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Green’s function formalism for phononic crystals
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We develop a Green’s function multiple-scattering formalism for the calculation of the density of states and
the local density of states of the elastic field in periodic and nonperiodic structures consisting of nonoverlap-
ping scatterers in a homogeneous host medium. The formalism is based on concepts and techniques developed
in relation to the similar problem of electrons in solids. We apply the method to a specific example which
demonstrates the existence of virtual bound states of the elastic field localized about a plane of nonoverlapping
steel spheres in polyester. These states are manifested as dips in the transmission spectrum of the monolayer.
They develop into narrow frequency bands in a phononic crystal built by a succession of such planes.
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I. INTRODUCTION As is usual in any multiple-scattering formalism, one
combines the properties of the single scatterer with the geo-
The multiple-scattering Green’s function method has beetnetrical properties of the structure to obtain the required
used extensively in the study of the electronic structure anreen’s function for the system as a whole. In doing so the
related properties of materialsee, e.g., Ref. 1 and refer- scattering transition matrices describing the individual scat-
ences therein It has been very successful in calculations ofterers and the propagator functions involving the geometry
the electronic structure of periodic solids, impurities, disor-are €xpressed in the appropriate-in-each-case representation,
dered alloys, surfaces, layered structures, low-dimensiondPvolving plane-wave or spherical-wave expansions as re-
systems, etc. In recent years, the propagation of electromagu'red- In Sec. Il we present some general formulas relating
netic or elastic waves in composite materials with dielectrict© the scattering of elastic waves. In Sec. lll we derive ex-
or, respectively, elastic properties which are periodic func_p“Clt' expressions for the Green'’s function of a homogeneous
tions of the position, with a period comparable to the wavemedium in the plane-wave and the angular-momentum rep-
length of the corresponding field, has been the object of conesentation. The scattering of elastic waves by a single
siderable attentiotisee, e.g., Ref. 2 and references therein SPhere is explicitly treated in Sec. IV, while multiple scatter-
These materials, photonic and phononic crystals, respeddd by (periodic or not arrays of spheres is treated in Sec. V.
tively, whether they exist naturally or are artificially fabri- /N Sec. VI we consider the case of slabs consisting of a
cated, exhibit a variety of physical properties of interest tohumber of parallel planes of spheres with the same two-
fundamental and applied research. There are striking analéimensional(2D) periodicity. Although we present the case
gies between the propagation of electrons in ordinary crysOf nonoverlapping homogeneous spherical scatterers in a ho-
tals and electromagnetic or elastic waves in photonic offogeneous host medium, the formalism applies to the gen-
phononic crystals, so that a variety of multiple-scatteringeal case of arbitrary nonoverlapping scatterers as well, pro-
methods originally developed for electronic-structure calcuvided the quantities which describe the properties of the
lations have been transferred to the field of photonicSingle scatterer are properly modified. Finally, in Sec. VII
crystal$~8 and some of them also to phononic crystals, ~ We demonstrate the applicability of the formalism by apply-
The aim of the present paper is to develop a multiple!N9 it to a specific example: a square array of steel spheres in
scattering Green’s function formalism for phononic crystalsPolyester.
and related structures. A knowledge of the Green’s function
is particularly useful in those situations where a knowledge
of the density of states, or of the local density of states of the Il. BASIC FORMULAS
clast el requred ahr i he w2ve 1o O 1 ipacement vt assoiated with an lasi
: : SR - wave propagating in an inhomogeneous medium character-
Equfanor.\tr?nd the Grett)etn_s fpnctlotn of ;[he per|od|(t:hcr3gstal t(ﬁzed by a mass densify and Lamecoefficients\, w, which
egin with, one can obtain in systematic manner the Green o e . . .
function, and therefore the density of states of the displaceaepend on the position, satisfies the differential equatign
ment field, associated with defects of the crystal. A Green’s
function approach may also be very useful in the study of
disorder in phononic structures, by using procedures anal_o- PﬂtZUi:E Ain )\5”,,2 3 U+ w( 90U+ a,Ujn) |,
gous to those developed for the examination of disorder in i” i’
relation to the electronic and vibrational structures of solids. 1

0163-1829/2004/68)/06430117)/$22.50 69 064301-1 ©2004 The American Physical Society



R. SAINIDOU, N. STEFANOU, AND A. MODINOS PHYSICAL REVIEW B59, 064301 (2004

whered; denotes the partial derivative with respect to ittie Sometimes it is more convenient to express the above
component of (throughout the paper the subscripheans properties in the Dirac bra-ket notatidhln this notation, for
Cartesian componentsy,z); d; denotes the partial deriva- example, the eigenvalue equatit8) is written as

tive with respect to time. We assume, to begin with, that the .

Lame coefficients are real and positive quantities and that Ala)y=w?|a), 9)

they do not depend on the frequency. In the case of a har- . .
moxic elastic nge of angular f?eque}r/\oy we have and the completeness and orthonormality properties take the

form
U(r;t)=Refu(r)exd —iwt]} (2 A
and Eq.(1) reduces to the time-independent form g |a)(al =1 (10
) and
- |P12 F(NG )+ i 2, din( i)
i’ i” (ala’y= 6,4, (12)
_ No—ae| e 21 wherel is the identity operator. We use throughout the coor-
i (mdi)|p Jp Uir=@p i, @ dinate (r) representation in which|a) becomes
. . . . . i p(r)ua;i(r)- R
which is an eigenvalue equatiogp(r)u(r) is an eigenvec- The Green'’s function associated with as a function of

tor, corresponding to the eigenvalwé, of the linear(second a complex variable, is defined by
rank) tensor differential operatok(r), defined by

(z—A)G(2)=1, (12)
Aii/(r): _p_1/2 (?i()\c?i,)-i-ﬁ”,z &ir/(/,l,(?iu) WhiCh, in eXpliCit fOI’m becomes
+ai,(Mai) p—1/2, (4) 2| [Z5i//i—Ai//i(r)]Gii,(I’,I’ ;Z)=5i”i/5(l’—l’ ) (13)

One can easily show that
which operates on the Hilbert space of square integrable vec-

tor functions. The inner product of any two such functions, p(N UL (HVp(rHu..,(r")
andw, is defined by Gii(r,r:z)=>, ’ . (14
a Z— W,
(v,w)= fvd3rv*(r)~w(r), (5) It is clear, from Eq.(14) that the Green’s function is ana-

lytic in the complexz plane, except at those points of the real
whereV is the volume of the system and * denotes, as usualPositive axis which are eigenvalues &f There, following a

complex conjugationA(r) is Hermitian, i.e., standard procedure, we plim__ . (w+i€)?, which cor-
responds to the retarded Green’s function.

(V,Aw)=(Av,w). (6) We define the local density of states of the elastic field by

One can easily prove E) using the definition of the inner

product, Eq.(5), integrating by parts, and neglecting the sur- N(r;w)=2 (U (N[?8(0—w,)

face terms(one assumes that the displacement field either “

vanishes at the boundaries of the system or satisfies appro- 2w

priate boundary conditions == wp(r)lmz Gii(r,r;0?). (15

The Hermiticity of A(r) means that its eigenvalues are

real (and positive in the present cadeand that the corre-  The density of state@umber of states of the elastic field per
sponding eigenfunctions form a complete set, i.e., unit frequency for the system under consideration is ob-
tained, accordingly, from

2 Ve (DVP(H Ui (1) =8 8(r=1")  (7)
“ ()= [ Erpmn(o =3 sw-o,)
and an orthonormal set, i.e., v “
2w ~ 2w ~
=——ImTrG(w?)=—ImTrG'(w?), (16
Ei fvdsrp(r)u;i(r)ua/;i(r)=5[”/, €) 7 T
where 1 denotes, as usual, the adjoint operator.

where the indexx characterizes the eigenvalues and eigen- In a number of applications one needs to obtain the eigen-
functions of A(r). functions of a given systerfdescribed byA), by reference
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to another systenidescribed byf\o) for which the Green’s
function G is easily determined. We put

One can show that, at a frequeneywhich belongs to the

PHYSICAL REVIEW B89, 064301 (2004

S=[1+3(Go-GDKII-3(Go-GDKI L. (29
Using Twe can obtain a useful formula for the difference

AN(w) in the number of states up to a given frequengcy

between the considered system and the reference one. Ac-

eigenvalue spectra of both systems, the eigenfunction of thg°rding to Eq.(16), the difference between the densities of

system under consideration is related to the correspondi
eigenfunction of the reference system by the Lippmann-

Schwinger integral equatidn
|a)=|a)o+ Gol |a). (18)

The so-called on-shell scattering transition operét(m)

connects the eigenfunctiona) of the perturbed to those of
the reference systenia),, at a given common eigenfre-

guencyw, as follows:

[lay="Tla), (19

in which case the Lippmann-Schwinger equation takes the

form

|a)=|a>o+éo§’]a)0. (20)

We should further clarify the notation by writing EQO)
explicitly as follows:

Vp(NUg;i(1) = Vpo(r)Uogi(r) + 2 fvad3r’d3r”

X Goii (1,1 ) Tirin(r", 1)\ po(r") Uggsin(1").

(21
It is easy to show that
T=T+TG,T (22)
and
G=Go+Gol'G=Gy+GyTG. (23
From Eq.(22) and the Hermiticity off” we obtain
T-T'=T"Gy— G T, (24)

I,]%Iates of the two systems is

2w ~ ~
An(w)=— —Im T G(w?) —Go(w?)]

- —%Im THG(0?) — G (0?) — Go(0d) + Gi(w?)].
(29

Using the identity 20G(w?)=—dIn G(w?)/dw, which fol-
lows directly from the definition of the Green'’s functipq.
(12)], and Egs(23) and(27) we obtain

1 J ~
An(w)=5—Im Tr%In{G(wZ)
X[G'(09)] Gy Y @) G )}

1 J . .
= 5 IMTr = In{[T"()] ' T(w)}

21
L L 30
=5 mTr——In (), (30)
and therefore
® 1 R
AN(w)=J do'An(w’)==—ImTrinS(w). (31
0 2

Substituting in Eq.(31) the expression oféAgivgn by
Eg. (28, using the equation Im Trfir3(Gy—GHK]
=—Im TrIn[I—%(GO—G(T))IC] and Eq.(25) we finally obtain

(32

~ 1 - ~ton
1+ 5(Go—GHT|.

1
AN(w):;ImTrln

which is the formal statement of the so-called generalized We should note that thoughN(w) by itself may not be
optical theprerﬁ. Sometimes it is more convenient to work, an important quantity in the case of the elastic field, its de-

instead of7, with the reaction operatdt, defined by
TR+ 1R(Gy—BD T, 25
Using Eq.(24) one can show tha is a Hermitian operator,
K=K". i
We can now introduce th8 operator by

S=1+(Go-GYT, (26)
which, using Eq(24), becomes
S=[7T11"'T. (27)

rivative is. Numerical differentiation oAN(w) obtained on
the basis of Eq(31) provides an effective means for the
calculation ofAn(w).

We should also note that, although the formulas of this
section have been derived assumingand p to be (real
constants independent of frequency, one can easily see that,
for the purpose of calculatingn(w) at a givenw, we can
use the same formulas even wherand x are functions of
w, because usually they can be replaced by constants over a
small frequency region abou.

IIl. THE HOMOGENEOUS MEDIUM

S can be also expressed in terms of the reaction operator, In the case of a homogeneous medium, characterized by

using Eq.(25), as follows:

p, N\, u that do not depend on Eq. (3) takes the form
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—c?V(V-u)+c2V X (VX u)=o?u, (33  eigenfunctions, by analogy to E(B4). The vector spherical
harmonics, denoted by X;,(r), are defined by
where ¢;= (A +2u)/p and c;=\ul/p. The most general I(I+1)X;n(F)=L(r)Y"(F)=—irx VY(F). By definition,
solution of Eq.(33) consists of longitudinalirrotationa) and ~ Xyo(f)=0; for I=1 we have
transversédivergencelegsvaves, which propagate indepen-
dently with velocitiesc; andc;, respectively. The eigenfunc- _
tions of the elastic field are longitudinal and transverse plane VI(I+1)X;n(F)=[a; ™cosfe Y™ 1(F)—msin oY["(F)

waves, which we shall often write in dimensionless form as m Cigymil A A
follows +a) cosfe ' ?Y| () ]ex(r)

. +i[a Y L(F
VpVupy(r) =exdiq-r1&,a), (34) Lo e D
in which case we shall refer to them as dimensionless eigen-
functions. The wave vectay can take any value. The sub-

script p takes the values=il,2,3. p=1 defines a longitudi- Where
nal wave: & is the radial unit vector along] and the
corresponding eigenfrequency equalg. Correspondingly

p= 2,3 define transverse waves &nds polarized: &, andé, of"=3[(1=m)(I+m+1)]*, (40)
are the polar and azimuthal unit vectors, respectively, which

are perpendicular tay, and the corresponding eigenfre-

quency equals,q. Becguse the eigenfunction’§upq(r) de- tively, which are perpendicular toin the chosen system of
fined by Eq.(34) constitute a complete and orthonormal Set’spherical coordinates.

thgttGreenfs”funcfuon for a homogeneous medium can be™ o qior plane waves are expanded into vector spherical
written as Tollows. waves as follows:

—afle 1Y) I&(r), (39

ande,, &; are the polar and azimuthal unit vectors, respec-

i (r,r';0?)=

\% upq;i(r)u;q;il(rl)
(277)3f dsqu w?— w? , Uy (r)= ak uo (r) (41)
pq (35) pq & PIm~PImq ’

according to Eq(14), where we putz=w?, and we have o
substituteds ; by VI(2m)3[d3q, which is valid in the limit whereP=I6,M ,N. Avector plane wave Is finite everywhere,
V—c. Obviously, in a homogeneous mediugy (r,r';z)  thereforeup, (r) in Eq. (41) are given by Eqs(36), (37),
depends om andr’ only through their difference—r’. and (38) with f,=j, (regular vector spherical wavesone

In the present paper we are concerned with phononi€an easily show that the nonzero coefficients in &q) are
crystals consisting of nonoverlapping spheres, and with the
multiple scattering of elastic waves between them. Accord- " e tome A
ingly, we employ the so-called spherical-wave solutions of aLim=4mi' Y™ (Q),
Eq. (33). A set of longitudinal spherical-wave eigenfunctions
corresponding to an eigenfrequengy is given by X .

aﬁ/lqlm:_aﬁﬁm:“'Wilxrm;Z(q):

1
VpVuing(r) =g VIfi(an Y], (36)

. _ _ A= aNim =41 Xiry 5(8), (42
whereY["(r) are the usual spherical harmonics, dpdnay
be any linear combination of the spherical Bessel funcgjon
and the spherical Hankel functidm” . A set of transverse
spherical-wave eigenfunctions corresponding to an eigenfr
guencyc,q is given by

where the polar and azimuthal components of the vector

es_pherical harmonics are given by Eg9). In the following,

we use an index L(this should not be confused with the

index L that characterizes longitudinal spherical waves

denote collectively the indiceBIm.

An expression of the Green’s function in terms of spheri-

cal waves can be obtained from E5) as follows.

We expand the plane waves into spherical waves using Egs.
i (41) and(42); we integrate over all solid anglé3;: using

\/WuNlmq(r):_Vx [f(ar)X;m(D)]. (38) the explicit expressions of the regular vector s_phencal waves
aq [Egs.(36), (37), and(38)] and the orthonormality properties

VOVUMImg(T) = F1(an) Xim(7), (37)

and

Again when the spherical-wave eigenfunctions are written i/ 924 Y" (@)Y} * (@)= 1+ S s SAQXim(8) - X]) 1 (8)
the above form we shall refer to them as dimensionless= &/ Spny , SdQaXim(@) -[GX X}, (@)]1=0, we obtain
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2 !
gir(r,r';0?)=— PIRAL

7TC| Im

<| P ) [ “aa

j.(qr)j.(qr')]
(wlc)?—q?

2 [rXV]i[r'xXV'],

a2 (41

X

R N Jianji(qr’)
Ym Ym* ’ d
| qqz(w/coz—q?l

2 [VXIXV][V'Xr'xXV']
2 [(1+1)

7TCt Im

x| P ) [ “aa

hianji(ar’)

(wlc)?=q? ||
(43)

where we have also used the identity X[ j,(qr)X;m(f)]

=[1(1+ 1)1 YW xrx V[j(an) Y'()].
It can be shown by contour integration that

= janjar’) o N
fo quqzz—lﬂh(Kk)m (k1)
|
T rt
+ - 44
2(21+1)k? r 1 49
and
o h(anji(qr’
quq?—“(qz”'“i Lo T (),
0 K —(
(45

wherer _=min(r,r'), r~=maxg,r’). It is clear from Egs.
(43), (44), and(45) that, ata given frequencw, the angular-
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i/ (1) ==13 S HL ()0 =)

+HLi(NILi(r)O(r=r")], (47)

where v=I| if P=L and v=t if P=M,N. O(x) is the
Heaviside step function. The bar symbol over a vector
spherical wavelpy(r), stands for € 1) up,_ (1), where
f=mif P=L,N andf=m+1 if P=M. Obviously,J, (r)
=J5(r) but H(r)#H}(r). Since =, Y (N)Y™ (")
=3, Y™ (1)Y"(r'), in Eq.(43) complex conjugation can be
applied to the spherical harmonics of eithlieor r’. Conse-
quently, in Eq.(47) the bar can be put over the vector spheri-
cal functions ofr or over those of’. Having this in mind,
we can see thag;; (r,r')=g;(r’,r).

IV. ASPHERE IN A HOST MEDIUM

Let us consider a single homogeneous sphere of raglius
centered at the origin of coordinates. The sphere, which is
characterized by elastic constapts, s, us, iS embedded
in a homogeneous host medium characterized by elastic con-
stantsp, \, u, which are different from those of the sphere.
A plane wave(longitudinal or transverseof a given fre-
quency o incident on the sphere can be expanded into
spherical waveS'ELaEJL(r), where the expansion coeffi-
cientsa‘ﬁ depend on the amplitude, polarization, and direc-
tion of propagation of the incident plane wave. Similarly, the
wave scattered by the sphere is described by outgoing spheri-
cal waves,> a,'H.(r). The displacement field inside the
sphere has the fori, a; J°(r), whereJ®(r) is given by Egs.
(36), (37), and(38) with g=w/cg, if P=L, andq= w/cg, if
P=M,N, and f;=j,. Imposing the appropriate boundary
conditions, we obtain a system of linear equations, the solu-
tion of which gives us,", a| in terms ofa’, as follows(see
Appendix A):

af:E TLL,aS,, aLZE CLL/aE,, (48)
L' L’

momentum expansion of the Green'’s function involves both

regular(incoming and irregular(outgoing vector spherical
waves at this frequency. We denote them Hyr) and

where the matrice$, C are diagonal in angular momentum
(Im) and have nonzero elements forPP’

H,(r), respectively; they are dimensionless spherical wave MM,NN,NL,LN and|=1, and forPP’=LL and|=0,

functions given by Eq936), (37), and(38) with q= w/c; if
P=L and g=w/c; if P=M,N, and f,=j, for J_ and f,

as can be seen from Eg#\1) and (A2). Therefore, we de-
fine the regular at the origin dimensionless eigenfunction of

—h," for H,. For simplicity, in what follows we do not A(r) for the system under consideration, which corresponds

denote explicitly the dependence on the frequency of th
various quantities. Using Eq&44) and (45) and the identity

gt LYXIXVILV XXV ],
Vit T

rl
it

X YI(OY™ (") =0, (46)

in Eq. (43), we obtain

{o an incident spherical wave of given L, as follows:

RU(N=|J.(N+X TuHL(r)|O(r—S)
LI

+pslp 2 CLLd(NO(S—1). (49
L!

A property of T,/ is worth noting. Using the Lippmann-
Schwinger equationfEgs. (18) and (20)] and the Green'’s
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function [Egs. (47)] for the homogeneous host medium equations, the solution of which gives ¢fs, c|* in terms of
(taken as the reference sysjerwe obtain forR,(r) the 0 a5 follows(see Appendix A

following expression:

1+ 0 | 0
. w CL :E QLL’CL" CLZZ PLL’CL’l (55)
RU(N=J(N—i> = Hu(D) % X
L C,

where the matrice®, P are diagonal in angular momentum
3., O o , , , (Im) and have nonzero elements forPP’
Xfr,gsd r ; I (PO T (F)Ry;(r7) ~MM,NN,NL,LN andI=1, and forPP'=LL and|=0,
as can be seen from Eq#5) and (A6). Therefore the di-

. ® mensionless eigenfunction af(r), corresponding to such a
=J(nN-i> CTHL’(r) spherical wave, of given L, takes the form
L C,
xf j S T () LN =HL(NO(r =)+ pslp X [PLLI(1)
r’ r"<s i ' L’
X’]i’riu(r,,r”)\]L;iH(rH), (50) +QL'LHi’(r)]®(S_r)' (56)
for r=S. Comparing Eq(50) with Eq. (49), we obtain the Obviously, the irregular spherical waves defined above do
following integral expressions foF, /: not represent physical solutions of the elastic field; but using

them we can write down the Green'’s function of the given

—iw = ) , system(a homogeneous sphere in a homogeneous host me-
T|_,_,=?frl<sd 12 JLi(r) T (r)RL (1) dium) as follows
v = i’
—i ’ : w 0 ’ ’
- “’j f o o GO r)==i% SR (D118 =)
C;é: I",I’”§S L CV
— +1L(DRL (1) O(r—1 )], (57)
X 2 (P )T (1) (), (51) o
i/

Indeed, one can verify by straightforward algebra that the
where the integral in Eq(51) is the matrix element of the above satisfies Eq13) for the case under consideration and

on-shell scattering transition operator in the L representatiof’® correct boundary conditiofthe same as fay;; (r,r') of
Eq. (47)]. To do so one needs to remember that(r,r’) of

. ic3 Eq. (47) satisfies Eq(13) for the homogeneous medium and
TLL/=<Lw|ﬂL’w>=;TLL/ : (52)  use the following properties:
We remember that CETLL,zci,TL,L, (59)
3
N 7TC" ' -3 P
<Lw|L w >: _25((1)_ w )5LL’ ’ (53) 2 C;SCL’LQL"L:E C;3QL!LCLHL:C ,_5Lr|_u,

2w [N L SV ps

(59

which one can prove using the explicit expressions ffes)
in the coordinate representatiad),(r), obtained from Eqgs.

(36), (37), and (38). _ . > ¢, %CL Pui=2> ¢, %P Cun, (60)
We can obtain the matrix elements of the reaction opera- L L

tor in the L representation from E¢25), which can be shown by solving Eg&Al), (A2), (A5), and

3 (AB).
i— T =K+ KT . (54) It should be pointed out that, unlike the displacement
w L” field, the eigenfunction®R (r), 1, (r), given by Egs.(49)

. ) L and(56), respectively, and the Green’s function, given by Eq.

In a similar manner we define a wave which is irregular at57) are discontinuous functions at the surface of the sphere,
the origin and matches continuously an outgoing sphericalecayse of the discontinuity of the mass density of the sys-
wave of given L outside the sphere. For this purpose, Wy,
write the displacement field outside the spher&asH, () The difference in the number of states up to a frequency
and inside the sphere a8 [c;J}(r)+ci"H{(r)], where , between the given systefa homogeneous spherical scat-
HE(r) is given by Eqgs(36), (37), and(38) with q=w/cg if  terer in a homogeneous host medjuand the homogeneous
P=L, andg=w/cg if P=M,N, andf,=h,". Imposing the host medium can be evaluated using ) in the L repre-
appropriate boundary conditions we obtain a system of lineasentation and Eq$52) and (53). We obtain
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1 filling cells (aboutR,,, R, , respectively.! Using these site-
AN(w)=—ImTrin[1+T]y,, (61)  centered position vectors, E(L3) takes the form

where{L} denotes matrices in L spackis the unit matrix ) ,
and the matrix elements df are obtained from Eq48) or 2| [@%6iri = Airi(Ry+T0) Gii (Ry 1, Ry 1))
Eqg. (51). We note that the trace of the logarithm of a square
matrix is equal to the logarithm of the determinant of this = 5i,,i,5(rn—rr’],)5nn,_ (67)
matrix.
For n#n’, the source term vanishes and the Green’s func-
V. ARRAYS OF SPHERES tion can be expanded into regular spherical wave solutions

n n', 1 . .
We shall now consider a system of nonoverlapping homo-RL(r”) andR,,(r,), corresponding to the scattering spheres

. : 0 .
geneous spherical scatterers centered at Rjei® a homo- at sitesRn, Ry, respectively. Fon=n", the source term in

geneous host medium. We note that an outgoing vectolﬁq' (67) no longer vanishes and one expects a term which

) i@ N L
spherical wave abouR, can be expanded into a sum of Should be the Green's functiad;?" given by Eq.(57), for
regular vector spherical waves abdyf as follows: the nth sphere embedded in the homogeneous host medium.
Therefore, we seek the Green’s function of the assembly of

) spheres in the following forrfisimilar to Eq.(66)]:
HL,(r—Rn,)=2 Qi IL(r—Ry). (62

, Gii (Ry+ T Ry +1 ) =GO 1) 8o+ > RE(T)
Explicit expressions forQ!l,, the so-called free-space =~ = "~ " " 7 A Tnr 2 Snt T LR

(which here means the homogeneous host medpropaga-
tor functions, are given in Appendix B. It follows that an
outgoing elastic wave abo®, , EL,bf,”'HL,(r— R,), can
be written as an incoming wave abdRf, = b/"(n")J (r ) - o
—R,), where The matrix element® |, entering in Eq(68) can be deter-
mined from the first of Eqs(23), considering the homoge-
neous host medium as the reference system. We obtain

—iw
nn
% —3D

Ll | RU(ra). (88)

4

b,"(n")=> Q™M b/" . (63)
t Gii/(Rn‘i‘rn,Rn/‘f‘r;,)
The wave scattered from the sphereRgtis determined by

the total wave incident on this sphere; therefore =gii(Ry+rn, Ry +r7))
b "= T [al+ 2 b(n")], (64) +2 | &> iRyt Ry 17)
L' n’'#n n” kk’
where T, are the elements of the scattering mafisee XT o (') G (Ryr 10 Ry 1), (69)

Egs.(48)] for the sphere aR,,, anda(L",‘ are the coefficients
in the multiple expansion abotR, of an external incident
wave. From Eqgs(63) and (64) we obtain

where I'},(r,) =T, (R,+r,). Substituting Egs.(66) and
(68) in Eq. (69) we obtain after some straightforward calcu-

lation

! ’ On
2 5nnl 5LL’_E Tn an b+n :2 Tn a, . ’ ’ "n__on "ot
LL”S=prL L’ LL"*L! nn. _ ~nn nn"—n n'n

n'L’ |: L” L’ DLL’ _QLL’ + 2" ;” DLLHTLHLWQL/HL! ’ (70)
(65) n" L7L

whereT|, , are the elements of the scattering matrix of the

We now turn to the evaluation of the Green’s function for . } i
nth sphere. Formal iteration of EG70) gives

the array of spheres. Starting from Ed.7) and using Eq.
(62), we obtain the following site-centered expansion for the

Green's function of a homogeneous medium: DEC,:QEC,JFE > QT QL+, (7D
n// LNLII/
g”,(Rn+rn,Rn,+rn,)=g”,(rn,rn,)énn/+§ Jii(rn) which shows[we remember the definition €[, by Eqs.

_ (62) and(63)] thatDrL‘[", are propagator functions which give
__Iwﬂn’n Joa(rl),  (66) the coefficients in a L expansion of the wave incident on the
¢ttt L5 e sphere aR,,, due to an outgoing wave from the sphere at
R, , which reache®,, directly or after scattering any num-
where g;;.(r,,r;,) is given by Eq.(47), andr,=r—R,,  ber of times by any number of spher@scluding those aR,
r'v=r'—R, are restricted within nonoverlapping space-andR,).

X
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We note in passing a generalization of E@0) which  with
might be useful in some cases. We can treat the scattering at
R, in two stages. The first-stage scattering is described by

TOEL, , which correspond to arbitrarily defined spheres cen-
tered at the site®,, (reference scatterersand the second-
stage scattering b T, =T, — Ty , . We obtain

D (k)=> DIlexd —ik-(R,-R\)].  (77)
}\/

If we multiply Eq. (70) by exg—ik-(Ry,—R,/)], take the
sum overR,, (note that for a periodic structure the scattering
) ) . , . matrix does not depend on the primitive cg)l, and use Eqgs.
DIl =Dol'+> > DILATL .Doim,, (72 (74 and(77) we obtain

n” oL

where DOEC’, are the solution of Eq.70) when T, DAL (K)=Q2% K+ X DXL (KTL Q5 (K).

_ n al! LV/LH/

=Tour- . . . (78)
Let us now consider a periodic structure specified by Bra- /

vais lattice vector®}, and nonprimitive translation vectors Sypstitution ofoIf“, (k), obtained from Eq(78), into Eq.

t, denoting the positions of the spher@sthere are more . nn’ . .

than oné within the unit cell; in this case the site index _(76) glv_es Di,,. We should F’O'”t out that the numerical

stands for the composite indewa. We begin with the nor-  INtegration over the BZ requires a very dense mesfk of

mal modes of the crystal. They are obtained by putting thepoints due to singularities iB{ " (k).1"*8

external incident wave equal to zero in ,E(@E’); because A calculation ofDEC’, directly from Eq.(70) involves, as a
they satisfy Bloch’s theorem: bf,A “ =exdik-(Ry,  rule, a summation over a large number of lattice sites be-

- R}\)]b:,““ , we obtain the following secular equation: cause the free-space propagator functiﬁlﬁg, decay slowly

with the distancéR,,— R,|. But there are exceptions to this
rule. For example, the lattice sum in E@0) may be rapidly
convergent in the case of a phononic crystal which possesses
an absolute frequency gap because in this case the propaga-

where tor functionsDEC’, decay exponentially with distance at fre-
quencies which lie within the gap, and then the direct evalu-
a7 (k)=z Q0 exd —ik-(Ry=Ry)1, (74 ation ofD’L‘[", from Eq. (70) is to be preferred.
A Multiple scattering theory is perhaps particularly useful

which does not depend on and when dealing with defects and disorder. For the description
of point defects at a finite number of sites, one needs to

QECZEJ K exifik- (R, — Rw)]ﬂff;(k)a (75  calculate the propagator funct'ionm_{ﬂ, of the system with
v/Bz the defects. This can be done in real space, usind &y by
. ' N considering the periodic crystélithout any defegtas the
v being the volume of the first Brillouin zonéZ). Both reference gysterr?. In this cgse, the sum m);em Eq.(72) is
T/, andQ[ (k) in Eq. (73) are functions of the frequency restricted to those sites at which there are defects; only there

of the wave, but thd " , depend only on the properties of a ATEL,zTEL,—TO’L’L, is not zero. An approximate treatment

single scatterer Where&B‘L’f‘,’(k) depend only on the geom- of disorder is also possible within the framework of the
etry and we refer to them as the structure constants, adoptir}grtual',c{yStal’ the 'avgrag@—matrlx, or the coherent-
the terminology introduced by Korringa, Kohn, and ot\(;/ntla aplpr;xmhgtlon ; ith a derivati faf |
Rostoket® in relation to calculations of the electronic band e conclude this section with a derivation of a formula
structure of periodic solids. The calculation of the structurelo” AN(w), the difference in the number of states up to a
constants, which needs to be done only once for a givef{€duéncyw between the assembly of spheres and the homo-
lattice, usually requires Ewald-summation techniqifeale ~ 9eneous host medium. Using Eg2) in the L representa-
note also that though Eq73) as written involves infinite- 0N, We can write
dimensional matrices, in actual calculations it is sufficient to 1
truncate the angular momentum indexo some relatively AN(w)=—Im Trin[1+ T, (79
small numbell ;4. ™

We now turn to the evaluation of the Green’s function . tot :
given by Eq.(68). For a periodic arrangement of spheres, theWhICh has the fqrm of Eq61), but of course her& ™ is the

: o _ scattering matrix for the assembly of spheres. It can be

evaluation ofD , through Eq.(70) can be achieved by a shown that Eq(79) takes the forn{see Appendix €
lattice Fourier transform as follows. We can write

de{ Suar O — 2 T (K)[=0, (73
L//

1 1
AN(w)= ;Im Trin[1+T],— ;Im Trin[I=TQ]ny,

P '
nn’ _ -+ 3 e . ) aa
D"'-/_vfgzd kexdik-(R\=Ryx) D (k), (76) (80)
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whereTEC/,= 5nn'TELr , Q is the matrix defined by Eq$62), Of course, the infinite-crystal approximation cannot be used
(63), and{nL} denotes matrices inL space. for thin slabs of one or two planes of spheres.

We can find the difference in the number of states up to a In this section we shall obtain the Green'’s function for a
frequency @, ANg(w), between the given assembly of slab (a layered structuye We shall derive formulas which

spheres and an arbitrary reference system of spheres char&’c?—rm't the calculation of the local density of states at the

. n : surface of the slab and in the host region between consecu-
terlzed.byTOLL,, by applying Eq.(80). to the two systems tive planes of spheres, and formulas for the integrated
and using Egs(70) and(72). We obtain

k||-resolved density of states of the slab. The method is simi-
1 1 lar to the one described in Ref. 19 for the corresponding
ANo(@)=—=ImTrIn[1+ T — =IM Trin[I+Toliny electronic problem.
™ 77 The slab we consider consists of a number of parallel
1 planes of nonoverlapping spheréayers, perpendicular to
——ImTrin[1=ATDq]n1y - (81)  thezaxis, with the same 2D periodicity in they plane. The
™ spheres are centered on the sigst+t,; here{R,} is a 2D

Let us apply the above to a periodic structure as defined ipravais lattice and, denote the positions of the sphexés
i . nn’ « there are more than onevithin the 2D unit cell. The 2D
fche text following Eq.(72). Obviously, Ty, = &y Ty, /- Us- reciprocal vectorgy, and the surface Brillouin zon€SB2)
ing Eq. (79), one can show that corresponding to this lattice are defined in the usual
1 manner® Because of the 2D periodicity of the system, the
{[TQ]K}EE,:—f dkexdik- (R, —R,/)] eigenmodes of the elastic wave field in the host region be-
vJez tween two consecutive layers are sums of plane waves with
wa! wave vectors)=(k;+g,q,), of the same reduced wave vec-
XTIy «=123... (82  tor k (which lies in the SBZ Accordingly, we write the
and with the help of the power series expansion of the |oga_G_reen’s functior{Eq. (35)] of a homogeneous medium, at a
rithm of a square matrix, that given frequencyw, as follows:

1

1
1™~ [ fkexdik. (R —R., ()= d2k
{In[1—TQ, UfBzd kexpik-(Ry—Ry/)] gii(r,r’) (2m)? % ) Jesz !
x{In[1 = TQK) ]}, . (83) xexli(k+g)-(ry—rjp]
Substituting Eq(83) in Eq. (80), we obtain y fw d exdiq,(z—z")]eyi(q)ep. (a)
Z
N[ o (wlc,)?=[(kj+9)?+0qZ]
AN(0)= ;JBZd KAN(K; o), (84) -
whereN is the number of unit cells of the crystal and where for p=1, ¢,=¢, and for p=2,3, ¢,=c¢;. In what fol-

lows, we write the wave vector of a plane wave of given
g;=kj+g and giveng,=w/c, asKgi,,=(k| +g,i[q,2,—(k||
+0)%]"3. We note that whem>< (k+g)?, the above de-
fines a decaying wave; the positiveegative sign corre-
sponds to a wave propagating or decaying to the rilgt).
Evaluating theg, integral in Eq.(86) by contour integration,

1
AN(K;w)= ;Im Trin[1+ Ty

1
—;Im Trin[1=TQ(K) Ja1; - (85)

. we obtain
We should note that Eq$84) and (85) are valid for crystals
of any dimensions, provided thitis taken in the proper BZ. i
giir(r.r')= —ZJ J P> 5
VI. THE GREEN'S FUNCTION OF A SLAB 8 SBZ pg Cngv;Z
In the previous sections we dealt with an infinite phononic x{exdiKg, (r—r")]

crystal. In reality we are dealing with slabs of phononic crys-

+ V@ e
tals. A slab consists of a number of layers: a succession of X €pi(Kg,)€pir(Kg,)O(z=2")

planes of spheres parallel to a given crystallographic plane. If +exgiKo - (r—r')]en (Ko )ey (Ka)
the slab is sufficiently thick the local density of states within o Pt gy TR gy
the slab(a few layers away from either surfgoeill be prac- X0(z'-2)}. (87

tically the same with that of the infinite crystal. However, the

situation may be very different at the surface layers of the We wish to calculate the Green’s functi@y;.(r,r') of a
slab, especially if surface states of the elastic figliese slab, consisting of a number of planes of spheres, in the host
extend to infinity parallel to the surface, but decay exponenfegion between two consecutive planes. Werpat’, since
tially on either side of itexist in the given frequency region. it is G;;.(r,r) which provides the local density of states ac-
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cording to Eq.(15). Using Eg. (87) in the Lippmann-
Schwinger equatiofthe second of Eq¥23)], we obtain

Gji/(r,r)=g;i-(r,r)
1 +
zK—+{Vpng;i(f)

—i
+ — d?k
Swzj fssz ”% Kz

X exi —iKg, rlepi (Kg,) + Vg (1)
Xexd —iKg, rlepi (Kg,)}, (88)

where

V;ng;i(r):z ffd3r1d3f29ij(f'r1)7]'jf(flafz)
i’

Xexr[iK “rolep( K )0(2,—2),

Vp:ng;i(r):E ffd3|’1d3r29ij(|"r1)7]j'(rlarz)
Iny

XexgiKg, ralep; (Kg,)0(z—2;). (89

Tj;:(rq,r) is the on-shell scattering transition matrix for the
given slab, relative to the homogeneous host medium. Ac-

cording to Eq.(22), we can write

=T+T9T. (90)

By splitting T into two independent contributionﬁ,l andfz

(I'=I'y+T',), where I'yj,(r,) vanishes forz,>z and
I'5j;/(r2) vanishes foiz,<z, we can write
T=T"+T", (91)
where
TH=T 4+ TQl,+Tgrgly+ - - =T,+Tg7" (92
and
T =T,+TQl+Tgrgr,+--- =T, +1§7". (93

It then follows that7;;.(r,,r;)®(z,—2) is to be identified
with 7" (r,,r,) and7; 57 (r1,r2)0(2—25) with 77 (rq,r5).

We now mtroduce the on-shell scattering transition opera-

PHYSICAL REVIEW B59, 064301 (2004
E Qg pg®*HiK g, TIey:i(Kg,, )

:E fJ'darldgrzgii(r’rl)lej’(rl,fz)
Ny

X exfiKg, ralep; (Kg,). (95

Similarly, we defineAT2 which takes into account all scatter-
ing from the right ofr. We have

= f2+ f‘zg;\fz .
(96)

72 F2+ lﬁzgerF Fzgfng2+

ObV|0ust,T2“ (rl,rz) is not zero only ifz;,z,>z. We de-
fine a matnxQ2 atr describing the reflection from the right
of r, as follows:

2 QY g pXHiK Fleyi(Ky )

:2 ffdarldgrzgij(r’rl),]—zjj’(r1!r2)
Ny

XexdiKg, ralep (Kg,). (97

The matrice®Q} andQj}', which are functions ok, » and
depend orr, can be obtained from the matrices which de-
scribe the scattering by individual layers and by the inter-
faces of the slab with the media surroundingifitthese are
different from the host medium in the slalm the manner
described in Ref. 10, and we need not say anything more
about that aspect of the problem here. Cleafly; (rq,r>)
and 7j;(r,,r,) depend orr. Only in the case of an infi-
nitely thick slab(infinite crysta) these matrices become in-
dependent of .

Using Eqs(92), (93), (94), and(96), one can easily verify
that

T' =L+ LT+ LN+ (98)

and

T =T+ LT+ LaTeT + (99

tor 7; which takes into account all scattering from the left of
r. This includes scattering by the planes of spheres to the left
of r, as well as the scattering at the interface of the slab with According to the Lippmann-Schwinger equatigiq.
the medium that lies to the left of the slab. We have (20], vpng(r), given by Egs(89), are the waves produced at

r by the multiple scatteringmultiple reflections to all ordeys
from the left and right of, described by Eq€98) and(99),
originating from incident plane waves of polarizatignand
wave vectorsKgV, respectively. Summing up the infinite se-
ries resulting from the different reflection sequences in-
volved, we obtain

'3’1:1:1+1:1§]f‘1+1:1§11:1§]f‘1+ e :1:1+1:1§]§1- (94
Obwously,TlU (r1,r,) is not zero only ifzy,z,<z. We de-
fine a matnxQ atr describing the reflection from the left of

r, as follows:
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{spg} denoting matrices irspg space. Explicit expressions

for the matrix elementﬁggp,g,(kﬂ) can be obtained by com-

Vo (N = 2 {[QIQS'+Q1QS QRS + -+ Tyrgripg
p'g
paring the expressions for the waves scattered by the slab

S+ +
XexfgiKg , -rley;i(Ky ) (the transmitted and reflected wayesgiven by the
QU QY P T Lippmann-Schwin'ger eq'uatic.[rEq.(ZO) taken together vyith

2 2 X1x2 LY the formulas of this sectidnwith those obtained by a direct
Xexp[iK;V,-r]epr;i(K;V/)} Cal]ICU|?]tllon of trr\cle reflection and transmsspn matrid@$,

Q", Q", andQ", of the slab, as defined in Ref. 10. We
1IN Ay —1 obtain
=2 {[QIQS(1-Q1Q5) Tpgipg . N |
r ! + .
Po Tpg;p’g’(kﬂ):eXF['(Kg’v"Al_ KJV‘A2)]ng;p’g’
xexdiK,, - rley (K.,
9 Pt ~ S Sy »

+[Qg|(|_ Ill gl)il]p/gr;pg 3 - -
iK™ - T;g;p’g’(kl\):exm(Kgryr'Az_KJV'Az)]Qgg;prgr,
xexpliKy - rleyi(Ky, )} (100

- - Foret - n

and T (KD =exdi(Ky, -A1=Kg,-AD]Qu vy
T ,(kH):eX[Z[i(Kj A=K, .Al)]Q'V_ .

oc Pg:P’g g'v gv Pgp'g
Voo ;i(r)=p%’ {[QI+QIQ QL+ lyg g

— Sopr Oy (104
xXexdi K;V, . r]ep/;i(K;v,) The phase factors in Eq&L04) arise from the need to refer
IR TR PR P the scattered waves to a common origin, wigle Q", Q"
T[Q2 Q1 +Q2Q1Q2 Q1+ -+ Ipgripg Q" in Ref. 10 were obtained with the waves on the left of

the slab referred to an origih,; and the waves to the right of

XX, 1Ky} the slab to an origim,.

_ 1 Al -1
—% 1Q1(1-Q2'Q1) “lpgripg VII. AN EXAMPLE

We demonstrate the applicability of our formalism by ap-

o+ +
XKy, rlepi(Ky,) plying it to a specific examplé® a thin slab of steel spheres

QYR (1= QM Q") 1],y (ps= 7800 kg/nt,cq=5940 m/secs,= 3200 m/sec) em-
[ 2 Q1) e bedded in a polyester matrix pE 1220 kg/ni,c;
><exp[iK&V,~r]ep/;i(K§,y,)}. (101 =2490 m/seq;=1180 m/sec) extending over all space.

The radius of the spheres $=0.585 mm. We consider two

Substituting Eqs(100 and(101) into Eq.(88), we obtain an  ¢ases.
expression for the Green'’s function of the slab at a paim In the first case the slab consists of just one plane of
the host region between two consecutive layers, in terms o§phereglayen centered at the sites of a 2D lattice, a square
the above reflection matrices of the two parts of the slab omyrray in thexy plane, defined by the primitive vectoes
the left and on the right af. Similarly we obtain the Green’s =3,(1,0,0) anda,=a,(0,1,0) witha,=3.95 mm. We cal-
function at the surfaces of the slab. culatedAn(k|;w), the difference between the -resolved

Flna”y, we evaluate the difference in the number of State%ensity of states of this System and that of po|yesterktpr
up to a given frequency, between a slab of finite thickness — . we did this by numerical differentiation of the corre-
and a homogeneous medium identical with that which sursponding difference in the number of states up to a frequency
rounds the slakwe assume that to be the same to the left and,, AN(0;w), evaluated in the angular-momentum represen-
to the right of the slab from Eq. (32). In this case, it is  tation[Eq. (85)] and independently in the plane-wave repre-
convenient to work inspgk) representation §=*), in  sentatior[Eq. (103]. The results obtained in the two repre-
which the on-shell scattering transition operator is diagonakentations are practically identical; they are shown in Fig.

in kj|. We obtain 1(a). An(0;w) is characterized by the presence of two reso-
N nance peaks centered atay/c;=2.62 and atw;ay/c,

AN(w)= — d2k AN(K ), 102 =2.79 which imply thg e_xistence of virtual bqund states

(@) Af fSBz IANCK @) (102 (resonancesof the elastic field at these frequencies. In each

_ ) case the displacement field peaks about the plane of spheres
whereA is the area of th&BZ N is the number of surface faling to a much lower value away from it. The low-
unit cells of the slab, and frequency resonance corresponds to a longitudinal virtual

1 bound state which is nondegenerate: integrated over the fre-
N o n quency region of this resqnancAn(O;_w) gives approxi-
ANCkj;@) TrImTrIn[I T(K)) Jispg) (103 mately 1. This resonance is responsible for the dip in the
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< 10p (a) L a5t 4
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S 20F 1
= 5}
=
N L5} .
0 ——t 1o} .
s | ® os| - ]
| a [
F05p 0.0 .() .()
z 0.0 0.5 1.0 0.0 0.5 10 0.5 1.0
©
& kd/n
0'%.0 015 1?0 1f5 2fo 2T5 FIG. 3. The phononic frequency band structure of an infinite fcc

crystal  [a;=a0(1,0,0,) 3 =2a,(0,1,0,) as=a,(1/2,1/24/2/2.) a9
=3.95 mm of steel spheres§=0.585 mm) normal to th€001)
surface. The thinthick) solid lines represent longitudindfrans-
verse bands. In(b) and (c) the dashed lines with the open circles
are the unhybridized bands of resonant modes and the straight
dashed lines the unhybridized effective-medium bands.

wao/cl

FIG. 1. (8 The change in th&-resolved density of states of a
polyester matrix due to the presence of a square aragy 8.95
mm) of steel spheres§=0.585 mm), fork;=0. (b) The transmis-
sion coefficient of a longitudingkhin line) and a transverséhick
line) elastic wave incident normally on the plane of spheres.

tween the transverse virtual bound states of the two layers is
apparently much weaker and the resulting coupled modes

transmission of longitudinal waves ai= thin line of :
g o [ étwo doubly degenerate resonant modés at about the

Fig. 1(b)]. The high-frequency resonance corresponds to » ) .
transverse virtual bound state which is doubly degenerat ame frequencya, /c,;=2.80. ThereforeAn(0,w) (given

integrated over the frequency region of this resonance?y the solid line in Fig. 2integrated over the region of the
low-frequency resonance gives approximately 1, and when

An(0; w) gives approximately 2. This resonance is respon- i ted h ; f the hiah-f
sible for the dip in the transmission of transverse waves agfiegrated over the region of the high-irequency resonance

_ thick [i f Fia. _ give; appr.o>gimately 5. _
@ Irﬁoltlh[e ;Cecér;(ej Ocasleg tki(:)]slab consists of two layte Finally, it is worth commenting on the role of the above-
same as in the first casseparated by a translation vector mentioned respr}ance(yirtual'bound state; of the elastic
ag=ag(1/2,1/2,/2/2). The resuilts foAn(0; ) for this slab, field about individual plangsin the formation of the fre-

calculated on the basis of EGL03), are shown by the solid quency band structure of the infinitfec) crystal, made up
R . ; ) . y an infinite sequence of such layers each displaced relative
line in Fig. 2. By comparing WItI’,An(O w) for the single b infini f hl h displaced relat

layer (dashed line in Fig. Pwe deduce the following. The Ejo thebone ][)recedintg ilt:.b%?’: "fll_oéllfz‘llz"/ilz)t') Th(;S its b?St ¢
longitudinal virtual bound states of the two layers interacting one by reterence 1o Fg. 5. the frequency band structure o

with each other give rise to two coupled resonant modes, on e (infinite) phon(_)nic crystal forkH=0 is shown in Fi_g. .
at wa0/c|:2.51%nd one abaolc|52p.80. The coupling be- (a), calculated using the method of Ref. 10. The longitudi-

nal bands, represented by the thin lines arise as follows. In a
homogeneous effective mediu¢the host medium modified

to some degree by the spherical scattererse obtains a
band, the dashed straight line in Figbg with a slope de-
fined by the longitudinal velocityc,. We obtain ¢,
=2406 m/sec from the slope of the exact curve in the limit
w—0 and c¢,;=2408 m/sec from the effective medium
theory?! The band described by the open circles in the same
figure arises from the resonant modes of the individual
planes when the interaction between them has taken place.
We have determined this band by calculating the transmis-
sion coefficient of longitudinal waves incident normally on a
slab consisting of eight layer@ slab sufficiently thick as

FIG. 2. The change in thie-resolved density of states of a evidenced by the results of our calculatio®ne clearly sees,

polyester matrix due to the presence of a thin slab consisting of twd) thiS case, superimposed on an otherwise smooth curve,
identical  square  arrays [a,=a,(1,0,0,)8=2a,(0,1,0,) A, sharp dips in the tr_ansm|ttance, s_|m|lar 'Fo those in F(g),l
=3.95 mnj of steel spheres3=0.585 mm), separated by a trans- at frequenciesw;, i=1,2, ... ,8with which we associate
lation az=a(1/2,1/24/2/2,), for k=0 (solid line). The corre-  values ofk, given byk,;=mi/(N+1)d whered=ay2/2 is
sponding quantity for a single plane of sphelise same as in Fig. the thickness of one layer ardlis the number of layers in
1(a)] is shown by a dashed line for comparison. the slab N=8 in the present cageThe open circles in Fig.

An(0;w)c, la,

a)ao/cl
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3(b) are the points ¢; ,k,;;), i=1,2, ... ,80btained in this
manner, and define the band of resonant modes in question.
The two unhybridized bands shown in Fig(bB the
effective-medium ban@ashed straight lineand the band of
resonant modegopen circleg interact at the point in the
(w,k,) space where the two meet, opening up a hybridization
gap there, but away from the crossing point the exact bands
[solid lines in Fig. 8b)] are determined by one or the other
of the unhybridized bands over the frequency region shown
here.

A similar analysis applies to the transverse bands, as
shown in Fig. 8). We see again that where the dashed
straight line representing the transverse band in the effective
medium meets the transverse band of resonant m@ges
circles the two interact leading to the separate hybridized
bands(exact bandsshown by the solid lines in Fig.(8). We
note, again, that the exact bands are determined by one or the
other of the unhybridized bands, except about the region
where the latter bands cross each other. In the present case
there is also a Bragg gap opening up abeat,/c,=2.04,
but the physics behind this is well known and we need not
say anything about it here. When comparing Figh) 3vith
Fig. 3(c) it is worth noting that the width of the transverse
band of resonant modes is considerably smaller than that of
the corresponding longitudinal one. It is also worth noting
that in the transverse bands one does not obtain, as in the
case of the longitudinal bands, a frequency gap as a result of

the above-mentioned hybridization. Clearly, the appearancehere

of a hybridization gap depends on the detailed shape of the
unhybridized bands. In particular, the slope of the effective-
medium band, the exact shape of the band of resonant
modes, and the requirement that the unhybridized bands
should converge to the above away from the crossing point
decide at the end whether a frequency gap arises as a result
of the hybridization.
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APPENDIX A

We consider the case of a solid homogeneous sphere of
radiusSin a solid homogeneous host medium. The displace-
ment vector and the surface traction, associated with an elas-
tic field in this system, must be continuous everywhere and,
therefore, at the surface of the sph&t&he continuity of
the above at the surface of the sphere constitutes the appro-
priate boundary conditions of the given problem. Assuming a
regular at the origin wave field, which has the form
> a;J3(r) inside the sphere and [aJ, (r)+a,/ H.(r)]
outside of it(see Sec. IV, and imposing the above boundary
conditions, we obtain the following systems of linear equa-
tions
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_\/|(|+1)d12 _d13 \/I(I+1)d14
Z) Xt X|
0+ D) dy, —dps T(T+1)dys | [ @Nim
Z X X| aim
—\I(l+1)dg; —dgz I(I+1)das | | aNim
Z Xt X| alim
_\/|(|+1)d42 _d43 \/|(|+1)d44
dy ,  JId+Ddi
T ANmt T Al
t |
dy , VId+1d; |
_?aNlm+ 7z am
t | (Al)
dy , Vid+Dds o |’
_?aNlm_" Z A m
t |
dy , Vid+Dd;
_Z_aNIm+ Z Am
t |
—d dag [ @uim d2@%im
_d41 d43 a-Il\/llm - d’}ag\)/llm ’ (AZ)

dii= ZthlJr,(Zt) + hr(zt),

dag=1(1+1)h/ (z)),

dgi= hﬁ(zt)_zthr,(zt),

z
(0+1)-5 -1

d=1(1+1)[zh"(z)—h/(z)],

di,=h(z), dp=2zh"(z),

da=2zh""(z)—h(z),

h|+(Z|)_22|h|+/(Z|).

2
Z;
di=|1(1+1)= 5

dig=XdJ) (X0) +J1(X0),

dog=1(1+1)ji(x0),

X¢
I(+1)-5 1

jl(Xt)_thll(Xt)],

t

d_pS(thll D)’ ‘
43—? X_t (I DXy " (%) = Ji(Xp) 1,
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dia=]i(X)),

daa=xj1" (X)),

2
dsf%(%) (X1 (%) = Ji(x) ],

_Ps( L z
da=—| =~
P\ X

and
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—Wy; g CII\/I+Im le\lcﬁmm
~War daz| | Cyim | = | Wa'Cim | (AG)

—

where
2 + +
0+1)- 5 j|<x|>—2x.j|'<x.>], W= i O = (),
(A3) W= —1(I+1)h{" (xy),
— ps(zt)z Xt2 + +
dY=zj,"(z)+]i(z0), War== 1) 11D T 7 Tl o

dY=1(1+1)j,(z,), ps( 7\
2=l w41=——s(i 11+ D)0y (x) =i ()],
X P\ X
Z . -,
dg'= (D=5 =1~z (2), W= —h (X)),  Wa=—xh"" (X)),
dY=1(1+1)[z)," (z)—Ji(z)] ps(Z\? X
4 di(2)=1i(Z) ] Wszz_z X [xihy " (x)—hy ()],
di=ji(2), 5 2
w =—5(3) 11+ 1) — 2 b (x) = 20 (x))
ds=2zj,'(z), * P\ X 2 R
(A7)
d5=2j,"(z)—ji(z), and
L z|. . wy=zh" (z)+h (20,
dg=|1(+1)= 5 |ii(z)—22j"(2), (A4)
N +
wy =1(1+1)h(z),
with z,= wS/c, andx,=wS/cg,.
Similarly, for the irregular at the origin wave field which N zt2 . .,
has the form= [c| J3(r)+c| "H¥(r)] inside the sphere and wy=|1(1+1)— 5 —1lh7(z)—zh "(z),
=, cPH,(r) outside of it, we obtain
wy =1(1+1)[zh"(z)—h (2],
WX_11 _\/|(|:1)W12 _)?13 \/|(|“)‘(1)d14 wi=h*(z), ws=zh*’(z),
t | t I
Wy — T+ D)Wy, —0og T+ 1)dng | | Chim ws=[zh"(z)—h{ ()],
N I+
ILm L Zt2 + +r
W31 —JI(l+1)wg, —dsz VI(I+21)d3s || Cnim W, = I(I+1)—§ h/(z)—2zh,""(z). (A8)
Xt X| Xt X| Clim
_ Equations similar to the above can be derived for any
— d N
War I+ Dwa a3 V(I 1)dag other combination of solid or fluid sphere in a solid or fluid
Xt X Xt X homogeneous host medium.
N L
—&cﬁl I+ 1wy 0 APPENDIX B
z, M Z m . . o "
Using the following mathematical identitf&s
wg‘co +\/|(|+1)w,500
— < Cnimt 5 CLim ) )
N 4 , (A5) exdiq-rl=4m> i'(anY'HY™ @, (BL)
_W_QCO VI(+Dws Im
z NIm Z LIm ) ,
exdiqlr—r'(] . . . .
wy o I Dwh g Amag arah @) YO Y™,
~— < Cnimt 5 CLim
Z; Z (BZ)
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one can express scalar spherical waves, regular or irregular,

PHYSICAL REVIEW B89, 064301 (2004

an’ :an’
aboutR, in terms of such waves aboR, as follows: Mim:MI7m” = “NIm;NI"m’
=[1(1+1)1"(1"+1)] 22
+ mos PN m, 5 ,
hl'(qrn’)YI’ (rn’)_% Gl’m’;lm(Rnn’ vQ)JI(qrn)YI (rn): X[Za’fmaf,m Gl’m’fl;lmfl(Rnn’ ;qt)
r <R (B3) +mm,GI/m';Im(Rnn' ;qt)
n nn’ »
+2a|ma|”,] Gl’m'+1;lm+1(Rnn’ ;qt)]’
i (Qra) Y™ (Fo)= (R 10)i1(qr) YO(F),
Jl(qn | (n |2m§|m’lm( nn q]l(qn I(n |,|'>1, (B].Z)
(B4)
. er\]/lr}m;Nl’m’:_Qmm;Ml’m’
. m/ 2
h|'(qr )Y|' rn E fl'm’ Im nn'iq)hl (qrn)Yl (rn): :(Zl_l_l)[l(l+1)|/(|/+1)]—1/2
rn>Rpn (B5) X[_Za';m 'YImGI’m’fl;Iflmfl(Rnn’ ;dt)
whereR,,=R,~R,/, I,y=r—R,, andr,=r—R,. The +m' "Gy - 1m(Rony 501
coefficientsGy,.; . and &1 in the above expressions ;o
are given by e e +2a) % "G+ 13- 1ms 1(Ron 500,
r n ’ I I,l’;l’ (813)
Glm;l’m’(Rnn’ ;Q)=47TE (_1)“7' - )/2(_l)m +m
IH U ,
' + QElnm;LI’m’:GI’m’;Im(Rnn’;Cll): [l 20, (814)
XBjm(I"m";1"'m")h,, (qRynr)
. and
XY " (Rynr), (B6) ) )
:«nn _:«nn
and ~MIm;MI’m’ — =~ NIm;NI’m’
=[11+)1"(1"+1)] 2
glm;lfmr(Rnn' ;q)=477|%” (_1)(_|+| +l )/2(_1)m +m X[Zal_ma;m,gl’m’—l;lm—l(Rnn’ ;qt)
XBim(I"m”;1'm") j1n(qRyp) M & rmrim(Rony 50
XY™ (Ryn) (B7) +2a"a)) &t 1ime1(Run 16014

with

—nn’

amu"m%|qu:ifdFYPﬁ)Y;W(DYﬁYix (B8)

Starting from Eqs(B3), (B4), and (B5) and proceeding as
described in Ref. 10, we obtain the following expressions
relating the corresponding vector spherical waves referred to
an origin atR,,, with those referred to an origin &,,:

o) e
= MIm;NI’'m’

(B15

=nn’
= NIm;MI’'m’

=2I+DIA+DI (1 +1)]7 2

')’Imgl 'm’/—1;1—1m— 1(Rnn3Q1)
+ m,glmfl’m’;lflm(Rnn’ ;qt)

X[—2a,,"

+2a|n,1 yrmgl’m’+l;lflm+l(Rnn’ ;Qt)],
HL'(r ) E QLL,JL(T )v rn<Rnn'a (Bg)
1L1'=1, (B16)
Ju(ry)= :ED L(rn), (B10) B o = Erram(Ron 50, 1,17=0,  (B17)
wherea|" is given by Eq.(40) and
HL’ ’) E :r|_]|r_]f L(rn): rn>Rnn/- (Bll) :%[(|+m)(|+m_1)]1/2/[(2|_1)(2|+1)]1/2’

—nn’

The nonzero matrix eIemen&LL, and=,, L=Plm, are
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—nn’

We note that fom=n’, by def|n|t|on QLL,—O and =,

=8\.+ . A useful property of=]", resultmg from Eq(B10)
is

"nat

=nn"—=n"n" _ —=nn’
l—lLLI/l—lLIIL/_A-LL/ . (Blg)
LH
Finally, it can be shown that
nn’ m+m’
QPIm;P/I’m' (=1 QPI’—m' P'l—m? (BZO)
and that= is a Hermitian matrix
—nn’ _=n'nx
:’le;P’I’m’_‘—’P’I’m’;PIm' (821)

It is also worth noting tha®|", defined by

nn’ _ Ann’  —nn’
i® L =Q —E oL b

LLr = 2oL (B22)

express an(irregulan vector spherical waveN,,(r,)

=—i[H_/(ry)—3J./(r,)] aboutR, [this is given by Egs.

(36), (37), and (38) with g=w/c, if P=L and q=w/c; if
P=M,N, and f,=n,, the spherical Neumann functipm
terms of regular vector spherical wavek(r,), about an-

other siteR,,. By definition,(I)Efl,zo for n=n’. It can be
shown that® is a Hermitian matrix
nn’ o an'nx

Poimprrm = Perirmpim: (B23)
APPENDIX C

In order to find an explicit expression for the matrix ele-
ments of T', entering in Eq(79), we write the wave inci- 1
dent on and the wave scattered by the assembly of spheres, at =_ImTr In{1+ Ty

a given frequencyw, as E,_IaEIJ,_I(r) and ZLOafOHLO(r),

respectively. Here refers to one given origin of coordinates
which we can assume to be at the center of a large sphere
containing the entire assembly. We write, as in the first of

Eqgs.(48),

a = % T al . (C1)

An explicit expression foll\” is obtained as follows. We

PHYSICAL REVIEW B59, 064301 (2004

a/ =2 b " (C3
nL

An incident wave can be scattered out of the assembly after
a single scattering by any one sphere, or after scattering any
number of times by any number of spheres. Mathematically,

this means that

b "= [T+TQT+TQTQT+--- ] b
n'L’

=2 {[1-TQI T, (C4)

n'L’

where T, = 8,, 7", and Q is the matrix defined by Egs.
(62 and(63). Using Eqs.(C1)—(C4) we obtain

T}-Og'-l = 2

nL,n’L’

=l -TQl 1T}EC,:E,3 (C5)

Substituting Eq(C5) into Eq.(79), and using the identity

Trin[I+AB]=TriIn[I+BA], (Co)

whereA, B are in general nonsquare matrices of dimensions
N;XN,, N,X N, respectively, together with EB19), we
obtain

1
N(w)=—imTr I{l + TE[1 -TQ] Yoy

1
- ;Im Trin[1-TQJny

+ %Im Trin{[1+ T [1-T(Q~E) T},
(€7

where {nL} denotes matrices imL space. We shall now
demonstrate that the last term in EG.7) vanishes. Defining

Bffi:(cslw)%nréw we have[|+T]—1[|_-r(Q_:)]
=1-B 'K®, where K is defined byICLL, KL, Ban

write the wave incident on and the wave scattered by thevith the elements}CLL, of the reaction matrix of theith
assembly of spheres as sums of spherical waves about tlg,phere given by Eq54), and® is given by Eq.(B22). IC

centers of the individual spheres: ELaLJL(r)

=30b) I (ry) and = a] Hy (N=Snb! "H(ry), 1

spectively. Then, using Eq&810) and(B11) of Appendix B,
one can write

(C2

2 |_f|_|aLI

and

and® are Hermitian matrices. Using E¢C6) and the fact
that B"'®=®B"!, one can easily show that {Tin[l

B 1@} =Tr{In[Il — B~ 1iCP]}, from which follows di-
rectly that Im T{In[l—B~/C®]}=0. Therefore, Eq(C7)
gives

1 1
AN(w)= ;Im Trin[1+T]ny— ;Im Trin[1=TQ ]y -

(C8
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