PHYSICAL REVIEW B 69, 064110 (2004

Mechanical versus thermodynamical melting in pressure-induced amorphization:
The role of defects
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We study numerically an atomistic model which is shown to exhibit a one-step crystal-to-amorphous tran-
sition upon decompression. The amorphous phase cannot be distinguished from that obtained by quenching
from the melt. For a perfectly crystalline starting sample, the transition occurs at a pressure at which a shear
phonon mode destabilizes, and triggers a cascade process leading to the amorphous state. When defects are
present, the nucleation barrier is greatly reduced and the transformation occurs very close to the extrapolation
of the melting line to low temperatures. In this last case, the transition is not anticipated by the softening of any
phonon mode. Our observations reconcile different claims in the literature about the underlying mechanism of
pressure amorphization.
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[. INTRODUCTION In the model we study, there are a few different crystalline
ground states depending on the applied pressure. We present

Since the first reports on pressure-induced amorphizatiohere the results of the evolution of the most compact struc-
(PIA), there has been an increasing interest in the phenoniure (stable at the highest pressurepon pressure rglea§é.
enon that has been observed in a large class of systems, bag we will see, PIA at temperatures in which particle diffu-
upon compression and decompressisee Ref. 1 for a re- Sion is negligible is always related to mechanical instabili-
tal interest stems from the fact that PIA occurs in some exShéar phonon mode. This leads to local distortions that pro-
tremely widespread and important materials, namely Waterduce the destabilization of new vibrational modes, leading to
and quartz and its polymorpfisand also bec;;luse PIA: pro- a cascade of instabiliti€syhich drives the system toward an
vides a novel route to the synthesis of amorphous material morphous structure. However, in the presence of defects,

in addition to the traditional technique of quenching from the ocalized vibrational modes e>_<|st, .Wh'Ch may become un-
. . . . _stable before any extended vibrational mode does. This fa-
melt. From a basic point of view, there are controversie

: Sors the nucleation of the amorphous phase at pressures
about the mechanism of PIA and the nature of the amorphous, -1, cioser to the thermodynamic equilibrium value be-

phase, in particular regarding whether it is equivalent or noj

; . . . ween the crystalline and amorphous phases.
to that obtained by quenchirfg.Since in most cases crystal- e work is divided as follows. In Sec. Il we present the

line phases that undergo PIA show reentrant melting in thenogel. The results at zero temperature are contained in Sec.
P-T plane, it has been suggestetiat PIA is nothing but || |n Sec. IV we give evidence that the disordered samples
melting at temperatures below the glass temperature of thgptained can be called truly amorphous. In Sec. V we present
supercooled fluid. Other studiesspecially numerical results at finite temperatures, and Sec. VI contains some dis-
one$~9 have instead emphasized the relationship betweepussion and conclusions.
PIA and mechanical instabilities. It has been observed in fact
that in many cases PIA is triggered by the softening of a
shear phonon mod@&.In addition, some memory effedts
and anisotropic propertiésalthough controversidf show An isotropic, purely repulsive interparticle potential is
that many times what appears to be an amorphous phasged, with a strict hard core at a distamgeplus an almost
preserves within its structure signatures of the parent crystatriangular repulsive shoulder. The pairwise interaction poten-
line phase. tial V(r) between two particles separated by a distante

In view of the broad phenomenology briefly stated abovegiven by’l4
it is highly desirable to take advantage of model systems in
which amorphization can be studied in a transparent way, V()= for r<r,
allowing to look in detail into the mechanisms and charac-
teristics of the transformation. This motivates the present

Il. THE MODEL

work, in which we study a simple two-dimensional system of V(r)=go| 1.2—2.8125r/r,— 1.08 %+ 0.008 |
identical pointlike particles interacting through a specially o= = o = rlro—1
devised two-body potential. The simplicity of the model al-

lows us to study large systems with some amount of defects, for ro<r<ry

and observe directly the crucial role they play in the trans-

formation. V(r)=0 for r>rq, (D)
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FIG. 2. The dispersion relation of phonons along one of the
directions perpendicular to the densest planes of the triangular
structure close to the instability pressure. Continuous lines corre-
spond to the repulsive potential Efll), and dashed lines to the
same potential plus an attractive terfq. (2)] that includes
second-nearest-neighbors interactions. Curves correspond, from top
to bottom, to|P— P§|(r3/e,)=0.01, 0.001, and 0.0001. Note that
since the repulsive interaction reaches only the first neighbors, the

FIG. 1. Evolution of pressur® upon increasing of the specific continuous lines have an analytical form of the typsin(k), and
volumew, at zero temperature. The thin continuous line is the ex-all phonon frequencies vanish at the same presBer®g . For the
pected evolution if the system remains always triangular. The dottedase with second-nearest-neighbors interaction the instability occurs
lines mark the ideal stability limity® Pg), at which a phonon first for the edge zone phondm=2/+3.
energy vanishes. Dots indicate results of simulation for a perfect
lattice (full circles), a lattice with a single vacancfstars and a
system with grain boundariefpen circles, see Fig.)3Letters  \ye take as the starting configuration the one correspond-
correspond to snapshots in Fig. 3. The inset shows the |nterpart|cli¢ﬁg to the triangular lattice with lattice parameterr,,
potentialV(r). which is stable at high pressures. In Fig. 1 we present the

results of simulations af=0 in a system of 2800 particles.
wherer,=1.1731%,, andrg sets the length unit. The poten- The thin continuous line corresponds to thd> relation as-
tial is plotted in the inset of Fig. 1. This kind of potential has suming the system remains always triangular. The reentrance
been previously used to systematize the anomalous propedf this line is a consequence of the particular form of the
ties of tetrahedrally coordinated materi&ls'®Then we ex- interaction potential. The numerical results for a perfect lat-
pect they are also appropriate to study amorphization undéice (full circles) follow this line up to some maximum vol-
pressure, since this phenomenon occurs for most of thegéme, at which they abruptly depart from it. This is the pres-
materials. Its crucial characteristic is the existence of twgsure in which a phonon with vanishing energy first appears in
possible equilibrium distances between particles. the triangular structurésee Fig. 2 Analytical evaluation

The system is simulated by standard molecular dynamicshows that this instability occurs wherv3a)/a+V"(a)
in the NVT ensemble with periodic boundary conditions. At a =0, where primes denotes derivatives of the potential,aand
given volume, the quantities of interest are evaluated, and thié the lattice parameter. This expression is valid as long as
volume is changed in steps of the order of 0.01% by rescalthe interaction between next-nearest neighbors is zero, as is
ing all coordinates of the particles and the size of the simuin the present case. The critical volume and pressuré;
lation box. Temperature is fixed by rescaling the velocities ofare indicated by dotted lines in Fig. 1, and they are fully
the particles whenever necessary. As the amorphization praompatible with the numerical results. The unstable phonons
cess implies the existence of mechanical instabilities, wéurn out to be shear phonons with the wave vektoriented
typically observe that kinetic energy tends to increase duringperpendicularly to one of the three most compact directions
amorphization. In a real situation this energy transforms intdn the lattice. Note that for the interparticle potential we use,
heat. Here we simply eliminate it by the mentioned rescalinghe longitudinal phonon branch along these directions is of
procedure. Pressure is calculated by a direct evaluation ithe type~sin(k), and all shear phonons—irrespective of the
terms of the interparticle forces. We choose to model thebsolute value ok—become zero energy at the same point.
system at constant volume in order to survey all regions offhen, in the present case the instability pressure is macro-
the volume-pressure curve, including those that would bescopically signaled by the vanishing of the stress dependent
unstable in constant pressure simulations. The results to khear modulus of the materidt’® p=(C;;—C,p)/2— P
presented correspond to a two-dimensional system, to facili=0.
tate a direct visualization of the particle configurations. We At v° there is a sharp and abrupt increase of pressure.
should mention, however, that the same phenomenology wesnapshots of the particle configurations give clues of what
observed in three-dimensional samples with the same intekappens in the system. In Fig(a® we see the triangular
particle potential. configuration just before the instability. FigurébB shows

Ill. ZERO-TEMPERATURE RESULTS
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physical meaning as the transition pressanee the disor-
dered phase has been nucleat&tis suggests that if nucle-
ation centers are present in the systé, will be experi-
mentally accessible as the actual transition pressure. In fact,
Fig. 1 shows also the-P evolution for a system with a
single vacancy and for a system with grain boundaries. In the
former case, the instability occurs befargis reached, and

in the latter case it even occurs without any pressure
reentrancé! Note that the three curves tend to coincide after
the first destabilization of the original lattice. Two snapshots
of the system for the polycrystalline cd$égs. 3e) and 3f)]
show how the disordered phase grows from grain bound-
aries, which provide nucleation centers for the transforma-
tion. These results are a clear indication that defects are very
effective in lowering the energy barrier for the transition, and
also explain why, in experiments, transformation pressures
close to the thermodynamic values are usually observed. The
lowering of the energy barrier due to defects and its relation
to thermodynamic melting has been discussed by Mizushima
etal? in the context of crystal-crystal pressure-induced
transformations. Note that in the case in which the transfor-
mation is triggered by defects, the phonon spectrum of the
system(and in particular the elastic constanggves no in-
dication of the instability that is about to occur. This is par-
ticularly obvious in the case of a single vacancy: a single
defect cannot modify the phonon spectrum of an infinite
sample, and then its effect is not seen in the elastic constants,
but it produces a finite change in the value of the critical
pressurePg 23

FIG. 3. Snapshots of the systems at the points indicated . . . .
Fig. 1 (only about a quarter of the full simulated system is shown It was already mentioned that for the interaction potential

Upper four panels correspond to a perfect crystal starting sampléj,seg’ the whole branch of §hear phonons become ZET0 energy
whereas the two lower panels are from a polycrystalline samplét Po- We want to emphasize however that amorphization is
with grain boundaries and vacancies. not related to this degeneracy, as it can also be triggered by a
single phonon becoming unstable. In fact, we did simulations

that after changing the volume a very small quantity, an in-W'th a modified potential in wh|ch an attractive tend,
stability has propagated in the system. We stress that threeachmg up ’Fo secon_d-nearest ne|ghbors_ was mgluded. The
evolution of the system from the configuration in Figaido actuallpotenual qsed is that of the preceding section plus an
that in Fig. 3b) is triggered by a very small volume change, atfractive term given by
and is just the steepest descend evolution toward a local en-
ergy minimum of the energy landscape. In this evolution,
pressure recovers to a higher value indicated®agdashed
line) in Fig. 1. This value is roughly maintaingdupon fur-
ther volume increase up t/r3~1.27, which is close to the 5 5
volume at which the disordered regions have taken over the Va(r)=—2eo[(r—2r)°—(ry—2rp)/2]
whole system. If volume is increased further, pressure de-
creasesynoticeably. P for (rq+2rg)/2<r<2ry. (2

The thermodynamic equilibrium pressupé at T=0 be-
tween the crystalline and disordered structures is indicategthe instability corresponds now to the vanishing of the en-
by the arrow in Fig. 1. The value d?® was calculated by ergy of edge zone shear phonons only, as indicated in Fig. 2.
enthalpy evaluations of the triangular lattice and the amorThe amorphization of the system occurs precisely at the
phous structure obtained by quenching from the melt. Thuspoint where this phonon becomes zero energy, and it was
P€ represents the natural extrapolation of the melting line tibserved to be similar to the previous case where the full
zero temperature. We see thRt is close to(though a bit  shear phonon branch becomes unstable at the same pressure.
higher than P*. This rules out an amorphization mechanism in which at the

It must be noticed that constant pressure simulationsnstability, arbitrary combinations of the unstable phonons
would have shown &g an abrupt transition between a com- generate disordered movements of the atoms, and favors a
pletely ordered and a completely disordered system, whileascade mechanism as described in the discussion section
P* would have remained hidden. Howevé¥; has a clear below.

Va(r)=2gq(r—rq)% for ry<r<(ry+2rg)/2,
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The first line in Eq.(3) is the harmonic contribution, the
IF second is a cubic term in the displacemeftitere is an ad-
ditional cubic term proportional t6>, but this can be shown
0 ‘ ‘ ‘ ! to be not relevant for the analysis belowhe system be-
0 10 20 30 40 50

kr comes unstable when the coefficientdfvanishes, provid-

0 ing again the condition 3'/a+V"=0, which defines the

FIG. 4. The structure factor of the amorphous structure obtained =0 valuesPg and v°. Close enough to this instability

by decompression of a perfect crystalline sample and that obtainegoint, 3vV'/a+V" is proportional toP—P§ and to lowest
by a quench from the liquid phase, at the same volum&  order all other coefficients can be considered to be constants.

=1.289. They coincide within the numerical precision. Then generically, the energy can be written as
J3ka
IV. COMPARISON BETWEEN DECOMPRESSED e0=sir72< 2 )[A(P— PC) 5t2_|_ Bélz]
AND QUENCHED AMORPHOUS STRUCTURES
The claim that the disordered structure we obtain upon ) \/§ka ’
Lo - i +sint| ——|[D824/]. (4)
decompression is really amorphous is supported by the fol 4 t

lowing facts. We find no evidence for orientational order in . ) i ] o
the structure factoB(k), even in the case in which we start | "€ existence of & term is very important, as it indicates

with a monocrystalline sample. Moreover, a quantitativethat for P slightly larger thanPg there is a saddle point
comparison with the structure factor of a system quencheéfctually two, one with positive and the other with negative
from the liquid (prototypic of an amorphous samplehows 9t close ©05=0, 6=0, than can be determined requiring
that they are indistinguishablig. 4). In addition, we have Stationarity of Eq(4). The result is

failed to find any single systematic difference between the 2AB(P-P°)
two amorphous structures. ov= tw,
a
D sin( 7
V. FINITE-TEMPERATURE EFFECTS
, . . A(P—P)
If temperature is not strictly zero, even the perfect lattice &S=W (5)
amorphizes before the ultimate mechanical instability limit is D sin( a
reached. Simulations at finite temperature with perfect 4

samples show that the amorphization occurs at &yhere the superscript indicates the values at the saddle. If the
temperature-dependent critical pressi®&T) [such that system reaches this saddle it can escape from the local mini-
P°(T=0)=Pg]. The temperature dependence of the criticalmum at the origin, namely, the system destabilizes. The en-
pressure originates in the fact that a thermally activated proergy barrierh for this process is obtained by reinserting Eq.
cess may destabilize the soft phonon before it actually bef5) into Eq.(4). The result is

comes zero energy.

It is instructive to see in some more detail how this desta- _ 4A’B(P—P°)?
bilization occurs. Consider the normal modghonon$ of h= D2 '
the system. We will study the case in which only a single
phonon with wave vectdk perpendicular to one of the high- Note that the barrier is exactly the same whatever the wave
density planes has nonzero amplitude. We expand the energgctor of the phonon considerdthis is no longer true if
of the lattice in powers of the amplitude of the phonon os-further neighbors interactions are included, but the possibil-
cillation, going one order beyond the harmonic approximadty to escape through the jump of a barrier remainkhe
tion. Let us call§, and &, the longitudinal and transverse instability mechanism is then driven by ti#s; term in the
oscillation amplitudes of that phonon. As we will see there isenergy, what implies a not trivial coupling of transverse
a nontrivial coupling between the two at the instability. modes(those actually having vanishing frequenh@nd lon-

Taking into account that our potential produces interacgitudinal ones. At finite temperatures the barriecan be
tions only among first neighbors in the lattice, the energy pesurmounted. Nucleation theory tells that escape timis
particleey of the system up to third order in the amplitudes proportional to exg{/T). Assuming the preexponential factor
can be written after some lengthy but straightforward calcuis a constanty (this is certainly not true, but dependences on
lation as 7o become weak in the final respite obtain that if a time,

(6)
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8 ' . ‘ l ' . the stress dependent shear modyluganishes aPg, as we

I | already knew from the phonon dispersion relation, but at
#0 extrapolation is consistent with a vanishing ofvery
close toPg, and certainly not aP°(T). The thermally acti-
vated process that at finite temperatures leads to the instabil-
ity at the higher pressur®®(T) is a rare event that it is
enough to occur once to completely destabilize the system.
This process is not captured in the value of the elastic con-

stants.
‘ The results presented above correspond to samples with-
0. } X L X
KTV, out defects. For defective samples the amorphization line

P*(T) is only weakly dependent of In addition, it is very
FIG. 5. Evolution ofP¢ (full circles) andP* (full squaregas a  close to the extrapolation of the melting line obtained
function of temperaturdbars in P* indicate the whole range in from simulations at higher temperaturege Fig. 5. P*(T)
which transformation occursThe inset shows in a log-log plot that and P¢(T) are well different from each other, particularly at
AP°=PS(T)~P%(T=0) increases aJ'? at finite temperatures. very low temperatures. Defects are responsible for this dif-
The extrapolation of the melting linérom calculations at higher ference, and provide the link between the “mechanical” and

temperatures, two points are seénindicated by the dashed line. It “thermodynamica|” scenarios for pressure amorphization_
goes toP® at T=0.

is given, the system will overcome the energy barriet,if V1. DISCUSSION AND CONCLUSIONS
=7, and from here we obtain the formula for the temperature The experimental observation that in some materials PIA

necessary to escape a given barrier, namely, occurs roughly along the extrapolated melting line has moti-
1 vated the suggestiérthat “thermodynamic melting” is the
T>hIn"*(to/ 7). @) underlying driving force for amorphization. Our results show

For practical purposes the logarithmic factor can be usualI)}ehnegnar:;?;?:ézﬁg'ogeithgiriggle mgg;ﬁﬁ{:slslﬁlwzgfse; ﬁ’g;;gg;n'
taken to be approximately 0.1. As~(P—P§)?, we obtain - NP X

that the critical pressur®@°(T) increases ad’2 at finite mechanical instabilities reflect necessarily in the phonon

. . X . spectrum of the material, and amorphization can be easily
temperatures, a behavior that is well reproduced in the SIMYelated to a mechanical process. However, for defective lat-
lations (Fig. 5. The P%(T) line is then the pressure amor- '

NI : tices, the mechanical instability that triggers amorphization
phlza}non line for a sample wnhou; defects,. and can be PrOBrs associated with localized vibrational modes around de-
erly interpreted as the mechanlc_al melting I.m(.e of th'$ fects, and this instability occurs typically without any notice-
system. In Fhe absence of defe_,-cts, it marks the I_|m|t on Whlcr<l;1ble signature in the phonon spectrum, i.e., the mechanical
the crystalline phase destabilizgarely mechanically ar nature of the process is more subtle. We emphasize that a

=0, and by a therma!ly activated processTatO).. Note', single defect is sufficient to trigger the amorphization of a
however, that the elastic constants of the system, in part'CUIE\Whole macroscopic sampfé

the shear modulug, do not extrapolate to zero &(T), How this first instability is able to transform the highly

Except aﬂ-:f% (see Fig. ? n f?ﬁ;’z}hﬁ numirlca:]eva]lclfuatm? ordered original lattice into a fully amorphous configuration
y means of fluctuation formu shows that the effect of g 1y easy to understand, specially considering that this evo-

temperature in the elastic constants is very smallTAt0 4o, is fully deterministic from a mechanical point of view,
and can be described as the steepest descendant path of the

15 T T T T T

configuration point of the system onto its energy landscape.

e oot A deep understanding of this process will surely shed light

ok - kT,SZ=0.002 | also onto the very definition of what an amorphous material
W vvkTre, = 0.004 is, typically characterized by what it lacks, instead of what it
s possesses. Here we make only the following considerafions.

2 s | The first instability of the latticdat T=0) can always be

pe described as the vanishing of the frequency of one of the

[ 0 normal modes of the system. This normal mode may be a

, 1 , l l , , ‘ phonon for a perfect lattice or a localized mode for a defec-

45 5 52 33 36 38 4 a2 tive lattice. When the coordinate characterizing the destabi-

Pru
Gl lizing mode grows, it typically goes beyond the applicability

FIG. 6. Variation of the stress dependent shear modulugth  limit of the linear theory, and the whole mechanical stability

pressure at different temperatures. For0, u vanishes at the Of the system has to be reanalyzed. Then, although the analy-
critical pressuréP®(T=0), but for increasing temperaturgsdoes ~ Sis of Sec. V is appropriate to determine the barrier for the

not tend to zero at the corresponding critical pres®fi@) (indi-  System to scape from its metastable equilibrium, it cannot be
cated by the arrowsshowing that the transition is not macroscopi- continued when the system actually overcomes the saddle
cally captured by the elastic constants. without including the interaction with other modes. For in-
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(a) (b) symmetry. If this is the case, then this single phonon will
drive a transformatioiwhich has the character of a marten-
LA A sitic transformatioj to a new(poly)crystalline phase. This
and other intermediate cases, which in our model occur for

000000000 000000000 different parameters, will be discussed separately.

900000000 Q."..Q.‘ In summary, we have arrived at a picture of the mecha-
900000000 nism of PIA, reconciling mechanical and thermodynamical
000000000 melting in a unifying scheme. The present model exhibits a

one-step crystal-to-amorphous transition to a truly amor-
phous state that does not differ from the disordered structure
FIG. 7. The first steps in the cascade process from a perfect tobtained by quenching from the melt. Once the transforma-
an amorphous lattice: The original perfect lattice becomes unstablion is triggered, it is followed by a cascade process that
when the energy of a phonon vanishes, and this drives a transitioproduces the amorphous structure. For a perfect lattice, and
to a sample with a shuffléa). This configuration however is not vanishingly small temperatures, the transformation takes
stable and spontaneously evolves toward the configuratigb)in  place through a shear phonon instability at a pressure far
But this is not stable yet, and the process continues until equilibapart the thermodynamical equilibrium pressure. For defec-
rium is reached when a finite fraction of the system is transformedjye |attices, the mechanical instability shows up by the de-
[compare with Figs. @) and 3b)]. stabilization of localized vibrational modes, close to the ther-
stance, it occurs in our system that once the coordinate of th@odynamlcgl nghbnum [pressure. In e|the.r case, t_he
etlransformatlon is always triggered by mechanical instabili-

unstable phonon starts to increase, it couples to oth .
es. Temperature can produce the transition to occur before

phonons and the result is that a shuffle of two pieces of th%j hanical stability limit i hed. due t f
material develops. In this way, the instability generated by ai"€ mechanical stability limit is reached, due to a process o
thermally activated jump over a barrier. In real samples with

extended objectthe unstable phongrproduced a localized - : . .
(one-dimensional defect on the lattic&® But it turns out appropriate defects, expenmgntal transition pressures will be
that, in the present case, the new configuration of the lattic een close to the extrapo_latlo_n of th_e meiting Ime._These
is not stable either, and a new distortion occurs spatiall acts reconcile different claims in the literature regarding the
close to the region, already distortddee Fig. 7. In the nature of the PIA of materials. We remark that, although we
L 0r[)resented results for a two-dimensional model system, pre-

present case of amorphization, it is likely that a cascade i ) ; i N
these processes occurs, which leads to an amorphous Strdl&“@lnary results in three-dimensional samples qualitatively

ture. The spatially localized nature of the process reflects ifdree with the phenomenology stated above, and W'!I be pre-
the fact that for partially transformed samples, transforme ented elsewhere. We finally stress that these considerations

and untransformed regions are spatially separated, as seen gve potential applications in the study of melting mecha-

Fig. 3. We however emphasize that another possibility could"SmS of crystalline materiafS.

be that after the first phonon njstablllty and the' first §huffle, ACKNOWLEDGMENTS
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