzburg-Landau approach.5 Structural
orderings are related to real magnetic orderings,2 leading to
the possibility of magnetic phase transitions. It has been s
gested that observed changes in magnetic ordering in
antiferromagnetic semiconductor Cr0.5Mn0.5S are related to
cooperative JT effects.6

Experimentally, it is seen that fullerene solids can exh
various phase transitions.7,8 TheA3C60 fullerides~whereA is
an alkali metal! and related compounds exhibit various stru
tural and orientational phase transitions and can be meta
0163-1829/2004/69~6!/064303~12!/$22.50 69 0643
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superconductors, while in contrast theA4C60 materials are
insulators. Solid C60 is diamagnetic; the rhombohedral poly
mer of C60 is usually diamagnetic but under certain cond
tions can become weakly ferromagnetic.9 Charge-transfer
complexes such as tetrakis~dimethylamino! ethylene
~TDAE!-C60 can be antiferromagnetic or ferromagnetic.

At high temperatures, fullerene-based solids can fo
crystals which are translationally ordered but which are u
ally orientationally disordered.10,11As the temperature is de
creased, there are one or more phase transitions to a m
orientationally ordered phase with lower symmetry crys
structure and long-range orientational order. The transit
need not be sharp, but instead there may be a continu
path from the disordered to the ordered phase. Orientatio
phase transitions can be described in terms of translat
rotation coupling.12

Pure crystalline C60 has a fcc structure at room temper
ture with individual C60 molecules rotating almost randoml
between different orientations. As the temperature is lowe
below 261 K, an orientational alignment begins to take pla
whereby the rotational axis of each molecule starts to
come constrained along one of two standard orientations,
the crystal is said to have merohedral disorder. As the te
perature is lowered further, the rotations slow8 and the prob-
ability of occupying the configuration with the lower energ
increases,13 although the merohedral still persists even at lo
temperatures. In doped solids, rotations become hampere
the dopant resulting in merohedral disorder at high
temperatures.8 The A3C60 fullerides such as K3C60 also ex-
hibit merohedral disorder.14 K4C60 and Rb4C60 have a body-
centered-tetragonal~bct! crystal structure which again ha
merohedral disorder.15,16 Cs4C60 has a pure phase in whic
there is an orthorhombic distortion of a bct lattice, whi
results inD2h symmetry and complete ordering of the C60
molecules at room temperature17 with an order-disorder tran
sition to a state with two possible anion orientations at 6
K.18

Although not all the phase transitions observed
fullerene solids will be related to vibronic coupling, a com
bination of coupling to high-frequency intramolecular vibr
©2004 The American Physical Society03-1
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tions and low-frequency intermolecular vibrations is wide
cited as a possible mechanism behind a number of the
served effects. This view has been reinforced by calculati
which indicate that the fullerene solids involving the mo
ecule C36 may have a higher superconducting transition te
perature than even the alkali-metal doped C60 solids.19 The
C36 molecule is much smaller than the C60 molecule and so
should be more sensitive to vibronic interactions. A mo
involving a charge-transfer induced intramolecular JT dist
tion combined with an intermolecular cooperative JT int
action has been used to explain an observed press
induced depression in the Curie temperature of TDAE-C60.1

The A3C60 compounds may be superconductors and
A4C60 insulators because in the former, the alkali-metal
oms sit in symmetric positions, while in the latter the alka
metal sites are less symmetric. This means that vibronic h
ping matrix elements largely cancel inA3C60 but a smaller
cancellation occurs inA4C60. Another explanation is that th
‘‘band’’ gap is widened due to a combination of electro
phonon interactions and electron correlation.20 A mechanism
by which a Mott-Hubbard insulator can be changed into
band insulator through a Jahn-Teller effect has also b
suggested.21 While the explanations may not yet be clear,
is agreed that vibronic coupling is an important feature. I
therefore clearly important to develop a good theoretical
derstanding of all of the JT effects experienced by C60 ions.

A signature of a cooperative JT effect is when there i
nonzero expectation valuêQn& for one or more of the col-
lective displacementsQn of the vibrationally coupled
mode~s!. Alternatively, this is equivalent to a nonzero valu
for the expectation valuêsn& of the electronic operatorssn

used to describe the JT interaction. As the strength of
cooperative interaction increases, the value of^sn& for ~at
least! one componentn will increase, tending to a constan
for very strong interactions. In this paper, we will investiga
the relative values that these expectation values can tak
order to explore the range of possible cooperative distorti
that could be seen in negatively charged fullerene ani
C60

n2 which are coupled tohg modes of vibration.22,23

II. THE HAMILTONIAN

Fullerene anions are coupled tohg modes of vibration in
what is known aspn

^ h JT effects.23 We will consider i
interacting C60 molecules. Each molecule experiences an
site JT effect which can be represented by the Hamilton
Hi , and a cooperative JT effect with neighboring molecu
j that can be represented by the HamiltonianHi j . As is usual
in the cooperative JT effect, we will consider interactio
with nearest neighbors only. The total Hamiltonian is thu

H5(
i

Hi1(
^ i , j &

Hi j , ~1!

where ^ i , j & indicates the sum is taken over nearest nei
bors.

The form of the on-site JT HamiltonianHi is well known
for all the fullerene anions C60

n2 .23 We will consider linear
coupling tohg modes of vibration in a JT effect of strengthk.
06430
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It is generally accepted that the HamiltonianHi j for interac-
tions between JT centers can be represented phenomeno
cally by a form quadratic in theQn , or equivalently in the
sn , independent of the physical mechanism causing
interaction.2 For example, the interaction could be direct e
change between orbitally degenerate states, or indirect
change through an interaction between localized electr
and collectivized electrons of the conduction band.2 For the
case of interacting C60 molecules of interest here, we wi
choose a quadratic form involving theQn . The Hamiltonian
will thus be written in the form

Hi j ~K ~ i2 j !!5Qi
†K ~ i2 j !Qj[(

nm
Knm~ i2 j !QinQj m ,

~2!

where Qi is a vector whose components are the collect
coordinatesQn for molecule i ~which will be calledQin),
andK ( i2 j ) is a matrix whose componentsKnm( i2 j ) repre-
sent the strength of the interaction between an intramolec
vibration n of the C60 moleculei and the vibrationm of the
moleculej.

It is usual to restrict the modesQin considered to the JT
active modes, as they are expected to be the most impor
In our case here, this means the five components of thehg
mode. There are arguments for including other modes
some cases. For example, a cooperative interaction betw
two molecules may involve a net displacement of the cen
of mass of each molecule indicating that the translatio
modes should also be included. However, we will restrict o
considerations to thehg mode, which is the active mod
relevant for fullerene anions. We will follow Ref. 24 and u
the labelsQ5$Qu ,Qe ,Q4 ,Q5 ,Q6% to represent the compo
nents of this mode, which correspond to the lab
$Q1 ,Q4 ,Q5 ,Q2 ,Q3%, respectively, used in Ref. 23.

The values of the interaction coefficientsKnm( i2 j ) are
determined by the symmetry of the crystal structure and
physical nature of the cooperative interaction. The coe
cients can be positive, corresponding to antiferrodistort
ordering, or negative, which corresponds to ferrodistort
order. In other JT systems, the physical mechanisms
have been considered include direct exchange and supe
change in orbital degeneracy, and indirect exchange thro
conduction electrons.2 However, we are not concerned wit
the nature of the interaction in this paper. We will seek
determine useful information on the nature of the coope
tive JT effect and of possible phase transitions keeping th
quantities as free parameters. Nevertheless in Sec. VI we
obtain some restrictions, due to symmetry considerations
the allowed parameters for C60 molecules at fcc sites in the
two standard orientations ofA3C60 fullerides. The results
also illustrate how the ideas can be applied in other geo
etries.

A. Molecular-field approximation

We will now find solutions to the Hamiltonian in Eq.~1!.
The first step is to decouple the interdependence between
vibrations of neighboring C60 moleculesi andj. Such a sepa-
3-2
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ration is commonly achieved using a molecular-field a
proximation, and we will use such an approach here. T
specific details follow the approach used by Feiner for
E^ e system,25 which follows from original ideas of Engl-
man and Halperin,26,27 although the situation is considerab
more complicated due to the higher dimensions of both
electronic and vibrational systems. The interaction is writ
in terms of fluctuations (Qin2^Qin&) from the average dis
placementŝQin& of the C60 molecules. Products of fluctua
tions in the displacements of different C60 molecules are ne
glected. This ignores dynamic correlations between
vibrational motion of different molecules but preserves c
relations between vibrational and electronic motion within
molecule. A more common decoupling procedure is to us
displaced phonon approach in which correlation between
brational and electronic motion within each molecule wou
be neglected. This is extremely successful in describing
havior of systems in which the dominant coupling is
acoustic phonons and strain. However, it will not be app
priate in our case where JT interactions within a molecule
important, as it does not allow quantitative connections
tween the JT effects experienced by isolated C60 molecules
and cooperative JT effects involving the same molecules

In our molecular-field approach,H can be replaced by th
molecular-field Hamiltonian

H m f5(
i

H i
m f2(

^ i , j &
Ei j

c , ~3!

where

H i
m f5Hi2(

n
l inQin ,

Ei j
c 5(

n
(
m

^Qin&^Qj m&Knm , ~4!

with

l in52(
j ( i )

(
m

Knm^Qj m&, ~5!

where j ( i ) is taken to mean all moleculesj adjacent toi.
The molecular-field HamiltonianH i

m f for moleculei no
longer contains explicit reference to the coordinates of
neighboring moleculesj, and solutions to the decouple
equations can now be sought.

B. Coordinate transformations

H i
m f can be made to resemble the JT HamiltonianHi for

a vibronic coupling within a C60 molecule with linear JT
coupling of strengthk and subject to a strain in theu direc-
tion of strengthw. Solutions to this problem are either a
ready known or can be found~at least in principle!. The
required on-site JT Hamiltonian for moleculei has the form

Hi~k,w!5
1

2 (
n

~Pin
2 1Qin

2 !1k(
n

Qins in2ws iu ~6!
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in units in which\, the reduced mass of the mode, and t
vibrational frequency are taken to be unity. The form of t
s in for each of thepn

^ h JT problems are given in Refs. 2
and 23.

It should be noted that Chancey and O’Brien use a fi
fold z axis throughout their work~e.g., Ref. 23!. With this
choice, minima in the lowest adiabatic potential-energy s
face~APES! of warped systems can be mapped onto corn
of an icosahedron. However, Dunn and Bates~e.g., Refs. 24
and 28! use a twofold axis in their work as this gives
symmetric form for the vibronic states. In general, the fo
of the JT Hamiltonian will be different for the differen
choices of axes. However, the HamiltonianHi(k,0) in the
absence of strain has SO~3! symmetry, which is accidentally
higher than theI h symmetry of the system being modele
As a consequence of the accidentally higher symmetry,
form of the linear JT Hamiltonian is the same whatever a
is chosen as thez axis. ~The form of the Hamiltonian for
quadratic or other higher-order terms is different, as is
form of the Hamiltonian describing coupling to an electron
H state used to describe C60

n1 .! In linear coupling, the only
way in which the definition of the choice of axis becom
important is in defining the meanings of the distortionsQg .
In Refs. 23 and 24,$Qu ,Qe ,Q4 ,Q5 ,Q6% ~or their equiva-
lent! are modes transforming as$(3z22r 2)/2,A3(x2

2y2)/2,A3yz,A3zx,A3xy%, respectively~like d-orbitals! in
terms of the defined axes$x,y,z%. Thus, for example, in Ref
24 a Qu-type mode represents a distortion along a twofo
axis, whereas in Ref. 23 it represents a distortion alon
fivefold axis. This distinction will be important in Sec. V
when discussing the form of the cooperative interact
Hamiltonian for C60 molecules in specific geometries. A
additional complication is that in other papers,28,29 Qu and
Qe are defined to be linear combinations of theQu and Qe
given above. Again, the results obtained for warped syste
are simpler with this choice. In this paper, we will follow th
definitions in Refs. 23 and 24 as we are concerned w
linear coupling only.

At this point, H i
m f does not have the required form

Hi(k,w) due to the additional term( il inQin . However, we
can make a canonical transformation to displaced vibratio
operatorsQ̂in5Qin2l in and P̂in5Pin , so that

H i
m f5(

n
@ 1

2 ~ P̂in
2 1Q̂in

2 !1kQ̂ins in2dins in#2Ei
c , ~7!

where

Ei
c5

1

2 (
n

l in
2 ~8!

and where

din52kl in ~9!

is the molecular field experienced by the pseudospin in thn
direction.H i

m f now resembles the Hamiltonian for a sing
molecule with a component of strain in all directions in t
coordinate space. We note that if the JT interaction exp
enced by each moleculei includes a permanent splitting~for
3-3
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JANETTE L. DUNN PHYSICAL REVIEW B69, 064303 ~2004!
example, due to strain in the fullerene solid! of the form
(nwins in , the molecular fields becomedin5win2kl in but
the rest of the formalism stays the same. We will return
this point later in Sec. V.

Although the JT problem with a component of strain in
directions inQ space could be solved directly, it is simpler
we make a rotation to coordinatesQin8 so that, in the new
coordinates, the strain is in one direction only, which
choose to be theu direction. In theE^ e system, where there
are only two coordinates, it was easy to see the form
transformation should take.25 In our case, we need a rotatio
in five-dimensional coordinate space. The required trans
mation is given in Ref. 23 in terms of a magnitudeQ and
four angles,u, f, g, anda. This transformation was als
used in Ref. 24 to convert from the usual fixed coordin
system to rotating coordinates in which the newu direction
is always perpendicular to the trough, where it was written
the form

Qn85(
m

Dmn~u,f,g,a!Qm . ~10!

The corresponding inverse transformation is

Qn5(
m

Dnm~u,f,g,a!Qm8 . ~11!

The same transformation is appropriate here but where
angles take fixed valuesu i , f i , g i , anda i for moleculei
~and similarly for moleculej ), rather than being allowed to
vary over the whole potential-energy trough. The actual fo
of the rotation matrix elementsDmn , to be calledDmn

i for
moleculei, is not important here; all that matters is that su
a transformation exists and that it obeys the normaliza
and orthogonality relations

(
b

Dnb
i Dmb

i 5H 1 if n5m

0 otherwise.
~12!

We apply the transformation in Eq.~11! to the molecular
field din , requiring that the resultant field is in theu direc-
tion only and sodin8 5di for n5u and zero otherwise, wher
di is the magnitude of the molecular field. Hencedin

5diDun
i . ~This is equivalent to sayingdiu5di cosfi and

di e5di sinfi in the rather simplerE^ e system, where there
are only two directions to consider.!

In order to preserve the desired form for the Hamiltonia
we must also apply the same transformation to the electr
operatorss in to give rotated operatorss in8 . It then follows
that

(
m

dims im5dis iu8 , ~13!

confirming that the molecular field is now in the newu di-
rection. The form of the Hamiltonian for the remaining term
remains the same as before the rotation, with all quanti
simply being replaced by their rotated equivalents.
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The HamiltonianH i
m f has now been reduced to a sta

dard form for which the states and energies can, at leas
principle, be calculated as a function ofk and w for any
isolated C60

n2 anion using analytical or numerical methods

III. DETERMINATION OF DISTORTIONS

A. Thermal average

The thermal average of any operatorf̂ , at temperatureT,
can be defined as

^ f̂ &5

(
n

^cnu f̂ ucn&exp„2En~k,d!/kBT…

(
n

exp„2En~k,d!/kBT…

, ~14!

where thecn are taken to be the complete set of~normal-
ized! ground and excited vibronic states of the on-site
effect of strengthk experienced by an isolated C60

n2 anion
subject to a distortiond. TheEn(k,d) are the corresponding
energies of the states andkB is the Boltzmann constant.

In order to calculate nonzero values of distortions,
need to determine averages of the electronic operatorss in8 .
We can therefore obtain curves giving^s in&[s(k,d,T) as a
function of d for any given values of the vibronic couplin
strengthk and the temperatureT, as given in Ref. 25 for the
E^ e system and illustrated schematically as the curved li
in Fig. 1. Hence using the inverse of Eq.~13!, we can find
averages of the nonrotated operatorss in as a function ofk
andd. However, we do not know the value of the distortin
field d and so this is not sufficient for us to determine valu
for ^s in&. Fortunately, additional information is availab
from the quantum mechanics of the operators involved.

B. Commutation condition

As the diagonal matrix elements of the commutator of
momentaPin and H between eigenstates ofH are zero
~where thePin are conjugate to theQin), it follows that

FIG. 1. Schematic representation of the graphical solution of
molecular-field equations for theE^ e system~after Ref. 25!. The
straight lines represent variation of pseudospins(k,d,T) as a func-
tion of field according to Eqs.~18! for different phases, and the
curves are values for the pseudospins calculated from knowledg
the energy levels. The points of intersection of the curves and l
give the required solutions. Curves are shown for the critical te
peratureT5Tc defined in Sec. IV A, and for temperatures abo
and below this.
3-4
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l in5^Qin&1k^s in&. ~15!

This is equivalent to Eq.~7! of Ref. 25. Equating Eqs.~5!
and~15! gives a set of ten coupled equations, five of the fo

^Qim&1k^s im&1(
j ( i )

(
n

Kmn^Qj n&50 ~16!

~for the five values ofm) and another five with the labelsi
andj interchanged. Now it must always be possible to defi
new linear combinations of theQ̄im ~and equivalent combi-
nations of thes̄ im) so that each equation only contains re
erence to one mode and we have five pairs of coupled e
tions of the form

^Qib&1k^s ib&1(
j ( i )

Kb^Qj b&50 ~17!

~and the same withi and j interchanged!, where the labelb
refers to the new linear combinations and theKb are the
roots of the equation Det(K )50. These equations give extr
constraints on the average values of theQib and thes ib .

C. Bipartite lattices

All the formulas given to this point apply to any cryst
lattice structure. The simplest application of the theory
curs for bipartite lattices, such as simple cubic and bo
centered cubic lattices. These are lattices which can be
vided into two sublattices,a and b, such that the neares
neighbor to an ion or molecule in one sublattice lies in
other sublattice.

Where the cooperative interaction coefficients are posi
and antiparallel distortions are favored, the average value
sublatticesa andb will be expected to be different. Howeve
this also accounts for the case where parallel distortions
favored by allowing the average values in the two sublatti
to be equal. We will assume that the average distortion
pseudospin in sublatticea are Q̄a and s̄a with components
Q̄ab and s̄ab , respectively, and similarly for sublatticeb.
From Eqs.~9!, ~15!, and~17!, it thus follows that

Q̄ab52
k

~12z2Kb
2 !

~ s̄ab2zKbs̄bb!,

dab52gbs̄bb1zKbgbs̄ab , ~18!

wheregb5zKbk2/(12z2Kb
2) andz is the number of neares

neighbors. These are the equivalent of Eqs.~23a,b! and
~24a,b!, respectively in Ref. 25. It can be shown that the
relationships lead to the straight lines in Fig. 1 for t
E^ e problem.

D. fcc lattices

Unfortunately, the fcc lattice exhibited by many fulleren
solids is not bipartite, as two nearest neighbors to a given
can themselves be nearest neighbors. However, it is pos
to proceed with a generalized version of molecular-fi
theory by dividing the fcc lattice into eight sublattices
06430
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which no atom interacts with any other atom in its own su
lattice ~to first order!, as shown in Fig. 2.30 If the sublattices
are labeled in the conventional manner as shown in the
ure, each atom in sublatticei 51 –4 has two nearest neigh
bors in every other sublattice excepti 14. From Eqs.~9!,
~15!, and~17!, we can now obtain the general result

Q̄1b5
k

~4Kb21!~12Kb11!
@~118Kb224Kb

2 !s̄1b

22Kb~s̄2b1s̄3b1s̄4b212Kbs̄5b

1s̄6b1s̄7b1s̄8b!#. ~19!

Similar results can be obtained for the otherQib by appro-
priate permutation of the labels.

IV. SOLUTIONS

The solution~s! for the average pseudospin and corr
sponding distortion that will occur physically are tho
which simultaneously satisfy Eqs.~14! and ~18!. The solu-
tions can be found graphically, as in Fig. 1. Where there
the possibility of more than one phase at a given tempe
ture, the phase that will occur is that for which the fr
energy per molecule

Fm f5S (
i

f ~k,d,T!2(
^ i , j &

Ei j
c D Y N ~20!

is smallest, whereN is the number of molecules and

f ~k,d,T!52kBT ln(
n

exp„2En~k,d!/kBT…. ~21!

A. E‹e

Before solving the current case, it is useful to summar
the results obtained in Ref. 25 for theE^ e system so that we
can draw parallels with it. Reference 25 considered the c
in which a permanentu-type splitting of the doublet is
present, and wrote the cooperative interaction in the fo
l(QauQbu1QaeQbe), i.e., l5Kuu5Kee in our notation. A
phase with ferrodistortive~F! ordering of the pseudospin
~and hence of the distortions! was found whenl,0; the
pseudospins in the two lattices are parallel and are assu
to have the same magnitudes. Three possible phases

FIG. 2. Division of fcc lattice into eight noninteracting fcc sub
lattices~after Ref. 30!.
3-5
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JANETTE L. DUNN PHYSICAL REVIEW B69, 064303 ~2004!
found whenl.0. In the first phase,s̄ae5s̄be50, with the
result that the average pseudospins are aligned antipa
along theu direction with~in general! different magnitudes.
It is termed as an antiferrodistortive~AF! phase in Ref. 25.
The equivalent phase is called a ferridistortive phase in R
4. The free energy is

FAF
m f5 1

2 @ f ~k,da ,T!1 f ~k,db ,T!#

2 1
2 gu@s̄as̄b2 1

2 zl~s̄a
21s̄b

2!#. ~22!

The second phase also hass̄ae5s̄be50 but in this case the
two pseudospins are aligned parallel along theu direction
and have the same magnitudess̄a5s̄b5s̄. This is called a
paradistortive~P! phase. The free energy per site is

FP
m f5 f ~k,d,T!2 1

2 gu1s̄2, ~23!

wheregb15gb(12zKb). The third phase is called a pse
dospin flop~PSF! phase25 or a spin polyaxial phase.4 It has
equal components of pseudospin in theu direction, s̄au

5s̄bu5w/2gu , and are mirror images of each other in thee
direction, and the free energy is

FPSF
m f 5 f ~k,d,T!2 1

2 gu1s̄u
21 1

2 gu2s̄e
2, ~24!

wheregb25gb(11zKb).
The values ofs̄[s for the different phases depend lin

early on the distortiond. Lines defining the PSF andP
phases have been plotted~schematically! in Fig. 1, along
with the curves calculated for the thermal average de
mined from detailed knowledge of the energy levels~as dis-
cussed in Sec. III A!. Any points of intersection of the curve
and lines give the required phases. For high temperat
~e.g.,T.Tc on the graph!, there is no point of intersection
with the PSF line and so only aP phase is possible. How
ever, as the temperature is lowered below the critical te
peratureTc ~at which the gradient near the origin of th
curved line coincides with that of the PSF line!, both P and
PSF phases become possible. It is found that the PSF p
is thermodynamically stable with respect to theP phase.
Thus a structural phase transition from theP phase to the
PSF phase can take place. The resulting phases are s
schematically in Fig. 3 as a function of the temperatureT and
the permanent distortionw.

FIG. 3. Schematic phase diagram for theE^ e system~after
Ref. 25!.
06430
llel

f.

r-

es

-

ase

wn

The actual phase and values of the pseudospins that
be observed is that for which the free energy per molecul
smallest. This shows that the AF phase is always thermo
namically unstable with respect to the PSF phase, as is
the case in a magnetic analog of the same system. This
sults in a phase diagram with transitions from the PSF ph
to the P phase as the temperature increases. In general
P-PSF phase transition is Ising-like as only thee component
of the pseudospin is ordering. However, when the perman
distortion is set to zero, the situation is rather different
there is no longer a preferred direction for the ordering.

B. C60
nÀ

Qualitatively, we know that at finite temperature, the a
erage pseudospin experienced by any isolated JT center
be zero when there is no distortion. In the case of C60, this
means that isolated molecules or anions experience local
tortions but the JT effect is dynamic with all locally distorte
configurations being equally probable. The average ps
dospin is only nonzero at zero temperature. For very la
distortions, the average pseudospin will tend to a constan
for the E^ e system. Quantitative determination of the e
ergy levels for a given system is a significant undertak
that will not be attempted in this paper. Nevertheless, m
useful information on possible allowed phases can still
obtained by consideration of the equations in general ter

In all of the JT problems applicable to C60
n2 anions, the

form of the interaction in the absence of strain is such t
the lowest APES contains a multidimensional trough
minimum-energy points.23 The motion in the five-
dimensional space of theh vibrations is therefore comprise
of vibrations in the directions across the trough and rotati
in the directions around the trough.~Rotations in this context
are often called pseudorotations to distinguish the situa
from real rotations of the molecule.! In the cases relevant to
C60

32 , there are two vibrations and three rotations, wher
for the other C60

n2 anions there are three vibrations and tw
rotations. As all points on the trough are equivalent, the
erage values of the displacementsQn , and hence of thesn ,
are zero for all componentsn.

For a u-type strain2wsu in the JT effect for C60
32 , a

circle of minimum-energy points will be extracted from th
four-dimensional hypersphere of minimum-energy points
the absence of strain, with the center of the circle lying alo
the strain direction. The values of the angles parametriz
the Q’s are also restricted. The circles of minimum-ener
points are illustrated schematically in Fig. 4. This means t
the averagesQ̄u8 and s̄u8 will be nonzero, but the averag
values of the other components will still be zero. The curv
of s vs d are therefore at least qualitatively similar to those
Fig. 1 for theE^ e system. A strain applied in a differen
direction will result in a similar picture but with the circle o
minimum-energy points in a different orientation. In the
system applicable to C60

22 , there is either a circle of
minimum-energy points or a single minimum point when a
splitting between the2P and 2D terms is neglected, depend
ing upon the sign of the strain term. When the term splitti
is included, the situation is not quite so straightforward
3-6
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PHASE TRANSITIONS AND COOPERATIVE JAHN- . . . PHYSICAL REVIEW B 69, 064303 ~2004!
strain will mix part of higher-energy potential sheets into t
ground state. Nevertheless, the average pseudospin wi
oriented along the direction of the molecular field in
cases.

1. Bipartite lattices

By comparison withE^ e, we can now find equivalen
solutions for our C60

n2 anions. We can immediately see th
~in the absence of any permanent splitting! one set of solu-
tions occurs whens̄ab is nonzero for one of the componen
b only. If Kb,0, we obtain a phase equivalent to theF
phase of Ref. 25, and ifKb.0, we obtain a phase equivale
to the AF phase.

Another set of solutions occurs when two of thes̄ab are
nonzero, say forb5m and n. For the requirement for the
field and average pseudospin in a sublattice to be collinea
follows that this phase is only possible ifKm56Kn . When
Km5Kn.0, there is again an AF phase with the pseudosp
antiparallel, but with the pseudospins now oriented at
angle in them –n plane @Fig. 5~a!#. Such an interaction is
certainly possible in a real crystal. For example, in t
E^ e system an interaction along the body diagonal of a

FIG. 4. Representation in theQu-Qe-Q6 directions of the
minimum-energy points for the JT problem applicable to C60

32 in the
presence of au-type strain. The upper circle@inset~a!# indicates the
points that are minima whenw,0. This hasu50 and the angle
around the circle is 2(g1f). The lower circle of points@inset~b!#
are minima whenw.0. It hasu5g5p/2 and the angle around th
circle is 2f.

FIG. 5. Possible pseudo spin alignments:~a! antiferrodistortive
~AF!, ~b! ferrodistortive (F), ~c! pseudospin flop~PSF!.
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lattice results in an interaction withKuu5Kee and Kue

5Keu50.25 There is also aF phase withs̄a5s̄b if Km
5Kn,0 @Fig. 5~b!#. Another interesting possibility can oc
cur if Km52Kn.0 ~say!. In this case,s̄a ands̄b make the
same angle with them axis. This resembles the PSF phase
the E^ e system but in which the magnitudes of the tw
pseudospins need not be the same@Fig. 5~c!#. It is not clear
whether any physical mechanism could result in such a c
pling, although it must be remembered that theKb contain
both positive and negative combinations from theKmn . Fur-
ther solutions can be obtained by extending the above id
for three, four, or all five of thes̄ ib nonzero, although this
places even more restrictions on the coupling constants. N
ertheless, it is possible.

It is interesting to note that it has been suggested that
K4C60 could have either a Jahn-Teller-Mott dynamic state
a staggered distortion in which neighboring C60 molecules
distort along different directions.31 Our results show that the
only solution in which neighboring sites have different d
tortions is the PSF phase of Fig. 5, which only occurs if
turns out that the coupling constants for two of the u
coupled modesb are equal in magnitude and opposite
sign.

Depending upon the detailed nature of the interaction
any restrictions on the coupling constants, we now hav
series of lines through the origin with positive gradien
each equivalent to the line labeled PSF in Fig. 1. Exclud
the origin, each line will intersect at most once with th
curve s(k,d,T) calculated from the energy levels for an
given temperature. As mentioned before, the phase that
actually occur at that temperature is that for which the f
energyFm f is lowest. It is not immediately obvious whic
line will dominate asFm f contains two parts, one involving
f (k,d,T) and the other involving thes̄ ’s.

The dependence ofFm f on d can only be found for a
given system when the details of the variation of its ene
levels with distortion are known. However, we can ma
some deductions based on theE^ e case using the energie
given in Ref. 32. These can be used to show that, when th
is no permanent distortion,f (k,d,T) decreases asd in-
creases, while the term in thes̄ ’s increases, with the varia
tion in the former being slightly greater in the latter for th
parameter ranges considered in that paper. The net res
thus that the free energy will be lowest for the case with
largest value of the intermolecular coupling constantKb ,
and the situation with the largest possible value of distort
will dominate. For very high temperatures, the two releva
curves will only intersect at the origin and the only solutio
is one in which there is no overall distortion. As the tempe
ture decreases, a phase transition to an ordered state bec
possible. We will therefore have a phase diagram equiva
to Fig. 5 but where the PSF phase is now the AF phase
the P phase is a phase with no overall distortion.

2. fcc lattice

The analysis for fcc lattices proceeds in a similar way
above but using the more complicated expression in Eq.~19!
for theQib . At first sight, this appears rather complicated
3-7



.
b
o
e

in
n

be

r b

o

t
n-
th
w
ra

t
gu
no
he
ism
ce
u-
p-
i

rt
ob-
re,

ion
it is

ve-
ges

a
gh
n
nge

om-

tice
ag-

his
1,

ates

, or
m-
that
an

heat
-

. In
ctra
ate
n to

e

pos-
lid
n-

u-
om

to

l

JANETTE L. DUNN PHYSICAL REVIEW B69, 064303 ~2004!
they contain references tos̄ ib in eight different sublattices
However, as the fcc lattice is translationally invariant, and
analogy to the generalized molecular-field theory
magnetism,30 we must also impose the condition that eith
~a! s̄ ib5s̄ ( i 14)b for all i 51 –4 or that ~b! all s̄ ib5

2s̄ ( i 14)b .
When only one of the components of thes ib is nonzero

~so s ib5s i), case~b! leads to the rather simple resultQ̄1

52ks̄1 and d150. This is a rather interesting phase
which there is no net molecular field but there is still a no
zero average distortion, with the distortion correlated
tween neighbors. Case~a! leads to the results

Q̄15
k

~4Kb21!~12Kb11!

3@~118Kb!s̄124Kb~s̄21s̄31s̄4!#,

d15
4k2Kb

~4K2b21!~12Kb11!
@212Kbs̄11s̄21s̄31s̄4#,

~25!

and similarly for the otherQ̄i . However, for antiferromag-
netic ordering these expressions can be simplified furthe
applying the usual rule that( i 51

8 s̄ ib50, namely,s̄11s̄2

1s̄31s̄450 in our case, so that

Q̄15
k

~4Kb21!
s̄1 and d152

4k2Kb

~4Kb21!
s̄1 . ~26!

For ferromagnetic ordering, all thes̄ ib are usually equal, in
which case

Q̄152
k

~12Kb11!
s̄1 and d152

12k2Kb

~12Kb11!
s̄1 .

~27!

However, there are other interesting phases which might
cur with different combinations ofs̄ i in each sublattice, and
also phases in which more than one value ofKb is nonzero
~as for the bipartite lattices discussed above!. The phase tha
will prevail in a given system is that for which the free e
ergy is a minimum, which can only be calculated when
exact pattern of energy levels and eigenstates is kno
However, this does show that a rich variety of structu
phases is certainly possible in fcc fullerene solids.

V. DISCUSSION

From our comparisons with theE^ e system, it does no
seem likely that phase transitions from one distorted confi
ration to another can occur. However, the possibility can
be entirely ruled out for other parameter ranges or in ot
systems. In particular, it should be noted that the formal
used here applies to all crystal structures. Different latti
~fcc, bcc etc.! will have different relations between the co
pling constantsKnm . This means that the straight lines re
resenting the phases in the equivalent of Fig. 1 will be
06430
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different positions for different lattices. This may play a pa
in an understanding of the structural phase-transitions
served experimentally in some fullerene solids. Furthermo
the effects of various couplings other than electron-vibrat
couplings need to be taken into account. For example,
known that elastic constants can be softened~reduced! as a
consequence of translation-rotation coupling to long wa
length phonons if the amount of orientational order chan
considerably when the crystal distorts.12

It is interesting to note that if it is possible to introduce
permanent distortion into our solid material, such as throu
‘‘internal’’ strains or by application of a uniaxial stress, a
external pressure or magnetic field, then an even wider ra
of phases become possible. A strain in theb direction is
introduced by adding a termwb to the right-hand side of the
expression fordb in Eq. ~18!. One solution to the situation
with such a strain included occurs whens̄b is the only non-
zero pseudospin. This results in AF orP phases ifKb.0 or
a F phase ifKb,0, just as forE^ e. However, there are
other solutions when more than one of the pseudospin c
ponents are nonzero. For example, ifs̄m is nonzero~as well
as s̄b), there is a phase satisfying the equation~from the
collinearity condition!

wb2gbs̄bb1zKbgbs̄ab

s̄ab

5
2gms̄bm1zKmgms̄am

s̄am

~28!

and the equivalent equation witha andb interchanged. The
magnitude and direction of the pseudospin in one sublat
determines the pseudospin in the other lattice, but the m
nitudes and directions in the two lattices are different. T
introduces extra possible lines in the equivalent of Fig.
which could easily result in phase transitions between st
with different distortions as the temperature changes.

Any new phases appearing after a stress, pressure
magnetic field could be observed experimentally by a nu
ber of means. A second-order phase transition, such as
between theP and PSF phases, could be observed as
anomaly in the temperature dependence of the specific
or magnetic susceptibility.3 Structural changes can be ob
served in x-ray scattering or by spectroscopic methods
Raman spectroscopy, extra bands will appear in the spe
of distorted molecules due to the splitting of degener
modes.3 Indeed, Raman spectra have already been show
be sensitive to phase transformations of C60 solids subjected
to high-pressure and high-temperature~HPHT! treatments,33

and there is evidence that not all the C60 produced by these
treatments is polymerized.34 It should be noted that som
solids, including the HPHT fullerite33 may contain domains
of different metastable phases. In these cases, it may be
sible to use an external magnetic field to convert the so
into a single domain, which in turn may facilitate experime
tal measurements.3

If any non-negligible quadratic or other higher-order co
plings are present, then the pseudospins will tilt away fr
the ‘‘ideal’’ directions predicted in this paper~see Ref. 2, p.
109!. The molecular-field approximation can still be made
decouple the mean-field Hamiltonian for moleculei from
that for moleculej, as in Sec. II A. However, the canonica
3-8
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PHASE TRANSITIONS AND COOPERATIVE JAHN- . . . PHYSICAL REVIEW B 69, 064303 ~2004!
transformation used above Eq.~7! to remove the terms in
Qinl in from the Hamiltonian does not preserve the form
the higher-order coupling terms. This means that the prob
can not be written in terms of the Hamiltonian describing
usual JT effect in an isolated center as it involves ex
terms. It may be possible to neglect the extra terms, as
combine the higher-order coupling constant and the coop
tive interaction constants. In this case, the problem can
solved as set out in this paper. However, terms which red
the rotational symmetry may be important when there is
permanent splitting.25 If this is the case, then it is still pos
sible to proceed using the formalism given in this paper
by solving a different problem for the on-site JT effect.

It should be noted that several other factors may nee
be taken into account before our idealized theoretical ca
lations can be applied to real C60 systems. There is aT1g
state only slightly higher in energy than theT1u ground state
of the C60

n2 systems. Therefore pseudo-JT effects coupling
this level also may be significant.35,36Also, there are severa
vibrational modes of each symmetry type, all of which w
be JT coupled, although in some circumstances, it is poss
to formulate the problem in terms of coupling to a sing
effective mode.

VI. APPLICATION TO fcc C 60

We will now illustrate how the general mathematics d
veloped above can be used in situations that apply to60
molecules at fcc lattice sites. TheA3C60 alkali-metal doped
fullerides are likely to be the most interesting examples he
although this geometry also include pristine solid C60 at high
temperatures, for example. TheA3C60 fullerides are amongs
the most widely studied fullerene compounds due to th
relatively high-temperature superconductivity. It is genera
accepted that coupling to intramolecularhg phonon modes
plays an important part in driving the superconductivit7

along with intermolecular coupling between C60 molecules.
The superconducting transition temperature is approxima
independent of the alkali-metal-atom mass, which indica
that coupling to the vibrational modes of the alkali-me
atoms is not important. The strength of the intramolecular
coupling is believed to be in the intermediate regime, wh
is the most difficult to treat theoretically. In particular, th
conventional Migdal-Eliashberg theory of electron-phon
driven superconductivity is not valid,7,37,38and a JT theory in
the nonadiabatic regime that correctly introduces zero-p
energies is required to properly determine pair binding en
gies. Hence the theory presented here is likely to be of in
est for these materials. In addition, the superconducting t
sition temperature of K3C60 shows a very large decrease wi
increasing pressure,39 which as mentioned above may be
signature of a cooperative JT effect.

The A3C60 materials form a fcc structure. Over a wid
range of temperatures, the individual C60 molecules take one
of two standard orientations~with a possible orientationa
phase transition at high temperatures40!. The C60 molecules
are each oriented with eight of their 20 hexagonal fa
along cubiĉ 111& directions, but have two possible position
of the pentagonal faces related by a 90° rotation about
06430
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^100& direction.14 The orientations can be alternatively vis
alized in terms of two icosahedra, as shown schematicall
Fig. 6. From this, after analyzing the allowed symmetry o
erations it can be seen that a pair of adjacent molecules in
sameorientation have a local symmetry ofC2h , whereas a
pair of differentorientations have a localC2v symmetry.

By reference to standard group theory texts~e.g., Ref. 41!,
we can find that in C2h symmetry,x2, y2, z2, and xy all
transform asAg , whereasyz andzx transform asBg , where,
in order to satisfy the convention that the two reflections
in the xz and yz planes, they axis is taken to be the axi
joining the two molecules, thez axis is perpendicular to this
along the body diagonal of the cubic lattice and thex axis is
along a cubic axis. They andz axes are illustrated in Fig. 6
However, these axes are different to those used to labe
icosahedron. If we defineC2 axes for the icosahedron~see
discussion in Sec. II B! and label them$x2 ,y2 ,z2%, then

$x2 ,y2 ,z2%[$~y2z!/A2,~y1z!/A2,x%. ~29!

With this correspondence,$Qu ,Qe,Q4 ,Q5 ,Q6% transform as

H 1

2
~3x22r 2!,2A3yz,A3

2
~xy1zx!,

A3

2
~xy-zx!,

A3

2
~y22z2!J .

in terms of the axes used forC2h symmetry. ThusQu , Q6,
and Qp[(Q41Q5)/A2 transform asAg , while Qm[(Q4

2Q5)/A2 andQe transform asBg . It is therefore more con-
venient to express the matrix of interaction coefficients
terms of basis vectorsQ5$Qu ,Q6 ,Qp ,Qm ,Qe% rather than
the original$Qu ,Qe ,Q4 ,Q5 ,Q6%. As the overall symmetry
of each term allowed in the HamiltonianHi j (K ) must be
Ag , the form of the matrix of interaction coefficients for tw
same-orientation C60 molecules in this new basis takes th
block-diagonal form

FIG. 6. A view of a face of a fcc crystal with icosahedra repr
senting C60 molecules in their two standard orientations. Icosahe
~a! and~b! are in the same orientation so have a localC2h symmetry
whereas~a! and ~c! have different orientations and hence this p
hasC2v symmetry. Also shown are they andz axes relevant to the
local C2h symmetry of the~a!–~b! pair. Thex axis is out of the
page.
3-9
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K5S Kuu Ku6 Kup 0 0

Ku6 K66 K6p 0 0

Kup K6p Kpp 0 0

0 0 0 Kmm Kem

0 0 0 Kem Kee

D . ~30!

Thus 25 independent coefficients have been reduced to
The relation between theC2v coordinate system and th

I h coordinate system with a twofoldz axis is not unique, as
there are many possibleC2 axes in an icosahedron. For e
ample, in Eq.~29!, the directions of the axes could be r
versed and/or, asx, y, andz areall twofold axes, the labels
$x,y,z% could be cyclically permuted. The choice made he
is that which gives the simplest results. It corresponds t
particular orientation of thez axis of each of the C60 mol-
ecules in an interacting pair. Choices with the labels p
muted will result in a Hamiltonian involving more compl
cated combinations of theQg’s, such as 1

2 Qu1A3/2Qe
rather than simplyQu . This combination transforms a
1
2 (3x22r 2), so is equivalent to au-type distortion but along
the x axis rather than thez axis.

For two differently oriented molecules, a similar analys
can be carried out but forC2v symmetry. This shows tha
~again with a two-foldz-axis! Qu and Q6 transform asA1 ,
Qe asB2 , Qp asA2, andQm asB1. This leads to the sam
matrix as Eq.~30! above~and with the same basis forQ) but
with Kup5K6p5Kem50, i.e., there are only six independe
nonzero coefficients in this case. The fact that the matri
so similar in both symmetries is consistent with the expe
mental observation that both standard orientations are
served, which implies that both must have similar energi

With the coupling constants restricted as in Eq.~30!, the
coupled equations to be solved take the form of four coup
equations,

Q̄ae1ks̄ae1z@KeeQ̄be1KemQ̄bm#50,

Q̄am1ks̄am1z@KemQ̄be1KmmQ̄bm#50 ~31!

~including the same witha andb interchanged! and a set of
six equations

Q̄au1ks̄au1z@KuuQ̄bu1KupQ̄bp1Ku6Q̄b6#50,

Q̄ap1ks̄ap1z@KupQ̄bu1KppQ̄bp1K6pQ̄b6#50,

Q̄a61ks̄a61z@Ku6Q̄bu1K6pQ̄bp1K66Q̄b6#50. ~32!

The first set of equations can be decoupled by defin
two combinationsb of theQi e andQim ( i 5a or b) such that

Q̄ib5@KemQ̄i e1~Kb2Kee!Q̄im#/AKem
2 1~Kb2Kee!

2,
~33!

where

Kb5 1
2 @~Kee1Kmm!6A~Kee2Kmm!214Kem

2 #. ~34!
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The second set of equations is decoupled by defining n
combinations ofQ̄iu , Q̄i6, andQ̄ip . The three new coupling
constantsKb are the roots of the equation

U ~Kuu2Kb! Ku6 Kup

Ku6 ~K662Kb! K6p

Kup K6p ~Kpp2Kb!
U50. ~35!

If axes $x5 ,y5 ,z5% are defined for the icosahedron su
that z5 is a fivefold axis andy5 is a twofold axis~to be
equivalent to the definitions used in Ref. 23!, the mathemat-
ics is rather more complicated. The equivalence betw
these axes and the directions$x,y,z% used forC2v andC2h
symmetry~which is again not unique! can be defined to be

$x5 ,y5 ,z5%[H 1

A2~21f!
~f21y1f2z!,x,

1

A2~21f!
~f2y2f21z!J , ~36!

wheref5(11A5)/2 the golden mean. These relationshi
can be used to show that if we choose a basis

Q51
1

2
Qu1

A3

2
Qe

1

A5
@A3Qu2Qe1Q5#

1

A2~21f!
@f2Q41f21Q6#

1

A2~21f!
@2f21Q41f2Q6#

1

2A5
@2A3Qu1Qe14Q5#

2
then the form of the matrix of interaction coefficients in E
~30! will remain the same.~The five components in the new
basis transform as$Ag ,Ag ,Ag ,Bg ,Bg% in C2h symmetry and
$A1 ,A1 ,A2 ,B1 ,B2% in C2v symmetry.! It should be noted
that, unlike$x2 ,y2 ,z2%, the labels$x5 ,y5 ,z5% cannot be per-
muted as they are not equivalent to each other.

A similar method to that discussed in this section can
applied to other systems with different symmetries. This w
result in different restrictions on the coupling constants.

VII. CONCLUSIONS

We have analyzed, from a general point of view, the p
sible cooperative JT effects that could be seen in solids c
taining negatively charged fullerene ions in which the fo
of the interaction between fullerene molecules can be re
sented by a form quadratic in either the collective displa
ments or pseudospin operators. This is a general form
interaction that can be used phenomenologically to repre
3-10
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a number of different physical interaction mechanisms.2 It
may be that there are some important effects in real fuller
solids that cannot be represented by a Hamiltonian of
form. However, the results given here serve as a star
point for helping to understand possible cooperative effe
in such materials.

The analysis presented shows that at high temperatu
although the C60 molecules vibrate, they will not exhibit an
permanent distortion. As the temperature is lowered, the
ids may undergo a phase transition in which local distortio
of the C60 molecules become locked in place by a coope
tive JT effect. It also suggests that cooperative JT effe
may play a role in structural phase transitions, such as the
to simple cubic phase transition observed in pure solid C60.
In addition, it predicts that it may be possible to create n
and interesting phases if it is possible to generate struct
in which there is a permanent distortion. This could
achieved either through internally generated ‘‘strains’’ or
application of an external field.

The formalism developed in this paper applies to m
ecules or ions which are linearly coupled to icosahed
h-type vibrations. The details are given for systems coup
to states derived from aT electronic term. This covers the J
effects experienced by all negatively charged fullerene i
when higher-order terms can be neglected. In all of th
cases, the lowest APES consists of a trough of minimu
energy points, which gave the result that a strain in a gi
direction will result in a net distortion in that direction. Pos
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