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Green’s function formalism for phononic crystals
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We develop a Green’s function multiple-scattering formalism for the calculation of the density of states and
the local density of states of the elastic field in periodic and nonperiodic structures consisting of nonoverlap-
ping scatterers in a homogeneous host medium. The formalism is based on concepts and techniques developed
in relation to the similar problem of electrons in solids. We apply the method to a specific example which
demonstrates the existence of virtual bound states of the elastic field localized about a plane of nonoverlapping
steel spheres in polyester. These states are manifested as dips in the transmission spectrum of the monolayer.
They develop into narrow frequency bands in a phononic crystal built by a succession of such planes.
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I. INTRODUCTION

The multiple-scattering Green’s function method has b
used extensively in the study of the electronic structure
related properties of materials~see, e.g., Ref. 1 and refe
ences therein!. It has been very successful in calculations
the electronic structure of periodic solids, impurities, dis
dered alloys, surfaces, layered structures, low-dimensio
systems, etc. In recent years, the propagation of electrom
netic or elastic waves in composite materials with dielec
or, respectively, elastic properties which are periodic fu
tions of the position, with a period comparable to the wa
length of the corresponding field, has been the object of c
siderable attention~see, e.g., Ref. 2 and references there!.
These materials, photonic and phononic crystals, res
tively, whether they exist naturally or are artificially fabr
cated, exhibit a variety of physical properties of interest
fundamental and applied research. There are striking an
gies between the propagation of electrons in ordinary c
tals and electromagnetic or elastic waves in photonic
phononic crystals, so that a variety of multiple-scatter
methods originally developed for electronic-structure cal
lations have been transferred to the field of photo
crystals3–8 and some of them also to phononic crystals.9–11

The aim of the present paper is to develop a multip
scattering Green’s function formalism for phononic cryst
and related structures. A knowledge of the Green’s funct
is particularly useful in those situations where a knowled
of the density of states, or of the local density of states of
elastic field, is required rather than the wave functions
individual modes. Moreover, using the Lippmann-Schwing
equation and the Green’s function of the periodic crysta
begin with, one can obtain in systematic manner the Gre
function, and therefore the density of states of the displa
ment field, associated with defects of the crystal. A Gree
function approach may also be very useful in the study
disorder in phononic structures, by using procedures an
gous to those developed for the examination of disorde
relation to the electronic and vibrational structures of solid1
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As is usual in any multiple-scattering formalism, on
combines the properties of the single scatterer with the g
metrical properties of the structure to obtain the requi
Green’s function for the system as a whole. In doing so
scattering transition matrices describing the individual sc
terers and the propagator functions involving the geome
are expressed in the appropriate-in-each-case represent
involving plane-wave or spherical-wave expansions as
quired. In Sec. II we present some general formulas rela
to the scattering of elastic waves. In Sec. III we derive e
plicit expressions for the Green’s function of a homogene
medium in the plane-wave and the angular-momentum r
resentation. The scattering of elastic waves by a sin
sphere is explicitly treated in Sec. IV, while multiple scatte
ing by ~periodic or not! arrays of spheres is treated in Sec.
In Sec. VI we consider the case of slabs consisting o
number of parallel planes of spheres with the same tw
dimensional~2D! periodicity. Although we present the cas
of nonoverlapping homogeneous spherical scatterers in a
mogeneous host medium, the formalism applies to the g
eral case of arbitrary nonoverlapping scatterers as well, p
vided the quantities which describe the properties of
single scatterer are properly modified. Finally, in Sec. V
we demonstrate the applicability of the formalism by app
ing it to a specific example: a square array of steel sphere
polyester.

II. BASIC FORMULAS

The displacement vectorU(r ;t) associated with an elasti
wave propagating in an inhomogeneous medium charac
ized by a mass densityr and Lame´ coefficientsl, m, which
depend on the positionr , satisfies the differential equation12

r] t
2Ui5(

i 9
] i 9Fld i i 9(

i 8
] i 8Ui 81m~] i 9Ui1] iUi 9!G ,

~1!
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where] i denotes the partial derivative with respect to thei th
component ofr ~throughout the paper the subscripti means
Cartesian componentsx,y,z); ] t denotes the partial deriva
tive with respect to time. We assume, to begin with, that
Lamé coefficients are real and positive quantities and t
they do not depend on the frequency. In the case of a
monic elastic wave of angular frequencyv, we have

U~r ;t !5Re$u~r !exp@2 ivt#% ~2!

and Eq.~1! reduces to the time-independent form

2(
i 8

H r21/2F ] i~l] i 8!1d i i 8(
i 9

] i 9~m] i 9!

1] i 8~m] i !Gr21/2J r1/2ui 85v2r1/2ui , ~3!

which is an eigenvalue equation:Ar(r )u(r ) is an eigenvec-
tor, corresponding to the eigenvaluev2, of the linear~second
rank! tensor differential operatorL(r ), defined by

L i i 8~r !52r21/2F ] i~l] i 8!1d i i 8(
i 9

] i 9~m] i 9!

1] i 8~m] i !Gr21/2, ~4!

which operates on the Hilbert space of square integrable
tor functions. The inner product of any two such functionsv
andw, is defined by

~v,w!5E
V
d3rv* ~r !•w~r !, ~5!

whereV is the volume of the system and * denotes, as us
complex conjugation.L(r ) is Hermitian, i.e.,

~v,Lw!5~Lv,w!. ~6!

One can easily prove Eq.~6! using the definition of the inne
product, Eq.~5!, integrating by parts, and neglecting the su
face terms~one assumes that the displacement field eit
vanishes at the boundaries of the system or satisfies ap
priate boundary conditions!.

The Hermiticity of L(r ) means that its eigenvalues a
real ~and positive in the present case13! and that the corre-
sponding eigenfunctions form a complete set, i.e.,

(
a

Ar~r !ua; i* ~r !Ar~r 8!ua; i 8~r 8!5d i i 8d~r2r 8! ~7!

and an orthonormal set, i.e.,

(
i
E

V
d3rr~r !ua; i* ~r !ua8; i~r !5daa8 , ~8!

where the indexa characterizes the eigenvalues and eig
functions ofL(r ).
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Sometimes it is more convenient to express the ab
properties in the Dirac bra-ket notation.14 In this notation, for
example, the eigenvalue equation~3! is written as

L̂ua&5va
2 ua&, ~9!

and the completeness and orthonormality properties take
form

(
a

ua&^au5 Î ~10!

and

^aua8&5daa8 , ~11!

whereÎ is the identity operator. We use throughout the co
dinate (i r ) representation in which ua& becomes
Ar(r )ua; i(r ).

The Green’s function associated withL̂, as a function of
a complex variablez, is defined by1

~z2L̂ !Ĝ~z!5 Î , ~12!

which, in explicit form becomes

(
i

@zd i 9 i2L i 9 i~r !#Gii 8~r ,r 8;z!5d i 9 i 8d~r2r 8!. ~13!

One can easily show that

Gii 8~r ,r 8;z!5(
a

Ar~r !ua; i~r !Ar~r 8!ua; i 8
* ~r 8!

z2va
2

. ~14!

It is clear, from Eq.~14! that the Green’s function is ana
lytic in the complexz plane, except at those points of the re
positive axis which are eigenvalues ofL̂. There, following a
standard procedure, we putz5 lim

e→01(v1 i e)2, which cor-
responds to the retarded Green’s function.

We define the local density of states of the elastic field

n~r ;v!5(
a

uua~r !u2d~v2va!

52
2v

pr~r !
Im(

i
Gii ~r ,r ;v2!. ~15!

The density of states~number of states of the elastic field p
unit frequency! for the system under consideration is o
tained, accordingly, from

n~v!5E
V
d3rr~r !n~r ;v!5(

a
d~v2va!

52
2v

p
Im Tr Ĝ~v2!5

2v

p
Im Tr Ĝ†~v2!, ~16!

where † denotes, as usual, the adjoint operator.
In a number of applications one needs to obtain the eig

functions of a given system~described byL̂), by reference
1-2
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to another system~described byL̂0) for which the Green’s
function Ĝ0 is easily determined. We put

Ĝ5L̂2L̂0 . ~17!

One can show that, at a frequencyv which belongs to the
eigenvalue spectra of both systems, the eigenfunction of
system under consideration is related to the correspon
eigenfunction of the reference system by the Lippma
Schwinger integral equation1

ua&5ua&01Ĝ0Ĝua&. ~18!

The so-called on-shell scattering transition operatorT̂ (v)
connects the eigenfunctionsua& of the perturbed to those o
the reference system,ua&0, at a given common eigenfre
quencyv, as follows:

Ĝua&5T̂ ua&0 , ~19!

in which case the Lippmann-Schwinger equation takes
form

ua&5ua&01Ĝ0T̂ ua&0 . ~20!

We should further clarify the notation by writing Eq.~20!
explicitly as follows:

Ar~r !ua; i~r !5Ar0~r !u0a; i~r !1 (
i 8,i 9

E
V
E

V
d3r 8d3r 9

3G0i i 8~r ,r 8!Ti 8 i 9~r 8,r 9!Ar0~r 9!u0a; i 9~r 9!.

~21!

It is easy to show that

T̂5Ĝ1ĜĜ0T̂ ~22!

and

Ĝ5Ĝ01Ĝ0ĜĜ5Ĝ01Ĝ0T̂Ĝ0 . ~23!

From Eq.~22! and the Hermiticity ofĜ we obtain

T̂2T̂ †5T̂ †~Ĝ02Ĝ0
†!T̂, ~24!

which is the formal statement of the so-called generali
optical theorem.1 Sometimes it is more convenient to wor
instead ofT̂, with the reaction operatorK̂, defined by

T̂5K̂1 1
2 K̂~Ĝ02Ĝ0

†!T̂. ~25!

Using Eq.~24! one can show thatK̂ is a Hermitian operator
K̂5K̂†.

We can now introduce theŜ operator by

Ŝ5 Î 1~Ĝ02Ĝ0
†!T̂, ~26!

which, using Eq.~24!, becomes

Ŝ5@ T̂ †#21T̂. ~27!

Ŝ can be also expressed in terms of the reaction oper
using Eq.~25!, as follows:
06430
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Ŝ5@ Î 1 1
2 ~Ĝ02Ĝ0

†!K̂#@ Î 2 1
2 ~Ĝ02Ĝ0

†!K̂#21. ~28!

Using T̂ we can obtain a useful formula for the differenc
DN(v) in the number of states up to a given frequencyv
between the considered system and the reference one.
cording to Eq.~16!, the difference between the densities
states of the two systems is

Dn~v!52
2v

p
Im Tr@Ĝ~v2!2Ĝ0~v2!#

52
v

p
Im Tr@Ĝ~v2!2Ĝ†~v2!2Ĝ0~v2!1Ĝ0

†~v2!#.

~29!

Using the identity 2vĜ(v2)52] ln Ĝ(v2)/]v, which fol-
lows directly from the definition of the Green’s function@Eq.
~12!#, and Eqs.~23! and ~27! we obtain

Dn~v!5
1

2p
Im Tr

]

]v
ln$Ĝ~v2!

3@Ĝ†~v2!#21Ĝ0
21~v2!Ĝ0

†~v2!%

5
1

2p
Im Tr

]

]v
ln$@ T̂ †~v!#21T̂ ~v!%

5
1

2p
Im Tr

]

]v
ln Ŝ~v!, ~30!

and therefore

DN~v!5E
0

v

dv8Dn~v8!5
1

2p
Im Tr ln Ŝ~v!. ~31!

Substituting in Eq. ~31! the expression ofŜ given by
Eq. ~28!, using the equation Im Tr ln@Î11

2(Ĝ02Ĝ0
†)K̂#

52Im Tr ln@Î21
2(Ĝ02Ĝ0

†)K̂# and Eq.~25! we finally obtain

DN~v!5
1

p
Im Tr lnF Î 1

1

2
~Ĝ02Ĝ0

†!T̂ G . ~32!

We should note that thoughDN(v) by itself may not be
an important quantity in the case of the elastic field, its d
rivative is. Numerical differentiation ofDN(v) obtained on
the basis of Eq.~31! provides an effective means for th
calculation ofDn(v).

We should also note that, although the formulas of t
section have been derived assumingl and m to be ~real!
constants independent of frequency, one can easily see
for the purpose of calculatingDn(v) at a givenv, we can
use the same formulas even whenl andm are functions of
v, because usually they can be replaced by constants ov
small frequency region aboutv.

III. THE HOMOGENEOUS MEDIUM

In the case of a homogeneous medium, characterized
r, l, m that do not depend onr , Eq. ~3! takes the form
1-3
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2cl
2
“~“•u!1ct

2
“3~“3u!5v2u, ~33!

where cl5A(l12m)/r and ct5Am/r. The most genera
solution of Eq.~33! consists of longitudinal~irrotational! and
transverse~divergenceless! waves, which propagate indepe
dently with velocitiescl andct , respectively. The eigenfunc
tions of the elastic field are longitudinal and transverse pl
waves, which we shall often write in dimensionless form
follows

ArVupq~r !5exp@ iq•r #êp~q!, ~34!

in which case we shall refer to them as dimensionless eig
functions. The wave vectorq can take any value. The sub
script p takes the values p51,2,3. p51 defines a longitudi-
nal wave: ê1 is the radial unit vector alongq and the
corresponding eigenfrequency equalsclq. Correspondingly
p52,3 define transverse waves (p ands polarized!: ê2 andê3
are the polar and azimuthal unit vectors, respectively, wh
are perpendicular toq, and the corresponding eigenfre
quency equalsctq. Because the eigenfunctionsArupq(r ) de-
fined by Eq.~34! constitute a complete and orthonormal s
the Green’s function for a homogeneous medium can
written as follows:

gii 8~r ,r 8;v2!5
rV

~2p!3E d3q(
p

upq; i~r !upq; i 8
* ~r 8!

v22vpq
2

,

~35!

according to Eq.~14!, where we putz5v2, and we have
substituted(q by V/(2p)3*d3q, which is valid in the limit
V→`. Obviously, in a homogeneous mediumgii 8(r ,r 8;z)
depends onr and r 8 only through their differencer2r 8.

In the present paper we are concerned with phono
crystals consisting of nonoverlapping spheres, and with
multiple scattering of elastic waves between them. Acco
ingly, we employ the so-called spherical-wave solutions
Eq. ~33!. A set of longitudinal spherical-wave eigenfunctio
corresponding to an eigenfrequencyclq is given by

ArVuLlmq~r !5
1

q
“@ f l~qr !Yl

m~ r̂!#, ~36!

whereYl
m( r̂) are the usual spherical harmonics, andf l may

be any linear combination of the spherical Bessel functionj l

and the spherical Hankel functionhl
1 . A set of transverse

spherical-wave eigenfunctions corresponding to an eigen
quencyctq is given by

ArVuMlmq~r !5 f l~qr !X lm~ r̂!, ~37!

and

ArVuNlmq~r !5
i

q
“3@ f l~qr !X lm~ r̂!#. ~38!

Again when the spherical-wave eigenfunctions are written
the above form we shall refer to them as dimensionl
06430
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eigenfunctions, by analogy to Eq.~34!. The vector spherica
harmonics, denoted by X lm( r̂), are defined by
Al ( l 11)X lm( r̂)5L (r )Yl

m( r̂)52 i r3¹Yl
m( r̂). By definition,

X00( r̂)50; for l>1 we have

Al ~ l 11!X lm~ r̂!5@a l
2m cosueifYl

m21~ r̂!2m sinuYl
m~ r̂!

1a l
m cosue2 ifYl

m11~ r̂!#ê2~r !

1 i @a l
2meifYl

m21~ r̂!

2a l
me2 ifYl

m11~ r̂!#ê3~r !, ~39!

where

a l
m5 1

2 @~ l 2m!~ l 1m11!#1/2, ~40!

and ê2 , ê3 are the polar and azimuthal unit vectors, resp
tively, which are perpendicular tor in the chosen system o
spherical coordinates.

Vector plane waves are expanded into vector spher
waves as follows:

upq~r !5(
Plm

aPlm
pq̂ uPlmq

0 ~r !, ~41!

whereP5L,M ,N. A vector plane wave is finite everywhere
thereforeuPlmq

0 (r ) in Eq. ~41! are given by Eqs.~36!, ~37!,
and ~38! with f l5 j l ~regular vector spherical waves!; one
can easily show that the nonzero coefficients in Eq.~41! are

aLlm
1q̂ 54p i l 21Yl

m* ~ q̂!,

aMlm
2q̂ 52aNlm

3q̂ 54p i lXlm;2* ~ q̂!,

aMlm
3q̂ 5aNlm

2q̂ 54p i lXlm;3* ~ q̂!, ~42!

where the polar and azimuthal components of the vec
spherical harmonics are given by Eq.~39!. In the following,
we use an index L~this should not be confused with th
index L that characterizes longitudinal spherical waves! to
denote collectively the indicesPlm.

An expression of the Green’s function in terms of sphe
cal waves can be obtained from Eq.~35! as follows.
We expand the plane waves into spherical waves using E
~41! and ~42!; we integrate over all solid anglesV q̂ : using
the explicit expressions of the regular vector spherical wa
@Eqs.~36!, ~37!, and~38!# and the orthonormality propertie

*dV q̂Yl
m(q̂)Yl 8

m8* (q̂)5d l l 8dmm8 , *dV q̂X lm(q̂)•X l 8m8
* (q̂)

5d l l 8dmm8 , *dV q̂X lm(q̂)•@ q̂3X l 8m8
* (q̂)#50, we obtain
1-4
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gii 8~r ,r 8;v2!5
2

pcl
2 (

lm
“ i“ i 8

8

3FYl
m~ r̂!Yl

m* ~ r̂8!E
0

`

dq
j l~qr ! j l~qr8!

~v/cl !
22q2 G

1
2

pct
2 (

lm

@r3“# i@r 83“8# i 8
l ~ l 11!

3FYl
m~ r̂!Yl

m* ~ r̂8!E
0

`

dq q2
j l~qr ! j l~qr8!

~v/ct!
22q2 G

1
2

pct
2 (

lm

@“3r3“# i@“83r 83“8# i 8
l ~ l 11!

3FYl
m~ r̂!Yl

m* ~ r̂8!E
0

`

dq
j l~qr ! j l~qr8!

~v/ct!
22q2 G ,

~43!

where we have also used the identityi“3@ j l(qr)X lm( r̂)#
5@ l ( l 11)#21/2

“3r3“@ j l(qr)Yl
m( r̂)#.

It can be shown by contour integration that

E
0

`

dq
j l~qr ! j l~qr8!

k22q2
52 i

p

2k
j l~kr ,!hl

1~kr .!

1
p

2~2l 11!k2

r ,
l

r .
l 11

~44!

and

E
0

`

dq q2
j l~qr ! j l~qr8!

k22q2
52 i

pk

2
j l~kr ,!hl

1~kr .!,

~45!

where r ,5min(r,r8), r .5max(r,r8). It is clear from Eqs.
~43!, ~44!, and~45! that, ata given frequencyv, the angular-
momentum expansion of the Green’s function involves b
regular~incoming! and irregular~outgoing! vector spherical
waves at this frequency. We denote them byJL(r ) and
HL(r ), respectively; they are dimensionless spherical w
functions given by Eqs.~36!, ~37!, and~38! with q5v/cl if
P5L and q5v/ct if P5M ,N, and f l5 j l for JL and f l

5hl
1 for HL . For simplicity, in what follows we do no

denote explicitly the dependence on the frequency of
various quantities. Using Eqs.~44! and~45! and the identity

F“ i“ i 8
8 1

@“3r3“# i@“83r 83“8# i 8
l ~ l 11! G

3F r ,
l

r .
l 11

Yl
m~ r̂!Yl

m* ~ r̂8!G50, ~46!

in Eq. ~43!, we obtain
06430
h

e

e

gii 8~r ,r 8!52 i(
L

v

cn
3 @JL; i~r !H̄L; i 8~r 8!Q~r 82r !

1HL; i~r !J̄L; i 8~r 8!Q~r 2r 8!#, ~47!

where n5 l if P5L and n5t if P5M ,N. Q(x) is the
Heaviside step function. The bar symbol over a vec
spherical wave,ūPlm(r ), stands for (21) fuPl2m(r ), where
f 5m if P5L,N and f 5m11 if P5M . Obviously, J̄L(r )
5JL* (r ) but HL(r )ÞHL* (r ). Since (mYl

m( r̂)Yl
m* ( r̂8)

5(mYl
m* ( r̂)Yl

m( r̂8), in Eq.~43! complex conjugation can be
applied to the spherical harmonics of eitherr or r 8. Conse-
quently, in Eq.~47! the bar can be put over the vector sphe
cal functions ofr or over those ofr 8. Having this in mind,
we can see thatgii 8(r ,r 8)5gi 8 i(r 8,r ).

IV. A SPHERE IN A HOST MEDIUM

Let us consider a single homogeneous sphere of radiS
centered at the origin of coordinates. The sphere, which
characterized by elastic constantsrs , ls , ms , is embedded
in a homogeneous host medium characterized by elastic
stantsr, l, m, which are different from those of the spher
A plane wave~longitudinal or transverse! of a given fre-
quency v incident on the sphere can be expanded i
spherical waves:(LaL

0JL(r ), where the expansion coeffi
cientsaL

0 depend on the amplitude, polarization, and dire
tion of propagation of the incident plane wave. Similarly, t
wave scattered by the sphere is described by outgoing sp
cal waves,(LaL

1HL(r ). The displacement field inside th
sphere has the form(LaL

I JL
s(r ), whereJL

s(r ) is given by Eqs.
~36!, ~37!, and~38! with q5v/csl if P5L, andq5v/cst if
P5M ,N, and f l5 j l . Imposing the appropriate boundar
conditions, we obtain a system of linear equations, the s
tion of which gives usaL

1 , aL
I in terms ofaL

0 , as follows~see
Appendix A!:

aL
15(

L8
TLL8aL8

0 , aL
I 5(

L8
CLL8aL8

0 , ~48!

where the matricesT, C are diagonal in angular momentum
( lm) and have nonzero elements for PP8
5MM ,NN,NL,LN and l>1, and forPP85LL and l>0,
as can be seen from Eqs.~A1! and ~A2!. Therefore, we de-
fine the regular at the origin dimensionless eigenfunction
L(r ) for the system under consideration, which correspo
to an incident spherical wave of given L, as follows:

RL~r !5FJL~r !1(
L8

TL8LHL8~r !GQ~r 2S!

1Ars /r (
L8

CL8LJL8
s

~r !Q~S2r !. ~49!

A property ofTLL8 is worth noting. Using the Lippmann
Schwinger equations@Eqs. ~18! and ~20!# and the Green’s
1-5
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function @Eqs. ~47!# for the homogeneous host mediu
~taken as the reference system!, we obtain forRL(r ) the
following expression:

RL~r !5JL~r !2 i(
L8

v

cn8
3 HL8~r !

3E
r 8<S

d3r 8(
i 8 i 9

J̄L8; i 8~r 8!G i 8 i 9~r 8!RL; i 9~r 8!

5JL~r !2 i(
L8

v

cn8
3 HL8~r !

3E E
r 8,r 9<S

d3r 8d3r 9(
i 8 i 9

J̄L8; i 8~r 8!

3Ti 8 i 9~r 8,r 9!JL; i 9~r 9!, ~50!

for r>S. Comparing Eq.~50! with Eq. ~49!, we obtain the
following integral expressions forTLL8 :

TLL85
2 iv

cn
3 E

r 8<S
d3r 8(

i i 8
J̄L; i~r 8!G i i 8~r 8!RL8; i 8~r 8!

5
2 iv

cn
3 E E

r 8,r 9<S
d3r 8d3r 9

3(
i i 8

J̄L; i~r 8!Ti i 8~r 8,r 9!JL8; i 8~r 9!, ~51!

where the integral in Eq.~51! is the matrix element of the
on-shell scattering transition operator in the L representa

TLL85^LvuT̂ uL8v&5
icn

3

v
TLL8 . ~52!

We remember that

^LvuL8v8&5
pcn

3

2v2
d~v2v8!dLL8 , ~53!

which one can prove using the explicit expressions foruLv&
in the coordinate representation,JL(r ), obtained from Eqs.
~36!, ~37!, and~38!.

We can obtain the matrix elements of the reaction ope
tor in the L representation from Eq.~25!,

i
cn

3

v
TLL85KLL81(

L9
KLL9TL9L8 . ~54!

In a similar manner we define a wave which is irregular
the origin and matches continuously an outgoing spher
wave of given L outside the sphere. For this purpose,
write the displacement field outside the sphere as(LcL

0HL(r )
and inside the sphere as(L@cL

I JL
s(r )1cL

I 1HL
s(r )#, where

HL
s(r ) is given by Eqs.~36!, ~37!, and~38! with q5v/csl if

P5L, andq5v/cst if P5M ,N, and f l5hl
1 . Imposing the

appropriate boundary conditions we obtain a system of lin
06430
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equations, the solution of which gives uscL
I , cL

I 1 in terms of
cL

0 , as follows~see Appendix A!:

cL
I 15(

L8
QLL8cL8

0 , cL
I 5(

L8
PLL8cL8

0 , ~55!

where the matricesQ, P are diagonal in angular momentum
( lm) and have nonzero elements for PP8
5MM ,NN,NL,LN and l>1, and forPP85LL and l>0,
as can be seen from Eqs.~A5! and ~A6!. Therefore the di-
mensionless eigenfunction ofL(r ), corresponding to such a
spherical wave, of given L, takes the form

IL~r !5HL~r !Q~r 2S!1Ars /r (
L8

@PL8LJL8
s

~r !

1QL8LHL8
s

~r !#Q~S2r !. ~56!

Obviously, the irregular spherical waves defined above
not represent physical solutions of the elastic field; but us
them we can write down the Green’s function of the giv
system~a homogeneous sphere in a homogeneous host
dium! as follows

Gii 8
(s)

~r ,r 8!52 i(
L

v

cn
3 @RL; i~r ! Ī L; i 8~r 8!Q~r 82r !

1I L; i~r !R̄L; i 8~r 8!Q~r 2r 8!#. ~57!

Indeed, one can verify by straightforward algebra that
above satisfies Eq.~13! for the case under consideration an
the correct boundary conditions@the same as forgii 8(r ,r 8) of
Eq. ~47!#. To do so one needs to remember thatgii 8(r ,r 8) of
Eq. ~47! satisfies Eq.~13! for the homogeneous medium an
use the following properties:

cn
3TLL85cn8

3 TL8L , ~58!

(
L

cn
23CL8LQL9L5(

L
cn

23QL8LCL9L5csn8
23 r

rs
dL8L9 ,

~59!

(
L

cn
23CL8LPL9L5(

L
cn

23PL8LCL9L , ~60!

which can be shown by solving Eqs.~A1!, ~A2!, ~A5!, and
~A6!.

It should be pointed out that, unlike the displaceme
field, the eigenfunctionsRL(r ), IL(r ), given by Eqs.~49!
and~56!, respectively, and the Green’s function, given by E
~57!, are discontinuous functions at the surface of the sph
because of the discontinuity of the mass density of the s
tem.

The difference in the number of states up to a freque
v between the given system~a homogeneous spherical sca
terer in a homogeneous host medium! and the homogeneou
host medium can be evaluated using Eq.~32! in the L repre-
sentation and Eqs.~52! and ~53!. We obtain
1-6
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DN~v!5
1

p
Im Tr ln@ I1T#$L% , ~61!

where$L% denotes matrices in L space:I is the unit matrix
and the matrix elements ofT are obtained from Eq.~48! or
Eq. ~51!. We note that the trace of the logarithm of a squa
matrix is equal to the logarithm of the determinant of th
matrix.

V. ARRAYS OF SPHERES

We shall now consider a system of nonoverlapping hom
geneous spherical scatterers centered at sitesRn in a homo-
geneous host medium. We note that an outgoing ve
spherical wave aboutRn8 can be expanded into a sum
regular vector spherical waves aboutRn as follows:

HL8~r2Rn8!5(
L

VLL8
nn8JL~r2Rn!. ~62!

Explicit expressions forVLL8
nn8 , the so-called free-spac

~which here means the homogeneous host medium! propaga-
tor functions, are given in Appendix B. It follows that a

outgoing elastic wave aboutRn8 , (L8bL8
1n8HL8(r2Rn8), can

be written as an incoming wave aboutRn , (LbL8
n(n8)JL(r

2Rn), where

bL8
n~n8!5(

L8
VLL8

nn8bL8
1 n8 . ~63!

The wave scattered from the sphere atRn is determined by
the total wave incident on this sphere; therefore

bL
1n5(

L8
TLL8

n FaL8
0n

1 (
n8Þn

bL8
8n

~n8!G , ~64!

where TLL8
n are the elements of the scattering matrix@see

Eqs.~48!# for the sphere atRn , andaL8
0n are the coefficients

in the multiple expansion aboutRn of an external incident
wave. From Eqs.~63! and ~64! we obtain

(
n8L8

Fdnn8dLL82(
L9

TLL9
n VL9L8

nn8 GbL8
1n85(

L8
TLL8

n aL8
0n .

~65!

We now turn to the evaluation of the Green’s function f
the array of spheres. Starting from Eq.~47! and using Eq.
~62!, we obtain the following site-centered expansion for t
Green’s function of a homogeneous medium:

gii 8~Rn1rn ,Rn81rn8
8 !5gii 8~rn ,rn8

8 !dnn81(
LL8

J̄L; i~rn!

3F2 iv

cn
3

VL8L
n8nGJL8; i 8~rn8

8 !, ~66!

where gii 8(rn ,rn8
8 ) is given by Eq.~47!, and rn5r2Rn ,

r 8n85r 82Rn8 are restricted within nonoverlapping spac
06430
e

-

or

e

filling cells ~aboutRn , Rn8 , respectively!.1 Using these site-
centered position vectors, Eq.~13! takes the form

(
i

@v2d i 9 i2L i 9 i~Rn1rn!#Gii 8~Rn1rn ,Rn81rn8
8 !

5d i 9 i 8d~rn2rn8
8 !dnn8 . ~67!

For nÞn8, the source term vanishes and the Green’s fu
tion can be expanded into regular spherical wave soluti

RL
n(rn) andRL8

n8(rn8
8 ), corresponding to the scattering spher

at sitesRn , Rn8 , respectively. Forn5n8, the source term in
Eq. ~67! no longer vanishes and one expects a term wh
should be the Green’s functionGii 8

(s)n given by Eq.~57!, for
the nth sphere embedded in the homogeneous host med
Therefore, we seek the Green’s function of the assembly
spheres in the following form@similar to Eq.~66!#:

Gii 8~Rn1rn ,Rn81rn8
8 !5Gii 8

(s)n
~rn ,rn8

8 !dnn81(
LL8

R̄L; i
n ~rn!

3F2 iv

cn
3

DL8L
n8nGRL8; i 8

n8 ~rn8
8 !. ~68!

The matrix elementsDLL8
nn8 entering in Eq.~68! can be deter-

mined from the first of Eqs.~23!, considering the homoge
neous host medium as the reference system. We obtain

Gii 8~Rn1rn ,Rn81rn8
8 !

5gii 8~Rn1rn ,Rn81rn8
8 !

1(
n9

E d3r n9
9 (

kk8
gik~Rn1rn ,Rn91rn9

9 !

3Gkk8
n9 ~rn9

9 !Gk8 i 8~Rn91rn9
9 ,Rn81rn8

8 !, ~69!

where G i i 8
n (rn)5G i i 8(Rn1rn). Substituting Eqs.~66! and

~68! in Eq. ~69! we obtain after some straightforward calc
lation

DLL8
nn85VLL8

nn81(
n9

(
L9L-

DLL9
nn9TL9L-

n9 VL-L8
n9n8 , ~70!

whereTLL8
n are the elements of the scattering matrix of t

nth sphere. Formal iteration of Eq.~70! gives

DLL8
nn85VLL8

nn81(
n9

(
L9L-

VLL9
nn9TL9L-

n9 VL-L8
n9n8 1•••, ~71!

which shows@we remember the definition ofVLL8
nn8 by Eqs.

~62! and~63!# thatDLL8
nn8 are propagator functions which giv

the coefficients in a L expansion of the wave incident on
sphere atRn , due to an outgoing wave from the sphere
Rn8 , which reachesRn directly or after scattering any num
ber of times by any number of spheres~including those atRn
andRn8).
1-7
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We note in passing a generalization of Eq.~70! which
might be useful in some cases. We can treat the scatterin
Rn in two stages. The first-stage scattering is described
T0LL8

n , which correspond to arbitrarily defined spheres c
tered at the sitesRn ~reference scatterers!, and the second
stage scattering byDTLL8

n
5TLL8

n
2T0LL8

n . We obtain

DLL8
nn85D0LL8

nn81(
n9

(
L9L-

DLL9
nn9DTL9L-

n9 D0L-L8
n9n8 , ~72!

where D0LL8
nn8 are the solution of Eq.~70! when TLL8

n

5T0LL8
n .

Let us now consider a periodic structure specified by B
vais lattice vectorsRl and nonprimitive translation vector
ta denoting the positions of the spheres~if there are more
than one! within the unit cell; in this case the site indexn
stands for the composite indexla. We begin with the nor-
mal modes of the crystal. They are obtained by putting
external incident wave equal to zero in Eq.~65!; because

they satisfy Bloch’s theorem: bL8
1l8a85exp@ik•(Rl8

2Rl)#bL8
1la8 , we obtain the following secular equation:

detFdaa8dLL82(
L9

TLL9
a VL9L8

aa8 ~k!G50, ~73!

where

VLL8
aa8~k!5(

l8
VLL8

nn8 exp@2 ik•~Rl2Rl8!#, ~74!

which does not depend onl and

VLL8
nn85

1

yEBZ
d3k exp@ ik•~Rl2Rl8!#VLL8

aa8~k!, ~75!

y being the volume of the first Brillouin zone~BZ!. Both

TLL8
a andVLL8

aa8(k) in Eq. ~73! are functions of the frequenc
of the wave, but theTLL8

a depend only on the properties of

single scatterer, whereasVLL8
aa8(k) depend only on the geom

etry and we refer to them as the structure constants, adop
the terminology introduced by Korringa, Kohn, an
Rostoker15 in relation to calculations of the electronic ban
structure of periodic solids. The calculation of the structu
constants, which needs to be done only once for a gi
lattice, usually requires Ewald-summation techniques.16 We
note also that though Eq.~73! as written involves infinite-
dimensional matrices, in actual calculations it is sufficient
truncate the angular momentum indexl to some relatively
small numberl max.

We now turn to the evaluation of the Green’s functi
given by Eq.~68!. For a periodic arrangement of spheres,

evaluation ofDLL8
nn8 through Eq.~70! can be achieved by a

lattice Fourier transform as follows. We can write

DLL8
nn85

1

yEBZ
d3k exp@ ik•~Rl2Rl8!#DLL8

aa8~k!, ~76!
06430
at
y
-

-

e

ng

e
n

o

e

with

DLL8
aa8~k!5(

l8
DLL8

nn8exp@2 ik•~Rl2Rl8!#. ~77!

If we multiply Eq. ~70! by exp@2ik•(Rl2Rl8)#, take the
sum overRl8 ~note that for a periodic structure the scatteri
matrix does not depend on the primitive celll), and use Eqs.
~74! and ~77! we obtain

DLL8
aa8~k!5VLL8

aa8~k!1(
a9

(
L9L-

DLL9
aa9~k!TL9L-

a9 VL-L8
a9a8~k!.

~78!

Substitution ofDLL8
aa8(k), obtained from Eq.~78!, into Eq.

~76! gives DLL8
nn8 . We should point out that the numerica

integration over the BZ requires a very dense mesh ok

points due to singularities inDLL8
aa8(k).17,18

A calculation ofDLL8
nn8 directly from Eq.~70! involves, as a

rule, a summation over a large number of lattice sites

cause the free-space propagator functionsVLL8
nn8 decay slowly

with the distanceuRn2Rn8u. But there are exceptions to thi
rule. For example, the lattice sum in Eq.~70! may be rapidly
convergent in the case of a phononic crystal which posse
an absolute frequency gap because in this case the prop

tor functionsDLL8
nn8 decay exponentially with distance at fre

quencies which lie within the gap, and then the direct eva

ation of DLL8
nn8 from Eq. ~70! is to be preferred.

Multiple scattering theory is perhaps particularly use
when dealing with defects and disorder. For the descript
of point defects at a finite number of sites, one needs

calculate the propagator functionsDLL8
nn8 of the system with

the defects. This can be done in real space, using Eq.~72! by
considering the periodic crystal~without any defect! as the
reference system. In this case, the sum overn9 in Eq. ~72! is
restricted to those sites at which there are defects; only th
DTLL8

n
5TLL8

n
2T0LL8

n is not zero. An approximate treatmen
of disorder is also possible within the framework of th
virtual-crystal, the average-T-matrix, or the coherent-
potential approximations.1

We conclude this section with a derivation of a formu
for DN(v), the difference in the number of states up to
frequencyv between the assembly of spheres and the ho
geneous host medium. Using Eq.~32! in the L representa-
tion, we can write

DN~v!5
1

p
Im Tr ln@ I1Ttot#$L% , ~79!

which has the form of Eq.~61!, but of course hereTtot is the
scattering matrix for the assembly of spheres. It can
shown that Eq.~79! takes the form~see Appendix C!

DN~v!5
1

p
Im Tr ln@ I1T#$nL%2

1

p
Im Tr ln@ I2TV#$nL% ,

~80!
1-8
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whereTLL8
nn85dnn8TLL8

n , V is the matrix defined by Eqs.~62!,
~63!, and$nL% denotes matrices innL space.

We can find the difference in the number of states up t
frequency v, DN0(v), between the given assembly o
spheres and an arbitrary reference system of spheres ch
terized byT0LL8

n , by applying Eq.~80! to the two systems
and using Eqs.~70! and ~72!. We obtain

DN0~v!5
1

p
Im Tr ln@ I1T#$nL%2

1

p
Im Tr ln@ I1T0#$nL%

2
1

p
Im Tr ln@ I2DTD0#$nL% . ~81!

Let us apply the above to a periodic structure as define

the text following Eq.~72!. Obviously,TLL8
nn85dnn8TLL8

a . Us-
ing Eq. ~75!, one can show that

$@TV#k%LL8
nn85

1

yEBZ
d3k exp@ ik•~Rl2Rl8!#

3$@TV~k!#k%LL8
aa8 , k51,2,3, . . . ~82!

and with the help of the power series expansion of the lo
rithm of a square matrix, that

$ ln@ I2TV#%LL8
nn85

1

yEBZ
d3k exp@ ik•~Rl2Rl8!#

3$ ln@ I2TV~k!#%LL8
aa8 . ~83!

Substituting Eq.~83! in Eq. ~80!, we obtain

DN~v!5
N

y EBZ
d3kDN~k;v!, ~84!

whereN is the number of unit cells of the crystal and

DN~k;v!5
1

p
Im Tr ln@ I1T#$aL%

2
1

p
Im Tr ln@ I2TV~k!#$aL% . ~85!

We should note that Eqs.~84! and~85! are valid for crystals
of any dimensions, provided thatk is taken in the proper BZ

VI. THE GREEN’S FUNCTION OF A SLAB

In the previous sections we dealt with an infinite phono
crystal. In reality we are dealing with slabs of phononic cry
tals. A slab consists of a number of layers: a successio
planes of spheres parallel to a given crystallographic plan
the slab is sufficiently thick the local density of states with
the slab~a few layers away from either surface! will be prac-
tically the same with that of the infinite crystal. However, t
situation may be very different at the surface layers of
slab, especially if surface states of the elastic field~these
extend to infinity parallel to the surface, but decay expon
tially on either side of it! exist in the given frequency region
06430
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Of course, the infinite-crystal approximation cannot be us
for thin slabs of one or two planes of spheres.

In this section we shall obtain the Green’s function for
slab ~a layered structure!. We shall derive formulas which
permit the calculation of the local density of states at
surface of the slab and in the host region between cons
tive planes of spheres, and formulas for the integra
kuu-resolved density of states of the slab. The method is si
lar to the one described in Ref. 19 for the correspond
electronic problem.

The slab we consider consists of a number of para
planes of nonoverlapping spheres~layers!, perpendicular to
thez axis, with the same 2D periodicity in thexy plane. The
spheres are centered on the sitesRl1ta ; here$Rl% is a 2D
Bravais lattice andta denote the positions of the spheres~if
there are more than one! within the 2D unit cell. The 2D
reciprocal vectorsg, and the surface Brillouin zone~SBZ!
corresponding to this lattice are defined in the us
manner.10 Because of the 2D periodicity of the system, t
eigenmodes of the elastic wave field in the host region
tween two consecutive layers are sums of plane waves
wave vectorsq5(kuu1g,qz), of the same reduced wave ve
tor kuu ~which lies in the SBZ!. Accordingly, we write the
Green’s function@Eq. ~35!# of a homogeneous medium, at
given frequencyv, as follows:

gii 8~r ,r 8!5
1

~2p!3 (
pg

1

cn
2E E

SBZ
d2kuu

3exp@ i ~kuu1g!•~r uu2r uu8!#

3E
2`

`

dqz

exp@ iqz~z2z8!#ep;i~q!ep;i 8~q!

~v/cn!22@~kuu1g!21qz
2#

,

~86!

where for p51, cn5cl and for p52,3, cn5ct . In what fol-
lows, we write the wave vector of a plane wave of giv
quu5kuu1g and givenqn5v/cn asKgn

6 5(kuu1g,6@qn
22(kuu

1g)2#1/2). We note that whenqn
2,(kuu1g)2, the above de-

fines a decaying wave; the positive~negative! sign corre-
sponds to a wave propagating or decaying to the right~left!.
Evaluating theqz integral in Eq.~86! by contour integration,
we obtain

gii 8~r ,r 8!5
2 i

8p2E E
SBZ

d2kuu(
pg

1

cn
2Kgn;z

1

3$exp@ iKgn
1
•~r2r 8!#

3ep;i~Kgn
1 !ep;i 8~Kgn

1 !Q~z2z8!

1exp@ iKgn
2
•~r2r 8!#ep;i~Kgn

2 !ep;i 8~Kgn
2 !

3Q~z82z!%. ~87!

We wish to calculate the Green’s functionGii 8(r ,r 8) of a
slab, consisting of a number of planes of spheres, in the
region between two consecutive planes. We putr5r 8, since
it is Gii 8(r ,r ) which provides the local density of states a
1-9
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cording to Eq. ~15!. Using Eq. ~87! in the Lippmann-
Schwinger equation@the second of Eqs.~23!#, we obtain

Gii 8~r ,r !5gii 8~r ,r !

1
2 i

8p2E E
SBZ

d2kuu(
pg

1

cn
2Kgn;z

1
$vpgkuu ; i

1 ~r !

3exp@2 iKgn
1
•r #ep;i 8~Kgn

1 !1vpgkuu ; i
2 ~r !

3exp@2 iKgn
2
•r #ep;i 8~Kgn

2 !%, ~88!

where

vpgkuu ; i
1 ~r !5(

j , j 8
E E d3r 1d3r 2gi j ~r ,r1!Tj j 8~r1 ,r2!

3exp@ iKgn
1
•r2#ep; j 8~Kgn

1 !Q~z22z!,

vpgkuu ; i
2 ~r !5(

j , j 8
E E d3r 1d3r 2gi j ~r ,r1!Tj j 8~r1 ,r2!

3exp@ iKgn
2
•r2#ep; j 8~Kgn

2 !Q~z2z2!. ~89!

Tj j 8(r1 ,r2) is the on-shell scattering transition matrix for th
given slab, relative to the homogeneous host medium.
cording to Eq.~22!, we can write

T̂5Ĝ1ĜĝĜ1ĜĝĜĝĜ1•••5Ĝ1ĜĝT̂. ~90!

By splitting Ĝ into two independent contributions,Ĝ1 andĜ2

(Ĝ5Ĝ11Ĝ2), where G1 j j 8(r2) vanishes for z2.z and
G2 j j 8(r2) vanishes forz2,z, we can write

T̂5T̂ 11T̂ 2, ~91!

where

T̂ 15Ĝ21ĜĝĜ21ĜĝĜĝĜ21•••5Ĝ21ĜĝT̂ 1 ~92!

and

T̂ 25Ĝ11ĜĝĜ11ĜĝĜĝĜ11•••5Ĝ11ĜĝT̂ 2. ~93!

It then follows thatTj j 8(r1 ,r2)Q(z22z) is to be identified
with T 1(r1 ,r2) andTj j 8(r1 ,r2)Q(z2z2) with T 2(r1 ,r2).

We now introduce the on-shell scattering transition ope
tor T̂1 which takes into account all scattering from the left
r . This includes scattering by the planes of spheres to the
of r , as well as the scattering at the interface of the slab w
the medium that lies to the left of the slab. We have

T̂15Ĝ11Ĝ1ĝĜ11Ĝ1ĝĜ1ĝĜ11•••5Ĝ11Ĝ1ĝT̂1 . ~94!

Obviously,T1 j j 8(r1 ,r2) is not zero only ifz1 ,z2,z. We de-
fine a matrixQ1

II at r describing the reflection from the left o
r , as follows:
06430
c-

-

ft
h

(
p8g8

Q1 p8g8;pg
II exp@ iKg8n8

1
•r #ep8; i~Kg8n8

1
!

5(
j , j 8

E E d3r 1d3r 2gi j ~r ,r1!T1 j j 8~r1 ,r2!

3exp@ iKgn
2
•r2#ep; j 8~Kgn

2 !. ~95!

Similarly, we defineT̂2 which takes into account all scatte
ing from the right ofr . We have

T̂25Ĝ21Ĝ2ĝĜ21Ĝ2ĝĜ2ĝĜ21•••5Ĝ21Ĝ2ĝT̂2 .
~96!

Obviously,T2 j j 8(r1 ,r2) is not zero only ifz1 ,z2.z. We de-
fine a matrixQ2

III at r describing the reflection from the righ
of r , as follows:

(
p8g8

Q2 p8g8;pg
III exp@ iKg8n8

2
•r #ep8; i~Kg8n8

2
!

5(
j , j 8

E E d3r 1d3r 2gi j ~r ,r1!T2 j j 8~r1 ,r2!

3exp@ iKgn
1
•r2#ep; j 8~Kgn

1 !. ~97!

The matricesQ1
II andQ2

III , which are functions ofkuu , v and
depend onr , can be obtained from the matrices which d
scribe the scattering by individual layers and by the int
faces of the slab with the media surrounding it~if these are
different from the host medium in the slab! in the manner
described in Ref. 10, and we need not say anything m
about that aspect of the problem here. Clearly,T1 j j 8(r1 ,r2)
and T2 j j 8(r1 ,r2) depend onr . Only in the case of an infi-
nitely thick slab~infinite crystal! these matrices become in
dependent ofr .

Using Eqs.~92!, ~93!, ~94!, and~96!, one can easily verify
that

T̂ 15T̂21T̂1ĝT̂21T̂2ĝT̂1ĝT̂21••• ~98!

and

T̂ 25T̂11T̂2ĝT̂11T̂1ĝT̂2ĝT̂11•••. ~99!

According to the Lippmann-Schwinger equation@Eq.
~20!#, vpgkuu

6 (r ), given by Eqs.~89!, are the waves produced a

r by the multiple scattering~multiple reflections to all orders!
from the left and right ofr , described by Eqs.~98! and~99!,
originating from incident plane waves of polarizationêp and
wave vectorsKgn

6 , respectively. Summing up the infinite se
ries resulting from the different reflection sequences
volved, we obtain
1-10
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vpgkuu ; i
1 ~r !5 (

p8g8
$@Q1

IIQ2
III 1Q1

IIQ2
IIIQ1

IIQ2
III 1•••#p8g8;pg

3exp@ iKg8n8
1

•r #ep8; i~Kg8n8
1

!

1@Q2
III 1Q2

IIIQ1
IIQ2

III 1•••#p8g8;pg

3exp@ iKg8n8
2

•r #ep8; i~Kg8n8
2

!%

5 (
p8g8

$@Q1
IIQ2

III ~ I2Q1
IIQ2

III !21#p8g8;pg

3exp@ iKg8n8
1

•r #ep8; i~Kg8n8
1

!

1@Q2
III ~ I2Q1

IIQ2
III !21#p8g8;pg

3exp@ iKg8n8
2

•r #ep8; i~Kg8n8
2

!%, ~100!

and

vpgkuu ; i
2 ~r !5 (

p8g8
$@Q1

II1Q1
IIQ2

IIIQ1
II1•••#p8g8;pg

3exp@ iKg8n8
1

•r #ep8; i~Kg8n8
1

!

1@Q2
IIIQ1

II1Q2
IIIQ1

IIQ2
IIIQ1

II1•••#p8g8;pg

3exp@ iKg8n8
2

•r #ep8; i~Kg8n8
2

!%

5 (
p8g8

$@Q1
II~ I2Q2

IIIQ1
II !21#p8g8;pg

3exp@ iKg8n8
1

•r #ep8; i~Kg8n8
1

!

1@Q2
IIIQ1

II~ I2Q2
IIIQ1

II !21#p8g8;pg

3exp@ iKg8n8
2

•r #ep8; i~Kg8n8
2

!%. ~101!

Substituting Eqs.~100! and~101! into Eq.~88!, we obtain an
expression for the Green’s function of the slab at a pointr , in
the host region between two consecutive layers, in term
the above reflection matrices of the two parts of the slab
the left and on the right ofr . Similarly we obtain the Green’s
function at the surfaces of the slab.

Finally, we evaluate the difference in the number of sta
up to a given frequencyv, between a slab of finite thicknes
and a homogeneous medium identical with that which s
rounds the slab~we assume that to be the same to the left a
to the right of the slab!, from Eq. ~32!. In this case, it is
convenient to work inspgkuu representation (s56), in
which the on-shell scattering transition operator is diago
in kuu . We obtain

DN~v!5
N

AE E
SBZ

d2kuuDN~kuu ;v!, ~102!

whereA is the area of theSBZ, N is the number of surface
unit cells of the slab, and

DN~kuu ;v!5
1

p
Im Tr ln@ I1T~kuu!#$spg% , ~103!
06430
of
n

s

r-
d

l

$spg% denoting matrices inspg space. Explicit expression

for the matrix elementsTpg;p8g8
ss8 (kuu) can be obtained by com

paring the expressions for the waves scattered by the
~the transmitted and reflected waves!, given by the
Lippmann-Schwinger equation@Eq. ~20! taken together with
the formulas of this section#, with those obtained by a direc
calculation of the reflection and transmission matrices,QI,
QII , QIII , and QIV, of the slab, as defined in Ref. 10. W
obtain

Tpg;p8g8
11

~kuu!5exp@ i ~Kg8n8
1

•A12Kgn
1
•A2!#Qpg;p8g8

I

2dpp8dgg8 ,

Tpg;p8g8
12

~kuu!5exp@ i ~Kg8n8
2

•A22Kgn
1
•A2!#Qpg;p8g8

II ,

Tpg;p8g8
21

~kuu!5exp@ i ~Kg8n8
1

•A12Kgn
2
•A1!#Qpg;p8g8

III ,

Tpg;p8g8
22

~kuu!5exp@ i ~Kg8n8
2

•A22Kgn
2
•A1!#Qpg;p8g8

IV

2dpp8dgg8 . ~104!

The phase factors in Eqs.~104! arise from the need to refe
the scattered waves to a common origin, whileQI, QII , QIII ,
QIV in Ref. 10 were obtained with the waves on the left
the slab referred to an originA1 and the waves to the right o
the slab to an originA2.

VII. AN EXAMPLE

We demonstrate the applicability of our formalism by a
plying it to a specific example:20 a thin slab of steel sphere
(rs57800 kg/m3,csl55940 m/sec,cst53200 m/sec) em-
bedded in a polyester matrix (r51220 kg/m3,cl
52490 m/sec,ct51180 m/sec) extending over all spac
The radius of the spheres isS50.585 mm. We consider two
cases.

In the first case the slab consists of just one plane
spheres~layer! centered at the sites of a 2D lattice, a squa
array in thexy plane, defined by the primitive vectorsa1
5a0(1,0,0) anda25a0(0,1,0) with a053.95 mm. We cal-
culatedDn(kuu ;v), the difference between thekuu-resolved
density of states of this system and that of polyester, forkuu
50. We did this by numerical differentiation of the corre
sponding difference in the number of states up to a freque
v, DN(0;v), evaluated in the angular-momentum repres
tation @Eq. ~85!# and independently in the plane-wave repr
sentation@Eq. ~103!#. The results obtained in the two repre
sentations are practically identical; they are shown in F
1~a!. Dn(0;v) is characterized by the presence of two res
nance peaks centered atv Ia0 /cl52.62 and atv IIa0 /cl
52.79 which imply the existence of virtual bound stat
~resonances! of the elastic field at these frequencies. In ea
case the displacement field peaks about the plane of sph
falling to a much lower value away from it. The low
frequency resonance corresponds to a longitudinal vir
bound state which is nondegenerate: integrated over the
quency region of this resonance,Dn(0;v) gives approxi-
mately 1. This resonance is responsible for the dip in
1-11
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transmission of longitudinal waves atv5v I @thin line of
Fig. 1~b!#. The high-frequency resonance corresponds t
transverse virtual bound state which is doubly degener
integrated over the frequency region of this resonan
Dn(0;v) gives approximately 2. This resonance is resp
sible for the dip in the transmission of transverse waves
v5v II @thick line of Fig. 1~b!#.

In the second case the slab consists of two layers~the
same as in the first case! separated by a translation vect
a35a0(1/2,1/2,A2/2). The results forDn(0;v) for this slab,
calculated on the basis of Eq.~103!, are shown by the solid
line in Fig. 2. By comparing withDn(0;v) for the single
layer ~dashed line in Fig. 2! we deduce the following. The
longitudinal virtual bound states of the two layers interact
with each other give rise to two coupled resonant modes,
at va0 /cl52.51 and one atva0 /cl>2.80. The coupling be-

FIG. 1. ~a! The change in thekuu-resolved density of states of
polyester matrix due to the presence of a square array (a053.95
mm! of steel spheres (S50.585 mm), forkuu50. ~b! The transmis-
sion coefficient of a longitudinal~thin line! and a transverse~thick
line! elastic wave incident normally on the plane of spheres.

FIG. 2. The change in thekuu-resolved density of states of
polyester matrix due to the presence of a thin slab consisting of
identical square arrays @a15a0(1,0,0,),a25a0(0,1,0,),a0

53.95 mm# of steel spheres (S50.585 mm), separated by a tran
lation a35a0(1/2,1/2,A2/2,), for kuu50 ~solid line!. The corre-
sponding quantity for a single plane of spheres@the same as in Fig
1~a!# is shown by a dashed line for comparison.
06430
a
e:
e,
-

at

ne

tween the transverse virtual bound states of the two layer
apparently much weaker and the resulting coupled mo
~two doubly degenerate resonant modes! lie at about the
same frequencyva0 /cl>2.80. Therefore,Dn(0;v) ~given
by the solid line in Fig. 2! integrated over the region of th
low-frequency resonance gives approximately 1, and w
integrated over the region of the high-frequency resona
gives approximately 5.

Finally, it is worth commenting on the role of the abov
mentioned resonances~virtual bound states of the elasti
field about individual planes! in the formation of the fre-
quency band structure of the infinite~fcc! crystal, made up
by an infinite sequence of such layers each displaced rela
to the one preceding it bya35a0(1/2,1/2,A2/2). This is best
done by reference to Fig. 3. The frequency band structur
the ~infinite! phononic crystal forkuu50 is shown in Fig.
3~a!, calculated using the method of Ref. 10. The longitu
nal bands, represented by the thin lines arise as follows.
homogeneous effective medium~the host medium modified
to some degree by the spherical scatterers! one obtains a
band, the dashed straight line in Fig. 3~b!, with a slope de-
fined by the longitudinal velocity c̄l . We obtain c̄l
52406 m/sec from the slope of the exact curve in the lim
v→0 and c̄l52408 m/sec from the effective medium
theory.21 The band described by the open circles in the sa
figure arises from the resonant modes of the individ
planes when the interaction between them has taken pl
We have determined this band by calculating the transm
sion coefficient of longitudinal waves incident normally on
slab consisting of eight layers~a slab sufficiently thick as
evidenced by the results of our calculation!. One clearly sees
in this case, superimposed on an otherwise smooth cu
sharp dips in the transmittance, similar to those in Fig. 1~b!,
at frequenciesv i , i 51,2, . . . ,8 with which we associate
values ofkz given bykz; i5p i /(N11)d whered5a0A2/2 is
the thickness of one layer andN is the number of layers in
the slab (N58 in the present case!. The open circles in Fig.

o

FIG. 3. The phononic frequency band structure of an infinite
crystal @a15a0(1,0,0,),a25a0(0,1,0,),a35a0(1/2,1/2,A2/2,),a0

53.95 mm# of steel spheres (S50.585 mm) normal to the~001!
surface. The thin~thick! solid lines represent longitudinal~trans-
verse! bands. In~b! and ~c! the dashed lines with the open circle
are the unhybridized bands of resonant modes and the stra
dashed lines the unhybridized effective-medium bands.
1-12
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3~b! are the points (v i ,kz; i), i 51,2, . . . ,8obtained in this
manner, and define the band of resonant modes in ques
The two unhybridized bands shown in Fig. 3~b!, the
effective-medium band~dashed straight line! and the band of
resonant modes~open circles!, interact at the point in the
(v,kz) space where the two meet, opening up a hybridizat
gap there, but away from the crossing point the exact ba
@solid lines in Fig. 3~b!# are determined by one or the oth
of the unhybridized bands over the frequency region sho
here.

A similar analysis applies to the transverse bands,
shown in Fig. 3~c!. We see again that where the dash
straight line representing the transverse band in the effec
medium meets the transverse band of resonant modes~open
circles! the two interact leading to the separate hybridiz
bands~exact bands! shown by the solid lines in Fig. 3~c!. We
note, again, that the exact bands are determined by one o
other of the unhybridized bands, except about the reg
where the latter bands cross each other. In the present
there is also a Bragg gap opening up aboutva0 /cl52.04,
but the physics behind this is well known and we need
say anything about it here. When comparing Fig. 3~b! with
Fig. 3~c! it is worth noting that the width of the transvers
band of resonant modes is considerably smaller than tha
the corresponding longitudinal one. It is also worth noti
that in the transverse bands one does not obtain, as in
case of the longitudinal bands, a frequency gap as a resu
the above-mentioned hybridization. Clearly, the appeara
of a hybridization gap depends on the detailed shape of
unhybridized bands. In particular, the slope of the effecti
medium band, the exact shape of the band of reson
modes, and the requirement that the unhybridized ba
should converge to the above away from the crossing p
decide at the end whether a frequency gap arises as a r
of the hybridization.
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APPENDIX A

We consider the case of a solid homogeneous spher
radiusS in a solid homogeneous host medium. The displa
ment vector and the surface traction, associated with an e
tic field in this system, must be continuous everywhere a
therefore, at the surface of the sphere.10 The continuity of
the above at the surface of the sphere constitutes the ap
priate boundary conditions of the given problem. Assumin
regular at the origin wave field, which has the for
(LaL

I JL
s(r ) inside the sphere and(L@aL

0JL(r )1aL
1HL(r )#

outside of it~see Sec. IV!, and imposing the above bounda
conditions, we obtain the following systems of linear equ
tions
06430
n.

n
ds

n
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1
d11

zt

2Al ~ l 11!d12

zl

2d13

xt

Al ~ l 11!d14

xl

d21

zt

2Al ~ l 11!d22

zl

2d23

xt

Al ~ l 11!d24

xl

d31

zt

2Al ~ l 11!d32

zl

2d33

xt

Al ~ l 11!d34

xl

d41

zt

2Al ~ l 11!d42

zl

2d43

xt

Al ~ l 11!d44

xl

2 S aNlm
1

aLlm
1

aNlm
I

aLlm
I

D

51
2

d1
N

zt
aNlm

0 1
Al ~ l 11!d1

L

zl
aLlm

0

2
d2

N

zt
aNlm

0 1
Al ~ l 11!d2

L

zl
aLlm

0

2
d3

N

zt
aNlm

0 1
Al ~ l 11!d3

L

zl
aLlm

0

2
d4

N

zt
aNlm

0 1
Al ~ l 11!d4

L

zl
aLlm

0

2 , ~A1!

S 2d21 d23

2d41 d43D S aMlm
1

aMlm
I D 5S d2

NaMlm
0

d4
NaMlm

0 D , ~A2!

where

d115zthl
18~zt!1hl

1~zt!,

d215 l ~ l 11!hl
1~zt!,

d315F l ~ l 11!2
zt

2

2
21Ghl

1~zt!2zthl
18~zt!,

d415 l ~ l 11!@zthl
18~zt!2hl

1~zt!#,

d125hl
1~zl !, d225zlhl

18~zl !,

d325zlhl
18~zl !2hl

1~zl !,

d425F l ~ l 11!2
zt

2

2 Ghl
1~zl !22zlhl

18~zl !,

d135xt j l8~xt!1 j l~xt!,

d235 l ~ l 11! j l~xt!,

d335
rs

r S zt

xt
D 2H F l ~ l 11!2

xt
2

2
21G j l~xt!2xt j l8~xt!J ,

d435
rs

r S zt

xt
D 2

l ~ l 11!@xt j l8~xt!2 j l~xt!#,
1-13
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d145 j l~xl !, d245xl j l8~xl !,

d345
rs

r S zt

xt
D 2

@xl j l8~xl !2 j l~xl !#,

d445
rs

r S zt

xt
D 2H F l ~ l 11!2

xt
2

2 G j l~xl !22xl j l8~xl !J ,

~A3!

and

d1
N5zt j l8~zt!1 j l~zt!,

d2
N5 l ~ l 11! j l~zt!,

d3
N5F l ~ l 11!2

zt
2

2
21G j l~zt!2zt j l8~zt!,

d4
N5 l ~ l 11!@zt j l8~zt!2 j l~zt!#,

d1
L5 j l~zl !,

d2
L5zl j l8~zl !,

d3
L5zl j l8~zl !2 j l~zl !,

d4
L5F l ~ l 11!2

zt
2

2 G j l~zl !22zl j l8~zl !, ~A4!

with zn5vS/cn andxn5vS/csn .
Similarly, for the irregular at the origin wave field whic

has the form(L@cL
I JL

s(r )1cL
I 1HL

s(r )# inside the sphere an
(LcL

0HL(r ) outside of it, we obtain

1
w11

xt

2Al ~ l 11!w12

xl

2d13

xt

Al ~ l 11!d14

xl

w21

xt

2Al ~ l 11!w22

xl

2d23

xt

Al ~ l 11!d24

xl

w31

xt

2Al ~ l 11!w32

xl

2d33

xt

Al ~ l 11!d34

xl

w41

xt

2Al ~ l 11!w42

xl

2d43

xt

Al ~ l 11!d44

xl

2 S cNlm
I 1

cLlm
I 1

cNlm
I

cLlm
I

D

51
2

w1
N

zt
cNlm

0 1
Al ~ l 11!w1

L

zl
cLlm

0

2
w2

N

zt
cNlm

0 1
Al ~ l 11!w2

L

zl
cLlm

0

2
w3

N

zt
cNlm

0 1
Al ~ l 11!w3

L

zl
cLlm

0

2
w4

N

zt
cNlm

0 1
Al ~ l 11!w4

L

zl
cLlm

0

2 , ~A5!
06430
S 2w21 d23

2w41 d43D S cMlm
I 1

cMlm
I D 5S w2

NcMlm
0

w4
NcMlm

0 D , ~A6!

where

w1152xthl
18~xt!2hl

1~xt!,

w2152 l ~ l 11!hl
1~xt!,

w3152
rs

r S zt

xt
D 2H F l ~ l 11!2

xt
2

2
21Ghl

1~xt!2xthl
18~xt!J ,

w4152
rs

r S zt

xt
D 2

l ~ l 11!@xthl
18~xt!2hl

1~xt!#,

w1252hl
1~xl !, w2252xlhl

18~xl !,

w3252
rs

r S zt

xt
D 2

@xlhl
18~xl !2hl

1~xl !#,

w4252
rs

r S zt

xt
D 2H F l ~ l 11!2

xt
2

2 Ghl
1~xl !22xlhl

18~xl !J ,

~A7!

and

w1
N5zthl

18~zt!1hl
1~zt!,

w2
N5 l ~ l 11!hl

1~zt!,

w3
N5F l ~ l 11!2

zt
2

2
21Ghl

1~zt!2zthl
18~zt!,

w4
N5 l ~ l 11!@zthl

18~zt!2hl
1~zt!#,

w1
L5hl

1~zl !, w2
L5zlhl

18~zl !,

w3
L5@zlhl

18~zl !2hl
1~zl !#,

w4
L5F l ~ l 11!2

zt
2

2 Ghl
1~zl !22zlhl

18~zl !. ~A8!

Equations similar to the above can be derived for a
other combination of solid or fluid sphere in a solid or flu
homogeneous host medium.

APPENDIX B

Using the following mathematical identities22

exp@ iq•r #54p(
lm

i l j l~qr !Yl
m~ r̂!Yl

m* ~ q̂!, ~B1!

exp@ iqur2r 8u#

ur2r 8u
54p iq(

lm
j l~qr,!hl

1~qr.!Yl
m~ r̂!Yl

m* ~ r̂8!,

~B2!
1-14
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one can express scalar spherical waves, regular or irreg
aboutRn8 in terms of such waves aboutRn as follows:

hl 8
1

~qrn8!Yl 8
m8~ r̂n8!5(

lm
Gl 8m8; lm~Rnn8 ;q! j l~qrn!Yl

m~ r̂n!,

r n,Rnn8 , ~B3!

j l 8~qrn8!Yl 8
m8~ r̂n8!5(

lm
j l 8m8; lm~Rnn8 ;q! j l~qrn!Yl

m~ r̂n!,

~B4!

hl 8
1

~qrn8!Yl 8
m8~ r̂n8!5(

lm
j l 8m8; lm~Rnn8 ;q!hl

1~qrn!Yl
m~ r̂n!,

r n.Rnn8 ~B5!

where Rnn85Rn2Rn8 , rn85r2Rn8 , and rn5r2Rn . The
coefficientsGlm; l 8m8 and j lm; l 8m8 in the above expression
are given by

Glm; l 8m8~Rnn8 ;q!54p (
l 9m9

~21!( l 2 l 82 l 9)/2~21!m81m9

3Blm~ l 9m9; l 8m8!hl 9
1

~qRnn8!

3Yl 9
2m9~R̂nn8!, ~B6!

and

j lm; l 8m8~Rnn8 ;q!54p (
l 9m9

~21!(2 l 1 l 81 l 9)/2~21!m81m9

3Blm~ l 9m9; l 8m8! j l 9~qRnn8!

3Yl 9
2m9~R̂nn8! ~B7!

with

Blm~ l 9m9; l 8m8!5E dr̂Yl
m~ r̂ !Yl 8

2m8~ r̂!Yl 9
m9~ r̂!. ~B8!

Starting from Eqs.~B3!, ~B4!, and ~B5! and proceeding as
described in Ref. 10, we obtain the following expressio
relating the corresponding vector spherical waves referre
an origin atRn8 with those referred to an origin atRn :

HL8~rn8!5(
L

VLL8
nn8JL~rn!, r n,Rnn8 , ~B9!

JL8~rn8!5(
L

JLL8
nn8JL~rn!, ~B10!

HL8~rn8!5(
L

JLL8
nn8HL~rn!, r n.Rnn8 . ~B11!

The nonzero matrix elementsVLL8
nn8 andJLL8

nn8 , L5Plm, are
06430
ar,

s
to

VMlm;Ml 8m8
nn8 5VNlm;Nl8m8

nn8

5@ l ~ l 11!l 8~ l 811!#21/2

3@2a l
2ma l 8

2m8Gl 8m821;lm21~Rnn8 ;qt!

1mm8Gl 8m8; lm~Rnn8 ;qt!

12a l
ma l 8

m8Gl 8m811;lm11~Rnn8 ;qt!#,

l ,l 8>1, ~B12!

VMlm;Nl8m8
nn8 52VNlm;Ml 8m8

nn8

5~2l 11!@ l ~ l 11!l 8~ l 811!#21/2

3@22a l 8
2m8g l

mGl 8m821;l 21m21~Rnn8 ;qt!

1m8z l
mGl 8m8; l 21m~Rnn8 ;qt!

12a l 8
m8g l

2mGl 8m811;l 21m11~Rnn8 ;qt!#,

l ,l 8>1, ~B13!

VLlm;Ll 8m8
nn8 5Gl 8m8; lm~Rnn8 ;ql !, l ,l 8>0, ~B14!

and

JMlm;Ml 8m8
nn8 5JNlm;Nl8m8

nn8

5@ l ~ l 11!l 8~ l 811!#21/2

3@2a l
2ma l 8

2m8j l 8m821;lm21~Rnn8 ;qt!

1mm8j l 8m8; lm~Rnn8 ;qt!

12a l
ma l 8

m8j l 8m811;lm11~Rnn8 ;qt!#,

l ,l 8>1, ~B15!

JMlm;Nl8m8
nn8 52JNlm;Ml 8m8

nn8

5~2l 11!@ l ~ l 11!l 8~ l 811!#21/2

3@22a l 8
2m8g l

mj l 8m821;l 21m21~Rnn8 ;qt!

1m8z l
mj l 8m8; l 21m~Rnn8 ;qt!

12a l 8
m8g l

2mj l 8m811;l 21m11~Rnn8 ;qt!#,

l ,l 8>1, ~B16!

JLlm;Ll 8m8
nn8 5j l 8m8; lm~Rnn8 ;ql !, l ,l 8>0, ~B17!

wherea l
m is given by Eq.~40! and

g l
m5 1

2 @~ l 1m!~ l 1m21!#1/2/@~2l 21!~2l 11!#1/2,

z l
m5@~ l 1m!~ l 2m!#1/2/@~2l 21!~2l 11!#1/2. ~B18!
1-15
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We note that forn5n8, by definition, VLL8
nn850 and JLL8

nn8

5dLL8 . A useful property ofJLL8
nn8 resulting from Eq.~B10!

is

(
L9

JLL9
nn9JL9L8

n9n85JLL8
nn8 . ~B19!

Finally, it can be shown that

VPlm;P8 l 8m8
nn8 5~21!m1m8VPl82m8;P8 l 2m

n8n , ~B20!

and thatJ is a Hermitian matrix

JPlm;P8 l 8m8
nn8 5JP8 l 8m8;Plm

n8n* . ~B21!

It is also worth noting thatFLL8
nn8 defined by

iFLL8
nn85VLL8

nn82JLL8
nn81dLL8dnn8 ~B22!

express an ~irregular! vector spherical waveNL8(rn8)
52 i @HL8(rn8)2JL8(rn8)# aboutRn8 @this is given by Eqs.
~36!, ~37!, and ~38! with q5v/cl if P5L and q5v/ct if
P5M ,N, and f l5nl , the spherical Neumann function# in
terms of regular vector spherical waves,JL(rn), about an-

other siteRn . By definition, FLL8
nn850 for n5n8. It can be

shown thatF is a Hermitian matrix

FPlm;P8 l 8m8
nn8 5FP8 l 8m8;Plm

n8n * . ~B23!

APPENDIX C

In order to find an explicit expression for the matrix el
ments ofTtot, entering in Eq.~79!, we write the wave inci-
dent on and the wave scattered by the assembly of spher
a given frequencyv, as (LI

aLI

0 JLI
(r ) and (LO

aLO

1 HLO
(r ),

respectively. Herer refers to one given origin of coordinate
which we can assume to be at the center of a large sp
containing the entire assembly. We write, as in the first
Eqs.~48!,

aLO

1 5(
LI

TLOLI

tot aLI

0 . ~C1!

An explicit expression forTLOLI

tot is obtained as follows. We

write the wave incident on and the wave scattered by
assembly of spheres as sums of spherical waves abou
centers of the individual spheres: (LI

aLI

0 JLI
(r )

5(L8bL8
0n8JL8(rn8) and (LO

aLO

1 HLO
(r )5(nLbL

1nHL(rn), re-

spectively. Then, using Eqs.~B10! and~B11! of Appendix B,
one can write

bL8
0n85(

LI

JL8LI

n80 aLI

0 ~C2!

and
06430
, at

re
f

e
the

aLO

1 5(
nL

JLOL
0n bL

1n . ~C3!

An incident wave can be scattered out of the assembly a
a single scattering by any one sphere, or after scattering
number of times by any number of spheres. Mathematica
this means that

bL
1n5 (

n8L8
@T1TVT1TVTVT1•••#LL8

nn8bL8
0n8

5 (
n8L8

$@ I2TV#21T%LL8
nn8bL8

0n8 , ~C4!

whereTLL8
nn85dnn8TLL8

n and V is the matrix defined by Eqs
~62! and ~63!. Using Eqs.~C1!–~C4! we obtain

TLOLI

tot 5 (
nL,n8L8

JLOL
0n $@ I2TV#21T%LL8

nn8JL8LI

n80 . ~C5!

Substituting Eq.~C5! into Eq. ~79!, and using the identity

Tr ln@ I1AB#5Tr ln@ I1BA#, ~C6!

whereA, B are in general nonsquare matrices of dimensio
N13N2 , N23N1, respectively, together with Eq.~B19!, we
obtain

DN~v!5
1

p
Im Tr ln$I1TJ@ I2TV#21%$nL%

5
1

p
Im Tr ln@ I1T#$nL%2

1

p
Im Tr ln@ I2TV#$nL%

1
1

p
Im Tr ln$@ I1T#21@ I2T~V2J!#%$nL% ,

~C7!

where $nL% denotes matrices innL space. We shall now
demonstrate that the last term in Eq.~C7! vanishes. Defining

BLL8
nn85(cn

3/v)dnn8dLL8 we have @ I1T#21@ I2T(V2J)#

5I2B21KF, whereK is defined byKLL8
nn85KLL8

n dnn8 ,
with the elementsKLL8

n of the reaction matrix of thenth
sphere given by Eq.~54!, andF is given by Eq.~B22!. K
and F are Hermitian matrices. Using Eq.~C6! and the fact
that B21F5FB21, one can easily show that Tr$ ln@I
2B21KF#%†5Tr$ ln@I2B21KF#%, from which follows di-
rectly that Im Tr$ ln@I2B21KF#%50. Therefore, Eq.~C7!
gives

DN~v!5
1

p
Im Tr ln@ I1T#$nL%2

1

p
Im Tr ln@ I2TV#$nL% .

~C8!
1-16
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