
PHYSICAL REVIEW B 69, 064110 ~2004!
Mechanical versus thermodynamical melting in pressure-induced amorphization:
The role of defects
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We study numerically an atomistic model which is shown to exhibit a one-step crystal-to-amorphous tran-
sition upon decompression. The amorphous phase cannot be distinguished from that obtained by quenching
from the melt. For a perfectly crystalline starting sample, the transition occurs at a pressure at which a shear
phonon mode destabilizes, and triggers a cascade process leading to the amorphous state. When defects are
present, the nucleation barrier is greatly reduced and the transformation occurs very close to the extrapolation
of the melting line to low temperatures. In this last case, the transition is not anticipated by the softening of any
phonon mode. Our observations reconcile different claims in the literature about the underlying mechanism of
pressure amorphization.
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I. INTRODUCTION

Since the first reports on pressure-induced amorphiza
~PIA!, there has been an increasing interest in the phen
enon that has been observed in a large class of systems,
upon compression and decompression~see Ref. 1 for a re-
view and references on particular materials!. The experimen-
tal interest stems from the fact that PIA occurs in some
tremely widespread and important materials, namely, wa2

and quartz and its polymorphs,3 and also because PIA pro
vides a novel route to the synthesis of amorphous mater
in addition to the traditional technique of quenching from t
melt. From a basic point of view, there are controvers
about the mechanism of PIA and the nature of the amorph
phase, in particular regarding whether it is equivalent or
to that obtained by quenching.4,5 Since in most cases crysta
line phases that undergo PIA show reentrant melting in
P-T plane, it has been suggested2 that PIA is nothing but
melting at temperatures below the glass temperature of
supercooled fluid. Other studies~specially numerical
ones6–9! have instead emphasized the relationship betw
PIA and mechanical instabilities. It has been observed in
that in many cases PIA is triggered by the softening o
shear phonon mode.10 In addition, some memory effects11

and anisotropic properties,4 although controversial,12 show
that many times what appears to be an amorphous p
preserves within its structure signatures of the parent crys
line phase.

In view of the broad phenomenology briefly stated abo
it is highly desirable to take advantage of model system
which amorphization can be studied in a transparent w
allowing to look in detail into the mechanisms and char
teristics of the transformation. This motivates the pres
work, in which we study a simple two-dimensional system
identical pointlike particles interacting through a specia
devised two-body potential. The simplicity of the model a
lows us to study large systems with some amount of defe
and observe directly the crucial role they play in the tra
formation.
0163-1829/2004/69~6!/064110~7!/$22.50 69 0641
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In the model we study, there are a few different crystalli
ground states depending on the applied pressure. We pre
here the results of the evolution of the most compact str
ture ~stable at the highest pressures! upon pressure release.13

As we will see, PIA at temperatures in which particle diff
sion is negligible is always related to mechanical instab
ties. For perfect lattices, PIA is reflected in the softening o
shear phonon mode. This leads to local distortions that p
duce the destabilization of new vibrational modes, leading
a cascade of instabilities,8 which drives the system toward a
amorphous structure. However, in the presence of defe
localized vibrational modes exist, which may become u
stable before any extended vibrational mode does. This
vors the nucleation of the amorphous phase at press
much closer to the thermodynamic equilibrium value b
tween the crystalline and amorphous phases.

The work is divided as follows. In Sec. II we present t
model. The results at zero temperature are contained in
III. In Sec. IV we give evidence that the disordered samp
obtained can be called truly amorphous. In Sec. V we pres
results at finite temperatures, and Sec. VI contains some
cussion and conclusions.

II. THE MODEL

An isotropic, purely repulsive interparticle potential
used, with a strict hard core at a distancer 0 plus an almost
triangular repulsive shoulder. The pairwise interaction pot
tial V(r ) between two particles separated by a distancer is
given by14

V~r !5` for r ,r 0

V~r !5«0F1.222.8125~r /r 021.08!21
0.008

r /r 021G2

for r 0,r ,r 1

V~r !50 for r .r 1 , ~1!
©2004 The American Physical Society10-1
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wherer 151.17315r 0, andr 0 sets the length unit. The poten
tial is plotted in the inset of Fig. 1. This kind of potential h
been previously used to systematize the anomalous pro
ties of tetrahedrally coordinated materials.14–16Then we ex-
pect they are also appropriate to study amorphization un
pressure, since this phenomenon occurs for most of th
materials. Its crucial characteristic is the existence of t
possible equilibrium distances between particles.

The system is simulated by standard molecular dynam
in theNVTensemble with periodic boundary conditions. A
given volume, the quantities of interest are evaluated, and
volume is changed in steps of the order of 0.01% by res
ing all coordinates of the particles and the size of the sim
lation box. Temperature is fixed by rescaling the velocities
the particles whenever necessary. As the amorphization
cess implies the existence of mechanical instabilities,
typically observe that kinetic energy tends to increase du
amorphization. In a real situation this energy transforms i
heat. Here we simply eliminate it by the mentioned rescal
procedure. Pressure is calculated by a direct evaluatio
terms of the interparticle forces. We choose to model
system at constant volume in order to survey all regions
the volume-pressure curve, including those that would
unstable in constant pressure simulations. The results t
presented correspond to a two-dimensional system, to fa
tate a direct visualization of the particle configurations. W
should mention, however, that the same phenomenology
observed in three-dimensional samples with the same in
particle potential.

FIG. 1. Evolution of pressureP upon increasing of the specifi
volumev, at zero temperature. The thin continuous line is the
pected evolution if the system remains always triangular. The do
lines mark the ideal stability limit (vc,P0

c), at which a phonon
energy vanishes. Dots indicate results of simulation for a per
lattice ~full circles!, a lattice with a single vacancy~stars! and a
system with grain boundaries~open circles, see Fig. 3!. Letters
correspond to snapshots in Fig. 3. The inset shows the interpa
potentialV(r ).
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III. ZERO-TEMPERATURE RESULTS

We take as the starting configuration the one correspo
ing to the triangular lattice with lattice parameter;r 0,
which is stable at high pressures. In Fig. 1 we present
results of simulations atT50 in a system of 2800 particles
The thin continuous line corresponds to thev-P relation as-
suming the system remains always triangular. The reentra
of this line is a consequence of the particular form of t
interaction potential. The numerical results for a perfect l
tice ~full circles! follow this line up to some maximum vol
ume, at which they abruptly depart from it. This is the pre
sure in which a phonon with vanishing energy first appear
the triangular structure~see Fig. 2!. Analytical evaluation
shows that this instability occurs when 3V8(a)/a1V9(a)
50, where primes denotes derivatives of the potential, ana
is the lattice parameter. This expression is valid as long
the interaction between next-nearest neighbors is zero, a
in the present case. The critical volumevc and pressureP0

c

are indicated by dotted lines in Fig. 1, and they are fu
compatible with the numerical results. The unstable phon
turn out to be shear phonons with the wave vectork oriented
perpendicularly to one of the three most compact directi
in the lattice. Note that for the interparticle potential we u
the longitudinal phonon branch along these directions is
the type;sin(k), and all shear phonons—irrespective of t
absolute value ofk—become zero energy at the same poi
Then, in the present case the instability pressure is ma
scopically signaled by the vanishing of the stress depend
shear modulus of the material,17,18 m5(C112C22)/22P
50.

At vc there is a sharp and abrupt increase of pressur19

Snapshots of the particle configurations give clues of w
happens in the system. In Fig. 3~a! we see the triangula
configuration just before the instability. Figure 3~b! shows

-
d

ct

le

FIG. 2. The dispersion relation of phonons along one of
directions perpendicular to the densest planes of the triang
structure close to the instability pressure. Continuous lines co
spond to the repulsive potential Eq.~1!, and dashed lines to the
same potential plus an attractive term@Eq. ~2!# that includes
second-nearest-neighbors interactions. Curves correspond, from
to bottom, touP2P0

cu(r 0
2/«0)50.01, 0.001, and 0.0001. Note tha

since the repulsive interaction reaches only the first neighbors,
continuous lines have an analytical form of the type;sin(k), and
all phonon frequencies vanish at the same pressureP5P0

c . For the
case with second-nearest-neighbors interaction the instability oc
first for the edge zone phononka52p/A3.
0-2
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that after changing the volume a very small quantity, an
stability has propagated in the system. We stress that
evolution of the system from the configuration in Fig. 3~a! to
that in Fig. 3~b! is triggered by a very small volume chang
and is just the steepest descend evolution toward a loca
ergy minimum of the energy landscape. In this evolutio
pressure recovers to a higher value indicated asP* ~dashed
line! in Fig. 1. This value is roughly maintained20 upon fur-
ther volume increase up tov/r 0

2;1.27, which is close to the
volume at which the disordered regions have taken over
whole system. If volume is increased further, pressure
creases noticeably.

The thermodynamic equilibrium pressurePe at T50 be-
tween the crystalline and disordered structures is indica
by the arrow in Fig. 1. The value ofPe was calculated by
enthalpy evaluations of the triangular lattice and the am
phous structure obtained by quenching from the melt. Th
Pe represents the natural extrapolation of the melting line
zero temperature. We see thatPe is close to~though a bit
higher than! P* .

It must be noticed that constant pressure simulati
would have shown atP0

c an abrupt transition between a com
pletely ordered and a completely disordered system, w
P* would have remained hidden. However,P* has a clear

FIG. 3. Snapshots of the systems at the points indicated
Fig. 1 ~only about a quarter of the full simulated system is show!.
Upper four panels correspond to a perfect crystal starting sam
whereas the two lower panels are from a polycrystalline sam
with grain boundaries and vacancies.
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physical meaning as the transition pressureonce the disor-
dered phase has been nucleated. This suggests that if nucle
ation centers are present in the system,P* will be experi-
mentally accessible as the actual transition pressure. In
Fig. 1 shows also thev-P evolution for a system with a
single vacancy and for a system with grain boundaries. In
former case, the instability occurs beforevc is reached, and
in the latter case it even occurs without any press
reentrance.21 Note that the three curves tend to coincide af
the first destabilization of the original lattice. Two snapsh
of the system for the polycrystalline case@Figs. 3~e! and 3~f!#
show how the disordered phase grows from grain bou
aries, which provide nucleation centers for the transform
tion. These results are a clear indication that defects are
effective in lowering the energy barrier for the transition, a
also explain why, in experiments, transformation pressu
close to the thermodynamic values are usually observed.
lowering of the energy barrier due to defects and its relat
to thermodynamic melting has been discussed by Mizush
et al.22 in the context of crystal-crystal pressure-induc
transformations. Note that in the case in which the trans
mation is triggered by defects, the phonon spectrum of
system~and in particular the elastic constants! gives no in-
dication of the instability that is about to occur. This is pa
ticularly obvious in the case of a single vacancy: a sin
defect cannot modify the phonon spectrum of an infin
sample, and then its effect is not seen in the elastic consta
but it produces a finite change in the value of the critic
pressureP0

c .23

It was already mentioned that for the interaction poten
used, the whole branch of shear phonons become zero en
at P0

c . We want to emphasize however that amorphization
not related to this degeneracy, as it can also be triggered
single phonon becoming unstable. In fact, we did simulatio
with a modified potential in which an attractive termVa
reaching up to second-nearest neighbors was included.
actual potential used is that of the preceding section plus
attractive term given by

Va~r !52«0~r 2r 1!2 for r 1,r ,~r 112r 0!/2,

Va~r !522«0@~r 22r 0!22~r 122r 0!2/2#

for ~r 112r 0!/2,r ,2r 0 . ~2!

The instability corresponds now to the vanishing of the e
ergy of edge zone shear phonons only, as indicated in Fig
The amorphization of the system occurs precisely at
point where this phonon becomes zero energy, and it
observed to be similar to the previous case where the
shear phonon branch becomes unstable at the same pre
This rules out an amorphization mechanism in which at
instability, arbitrary combinations of the unstable phono
generate disordered movements of the atoms, and favo
cascade mechanism as described in the discussion se
below.

in

le,
le
0-3
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IV. COMPARISON BETWEEN DECOMPRESSED
AND QUENCHED AMORPHOUS STRUCTURES

The claim that the disordered structure we obtain up
decompression is really amorphous is supported by the
lowing facts. We find no evidence for orientational order
the structure factorS(k), even in the case in which we sta
with a monocrystalline sample. Moreover, a quantitat
comparison with the structure factor of a system quenc
from the liquid ~prototypic of an amorphous sample! shows
that they are indistinguishable~Fig. 4!. In addition, we have
failed to find any single systematic difference between
two amorphous structures.

V. FINITE-TEMPERATURE EFFECTS

If temperature is not strictly zero, even the perfect latt
amorphizes before the ultimate mechanical instability limi
reached. Simulations at finite temperature with perf
samples show that the amorphization occurs at
temperature-dependent critical pressurePc(T) @such that
Pc(T50)5P0

c]. The temperature dependence of the critic
pressure originates in the fact that a thermally activated p
cess may destabilize the soft phonon before it actually
comes zero energy.

It is instructive to see in some more detail how this des
bilization occurs. Consider the normal modes~phonons! of
the system. We will study the case in which only a sing
phonon with wave vectork perpendicular to one of the high
density planes has nonzero amplitude. We expand the en
of the lattice in powers of the amplitude of the phonon o
cillation, going one order beyond the harmonic approxim
tion. Let us calld l and d t the longitudinal and transvers
oscillation amplitudes of that phonon. As we will see there
a nontrivial coupling between the two at the instability.

Taking into account that our potential produces inter
tions only among first neighbors in the lattice, the energy
particlee0 of the system up to third order in the amplitud
can be written after some lengthy but straightforward cal
lation as

FIG. 4. The structure factor of the amorphous structure obtai
by decompression of a perfect crystalline sample and that obta
by a quench from the liquid phase, at the same volumev/r 0

2

51.289. They coincide within the numerical precision.
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sin2SA3ka
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1V9D1d l

2S V8

a
13V9D G

1
A3

8
sin3SA3ka

4 D Fd t
2d lS 2

4V8

a2
1

V9

a
1V-D G . ~3!

The first line in Eq.~3! is the harmonic contribution, the
second is a cubic term in the displacements~there is an ad-
ditional cubic term proportional tod l

3 , but this can be shown
to be not relevant for the analysis below!. The system be-
comes unstable when the coefficient ofd t

2 vanishes, provid-
ing again the condition 3V8/a1V950, which defines the
T50 values P0

c and vc. Close enough to this instability
point, 3V8/a1V9 is proportional toP2P0

c and to lowest
order all other coefficients can be considered to be consta
Then generically, the energy can be written as

e05sin2SA3ka

4 D @A~P2Pc!d t
21Bd l

2#

1sin3SA3ka

4 D @Dd t
2d l #. ~4!

The existence of ad t
2d l term is very important, as it indicate

that for P slightly larger thanP0
c there is a saddle poin

~actually two, one with positive and the other with negati
d t) close tod t50, d l50, than can be determined requirin
stationarity of Eq.~4!. The result is

d t
S56

A2AB~P2Pc!

D sinSA3ka

4 D ,

d l
S5

A~P2Pc!

D sinSA3ka

4 D , ~5!

where the superscript indicates the values at the saddle. I
system reaches this saddle it can escape from the local m
mum at the origin, namely, the system destabilizes. The
ergy barrierh for this process is obtained by reinserting E
~5! into Eq. ~4!. The result is

h5
4A2B~P2Pc!2

D2
. ~6!

Note that the barrier is exactly the same whatever the w
vector of the phonon considered~this is no longer true if
further neighbors interactions are included, but the possi
ity to escape through the jump of a barrier remains!. The
instability mechanism is then driven by thed t

2d l term in the
energy, what implies a not trivial coupling of transver
modes~those actually having vanishing frequency! and lon-
gitudinal ones. At finite temperatures the barrierh can be
surmounted. Nucleation theory tells that escape timet is
proportional to exp(h/T). Assuming the preexponential facto
is a constantt0 ~this is certainly not true, but dependences
t0 become weak in the final result! we obtain that if a timet0

d
ed
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is given, the system will overcome the energy barrier ift0
*t, and from here we obtain the formula for the temperat
necessary to escape a given barrier, namely,

T.h ln21~ t0 /t0!. ~7!

For practical purposes the logarithmic factor can be usu
taken to be approximately 0.1. Ash;(P2P0

c)2, we obtain
that the critical pressurePc(T) increases asT1/2 at finite
temperatures, a behavior that is well reproduced in the si
lations ~Fig. 5!. The Pc(T) line is then the pressure amo
phization line for a sample without defects, and can be pr
erly interpreted as the ‘‘mechanical melting’’ line of th
system. In the absence of defects, it marks the limit on wh
the crystalline phase destabilizes~purely mechanically atT
50, and by a thermally activated process atTÞ0). Note,
however, that the elastic constants of the system, in partic
the shear modulusm, do not extrapolate to zero atPc(T),
except atT50 ~see Fig. 6!. In fact, the numerical evaluatio
by means of fluctuation formulas18,24shows that the effect o
temperature in the elastic constants is very small. AtT50

FIG. 5. Evolution ofPc ~full circles! andP* ~full squares! as a
function of temperature~bars in P* indicate the whole range in
which transformation occurs!. The inset shows in a log-log plot tha
DPc5Pc(T)2Pc(T50) increases asT1/2 at finite temperatures
The extrapolation of the melting line~from calculations at higher
temperatures, two points are seen! is indicated by the dashed line.
goes toPe at T50.

FIG. 6. Variation of the stress dependent shear modulusm with
pressure at different temperatures. ForT50, m vanishes at the
critical pressurePc(T50), but for increasing temperaturesm does
not tend to zero at the corresponding critical pressurePc(T) ~indi-
cated by the arrows!, showing that the transition is not macroscop
cally captured by the elastic constants.
06411
e

ly

u-

-

h

ar

the stress dependent shear modulusm vanishes atP0
c , as we

already knew from the phonon dispersion relation, but aT
Þ0 extrapolation is consistent with a vanishing ofm very
close toP0

c , and certainly not atPc(T). The thermally acti-
vated process that at finite temperatures leads to the inst
ity at the higher pressurePc(T) is a rare event that it is
enough to occur once to completely destabilize the syst
This process is not captured in the value of the elastic c
stants.

The results presented above correspond to samples w
out defects. For defective samples the amorphization
P* (T) is only weakly dependent onT. In addition, it is very
close to the extrapolation of the melting line obtain
from simulations at higher temperatures~see Fig. 5!. P* (T)
andPc(T) are well different from each other, particularly a
very low temperatures. Defects are responsible for this
ference, and provide the link between the ‘‘mechanical’’ a
‘‘thermodynamical’’ scenarios for pressure amorphization

VI. DISCUSSION AND CONCLUSIONS

The experimental observation that in some materials P
occurs roughly along the extrapolated melting line has m
vated the suggestion2 that ‘‘thermodynamic melting’’ is the
underlying driving force for amorphization. Our results sho
that amorphization at zero temperature is always a phen
enon related to mechanical instabilities. In perfect lattic
mechanical instabilities reflect necessarily in the phon
spectrum of the material, and amorphization can be ea
related to a mechanical process. However, for defective
tices, the mechanical instability that triggers amorphizat
is associated with localized vibrational modes around
fects, and this instability occurs typically without any notic
able signature in the phonon spectrum, i.e., the mechan
nature of the process is more subtle. We emphasize th
single defect is sufficient to trigger the amorphization of
whole macroscopic sample.23

How this first instability is able to transform the highl
ordered original lattice into a fully amorphous configurati
is not easy to understand, specially considering that this e
lution is fully deterministic from a mechanical point of view
and can be described as the steepest descendant path
configuration point of the system onto its energy landsca
A deep understanding of this process will surely shed li
also onto the very definition of what an amorphous mate
is, typically characterized by what it lacks, instead of wha
possesses. Here we make only the following consideratio8

The first instability of the lattice~at T50) can always be
described as the vanishing of the frequency of one of
normal modes of the system. This normal mode may b
phonon for a perfect lattice or a localized mode for a def
tive lattice. When the coordinate characterizing the desta
lizing mode grows, it typically goes beyond the applicabili
limit of the linear theory, and the whole mechanical stabil
of the system has to be reanalyzed. Then, although the an
sis of Sec. V is appropriate to determine the barrier for
system to scape from its metastable equilibrium, it canno
continued when the system actually overcomes the sa
without including the interaction with other modes. For i
0-5
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stance, it occurs in our system that once the coordinate o
unstable phonon starts to increase, it couples to o
phonons and the result is that a shuffle of two pieces of
material develops. In this way, the instability generated by
extended object~the unstable phonon! produced a localized
~one-dimensional! defect on the lattice.25 But it turns out
that, in the present case, the new configuration of the lat
is not stable either, and a new distortion occurs spati
close to the region already distorted~see Fig. 7!. In the
present case of amorphization, it is likely that a cascade
these processes occurs, which leads to an amorphous s
ture. The spatially localized nature of the process reflect
the fact that for partially transformed samples, transform
and untransformed regions are spatially separated, as se
Fig. 3. We however emphasize that another possibility co
be that after the first phonon instability and the first shuf
the system reaches a mechanically stable configuration,
further increases of the volume will produce independ
shuffles in the samples, along the three directions relate

FIG. 7. The first steps in the cascade process from a perfe
an amorphous lattice: The original perfect lattice becomes unst
when the energy of a phonon vanishes, and this drives a trans
to a sample with a shuffle~a!. This configuration however is no
stable and spontaneously evolves toward the configuration in~b!.
But this is not stable yet, and the process continues until equ
rium is reached when a finite fraction of the system is transform
@compare with Figs. 3~a! and 3~b!#.
H.

ds

, J
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symmetry. If this is the case, then this single phonon w
drive a transformation~which has the character of a marte
sitic transformation! to a new~poly!crystalline phase. This
and other intermediate cases, which in our model occur
different parameters, will be discussed separately.

In summary, we have arrived at a picture of the mec
nism of PIA, reconciling mechanical and thermodynamic
melting in a unifying scheme. The present model exhibit
one-step crystal-to-amorphous transition to a truly am
phous state that does not differ from the disordered struc
obtained by quenching from the melt. Once the transform
tion is triggered, it is followed by a cascade process t
produces the amorphous structure. For a perfect lattice,
vanishingly small temperatures, the transformation ta
place through a shear phonon instability at a pressure
apart the thermodynamical equilibrium pressure. For def
tive lattices, the mechanical instability shows up by the d
stabilization of localized vibrational modes, close to the th
modynamical equilibrium pressure. In either case,
transformation is always triggered by mechanical instab
ties. Temperature can produce the transition to occur be
the mechanical stability limit is reached, due to a process
thermally activated jump over a barrier. In real samples w
appropriate defects, experimental transition pressures wil
seen close to the extrapolation of the melting line. The
facts reconcile different claims in the literature regarding
nature of the PIA of materials. We remark that, although
presented results for a two-dimensional model system,
liminary results in three-dimensional samples qualitativ
agree with the phenomenology stated above, and will be
sented elsewhere. We finally stress that these considera
have potential applications in the study of melting mech
nisms of crystalline materials.26
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