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Calculation of excited polaron states in the Holstein model
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An exact-diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein
model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a comprehensive
picture, involving three excitetcoherent polaron bands below the phonon threshold, is obtained. The coher-
ent contribution of the excited states to both the single-electron spectral density and the optical conductivity is
evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain
complementary information about the single-electron system at zero temperature. The chosen method reveals
the connection between the excited bands and the renormalized local phonon excitations of the adiabatic
theory, as well as the regime of parameters for which the electron self-energy has notable nonlocal contribu-
tions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground
and first excited states in the crossover regime.
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[. INTRODUCTION weight directly determines the polaron energies. Most of the
previous spectral investigatiof;?° however, make no
Although more than half of a century has elapsed sincenention of the excited coherent polaron bands. The excep-
Landau proposed that the charge carrier could be trapped lions in this respect are provided by those works employing
the distortion of a crystal latti¢eand Pekar introduced the the dynamic mean-field theofDMFT), which is exact in
term polarorf, a number of questions regarding the single-the infinite-dimensional limit. The DMFT results predict one
polaron theory remain unanswered. This is true even in thexcited polaron band below the phonon thresHofd.
context of the Holstein Hamiltoniahpne of the simplest For the one-dimensional system, recent exact-
electron-lattice coupling models for the one-electron systemdiagonalization (ED) and variational approach@s® ob-
While the literature pertaining to the ground state of such aained results for the lowest state of the first excited band.
model is extensive, much less attention has been paid to tHerovided that the local electron dynamics remains adiabatic
excited states, even at the low energies for which they arand that the adiabatic calculation of the self-trapped polaron
most interesting. energies gives several solutions below the inelastic phonon
The nature of the excited polaron states has been investihreshold, more than one excited polaron band is expected to
gated within the adiabatic approximation in Refs. 4—6 byoccur in this energy range. The present paper shows that the
neglecting the polaron translation. These works provide &D approaches for the infinite lattice, as implemented in re-
simple picture of the self-trapped polaron states for strongent works’?>=?° can be extended to give very accurate re-
couplings. That is, the adiabatic softening of the phonorsults for the first few excited coherent polaron bands. In the
modes within the self-trapped polaron states results in sewange of parameters for which the method converges, the
eral excitation energies below the bare phonon energy. kkoherent part of the spectrum is found to exhibit up to three
follows that the lowest excitations of the system are the poexcited polaron bands, two more than previously described.
laron states for which the electron and phonons are stronglyhese results provide a better understanding of the spatial
correlated. When the polaron translation is restored, each @nd temporal structure of the polaron states, as well as of
the soft-phonon modes below the bare phonon energy can likeir symmetry(parity) properties. The latter can be used to
expected to develop the corresponding band if the local dyrationalize the contributions of the bands to the low-energy
namics remains adiabatic. Actually, moving polarons havesingle-electron and optical conductivity spectra, respectively.
been described within the adiabatic approximation by ne- An additional and attractive feature of the excitation spec-
glecting the force impeding the polaron translational motiontrum obtained herein is its potential to help clarify the physi-
due to the lattice discreteness. However, the band struc- cal picture of the polaron crossover for moderate values of
ture of the spectrum was not considered in these investigahe adiabatic ratio. It has been previously propdsSed,the
tions. For strong couplings, the bandwidth of the lowest bandtontext of the variational analysi&?®that this crossover, in
has been obtained by the adiabatic theory in the context ofhich the ground state evolves from a light to a heavy po-
the simplest two-site modéf:** laron state, can be understood as the anticrogsiyloridiza-
When considering the band structure it is important totion) of two low-energy states. This question is reconsidered
realize that the polaron states are coherent in the range diere in terms of practically exact eigenstates and their afore-
energies below the phonon threshdlé., below the minimal mentioned parity properties. Specifically, hybridization is
energy for inelastic scatterind®'® One way to investigate found to occur between states of equal parity, whereas states
their properties is by analyzing the single-electron and optiof opposite parity cross without any such hybridization. Fur-
cal conductivity spectra. In the case of the single-polarorthermore, the hybridization of states in the crossover regime
problem, the low-frequency coherent part of the spectrals characteristic not only of the Holstein model under con-
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sideration. Recently, for example, on the basis of accuratmmomentun), while i denotes the band index. The lowest
numerical results obtained by the diagrammatic quantuniground polaron band will be denoted by=0. In the
Monte Carlo method for the Rashba-Pekar polaron present paper the term ground state is used for the state of
model? it has been suggested that the polaron crossover iminimal energy for a given momentuk and not to theK
that instance also involves a hybridization of several polaron=0 state only. Accordingly, the first excited state corre-
solutions?® sponds to the first excited state of a given momenkuand
ED methods, analogous to the one employed here, hawso forth.
found widespread application in the ground-state calcula- For the polaron bands below the phonon thresHefd
tions of numerous other many-body problems. In this conthe statesj\I'(Ki)) are the eigenstates tf,_, (Refs. 30 and
text, the present analysis of the excited states, together wity):
their symmetry attributes, is also of interest for the descrip-

tion of low-energy eigenstates and spectral properties from a _ 1 ) 1 g )
more general point of view. bg=ol V%)= N % by W)= N %N’ﬂ))-
Il. HOLSTEIN POLARON PROBLEM More generally, it can be shown that for all eigenstaiig)

, , ) . _the simple sum rule for the mean total lattice deformation,
The one-dimensional Holstein model of interest here iSgiven by

defined by the Hamiltonian

— — 29Xy
R Xiot= > Xn=Xo X (WE[(bl+b)|WE)=—"—, (3
A=—tS cl(Castcn 0 +h0 b, S e e
n n
is satisfied. In Eq(3), X, is the space uncertainty of the free
harmonic oscillator with frequency. Besides its physical
_ T T
g; CoCn(Dntbp). @ meaning, the sum rule for the mean total lattice deformation
can also be used as a tool for checking the validity of results
Heret is nearest-neighbor hopping energy of the electron an@btained with approximate polaron wave functions.
f o is the energy of dispersionless optical phonons, while
is the electron-phonon coupling energaz. and bx are cre- IIl. EXACT-TRANSLATIONAL METHOD
ation operators for the electron and phonon at latticersite

respectively. As only the single-electron problem is treated, N the case of the Holstein polaron problem, the ED ap-
the spin indices have been omitted. proach uses only a finite number of states which contribute

The total momentum of the systenk is the sum of significantly 1o the exact polaron wave _function for a giv_en
- ) set of Hamiltonian parameters. By using the Hamiltonian

electron and phonon momenta. As commutes with the a4y corresponding to the truncatéeduced basis and the
Hamiltonian (1), the complete set of states of the system canyppropriate numerical scheme, one calculates the polaron
be constructed from eigenstates téf and K. The Hamil-  wave functions and energies. The convergence of the results
tonian(1) is also invariant under space inversion. However,can be verified by increasing the number of basis states in the
the analysis of the resulting parity properties of the eigencalculation. In most cases the results are very accurate, pro-
states will be deferred until later in the present discussioided that the truncation procedure is well chosen.

(Sec. IVD. The ED method developed in the current paper is hence-
The eigenstates that will be considered herein are thos@rth referred to as the exact-translational meth@T
falling in the energy window defined by method. The basis states of the ET method are giveff by
EQ ,<E<E®, EO=EQ) +fw. 2 INo.N_1,N1, - .. Nk

EQ), is the minimal energy of the systertthe zero- ot
momentum polaron ground-state enérgnd o is the en- “ N 2 e™%cIng,n_1,n1, . Nm)y - (4)
ergy of the bare phonon excitation. When the electron-
phonon coupling is absentgE0) the states below the The orthonormal wave functiod) describes an electron
phonon thresholE® are those of the free-electron band. which is surrounded by a cloud of phonons. The number of
Wheng is switched on, the free-electron states evolve intophonons at themth lattice site away from the electron is
those states correlated with phonons. Furthermore, additiongiven byn,,, while K corresponds to the total system mo-
bands can appear belo@® as the coupling increases. All mentum anda is the lattice constant. The basis statésof
states in the energy windoy2) are correlated and will be different momentaK are not mixed by the Holstein Hamil-
referred to as polaron states. FBE=E(® the electron and tonian.
additional phonons can form weakly bound states, which re- If the adiabatic ratid/% w is not too large, the ET method
sults in a highly degenerate spectrum. can be used for studying polarons in the weak- and strong-
The energies of the coherent polaron states are hencefortfoupling regimes, as well as in the crossover regime between
denoted byE{) and the wave functions byF{{). K is the  them. The present paper is focused, particularly, on the re-
momentum of the polaron statevhich is also the system gime in which I=t/ZAw=<5 and g is arbitrary. Forg, t
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>fhw, the number of relevant basis statds becomes large ues ofg. As in the remainder of the papérw=1 is used as
and the problem of finding the polaron wave functions be-the energy unit. Notice that, as discussed in connection with
comes untreatable. Unfortunately, the limgitt>#%w, which ~ Eq. (2), only the part of the spectrum below the phonon
is not considered here, is difficult for other known numericalthreshold(betweenE? , and E(®)) is shown.
methods as well. In the weak-coupling limit for the lowest band=0),

The matrix representation of the Holstein Hamiltonian intwo regimes exist with respect to the critical momentkim
the ET basis leads to a sparse matrix. That is, it is straighttRefs. 34 and 3b For K=K, the polaron state of energy
forward to show that, by acting on the sta® with the E<E( is the ground state of the system. RoEK the
Hamiltonian(1), the maximum number of nonzero matrix ground state consists of the polaron and the unbound phonon
elements per ET basis state is 5. As an example, let us for@xcitation. The unbound phonon excitation carries the system
the reduced Hilbert space of only five ET states—i.e., of thenomentumK, while the polaron momentum is equal to O.
zero-phonon staté0),, of three states with one phonon For K=K, the ground-state energy lies at thg bottom of the
(phonon at the electron site, at the left site from the electronincoherent part of the spectrul= E(. The first panel of

and at the right site from the election Fig. 1 shows the ET weak-coupling results. Notice that the
top flat part of the lowest band fét=K has been cut by the
Ino=1)x, [n_1=1), [ni=1), frame. The reason is that the numerical error of the corre-

] ] _ sponding ET states is slightly greater than that of the zero-
and finally, of the state with two phonons at the electron sitanomentum ground state, while the energy interval shown is
Ino=2)k . The corresponding Hamiltonian matrix is given exactly equal to the bare phonon enetgy. As the electron-

by phonon coupling increases, the lowest band becomes more
renormalized, and finally, at some critical coupling, the
[ —2tcosKa g 0 0 0 7 whole band falls belovE(®,
g ho —te K@ —telka g2 By increasing electron-phonon coupling further, the addi-

tional polaron bands emerge beld@. In the second and

0 —te'ka hw 0 0 : : _ _

_ third panels of Fig. 1 the results fg=2.8 andg=3.3 are
0 —te Ka 0 ho 0 shown, respectively. These are the choices of parameters that
0 g\/f 0 0 Hw correspond to the crossover regime. lger2.8, only a part

of the first excited bandi& 1) lies belowE(®), whereas for
In the limit g, t<Aw the ET method gives a good polaron g=3.3 there are four polaron bands in the relevant energy
ground state with only these five states. Neverthelesst for window. From the third panel of Fig. 1g(3.3) one sees
~# one usually has to work with a truncated basis of quitethat the top of the second excited bamet @) is atk =0 and
large dimension. In other words, the ET method generalljhe bottom is atK=/a. In addition, this band i 2)
requires a numerical scheme capable of dealing with largerosses the other excited bands-(,3)—i.e., the first ex-
sparse matrices. cited band near the end of the Brillouin zoffer g=<3.3)

For this purpose the well-known Lanczos algorithm ap-and the third excited band near the center of the Brillouin-
pears to be the most appropriate choft# Indeed, previous zone.
papers using the ET method for ground-state calculations For strong couplingsg=23.85) the ET results are shown
have employed this technique. An additional, attractive, feain the last panel of Fig. 1. All the bands are very narrow.
ture of the Lanczos algorithm is that it is capable of findingAlthough it is hard to distinguish the third excited band
not just one, but rather a few extreme eigenval@a@sd (i=3) from the plot frame, note th&>)<E( for all K.
eigenvectors of sparse matrices, provided they are well Figure 2 gives further insight into the polaron band for-
separatedlying in the discrete part of the spectrimdccord-  mation. Here, th&K =0 andK = =/a energy curves, shifted
ingly, the current results have been obtained by the Lanczasy E(Kolo, are plotted for four bandsi (is the band index
procedure with so-called local orthogonalization. In addition,The results are presented for the crossover and strong-
the states have been calculated by the block-Lanczos procgoupling regimes. In the weak-coupling regirret shown
dure, with both variants giving the same results. in Fig. 2) E(Kolw/a becomes smaller tha(©) for g~1.6.

It should be stressed that the present results are compared |t can be seen from Fig. 2 that the bandwidth of the lowest
to the already cited ground-state restfité* of the ET  pand decreases continuously wighOn the other hand, the
method. All states are checked through the sum (Bleas  pandwidth of the first excited state shows a more compli-

well as through their mutual orthogonality. cated behavior. Namely, far~3.15 this bandwidth is maxi-
mal, while, unlike for the lowest band, it decreases for
IV. POLARON BANDS smaller values ofy. Its maximal value and the minimum of

EX,—EQ, (9~3.2) correspond to similar electron-
phonon couplings. From Fig. 2 the band crossing which in-

At the beginning of our discussion it is instructive to ob- volves the second and the two other excited bands can be
serve how the polaron bands are formed in regard to thelearly seen to occur in the crossover regime. That fact that
strength of the electron-phonon coupliggFor this purpose, these bands cross each other indicates that they belong to
the polaron bands are plotted in the four panels of Fig. 1 adifferent symmetries, as will be discussed further below
functions of the momentunK(), for t=5 and different val- (Sec. IV D.

A. Numerical results
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FIG. 1. The polaron bands are plotted as functions of momerik)rfor t=5 and four different values . 7w =1 defines the energy
unit used throughout this paper. The results §er1 andg=3.85 correspond to the weak- and strong-coupling regimes, respectively,
whereas results fog=2.8 andg=3.3 correspond to the crossover regime. Only the part of spectrum below the phonon thieshold
<E© is shown.

In the strong-coupling regime the spectrum consists ofo E(© in both the crossover and strong-coupling regimes.
very narrow bands. Although in Fig. 2 the bands are wellThe K values corresponding to the top of the third excited
separated, for very large couplings all of the excited bandb®and depend sensitively on the Hamiltonian parameters. It
approactE© from below. Finally, it can be seen from Fig. 2 should therefore be kept in mind that, in contrast to the other
that, fort=5, the energy of the third excited band stays closebands, th&k = r/a curve only approximately determines the
boundary of this band. In particular, the third excited band is
slightly wider than suggested by Fig. 2 in the crossover re-

1 gime.
Ex r
o8 B. Strong coupling
0.6 In order to understand the physical background of the
bands shown in Figs. 1 and 2, the strong-coupling and cross-
B over regimes are examined separately in the following sec-
. i=0 \ - -K=Tl/a . tions. In the strong-co_upli_ng regime the time scale_ relevant
Bl \ - ] to the polaron translation is much slower than the time scale
: (1/w) involved in the local polaron dynamics. Therefore, the
i | | \ = | | ] local interplay between the electron density and the lattice
05 3 4 g 5 deformation is almost independent of the polaron momen-

tum. From the energy point of view the contributions corre-
FIG. 2. The polaron bands below the phonon threshold shifte¢ponding to the polaron translation can be neglected, and the
by E) , are plotted as functions affor t=5 (hw=1). The band polarons can be treated, to a good approximation, as self-
boundaries correspond B{!. , andE{. . (except for the highest trapped. The deep potential well of the lattice deformation of
excited band for which this is only approximately tyue the self-trapped polaron captures the electron. When the
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FIG. 3. The energies dk =0 excited polaron states shifted by
EXL, (solid curves are compared to the energies of the renormal-  FiG, 4. The bandwidthssolid curves of the three lowest po-
ized phonon excitations obtained by the strong-coupling adiabatifyron pands are plotted for=2g=<5 and\=g%t #w=4.4. Each
approximation of Ref. Sshort-dashed curvesThe long-dashed  ¢yrve stops at the point where the top of the band cro&&&sThe
curve corresponds i) ., and shows the lowest band narrowing. pandwidths of the first and second excited bands are denoted by
The inset displays only a small part of the spectrum beBW  squares and circles, respectively. The long-dashed curve is the
=1.t=25 (hw=1). bandwidth of the nonadiabatic small polafo@=1 in Eq.(5)]. In

the inset, the cosinelike ground and two excited bands of the self-

electron is light f w<t), it is able to follow the slow motion ~trapped polaron are shown, shifted B{ ;, as functions of mo-
of the lattice deformatior(e.g., zero-point motiop which ~ MeNUMK (g=4,t=5,1=3.2). All the energies are in units of
results in an adiabatic renormalization of the phonon mode8®"
within the lattice deformation. ©) .
The physical picture of the aforementioned self-trappeq:i Tf;e i?]?srg(fr}i/:ewgeﬁnggttﬁg %Sa;r&iv!g?hggca;hee?osvlg;e '2_
polaron follows from the adiabatic theory and can be consid; g. °. . . P
laron band which can be seen to become large in the cross-

ered to be vyell understood. Thus, in prder to achpye a benecgver regime(the left part of Fig. 3, as the translation of the
understanding of the current numerical results, it is conve

) } ) " ~polaron becomes important. On the other hand, in the strong-
nient to compare the renormalized phonon energies obtain upling limit, the ET method reproduces the narrow cosine
in the adiabatic limit to the spectrum calculated by the ET;aron bands,
method. For the Holstein polaron problem the renormalize
phonon modes have been calculated by different adiabatic E(Ki)—EELOQZt(igl[l—cos{Ka)],
approximationd= %' The procedure of Ref. 5(Born- _ P
Oppenheimer approximation therein Sec) lHeats the lat- WheretggI is an effective polaron nearest-neighbor hopping
tice discreteness directly, while the polaron translation is neenergy for thath excited state.
glected. This approximation is appropriate for the present For strong couplings, the values of bandwidths may differ
case as the lattice discreteness is important for the smationsiderably from band to band. In Fig. 4 the bandwidths, as
self-trapped polarons, while the polaron translation has onlyunctions of g, are compared for constant=g%/t Zw
a minor contribution to the energy. =4.4. The solid curves are the results for the three lowest

The three short-dashed curves in Fig. 3 are the renormapolaron bands. One sees that the effective hoppﬁjﬁg is
ized phonon energies of Ref. 5. The lowest excitation is dncreased if the polarofi.e., the local lattice deformatiors
symmetric vibration of the lattice with respect to the polaronexcited. However, for strong couplings all bands are very
center(breathing mode The next excitation is the antisym- narrow (4gg|<ﬁw), meaning that the polarons are very
metric vibration(pinning modg. The third excited mode is heavy(self-trappedl In real solids the coherent transport of
again a symmetric vibration, although extended over a largesych band states can be destroyed by the polaron-polaron
number of lattice sites than in the case of the lowest excitamteraction or by imperfection&:’
tion. In Fig. 3, the solid curves are the ET energies of the A close inspection of the ET results in Fig. 4 reveals that
K=0 polaron excited states. In the strong-coupling liftie the hopping energy("), of the self-trapped polaron for the
right part of Fig. 3 the results of Ref. 5 are recovered as-|gyest band is given by the simple relation
ymptotically, from below. The inset of Fig. 3, where only a

small part of the spectrum belo&® is shown, clearly dem- té%)Ft exd — (g/hw)2a(N)]. (5)
onstrates this behavior. For strong couplings, the positions of

the excited bands are given by the symmetric and antisymequation(5) is an extension of the well-known expression
metric phonon excitations of the adiabatic theory. In otherfor the nonadiabatic small-polaron hopping energy, which is
words, the local dynamics of the self-trapped polarons ibtained by settinge=1.1% a()\) turns out to be a function
adiabatic. of the adiabatic parametar only, i.e., «(\) is an adiabatic
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correction to the nonadiabatic small-polaron hopping. Noticecrossover regime. Furthermore, the behavior of the ground
that in the adiabatic limit\ defines the spreading of the and excited bands fog~ggt indicates that the polaron
lattice deformation(the polaron size~1/\), as well as the translation plays an important role in the excitation spectrum.
renormalized phonon energig§or A=4.4 the excellent fit In other words, the influence of the polaron hopping to the
to the ET results in Fig. 4the short-dashed curve that fol- neighboring sites on the renormalized modes cannot be ne-
lows almost exactly the ET results for the lowest baied  glected under these conditions, as it can for strong couplings.
achieved witha~0.86, even though the bandwidth of the The substantial difference in the crossover regigee Fig.
lowest polaron band changes by several orders of magnitud8) between the ET results and titadiabatically renormal-

In summary, for the parameters under consideratitig.  ized phonon energies of Ref. 5 is explained in this way. This
4), it follows from Eq.(5) that the translational dynamics of difference, however, is not necessarily related to nonadia-
the lowest band are essentially nonadiabatic, with adiabatibatic effects, as for the moderate values of the adiabatic ratio
corrections. The narrow bandwidth defines the slow timeunder current consideration €lt/4 ©=<5) it is not clear to
scale for the polaron hopping. In contrast, Fig. 3 shows thawhat extent the nonadiabatic dynamics enters into the de-
the fast local dynamics of the self-trapped polarons is adiascription of the polaron translation.
batic. The adiabatic softening of the local phonon modes
determines the positions of the ground and excited bands in D. Parity
the spectrum. The energy shift due to the softening is much
larger than the bandwidths, which means that the polaroa1
hopping can be neglected for the local dynamics.

Irrespective of their tempordbr spatia) properties, when

e polaron bands cross and/or anticross as in Fig. 2, their

symmetry properties become important. As already men-

tioned, the Holstein Hamiltonian is invariant under space

inversion, and its eigenstates can be distinguished according
In spite of the fact that the almost exact results for thetheir parity. A simple linear transformation relates the mo-

lowest polaron band in the crossover regime, obtained bynentum|¥{)) and parity| ¥ ()" eigenstates,

various numerical methods, have been known for quite some ) ) L ) )

time, the corresponding qualitative explanation of the po- [wOYP= oDy + Py =Dy +p |w0 ),

laron properties does not appear completely satisfactory. It

has beeQ suggested in Ref. 38, by the use of the global—locg

m:;hod‘? that a simple empirical relation between Hamilto- P|‘I'(K')>:P|‘I’(—')K>- 7)

parameters,

C. Crossover

P that

P denotes the space inversion operator, Brd+ 1 are the
OstT~hot Vtho, (6) even- and odd-parity eigenvalues, respectively.
describes the regime for which the fast change from light to  €onsidering the ET method, the parity can be directly
heavy polaron ground states takes place. Indeeg,pre- determlned by inspection of the wave function propertle_s.
dicts, to a good approximation, the set of parameters fofl N€ eigenstatelsl'{’) can be expanded in terms of the basis
which the variation of the polaron effective mass a func- ~ States(4) with expansion coefficientan ., n,. .. n:
tion of g) is the fastest.

For t>#hw the crossover occurs in the adiabatic regime |q,(i)>:E a
whenggr=t Aw—i.e.,A\gt=~1. Approaching\ 1 from the K4 Tlon-pyeon
strong-coupling adiabatic side.&\g7), the size of the po- . ) ) ,
laron increases. Consequently, the Peierls-Nab@h bar- P acting on the basis staté) gives
rier decreases and tunneling of the adiabatic polaron to the -
neighboring sites becomes possible. This effect is also re- PINo.n_1.01, - N =[N0, N1Ngs o)
sponsible for the coupling of the pinning and breathing lat-consequently, using Eq7) and the fact that¥ ) is a

tice moded® At A<\g7, the restoring force of the pinning complex conjugate of¥{) (time reversal one finds that
mode due to the PN barrier can_be neglected, and one may expansion coefficients satisfy

treat the polaron as freely movirig® Such a scenario thus
describes the crossover from the self-trapgbdavy to an n . n h=Par N (8)
propagating(light) polaron states in the adiabatic limit. On o " 0L em
the other hand, for<% w, the nonadiabatic theory describes a* denotes the complex conjugate af The expansion co-
the polaron translation for arbitrany and, in particular, at efficients in Eq.(8) stand for two local phonon configura-
g=gst7~ho of Eqg. (6). In this case, the polaron crossover tions; the first one is obtained from the second one when the
appears essentially as a passage from the weak- to the strongjionons to the left and right of the electron are interchanged
coupling ground state. (Nm—N_p).

A reinspection of Fig. 2 shows that the two well-separated Applying the above analysis within the framework of the
time scales found in the strong-coupling regime—one relate@T method yieldsP=—1 for the second excited band (
to the polaron translatiofgiven by the bandwidthand the =2), while P=1 for the ground and the other two lowest
other related to the polaron local dynamiggven by the excited bandsi=0,1,3). In this respect, the polaron bands
renormalized phonon energjesbecome comparable in the inherit the symmetry of the renormalized phonon modes as
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obtained in the adiabatic limit. In Sec. IV B it was pointed 1
out that the pinning mode corresponding to the second ex:
cited band is an antisymmetric vibration of the lattitev-

ing odd parity, whereas the other two lowest excited modes -8
are symmetric vibrationghaving even parity Furthermore,

one sees that the crossif@ther than the anticrossinge-

tween the excited bands in the crossover regime, shown irgy [
Fig. 2, involves bands of opposite symmetry under the space5 .
inversion. c

For K=0 andK = mr/a the linear transformatidfi of the W
basis(4),
0.2
L1
[ng,n_1,Nq, ... ,nm>gzﬁ(|no,n,l,nl, Nk
0
*[no,npnog, - Nomk),

©)

defines two subspaces with different parities. It follows from
Eq. (8) that theP=1 eigenstate$¥ ), .} belong to the

+ subspace of Eq9), while theP=—1 eigenstates belong _ _ : _ i
to the — subspace. One sees that for-0 andK = 7/a the ((af:é;— 1), K=0. All curves are shifted by the ground-state ET en
parity actually defines the symmetry of the local phonon con-
figuration with respect to the electron. FBr=1 this con-
figuration is symmetric, while it is antisymmetric for
P=-1.

FIG. 5. The ground- and first excited-state energies obtained by
the CT method of Ref. 23 and the first excited-state energy obtained
by the ET method plotted as functions gf The chosen set of
parameters is the same as for Fig. 3 of Ref. 235, gs1=3.24

1 EXLa—ERLo
t

(Aka)2 ' (10

mel/mgf)f:

E. Anticrossing whereAKk is a small finite deviation of the momentum from

In Ref. 23 the correlated behavior of the ground and thehe valueK=0. m, is the effective mass of the electron, and
first excited state in the crossover regime was analyzed fdrdenotes the band number. The grounai¥) and the first
moderate values of the adiabatic ratio using a method basezkcited- (n{}}) state effective masses are compared tfor
on the variational approadisee the CT method described in =1 in Fig. 6. Althoughm&>m{&) for g=ggr, m} be-
Sec. IlI B of Ref. 23. It was argued that the anticrossing of comes smaller tham(©)

_ ‘ ot as g decreases. For largey the
two physically different polaron states—ori@eavy for  results are qualitatively the sante.g., see Fig. 9 which

which the translation energy is almost negligible and themeans that the anticrossing picture indeed matches the be-
other(light) for which this energy is important—can describe havior of m((pf and m(elf)f neargsr.

in simple terms the mechanism of the crossover. It follows ¢
from this interpretation that by increasinggin the critical 2

region of parameters neak [Eg. (6)], the contribution to

the ground state from the light state decreases in favor of the
heavy state which has lower energy at stronger couplings. On
the other hand, an opposite change occurs for the first excited
state, which is heavier than the ground state detgsr,
while being lighter forg=gg7.

In Fig. 5 the polaron ground and first excited energies
obtained in Ref. 23, denoted by CT, are compared to those of
the ET method. Although the CT energies may be considered
as a fair approximation, the anticrossing picture can be dis-
cussed more accurately in the context of the current ET re-
sults. One sees that the ET results confirm that the minimum
of EX ,—EP,, the two states of the same symmetf (
=1), corresponds tg~gst. It is important to notice that

.5

e

T
(1)

HEK=0— E

=(1)

[T | -
NK=0

—oomg,/
— ™/
-~

'
e

()

=(0)

NK:O

m(O)
eff
(1)

mef £

K=0 |

Fr=2 2.5

g

3.

5

the P=—1 states of the second excited bamneR) (Fig. 2) FIG. 6. Difference of the energy, the mean number of phonons
are not involved in the anticrossing. The rest of the investi{11), and the effective mas€l0) of the ground and first excited
gation presented here is focused on the polaron effectivetates fort=1 (fw=1). The minima ofEX ,—EQ , andN{Z,
mass and on the properties of the lattice deformation. =N{® +1 almost coincide withgg;=2. Notice that forg<gsy

The polaron effective masa(); can be evaluated numeri- the lowest excited state becomes heavier than the ground state
cally by using the relatiof¥*? (mB>m).
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Additional insights into the local polaron properties can
be provided by studying the appropriate electron-lattice cor-
relation function

1 . how . .
r X0 =59 (VK12 cnem(bm ot b W), (13
a X{"K) is the mean lattice deformation induced at b site

away from the electron. The correlation functic8) is nor-
malized in such a way thdnxﬂ’KEl. As the correlation
spreads to adjacent lattice sites, the correlation at the electron
site X§"K) decreases. Consequenti{ ) should be larger
for the heavy than for the light polaron state.

The ground- and first excited-state results X4r<=% are
FIG. 7. The electron-lattice deformation correlation function plotted in Fig. 7. The relationship betweeééo'o) and XBLO)

(i,K) ; _ — ..
):]n o Eq. (13), P'gﬂ‘;d as a frl]mCt'O” (I)gfor n—ohandln—l. In " changes neagsy. This is exactly what one would expect
the former caseX;™ gives the correlation at the electron site, o "o anticrossing picture(g°'°)<X§)1’°) for g=gsr. AS
while in the latter it gives the correlation between the electron an N

he contribution of the heavy state to the ground state be-
lattice deformation at the neighboring site. The difference between d t fon= i lati hio ch d
the mean number of phonons in the ground and first excited states E%%?S (?rg;lnan 0g=gsr, the refationship changes, an
shown in the insett=5, K=0, gs7~3.24 (iwo=1). >Xgy . The spreading of the lattice deformation as a

functlon ofg may also be deduced frond{®? and X{*©.

For fixed g, the mean total lattice deformatiaB) is the The results corresponding to this lattice site, shown in Fig. 7,
same for the ground and excited states. However, the loc&@gain lead one to the same conclusion. §sigsythe lattice
phonon cloud around the electron can be more or less locafleformation seems to spread more for the ground than for
ized, which affects the polaron hopping to the neighboringthe excited state and vice versa fpegsr.
sites. A light state implies that the associated local lattice All of the aforementioned ground- and first excited-state
deformation is spread to a larger number of lattice sites thaproperties(the energy, the effective mass, the mean number
for the heavy state. Namely, such a deformation gives rise t@f phonons, and the electron-lattice deformation correlation
a greater effective hopping integral. function) indicate that fort/Zw=5 the anticrossing of two

The mean number of phonons in the polaron state is giveflight and heavy polaron states occurs ne@éT Although
by criteria such asE( ;—E), being minimal, m{Y=m{%};,

XPO=x(LO " or Alternative criteria, do not agree exactly,
NO=(WOIS bl b, ). (11) they all predict the polaron crossover to occur within the
m same very narrow parameter range, given approximately by
Eq. (6).
In the adiabatic limit, this number is quadratic in the local %©
lattice deformation for the ground state. A more localized
(heaviey lattice deformation leads to largst) . Within the
adiabatic approximation the excited renormalized phonon A. Single-electron spectral function
should, in general, increase the mean number of phonons penoting the vacuum state H9), the zero-temperature
with respect toN{). Particularly, in the strong-coupling single-electron Green function can be expressét*as
limit one obtains

V. ELECTRON PROPERTIES

_ 1
lim N(D=N©+1, (12) Gk(E) <0|CK—O+ x/0).

g—o

as the renormalization of the lattice vibrations becomes negor the energies below the phonon threshale E no
ligible. polaron-phonon scattering takes place, which has the conse-

From Fig. 6, in whichN{®— N is plotted as a function 9duence that the imaginary part of the electron self-energy

of g, one sees that the ET results tend to B¢) for strong 2«(E<E!) tends to zerd®**Accordingly, the low-energy
o . < .
couplings. In the crossover regime, on the other hatfd, P2 of the spectral functioA(E), denoted byA (E), is

: ; _ ().
—W(KO) deviates from Eq(12) consideranyN(Kl) is greater defined by the simple poles G(E) at E=Ey':
than N{O+1 for g=gsr and smaller thartN{O’+1 for g _ _
=gg7. For larger, the amplitude of the deviation increases AQ(E<E®)=2 (PQ[ch)I?8E-EY); (19
even further. As shown in the inset of Fig. N <N for |
3.25=g=3.75, while the minimal and maximal values of i.e., the spectral functiodg (E) is defined by the polaron
NP - N define an interval of almost five phonons. energyE{) and the quasiparticle weighty)=|(¥{|c)|2.
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-11 . — — — | T ' 1.5
E | - g=3.4 |
10 g . MK=0.09_
L [ ] 4
0. -
-13F g=2.8 n o
L D%=0.38 g=3
-14 D41(=0'4 g=3'2 —
0. -10.
M=0.2
-15 1 I . I . I
A (E)
FIG. 8. A (E) given by Eq.(14) is plotted fort=5, K=0, and o~ T

four values ofg in the crossover regime. All spectra are broadened
by a Lorentzian of width 0.05. For each curve the lower square _ )
denotesE=E() ,, while the higher one denotés=E(©®. Notice FIG. 9. z{) , and " given by Eq.(16) are plotted in the left

that for g=ggs7~3.24, the spectral weight associated with the and right panels, respectively<5, gst~3.24,fiw=1). The solid

first excited state is larger than the one associated with theurves are the ground-state results; the long-dashed curves are the
ground stateM, given by Eq.(15), is the total normalized spec- first excited-state results. In the left panel the short-dashed curves
tral weight of the ground and excited polaron stateslow the  show the inverse effective mamg/mgf)f.

honon thresho -
P M where 1Z{)=1-g¢3 « (E) andey=K?a%t=1%?K?/2m,,. In
Eq. (16), i is used to distinguish between results for the
ground and excitedeven-parity states.y(! is the abbrevia-

1 L
3 9z 3.5 g

In particular, forK =0 andK = =r/a, the quasiparticle weight

i : . - .
Z$<):-0m/a vanishes by parity for the?=—1 eigenstates tion for the appropriately normalizeid-dependent contribu-
|WELo.q7a), because the free-electra@ero-phonop state o i),
|CL=o,w/a> belcings to thet- subspace of E(9). When ' the self-energy.«(E) is local (K independent,

In Fig. 8, Ax_o(E) is plotted as a function dE forafew  ,()=0) the polaron effective mass is related solely to the
different values ofg in the crossover regime. The spectral quasiparticle weighzﬂ)zo. Thus, the nonlocal character of
weight corresponding to the ground polaron state is of thgne self-energy can be investigated by compariy to

same order of magnitude as the one corresponding 10 thgyity 24 Such an analysis is particularly interesting in the
excited (even-parity polaron states. MoreoveM  defined  .gntext of DMFT, as the localitfimplying y)=0) of the

by self-energy is an essential ingredient of this apprdadh.
both the weak-couplingg—0) and nonadiabatict{-0)
MK:f Ax(E)dE, (15 limits, 2(E) becomes local®*®*! Within the Holstein-
Lang-Firsov approximatidfi**and fort—0, the self-energy
reveals that, in the crossover regirffer g=<gsq), nearly >«(E)=2(E) is, to a good approximation, given by its ex-
40% of the total spectral weight confined to the ground and?@nsion to the first order i over the whole energy range
excited polaron states can be located in the energy windowefined by the lowest band. In this caggd’~Zz(® defines
below the phonon threshold. Therefore, at leastgerggy  the renormalization of the narrow cosinelike lowest band for
and for the values of adiabatic ratio under current considerany K. )
ations ¢/ w=<5), the results imply the existence of a few ~ With the ET methody®) can be obtained in terms of
well-pronounced peaks in the single-electron spectral densitgi. o andm{);, the latter being estimated numerically from
below the phonon threshold. For stronger couplings, on théhe band dispersion at the center of the Brillouin zEg.
other hand, the quasiparticle weight below the phonor(10)]. The ET results agree with the aforementioned analyti-

threshold is almost completely suppressed. cal findings for smallt and/org (Ref. 24. It follows that
significant nonlocal contributions B¢ (E) can possibly oc-
B. Electron self-energy cur in the regime where neithémnor g are small. In the left

panel of Fig. 9Z{) , is plotted for moderateas function of

g, while the right panel shows(" for the same set of pa-
rameters. Although/() does not contribute tm{{}; substan-
tially for g<gs7, at stronger couplings") reaches values
of the order of unity for both the ground and first excited
states. That is, the nonlocal contribution to the electron self-
energy is as equally important as the local one. However, it
should be noticed that, in this regime, the quasiparticle
weight Z{) becomes small.

When the electron propagatddy(E) is expressed in
terms of the electron self-ener@y(E), both z{) andE{
of Eq. (14) can be related t& «(E). E.g., the polaron effec-
tive masam{}; is given in terms of the self-energy(E) by
the standard formufd

1+, 3k(E)

1035 (E) ZQ o(1+4D), (16

Me/m{}=
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C. Optical conductivity VI. SUMMARY

_The interband optical conductivity may be evaluated This paper reports an exact-diagonalization study of the
within the linear-response theory from the current-currenground and excited polaron states in the one-dimensional
correlation function. The low-energgoherent contribution  [4qistein model. For values of the adiabatic ratié w<5
to the real part of the interband conductivity at zero temperaz ¢ rate energies and wave functions are obtained for trans-

ture is given by”** lationally invariant solutions of the infinite lattice problem.
The chosen method is restricted to the part of the spectrum
|<\I,(i)|:j|q,(0)>|2 _ belc_)w Fhe phonon threshold, for which there are no phonon
S(E-EM+EO®) (17)  excitations uncorrelated to the polaron.
The eigenstates of the Holstein Hamiltonian can be distin-
guished according to their parity. This property follows from
where| ") are theK =0 polaron states, herein calculated the Hamiltonian which is invariant under space inversion. It
by the ET method. The incoherent contribution to theis shown that only the odd excited states of the system are
interband conductivity, denoted by (E), corresponds relevant to the optical conductivity at zero temperature.
to the continuum of the excitation spectrum above theHowever, the contribution of the coherent excited polaron
phonon threshold. Since the current operator in Ef), state is rather small with respect to the total spectral weight.
defined by On the other hand, it is the even states that contribute to the
single-electron spectral function fé&&~0. In this case, the
contribution of the coherent excited polaron states is found to
=it (ch,cn—clenia), be important, particularly in the crossover regime.
n In the strong-coupling regime the results agree with the
picture of self-trapped polarons, which may be regarded as
is odd under space inversion, the nonvanishing matrix eleell understood. The spectrum is characterized by very small
ments in Eq.(17) are those between tHe=1 ground state p(_)laron bandwidths. Consequently, the time scale assoqated
|q,(0)> andP=—1 excited State#\y(i)>_ Actually, the inco- Wlth the polaron translation is very Iarge, and the contribu-
herent part of the interband optical conductivitg (E) in- tions to the fast.k_)cal polaron. dynamics fr_om th? polaron
volves onlyP=—1 excitations as well. On the contrary, as hopping are negligible. By makmg.a comparison with the ET
argued in Eq(14), the spectral functiod(E) contains in- results, it is shown that the adiabatic thedithe Born-

formation about th@=1 part of the spectrum 4~0. The Oppenheimer approximatipprovides a good description of

optical conductivity at zero temperature is therefore de—the local properties of the self-trapped polaron. Namely, the

scribed by those excited states for which the quasiparticlenerg'es of the renormalized phonon excitations are close to

. ; . the ET excited-band energies. Two of the excited bands cor-
weightZx .o vanishes—i.e., those states that are not seen in . . R .

: ; respond to the symmetric adiabatic vibrations of the lattice,
the single-electron spectral function.

The real part of the optical conductivityz(E) includes while one corresponds to the antisymmetgenning vibra-

. ! tion. Finally, it is found that for strong couplings the electron
the interband part and tietraband Drude term aE~O0. It . . i
follows from the well-known sum rufé that the total spec- self-energy shows significant nonlocl {dependentbehav

. o ior at moderatd.
tral wglghfc ofor(E) IS given by the mean value of the elec- As the electron-phonon coupling decreases at modérate
tron kinetic energy in the ground state. Consequently, no{h

only is the ET method capable of calculatiog (E), but the e simple band structure found in the strong-coupling re-

| | weidh is al ol h gime (i.e., the narrow and well-separated polaron bands
total spectral weight Off’R(hE) |s_ahso ?ck(]:es&bde. Furt fer- evolves notably. The effective hopping integral of the ground
more, one may estimate the weight of the Drude term from, 4 ey cited polaron states defines a time scale which, in the
the polaron effective mag8.

. , crossover regime, is comparable to the time scale relevant for
~ According to the E(')I' results, fgr$§ there is only oné  yhe |ocal polaron dynamics. In the crossover regime the ex-
interband transitio¥ () o) “ —| W)~ which contributes gjteq (odd-parity band, which corresponds to the pinning
at zero temperature o (E) [Eq. (17)]. It is interesting to  yipration in the strong-coupling regime, crosses the other
find the corresponding non-Drude spectral weight below thewo (even-parity bands, which correspond to symmetric vi-
phonon threshold. HoweveE{, is less tharE(© for rela-  brations. The results suggest that the same critical set of
tively strong couplings, for which most of the spectral parameters defined byst [Eq. (6)], found for the polaron
weight of or(E) belongs to high energies. In this parameterground-state crossover, may also be associated with the rapid
regime only a few percentor lesg of the total spectral change of the low-energy excitation spectrum.
weight of or(E) corresponds targ(E) or to the Drude Aside from the fact that the polaron translation and the
term. This simple low-energy picture ofz(E) becomes cer- local dynamics mix in the crossover regime, the intermediate
tainly more complex at finite temperature, particularly in (moderatg values of the adiabatic ratio employed herein
the crossover regime where the bandwidths of the coheremiresent additional difficulties for qualitative understanding.
polaron states increase. Studies at finite temperaturéyamely, for I=t/Aw=5, both the adiabatic and nonadia-
however, require different methods than the one presentediatic contributions could be important for the polaron cross-
here. over. Nevertheless, in the context of the ET approach, analy-

< —
or(E)= Eo EO_gO©
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