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Calculation of excited polaron states in the Holstein model

O. S. Barišić*
Institute of Physics, Bijenicˇka c. 46, HR-10000 Zagreb, Croatia

~Received 10 November 2002; revised manuscript received 17 November 2003; published 12 February 2004!

An exact-diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein
model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a comprehensive
picture, involving three excited~coherent! polaron bands below the phonon threshold, is obtained. The coher-
ent contribution of the excited states to both the single-electron spectral density and the optical conductivity is
evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain
complementary information about the single-electron system at zero temperature. The chosen method reveals
the connection between the excited bands and the renormalized local phonon excitations of the adiabatic
theory, as well as the regime of parameters for which the electron self-energy has notable nonlocal contribu-
tions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground
and first excited states in the crossover regime.
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I. INTRODUCTION

Although more than half of a century has elapsed si
Landau proposed that the charge carrier could be trappe
the distortion of a crystal lattice1 and Pekar introduced th
term polaron,2 a number of questions regarding the sing
polaron theory remain unanswered. This is true even in
context of the Holstein Hamiltonian,3 one of the simplest
electron-lattice coupling models for the one-electron syst
While the literature pertaining to the ground state of suc
model is extensive, much less attention has been paid to
excited states, even at the low energies for which they
most interesting.

The nature of the excited polaron states has been inv
gated within the adiabatic approximation in Refs. 4–6
neglecting the polaron translation. These works provid
simple picture of the self-trapped polaron states for stro
couplings. That is, the adiabatic softening of the phon
modes within the self-trapped polaron states results in s
eral excitation energies below the bare phonon energy
follows that the lowest excitations of the system are the
laron states for which the electron and phonons are stro
correlated. When the polaron translation is restored, eac
the soft-phonon modes below the bare phonon energy ca
expected to develop the corresponding band if the local
namics remains adiabatic. Actually, moving polarons ha
been described within the adiabatic approximation by
glecting the force impeding the polaron translational mot
due to the lattice discreteness.7–9 However, the band struc
ture of the spectrum was not considered in these invest
tions. For strong couplings, the bandwidth of the lowest ba
has been obtained by the adiabatic theory in the contex
the simplest two-site model.10,11

When considering the band structure it is important
realize that the polaron states are coherent in the rang
energies below the phonon threshold~i.e., below the minimal
energy for inelastic scattering!.12,13 One way to investigate
their properties is by analyzing the single-electron and o
cal conductivity spectra. In the case of the single-pola
problem, the low-frequency coherent part of the spec
0163-1829/2004/69~6!/064302~11!/$22.50 69 0643
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weight directly determines the polaron energies. Most of
previous spectral investigations,14–20 however, make no
mention of the excited coherent polaron bands. The exc
tions in this respect are provided by those works employ
the dynamic mean-field theory~DMFT!, which is exact in
the infinite-dimensional limit. The DMFT results predict on
excited polaron band below the phonon threshold.13,21

For the one-dimensional system, recent exa
diagonalization ~ED! and variational approaches22,23 ob-
tained results for the lowest state of the first excited ba
Provided that the local electron dynamics remains adiab
and that the adiabatic calculation of the self-trapped pola
energies gives several solutions below the inelastic pho
threshold, more than one excited polaron band is expecte
occur in this energy range. The present paper shows tha
ED approaches for the infinite lattice, as implemented in
cent works,22–25 can be extended to give very accurate
sults for the first few excited coherent polaron bands. In
range of parameters for which the method converges,
coherent part of the spectrum is found to exhibit up to th
excited polaron bands, two more than previously describ
These results provide a better understanding of the sp
and temporal structure of the polaron states, as well a
their symmetry~parity! properties. The latter can be used
rationalize the contributions of the bands to the low-ene
single-electron and optical conductivity spectra, respectiv

An additional and attractive feature of the excitation sp
trum obtained herein is its potential to help clarify the phy
cal picture of the polaron crossover for moderate values
the adiabatic ratio. It has been previously proposed,23 in the
context of the variational analysis,23,26 that this crossover, in
which the ground state evolves from a light to a heavy p
laron state, can be understood as the anticrossing~hybridiza-
tion! of two low-energy states. This question is reconside
here in terms of practically exact eigenstates and their af
mentioned parity properties. Specifically, hybridization
found to occur between states of equal parity, whereas st
of opposite parity cross without any such hybridization. F
thermore, the hybridization of states in the crossover reg
is characteristic not only of the Holstein model under co
©2004 The American Physical Society02-1
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sideration. Recently, for example, on the basis of accu
numerical results obtained by the diagrammatic quan
Monte Carlo method27 for the Rashba-Pekar polaro
model,28 it has been suggested that the polaron crossove
that instance also involves a hybridization of several pola
solutions.29

ED methods, analogous to the one employed here, h
found widespread application in the ground-state calcu
tions of numerous other many-body problems. In this c
text, the present analysis of the excited states, together
their symmetry attributes, is also of interest for the desc
tion of low-energy eigenstates and spectral properties fro
more general point of view.

II. HOLSTEIN POLARON PROBLEM

The one-dimensional Holstein model of interest here
defined by the Hamiltonian

Ĥ52t(
n

cn
†~cn111cn21!1\v(

n
bn

†bn

2g(
n

cn
†cn~bn

†1bn!. ~1!

Heret is nearest-neighbor hopping energy of the electron
\v is the energy of dispersionless optical phonons, whilg
is the electron-phonon coupling energy.cn

† and bn
† are cre-

ation operators for the electron and phonon at lattice sitn,
respectively. As only the single-electron problem is treat
the spin indices have been omitted.

The total momentum of the system (K̂) is the sum of
electron and phonon momenta. AsK̂ commutes with the
Hamiltonian ~1!, the complete set of states of the system c
be constructed from eigenstates ofĤ and K̂. The Hamil-
tonian~1! is also invariant under space inversion. Howev
the analysis of the resulting parity properties of the eig
states will be deferred until later in the present discuss
~Sec. IV D!.

The eigenstates that will be considered herein are th
falling in the energy window defined by

EK50
(0) <E,E(c), E(c)5EK50

(0) 1\v. ~2!

EK50
(0) is the minimal energy of the system~the zero-

momentum polaron ground-state energy! and \v is the en-
ergy of the bare phonon excitation. When the electr
phonon coupling is absent (g50) the states below the
phonon thresholdE(c) are those of the free-electron ban
When g is switched on, the free-electron states evolve i
those states correlated with phonons. Furthermore, additi
bands can appear belowE(c) as the coupling increases. A
states in the energy window~2! are correlated and will be
referred to as polaron states. ForE>E(c) the electron and
additional phonons can form weakly bound states, which
sults in a highly degenerate spectrum.

The energies of the coherent polaron states are hence
denoted byEK

( i ) and the wave functions byuCK
( i )&. K is the

momentum of the polaron state~which is also the system
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momentum!, while i denotes the band index. The lowe
~ground! polaron band will be denoted byi 50. In the
present paper the term ground state is used for the sta
minimal energy for a given momentumK and not to theK
50 state only. Accordingly, the first excited state corr
sponds to the first excited state of a given momentumK and
so forth.

For the polaron bands below the phonon thresholdE(c)

the statesuCK
( i )& are the eigenstates ofbq50 ~Refs. 30 and

31!:

bq50uCK
( i )&5

1

AN
(

n
bnuCK

( i )&5
1

AN

g

\v
uCK

( i )&.

More generally, it can be shown that for all eigenstatesuCK
E&

the simple sum rule for the mean total lattice deformatio
given by

x̄tot5(
n

x̄n5x0(
n

^CK
Eu~bn

†1bn!uCK
E&5

2gx0

\v
, ~3!

is satisfied. In Eq.~3!, x0 is the space uncertainty of the fre
harmonic oscillator with frequencyv. Besides its physica
meaning, the sum rule for the mean total lattice deformat
can also be used as a tool for checking the validity of res
obtained with approximate polaron wave functions.

III. EXACT-TRANSLATIONAL METHOD

In the case of the Holstein polaron problem, the ED a
proach uses only a finite number of states which contrib
significantly to the exact polaron wave function for a giv
set of Hamiltonian parameters. By using the Hamiltoni
matrix corresponding to the truncated~reduced! basis and the
appropriate numerical scheme, one calculates the pola
wave functions and energies. The convergence of the res
can be verified by increasing the number of basis states in
calculation. In most cases the results are very accurate,
vided that the truncation procedure is well chosen.

The ED method developed in the current paper is hen
forth referred to as the exact-translational method~ET
method!. The basis states of the ET method are given by22

un0 ,n21 ,n1 , . . . ,nm&K

5
1

AN
(

j
eiK jacj

†un0 ,n21 ,n1 , . . . ,nm& j . ~4!

The orthonormal wave function~4! describes an electron
which is surrounded by a cloud of phonons. The number
phonons at themth lattice site away from the electron i
given by nm , while K corresponds to the total system m
mentum anda is the lattice constant. The basis states~4! of
different momentaK are not mixed by the Holstein Hamil
tonian.

If the adiabatic ratiot/\v is not too large, the ET method
can be used for studying polarons in the weak- and stro
coupling regimes, as well as in the crossover regime betw
them. The present paper is focused, particularly, on the
gime in which 1&t/\v&5 and g is arbitrary. For g, t
2-2
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CALCULATION OF EXCITED POLARON STATES IN . . . PHYSICAL REVIEW B69, 064302 ~2004!
@\v, the number of relevant basis states~4! becomes large
and the problem of finding the polaron wave functions b
comes untreatable. Unfortunately, the limitg, t@\v, which
is not considered here, is difficult for other known numeric
methods as well.

The matrix representation of the Holstein Hamiltonian
the ET basis leads to a sparse matrix. That is, it is strai
forward to show that, by acting on the state~4! with the
Hamiltonian~1!, the maximum number of nonzero matr
elements per ET basis state is 5. As an example, let us f
the reduced Hilbert space of only five ET states—i.e., of
zero-phonon stateu0&K , of three states with one phono
~phonon at the electron site, at the left site from the electr
and at the right site from the electron!,

un051&K , un2151&K , un151&K ,

and finally, of the state with two phonons at the electron s
un052&K . The corresponding Hamiltonian matrix is give
by

F 22t cosKa g 0 0 0

g \v 2te2 iKa 2teiKa gA2

0 2teiKa \v 0 0

0 2te2 iKa 0 \v 0

0 gA2 0 0 2\v

G .

In the limit g, t!\v the ET method gives a good polaro
ground state with only these five states. Nevertheless, ft
;\v one usually has to work with a truncated basis of qu
large dimension. In other words, the ET method gener
requires a numerical scheme capable of dealing with la
sparse matrices.

For this purpose the well-known Lanczos algorithm a
pears to be the most appropriate choice.32,33 Indeed, previous
papers using the ET method for ground-state calculati
have employed this technique. An additional, attractive, f
ture of the Lanczos algorithm is that it is capable of findi
not just one, but rather a few extreme eigenvalues~and
eigenvectors! of sparse matrices, provided they are w
separated~lying in the discrete part of the spectrum!. Accord-
ingly, the current results have been obtained by the Lanc
procedure with so-called local orthogonalization. In additio
the states have been calculated by the block-Lanczos pr
dure, with both variants giving the same results.

It should be stressed that the present results are comp
to the already cited ground-state results22–24 of the ET
method. All states are checked through the sum rule~3!, as
well as through their mutual orthogonality.

IV. POLARON BANDS

A. Numerical results

At the beginning of our discussion it is instructive to o
serve how the polaron bands are formed in regard to
strength of the electron-phonon couplingg. For this purpose,
the polaron bands are plotted in the four panels of Fig. 1
functions of the momentum (K), for t55 and different val-
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ues ofg. As in the remainder of the paper,\v51 is used as
the energy unit. Notice that, as discussed in connection w
Eq. ~2!, only the part of the spectrum below the phon
threshold~betweenEK50

(0) andE(c)) is shown.
In the weak-coupling limit for the lowest band (i 50),

two regimes exist with respect to the critical momentumKc
~Refs. 34 and 35!. For K&Kc the polaron state of energ
EK

(0),E(c) is the ground state of the system. ForK*Kc the
ground state consists of the polaron and the unbound pho
excitation. The unbound phonon excitation carries the sys
momentumK, while the polaron momentum is equal to
For K*Kc the ground-state energy lies at the bottom of t
incoherent part of the spectrumE>E(c). The first panel of
Fig. 1 shows the ET weak-coupling results. Notice that
top flat part of the lowest band forK*Kc has been cut by the
frame. The reason is that the numerical error of the co
sponding ET states is slightly greater than that of the ze
momentum ground state, while the energy interval shown
exactly equal to the bare phonon energy\v. As the electron-
phonon coupling increases, the lowest band becomes m
renormalized, and finally, at some critical coupling, t
whole band falls belowE(c).

By increasing electron-phonon coupling further, the ad
tional polaron bands emerge belowE(c). In the second and
third panels of Fig. 1 the results forg52.8 andg53.3 are
shown, respectively. These are the choices of parameters
correspond to the crossover regime. Forg52.8, only a part
of the first excited band (i 51) lies belowE(c), whereas for
g53.3 there are four polaron bands in the relevant ene
window. From the third panel of Fig. 1 (g53.3) one sees
that the top of the second excited band (i 52) is atK50 and
the bottom is atK5p/a. In addition, this band (i 52)
crosses the other excited bands (i 51,3)—i.e., the first ex-
cited band near the end of the Brillouin zone~for g&3.3)
and the third excited band near the center of the Brillou
zone.

For strong couplings (g53.85) the ET results are show
in the last panel of Fig. 1. All the bands are very narro
Although it is hard to distinguish the third excited ban
( i 53) from the plot frame, note thatEK

(3),E(c) for all K.
Figure 2 gives further insight into the polaron band fo

mation. Here, theK50 andK5p/a energy curves, shifted
by EK50

(0) , are plotted for four bands (i is the band index!.
The results are presented for the crossover and stro
coupling regimes. In the weak-coupling regime~not shown
in Fig. 2! EK5p/a

(0) becomes smaller thanE(c) for g'1.6.
It can be seen from Fig. 2 that the bandwidth of the low

band decreases continuously withg. On the other hand, the
bandwidth of the first excited state shows a more com
cated behavior. Namely, forg'3.15 this bandwidth is maxi-
mal, while, unlike for the lowest band, it decreases
smaller values ofg. Its maximal value and the minimum o
EK50

(1) 2EK50
(0) (g'3.2) correspond to similar electron

phonon couplings. From Fig. 2 the band crossing which
volves the second and the two other excited bands can
clearly seen to occur in the crossover regime. That fact
these bands cross each other indicates that they belon
different symmetries, as will be discussed further bel
~Sec. IV D!.
2-3
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FIG. 1. The polaron bands are plotted as functions of momentum~K! for t55 and four different values ofg. \v51 defines the energy
unit used throughout this paper. The results forg51 and g53.85 correspond to the weak- and strong-coupling regimes, respect
whereas results forg52.8 andg53.3 correspond to the crossover regime. Only the part of spectrum below the phonon threshE
<E(c) is shown.
o
e
nd
2
s

es.
ed
. It

her
e
is

re-

the
oss-
ec-
ant
ale
he
tice
en-
e-
the
elf-
of
the

fte

t

In the strong-coupling regime the spectrum consists
very narrow bands. Although in Fig. 2 the bands are w
separated, for very large couplings all of the excited ba
approachE(c) from below. Finally, it can be seen from Fig.
that, fort55, the energy of the third excited band stays clo

FIG. 2. The polaron bands below the phonon threshold shi
by EK50

(0) are plotted as functions ofg for t55 (\v51). The band
boundaries correspond toEK50

( i ) andEK5p/a
( i ) ~except for the highes

excited band for which this is only approximately true!.
06430
f
ll
s

e

to E(c) in both the crossover and strong-coupling regim
The K values corresponding to the top of the third excit
band depend sensitively on the Hamiltonian parameters
should therefore be kept in mind that, in contrast to the ot
bands, theK5p/a curve only approximately determines th
boundary of this band. In particular, the third excited band
slightly wider than suggested by Fig. 2 in the crossover
gime.

B. Strong coupling

In order to understand the physical background of
bands shown in Figs. 1 and 2, the strong-coupling and cr
over regimes are examined separately in the following s
tions. In the strong-coupling regime the time scale relev
to the polaron translation is much slower than the time sc
(1/v) involved in the local polaron dynamics. Therefore, t
local interplay between the electron density and the lat
deformation is almost independent of the polaron mom
tum. From the energy point of view the contributions corr
sponding to the polaron translation can be neglected, and
polarons can be treated, to a good approximation, as s
trapped. The deep potential well of the lattice deformation
the self-trapped polaron captures the electron. When

d
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CALCULATION OF EXCITED POLARON STATES IN . . . PHYSICAL REVIEW B69, 064302 ~2004!
electron is light (\v,t), it is able to follow the slow motion
of the lattice deformation~e.g., zero-point motion!, which
results in an adiabatic renormalization of the phonon mo
within the lattice deformation.

The physical picture of the aforementioned self-trapp
polaron follows from the adiabatic theory and can be cons
ered to be well understood. Thus, in order to achieve a be
understanding of the current numerical results, it is con
nient to compare the renormalized phonon energies obta
in the adiabatic limit to the spectrum calculated by the
method. For the Holstein polaron problem the renormaliz
phonon modes have been calculated by different adiab
approximations.4–9,11 The procedure of Ref. 5~Born-
Oppenheimer approximation therein Sec. III! treats the lat-
tice discreteness directly, while the polaron translation is
glected. This approximation is appropriate for the pres
case as the lattice discreteness is important for the s
self-trapped polarons, while the polaron translation has o
a minor contribution to the energy.

The three short-dashed curves in Fig. 3 are the renorm
ized phonon energies of Ref. 5. The lowest excitation i
symmetric vibration of the lattice with respect to the polar
center~breathing mode!. The next excitation is the antisym
metric vibration~pinning mode!. The third excited mode is
again a symmetric vibration, although extended over a la
number of lattice sites than in the case of the lowest exc
tion. In Fig. 3, the solid curves are the ET energies of
K50 polaron excited states. In the strong-coupling limit~the
right part of Fig. 3! the results of Ref. 5 are recovered a
ymptotically, from below. The inset of Fig. 3, where only
small part of the spectrum belowE(c) is shown, clearly dem-
onstrates this behavior. For strong couplings, the position
the excited bands are given by the symmetric and antis
metric phonon excitations of the adiabatic theory. In oth
words, the local dynamics of the self-trapped polarons
adiabatic.

FIG. 3. The energies ofK50 excited polaron states shifted b
EK50

(0) ~solid curves! are compared to the energies of the renorm
ized phonon excitations obtained by the strong-coupling adiab
approximation of Ref. 5~short-dashed curves!. The long-dashed
curve corresponds toEK5p/a

(0) and shows the lowest band narrowin
The inset displays only a small part of the spectrum belowE(c)

51. t52.5 (\v51).
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The energyEK5p/a
(0) is plotted as the long-dashed curve

Fig. 3. This curve defines the bandwidth of the lowest p
laron band which can be seen to become large in the cr
over regime~the left part of Fig. 3!, as the translation of the
polaron becomes important. On the other hand, in the stro
coupling limit, the ET method reproduces the narrow cos
polaron bands,

EK
( i )2EK50

( i ) '2tpol
( i ) @12cos~Ka!#,

where tpol
( i ) is an effective polaron nearest-neighbor hoppi

energy for thei th excited state.
For strong couplings, the values of bandwidths may dif

considerably from band to band. In Fig. 4 the bandwidths
functions of g, are compared for constantl5g2/t \v
54.4. The solid curves are the results for the three low
polaron bands. One sees that the effective hoppingtpol

( i ) is
increased if the polaron~i.e., the local lattice deformation! is
excited. However, for strong couplings all bands are v
narrow (4tpol

( i ) !\v), meaning that the polarons are ve
heavy~self-trapped!. In real solids the coherent transport
such band states can be destroyed by the polaron-pol
interaction or by imperfections.36,37

A close inspection of the ET results in Fig. 4 reveals th
the hopping energytpol

(0) of the self-trapped polaron for th
lowest band is given by the simple relation

tpol
(0)5t exp@2~g/\v!2a~l!#. ~5!

Equation~5! is an extension of the well-known expressio
for the nonadiabatic small-polaron hopping energy, which
obtained by settinga51.10 a(l) turns out to be a function
of the adiabatic parameterl only, i.e.,a(l) is an adiabatic

-
ic

FIG. 4. The bandwidths~solid curves! of the three lowest po-
laron bands are plotted for 2&g&5 andl5g2/t \v54.4. Each
curve stops at the point where the top of the band crossesE(c). The
bandwidths of the first and second excited bands are denote
squares and circles, respectively. The long-dashed curve is
bandwidth of the nonadiabatic small polaron@a51 in Eq. ~5!#. In
the inset, the cosinelike ground and two excited bands of the s
trapped polaron are shown, shifted byEK50

( i ) , as functions of mo-
mentumK (g54, t55, l53.2). All the energies are in units o
\v.
2-5
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O. S. BARIŠIĆ PHYSICAL REVIEW B 69, 064302 ~2004!
correction to the nonadiabatic small-polaron hopping. Not
that in the adiabatic limitl defines the spreading of th
lattice deformation~the polaron size;1/l), as well as the
renormalized phonon energies.5 For l54.4 the excellent fit
to the ET results in Fig. 4~the short-dashed curve that fo
lows almost exactly the ET results for the lowest band! is
achieved witha'0.86, even though the bandwidth of th
lowest polaron band changes by several orders of magnit

In summary, for the parameters under consideration~Fig.
4!, it follows from Eq.~5! that the translational dynamics o
the lowest band are essentially nonadiabatic, with adiab
corrections. The narrow bandwidth defines the slow ti
scale for the polaron hopping. In contrast, Fig. 3 shows t
the fast local dynamics of the self-trapped polarons is a
batic. The adiabatic softening of the local phonon mod
determines the positions of the ground and excited band
the spectrum. The energy shift due to the softening is m
larger than the bandwidths, which means that the pola
hopping can be neglected for the local dynamics.

C. Crossover

In spite of the fact that the almost exact results for
lowest polaron band in the crossover regime, obtained
various numerical methods, have been known for quite so
time, the corresponding qualitative explanation of the p
laron properties does not appear completely satisfactor
has been suggested in Ref. 38, by the use of the global-l
method,39 that a simple empirical relation between Hamilt
nian parameters,

gST'\v1At\v, ~6!

describes the regime for which the fast change from ligh
heavy polaron ground states takes place. Indeed,gST pre-
dicts, to a good approximation, the set of parameters
which the variation of the polaron effective mass~as a func-
tion of g) is the fastest.

For t@\v the crossover occurs in the adiabatic regim
whengST'At \v—i.e., lST'1. ApproachinglST from the
strong-coupling adiabatic side (l.lST), the size of the po-
laron increases. Consequently, the Peierls-Nabarro~PN! bar-
rier decreases and tunneling of the adiabatic polaron to
neighboring sites becomes possible. This effect is also
sponsible for the coupling of the pinning and breathing l
tice modes.40 At l,lST, the restoring force of the pinning
mode due to the PN barrier can be neglected, and one
treat the polaron as freely moving.7–9 Such a scenario thu
describes the crossover from the self-trapped~heavy! to
propagating~light! polaron states in the adiabatic limit. O
the other hand, fort!\v, the nonadiabatic theory describe
the polaron translation for arbitraryg and, in particular, at
g5gST'\v of Eq. ~6!. In this case, the polaron crossov
appears essentially as a passage from the weak- to the st
coupling ground state.

A reinspection of Fig. 2 shows that the two well-separa
time scales found in the strong-coupling regime—one rela
to the polaron translation~given by the bandwidth! and the
other related to the polaron local dynamics~given by the
renormalized phonon energies!—become comparable in th
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crossover regime. Furthermore, the behavior of the gro
and excited bands forg'gST indicates that the polaron
translation plays an important role in the excitation spectru
In other words, the influence of the polaron hopping to t
neighboring sites on the renormalized modes cannot be
glected under these conditions, as it can for strong couplin
The substantial difference in the crossover regime~see Fig.
3! between the ET results and the~adiabatically renormal-
ized! phonon energies of Ref. 5 is explained in this way. T
difference, however, is not necessarily related to nona
batic effects, as for the moderate values of the adiabatic r
under current consideration (1&t/\v&5) it is not clear to
what extent the nonadiabatic dynamics enters into the
scription of the polaron translation.

D. Parity

Irrespective of their temporal~or spatial! properties, when
the polaron bands cross and/or anticross as in Fig. 2, t
symmetry properties become important. As already m
tioned, the Holstein Hamiltonian is invariant under spa
inversion, and its eigenstates can be distinguished accor
their parity. A simple linear transformation relates the m
mentumuCK

( i )& and parityuCK
( i )&P eigenstates,

uCK
( i )&P5uCK

( i )&6 P̂uCK
( i )&5uCK

( i )&6P uC2K
( i ) &,

so that

P̂uCK
( i )&5PuC2K

( i ) &. ~7!

P̂ denotes the space inversion operator, andP561 are the
even- and odd-parity eigenvalues, respectively.

Considering the ET method, the parity can be direc
determined by inspection of the wave function properti
The eigenstatesuCK

( i )& can be expanded in terms of the bas
states~4! with expansion coefficientsan0 ,n21 ,n1 , . . . ,nm

:

uCK
( i )&5(

ni

an0 ,n21 ,n1 , . . . ,nm
un0 ,n21 ,n1 , . . . ,nm&K .

P̂ acting on the basis state~4! gives

P̂un0 ,n21 ,n1 , . . . ,nm&K5un0 ,n1 ,n21 , . . . ,n2m&2K .

Consequently, using Eq.~7! and the fact thatuC2K
( i ) & is a

complex conjugate ofuCK
( i )& ~time reversal!, one finds that

the expansion coefficients satisfy

an0 ,n21 ,n1 , . . . ,nm
5Pan0 ,n1 ,n21 , . . . ,n2m

* . ~8!

a* denotes the complex conjugate ofa. The expansion co-
efficients in Eq.~8! stand for two local phonon configura
tions; the first one is obtained from the second one when
phonons to the left and right of the electron are interchan
(nm→n2m).

Applying the above analysis within the framework of th
ET method yieldsP521 for the second excited band (i
52), while P51 for the ground and the other two lowe
excited bands (i 50,1,3). In this respect, the polaron ban
inherit the symmetry of the renormalized phonon modes
2-6
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CALCULATION OF EXCITED POLARON STATES IN . . . PHYSICAL REVIEW B69, 064302 ~2004!
obtained in the adiabatic limit. In Sec. IV B it was pointe
out that the pinning mode corresponding to the second
cited band is an antisymmetric vibration of the lattice~hav-
ing odd parity!, whereas the other two lowest excited mod
are symmetric vibrations~having even parity!. Furthermore,
one sees that the crossing~rather than the anticrossing! be-
tween the excited bands in the crossover regime, show
Fig. 2, involves bands of opposite symmetry under the sp
inversion.

For K50 andK5p/a the linear transformation19 of the
basis~4!,

un0 ,n21 ,n1 , . . . ,nm&K
65

1

A2
~ un0 ,n21 ,n1 , . . . ,nm&K

6un0 ,n1 ,n21 , . . . ,n2m&K),

~9!

defines two subspaces with different parities. It follows fro
Eq. ~8! that theP51 eigenstatesuCK50,p/a

( i ) & belong to the
1 subspace of Eq.~9!, while theP521 eigenstates belon
to the2 subspace. One sees that forK50 andK5p/a the
parity actually defines the symmetry of the local phonon c
figuration with respect to the electron. ForP51 this con-
figuration is symmetric, while it is antisymmetric fo
P521.

E. Anticrossing

In Ref. 23 the correlated behavior of the ground and
first excited state in the crossover regime was analyzed
moderate values of the adiabatic ratio using a method ba
on the variational approach~see the CT method described
Sec. III B of Ref. 23!. It was argued that the anticrossing
two physically different polaron states—one~heavy! for
which the translation energy is almost negligible and
other~light! for which this energy is important—can describ
in simple terms the mechanism of the crossover. It follo
from this interpretation that by increasingg in the critical
region of parameters neargST @Eq. ~6!#, the contribution to
the ground state from the light state decreases in favor of
heavy state which has lower energy at stronger couplings
the other hand, an opposite change occurs for the first exc
state, which is heavier than the ground state forg&gST,
while being lighter forg*gST.

In Fig. 5 the polaron ground and first excited energ
obtained in Ref. 23, denoted by CT, are compared to thos
the ET method. Although the CT energies may be conside
as a fair approximation, the anticrossing picture can be
cussed more accurately in the context of the current ET
sults. One sees that the ET results confirm that the minim
of EK50

(1) 2EK50
(0) , the two states of the same symmetry (P

51), corresponds tog'gST. It is important to notice that
the P521 states of the second excited band (i 52) ~Fig. 2!
are not involved in the anticrossing. The rest of the inve
gation presented here is focused on the polaron effec
mass and on the properties of the lattice deformation.

The polaron effective massme f f
( i ) can be evaluated numer

cally by using the relation18,22
06430
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mel /me f f
( i ) 5

1

t

EK5Dk
( i ) 2EK50

( i )

~Dka!2
, ~10!

whereDk is a small finite deviation of the momentum from
the valueK50. mel is the effective mass of the electron, an
i denotes the band number. The ground- (me f f

(0)) and the first
excited- (me f f

(1)) state effective masses are compared fot
51 in Fig. 6. Althoughme f f

(0).me f f
(1) for g*gST, me f f

(1) be-
comes smaller thanme f f

(0) as g decreases. For largert, the
results are qualitatively the same~e.g., see Fig. 9!, which
means that the anticrossing picture indeed matches the
havior of me f f

(0) andme f f
(1) neargST.

FIG. 5. The ground- and first excited-state energies obtained
the CT method of Ref. 23 and the first excited-state energy obta
by the ET method plotted as functions ofg. The chosen set of
parameters is the same as for Fig. 3 of Ref. 23,t55, gST'3.24
(\v51), K50. All curves are shifted by the ground-state ET e
ergy.

FIG. 6. Difference of the energy, the mean number of phon
~11!, and the effective mass~10! of the ground and first excited

states fort51 (\v51). The minima ofEK50
(1) 2EK50

(0) and N̄K50
(1)

5N̄K50
(0) 11 almost coincide withgST52. Notice that forg&gST

the lowest excited state becomes heavier than the ground
(me f f

(1).me f f
(0)).
2-7
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O. S. BARIŠIĆ PHYSICAL REVIEW B 69, 064302 ~2004!
For fixed g, the mean total lattice deformation~3! is the
same for the ground and excited states. However, the l
phonon cloud around the electron can be more or less lo
ized, which affects the polaron hopping to the neighbor
sites. A light state implies that the associated local latt
deformation is spread to a larger number of lattice sites t
for the heavy state. Namely, such a deformation gives ris
a greater effective hopping integral.

The mean number of phonons in the polaron state is gi
by

N̄K
( i )5^CK

( i )u(
m

bm
† bmuCK

( i )&. ~11!

In the adiabatic limit, this number is quadratic in the loc
lattice deformation for the ground state. A more localiz
~heavier! lattice deformation leads to largerN̄K

(0) . Within the
adiabatic approximation the excited renormalized phon
should, in general, increase the mean number of phon
with respect toN̄K

(0) . Particularly, in the strong-coupling
limit one obtains

lim
g→`

N̄K
(1)5N̄K

(0)11, ~12!

as the renormalization of the lattice vibrations becomes n
ligible.

From Fig. 6, in whichN̄K
(1)2N̄K

(0) is plotted as a function
of g, one sees that the ET results tend to Eq.~12! for strong
couplings. In the crossover regime, on the other hand,N̄K

(1)

2N̄K
(0) deviates from Eq.~12! considerably.N̄K

(1) is greater

than N̄K
(0)11 for g&gST and smaller thanN̄K

(0)11 for g
*gST. For largert, the amplitude of the deviation increas
even further. As shown in the inset of Fig. 7,N̄K

(1),N̄K
(0) for

3.25&g&3.75, while the minimal and maximal values
N̄K

(1)2N̄K
(0) define an interval of almost five phonons.

FIG. 7. The electron-lattice deformation correlation functi
Xn

( i ,K) , Eq. ~13!, plotted as a function ofg for n50 andn51. In
the former caseXn

( i ,K) gives the correlation at the electron sit
while in the latter it gives the correlation between the electron
lattice deformation at the neighboring site. The difference betw
the mean number of phonons in the ground and first excited stat
shown in the inset.t55, K50, gST'3.24 (\v51).
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Additional insights into the local polaron properties c
be provided by studying the appropriate electron-lattice c
relation function

Xn
( i ,K)5

\v

2g
^CK

( i )u(
m

cm
† cm~bm1n

† 1bm1n!uCK
( i )&. ~13!

Xn
( i ,K) is the mean lattice deformation induced at thenth site

away from the electron. The correlation function~13! is nor-
malized in such a way that(nXn

( i ,K)51. As the correlation
spreads to adjacent lattice sites, the correlation at the elec
site X0

( i ,K) decreases. Consequently,X0
( i ,K) should be larger

for the heavy than for the light polaron state.
The ground- and first excited-state results forXn

( i ,K50) are
plotted in Fig. 7. The relationship betweenX0

(0,0) and X0
(1,0)

changes neargST. This is exactly what one would expec
from the anticrossing picture.X0

(0,0),X0
(1,0) for g&gST. As

the contribution of the heavy state to the ground state
comes dominant forg*gST, the relationship changes, an
X0

(0,0).X0
(1,0) . The spreading of the lattice deformation as

function of g may also be deduced fromX1
(0,0) and X1

(1,0) .
The results corresponding to this lattice site, shown in Fig
again lead one to the same conclusion. Forg&gST the lattice
deformation seems to spread more for the ground than
the excited state and vice versa forg*gST.

All of the aforementioned ground- and first excited-sta
properties~the energy, the effective mass, the mean num
of phonons, and the electron-lattice deformation correlat
function! indicate that fort/\v&5 the anticrossing of two
~light and heavy! polaron states occurs neargST. Although
criteria such asEK50

(1) 2EK50
(0) being minimal,me f f

(1)5me f f
(0) ,

X0
(0,0)5X0

(1,0) , or alternative criteria, do not agree exact
they all predict the polaron crossover to occur within t
same very narrow parameter range, given approximately
Eq. ~6!.

V. ELECTRON PROPERTIES

A. Single-electron spectral function

Denoting the vacuum state byu0&, the zero-temperature
single-electron Green function can be expressed as41,42

GK~E!5^0ucK

1

E2Ĥ1 i01
cK

† u0&.

For the energies below the phonon thresholdE,E(c) no
polaron-phonon scattering takes place, which has the co
quence that the imaginary part of the electron self-ene
SK(E,E(c)) tends to zero.12,13Accordingly, the low-energy
part of the spectral functionAK(E), denoted byAK

,(E), is
defined by the simple poles ofGK(E) at E5EK

( i ) :

AK
,~E,E(c)!5(

i
u^CK

( i )ucK
† &u2d~E2EK

( i )!; ~14!

i.e., the spectral functionAK
,(E) is defined by the polaron

energyEK
( i ) and the quasiparticle weightZK

( i )5u^CK
( i )ucK

† &u2.

d
n
is
2-8
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CALCULATION OF EXCITED POLARON STATES IN . . . PHYSICAL REVIEW B69, 064302 ~2004!
In particular, forK50 andK5p/a, the quasiparticle weigh
ZK50,p/a

( i ) vanishes by parity for theP521 eigenstates
uCK50,p/a

( i ) &, because the free-electron~zero-phonon! state
ucK50,p/a

† & belongs to the1 subspace of Eq.~9!.
In Fig. 8,AK50

, (E) is plotted as a function ofE for a few
different values ofg in the crossover regime. The spectr
weight corresponding to the ground polaron state is of
same order of magnitude as the one corresponding to
excited ~even-parity! polaron states. Moreover,MK defined
by

MK5E AK
,~E!dE, ~15!

reveals that, in the crossover regime~for g&gST), nearly
40% of the total spectral weight confined to the ground a
excited polaron states can be located in the energy win
below the phonon threshold. Therefore, at least forg;gST
and for the values of adiabatic ratio under current consid
ations (t/\v&5), the results imply the existence of a fe
well-pronounced peaks in the single-electron spectral den
below the phonon threshold. For stronger couplings, on
other hand, the quasiparticle weight below the phon
threshold is almost completely suppressed.

B. Electron self-energy

When the electron propagatorGK(E) is expressed in
terms of the electron self-energySK(E), both ZK

( i ) and EK
( i )

of Eq. ~14! can be related toSK(E). E.g., the polaron effec
tive massme f f

( i ) is given in terms of the self-energySK(E) by
the standard formula43

mel /me f f
( i ) 5

11]«K
SK~E!

12]ESK~E!
5ZK50

( i ) ~11g ( i )!, ~16!

FIG. 8. AK
,(E) given by Eq.~14! is plotted fort55, K50, and

four values ofg in the crossover regime. All spectra are broaden
by a Lorentzian of width 0.05. For each curve the lower squ
denotesE5EK50

(0) , while the higher one denotesE5E(c). Notice
that for g*gST'3.24, the spectral weight associated with t
first excited state is larger than the one associated with
ground state.MK , given by Eq.~15!, is the total normalized spec
tral weight of the ground and excited polaron states~below the
phonon threshold!.
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where 1/ZK
( i )512]ESK(E) and«K5K2a2t5\2K2/2mel . In

Eq. ~16!, i is used to distinguish between results for t
ground and excited~even-parity! states.g ( i ) is the abbrevia-
tion for the appropriately normalizedK-dependent contribu-
tion to me f f

( i ) .
When the self-energySK(E) is local (K independent,

g ( i )50) the polaron effective mass is related solely to t
quasiparticle weightZK50

( i ) . Thus, the nonlocal character o
the self-energy can be investigated by comparingg ( i ) to
unity.24 Such an analysis is particularly interesting in t
context of DMFT, as the locality~implying g ( i )50) of the
self-energy is an essential ingredient of this approach.13 In
both the weak-coupling (g→0) and nonadiabatic (t→0)
limits, SK(E) becomes local.13,18,41 Within the Holstein-
Lang-Firsov approximation10,41and fort→0, the self-energy
SK(E)5S(E) is, to a good approximation, given by its ex
pansion to the first order inE over the whole energy rang
defined by the lowest band. In this case,ZK

(0)'Z(0) defines
the renormalization of the narrow cosinelike lowest band
any K.

With the ET methodg ( i ) can be obtained in terms o
ZK50

( i ) andme f f
( i ) , the latter being estimated numerically fro

the band dispersion at the center of the Brillouin zone@Eq.
~10!#. The ET results agree with the aforementioned anal
cal findings for smallt and/or g ~Ref. 24!. It follows that
significant nonlocal contributions toSK(E) can possibly oc-
cur in the regime where neithert nor g are small. In the left
panel of Fig. 9,ZK50

( i ) is plotted for moderatet as function of
g, while the right panel showsg ( i ) for the same set of pa
rameters. Althoughg ( i ) does not contribute tome f f

( i ) substan-
tially for g&gST, at stronger couplingsg ( i ) reaches values
of the order of unity for both the ground and first excite
states. That is, the nonlocal contribution to the electron s
energy is as equally important as the local one. Howeve
should be noticed that, in this regime, the quasiparti
weight ZK

( i ) becomes small.

FIG. 9. ZK50
( i ) andg ( i ) given by Eq.~16! are plotted in the left

and right panels, respectively (t55, gST'3.24,\v51). The solid
curves are the ground-state results; the long-dashed curves ar
first excited-state results. In the left panel the short-dashed cu
show the inverse effective massmel /me f f

( i ) .

d
e

e

2-9



ed
en

ra

d
he

th

el

s

de
ic
n

c-
no

r-
om

th

a
te

in
re
ur
nt

the
nal

ans-
.

rum
on

tin-
m
. It
are
re.
on
ht.
the

to

the
as
all

ated
u-
on
ET

f
the
e to
cor-
ce,

n

te
re-
ds
nd
the

t for
ex-
g
her
i-
t of

apid

he
ate
in
g.
-

ss-
aly-
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C. Optical conductivity

The interband optical conductivity may be evaluat
within the linear-response theory from the current-curr
correlation function. The low-energy~coherent! contribution
to the real part of the interband conductivity at zero tempe
ture is given by16,44

sR
,~E!5(

iÞ0

u^C ( i )uĴuC (0)&u2

E( i )2E(0)
d~E2E( i )1E(0)!, ~17!

where uC ( i )& are theK50 polaron states, herein calculate
by the ET method. The incoherent contribution to t
interband conductivity, denoted bysR

.(E), corresponds
to the continuum of the excitation spectrum above
phonon threshold. Since the current operator in Eq.~17!,
defined by

Ĵ5 i t(
n

~cn11
† cn2cn

†cn11!,

is odd under space inversion, the nonvanishing matrix
ments in Eq.~17! are those between theP51 ground state
uC (0)& andP521 excited statesuC ( i )&. Actually, the inco-
herent part of the interband optical conductivitysR

.(E) in-
volves onlyP521 excitations as well. On the contrary, a
argued in Eq.~14!, the spectral functionAK(E) contains in-
formation about theP51 part of the spectrum atK'0. The
optical conductivity at zero temperature is therefore
scribed by those excited states for which the quasipart
weight ZK'0 vanishes—i.e., those states that are not see
the single-electron spectral function.

The real part of the optical conductivitysR(E) includes
the interband part and the~intraband! Drude term atE'0. It
follows from the well-known sum rule44 that the total spec-
tral weight ofsR(E) is given by the mean value of the ele
tron kinetic energy in the ground state. Consequently,
only is the ET method capable of calculatingsR

,(E), but the
total spectral weight ofsR(E) is also accessible. Furthe
more, one may estimate the weight of the Drude term fr
the polaron effective mass.20

According to the ET results, fort<5 there is only one
interband transitionuCK50

(0) &1→uCK50
(2) &2 which contributes

at zero temperature tosR
,(E) @Eq. ~17!#. It is interesting to

find the corresponding non-Drude spectral weight below
phonon threshold. However,EK50

(2) is less thanE(c) for rela-
tively strong couplings, for which most of the spectr
weight of sR(E) belongs to high energies. In this parame
regime only a few percent~or less! of the total spectral
weight of sR(E) corresponds tosR

,(E) or to the Drude
term. This simple low-energy picture ofsR(E) becomes cer-
tainly more complex at finite temperature, particularly
the crossover regime where the bandwidths of the cohe
polaron states increase. Studies at finite temperat
however, require different methods than the one prese
here.
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VI. SUMMARY

This paper reports an exact-diagonalization study of
ground and excited polaron states in the one-dimensio
Holstein model. For values of the adiabatic ratiot/\v&5,
accurate energies and wave functions are obtained for tr
lationally invariant solutions of the infinite lattice problem
The chosen method is restricted to the part of the spect
below the phonon threshold, for which there are no phon
excitations uncorrelated to the polaron.

The eigenstates of the Holstein Hamiltonian can be dis
guished according to their parity. This property follows fro
the Hamiltonian which is invariant under space inversion
is shown that only the odd excited states of the system
relevant to the optical conductivity at zero temperatu
However, the contribution of the coherent excited polar
state is rather small with respect to the total spectral weig
On the other hand, it is the even states that contribute to
single-electron spectral function forK'0. In this case, the
contribution of the coherent excited polaron states is found
be important, particularly in the crossover regime.

In the strong-coupling regime the results agree with
picture of self-trapped polarons, which may be regarded
well understood. The spectrum is characterized by very sm
polaron bandwidths. Consequently, the time scale associ
with the polaron translation is very large, and the contrib
tions to the fast local polaron dynamics from the polar
hopping are negligible. By making a comparison with the
results, it is shown that the adiabatic theory~the Born-
Oppenheimer approximation! provides a good description o
the local properties of the self-trapped polaron. Namely,
energies of the renormalized phonon excitations are clos
the ET excited-band energies. Two of the excited bands
respond to the symmetric adiabatic vibrations of the latti
while one corresponds to the antisymmetric~pinning! vibra-
tion. Finally, it is found that for strong couplings the electro
self-energy shows significant nonlocal (K-dependent! behav-
ior at moderatet.

As the electron-phonon coupling decreases at moderat,
the simple band structure found in the strong-coupling
gime ~i.e., the narrow and well-separated polaron ban!
evolves notably. The effective hopping integral of the grou
and excited polaron states defines a time scale which, in
crossover regime, is comparable to the time scale relevan
the local polaron dynamics. In the crossover regime the
cited ~odd-parity! band, which corresponds to the pinnin
vibration in the strong-coupling regime, crosses the ot
two ~even-parity! bands, which correspond to symmetric v
brations. The results suggest that the same critical se
parameters defined bygST @Eq. ~6!#, found for the polaron
ground-state crossover, may also be associated with the r
change of the low-energy excitation spectrum.

Aside from the fact that the polaron translation and t
local dynamics mix in the crossover regime, the intermedi
~moderate! values of the adiabatic ratio employed here
present additional difficulties for qualitative understandin
Namely, for 1&t/\v&5, both the adiabatic and nonadia
batic contributions could be important for the polaron cro
over. Nevertheless, in the context of the ET approach, an
2-10
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CALCULATION OF EXCITED POLARON STATES IN . . . PHYSICAL REVIEW B69, 064302 ~2004!
ses of the energy, the effective mass, and the lat
deformation properties all agree in one important resp
That is, for moderate values of the adiabatic ratio, two
laron states of even parity~one heavy and one light! undergo
an anticrossing in the same region of parameters for wh
the ground state crosses over from the weak- to the stro
coupling regime.
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