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Pseudogaps in nested antiferromagnets
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We analyze the fluctuation corrections to magnetic ordering in the case of a three-dimensional antiferromag-
net with flat Fermi surfaces, as physically realized in the case of chromium, and find that they are insufficient
to produce a quantum critical point. This implies that the critical point observed in vandium doped chromium
is due to a loss of nesting. We also derive the fermion self-energy in the paramagnetic phase and find that a
pseudogap exists, though its magnitude is significantly reduced as compared to the spectral gap in the ordered
state in the limit where the latter is small in comparison to the Fermi energy.
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The subject of magnetic quantum critical points h
sparked much interest in the physics community. In the c
of heavy fermion metals, this interest has largely been m
vated by the observation that Fermi-liquid theory brea
down in the vicinity of such critical points.1 At present, the
theory behind this breakdown is not well understood beca
of the strong coupling nature of the Kondo lattice problem2

Recently, Yehet al.3 have studied the more straightfo
ward case of vanadium doped chromium. Chromium is
classic example of a spin-density wave magnet driven
Fermi surface nesting.4 Upon doping with vanadium, the
Néel temperatureTN is rapidly suppressed to zero. Motivate
by the speculation that the Hall number may jump at a m
netic quantum critical point due to Fermi surfa
rearrangement,2 the authors of Ref. 3 studied the Hall co
ductivity and indeed identified such a jump. Moreover, th
found a strong temperature dependence of the Hall num
which they speculated was due to the presence o
pseudogap near the critical point. The corresponding sig
ture of this pseudogap has been looked for as a spin ga
the dynamic susceptibility, but so far results a
inconclusive.5

The simplicity of the case of vanadium doped chromiu
obviously begs for a theoretical treatment. Recently, it
been shown that the jump of the Hall number can be und
stood due to the sudden removal of flat parts of the Fe
surface upon magnetic ordering.6 The presence of flat Ferm
surfaces obviously points to the possibility of a pseudog
given the quasi-one-dimensional nature of the ferm
dispersion.7

In this paper, we consider the flat Fermi surface mode
chromium originally proposed by Shibataniet al.8 where the
Fermi surface is approximated as a cube. We find, in ag
ment with earlier work,9 that fluctuation corrections are les
singular than in a nonnested antiferromagnet, and thus
insufficient to drive the Ne´el temperature to zero. Rather, th
critical temperature must be driven to zero by loss of Fe
surface nesting.10 This is consistent with recent pressu
data,11 which indicate scaling exponents near the critic
point for the Néel temperature and Hall number in agreeme
with analytic results based on a curved Fermi surfac6

Moreover, we evaluate the fermion self-energy in the pa
magnetic phase, and indeed find a pseudogap in the spe
function. This pseudogap, though, scales asTN

3 /EF
2 for TN
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!EF , whereEF is the Fermi energy, and thus is likely to b
too small to be responsible for the strong temperature va
tion of the Hall number.3 Instead, the observed variation ma
be due to the temperature dependence of the inelastic
tering rate, as observed in other transition metals.12 On the
other hand, for more strongly correlated systems whereTN
;EF , then the pseudogap does scale asTN .

The polarization bubble for the flat case is identical to th
of the BCS theory for superconductivity.13 That is,

x05N@ ln~1.14D/T!2j2q21 iav#, ~1!

whereD is the ultraviolet cutoff~bandwidth! and N is the
density of states. The expansion coefficientj is isotropic for
the commensurate case (Q52p/a for chromium!, and
weakly anisotropic for the incommensurate case13 (q is de-
fined relative to the ordering wave vector,Q). In linear-
response theory, the interacting susceptibility is

xMF5x0 /~12gx0!, ~2!

whereg is the exchange interaction. The zero of this denom
nator defines the mean-field transition temperature,TMF
51.14De21/gN. The mean-field inverse susceptibility is the

xMF
21 5

Ng

x0
F ln

T

TMF
1j2q22 iavG . ~3!

Fluctuation corrections in the Hartree approximation give
true inverse susceptibility of14

x215xMF
21 1b^M2&, ~4!

with b diverging as 1/T2, a as 1/T, andj as 1/T. The system
undergoes a transition towards antiferromagnetic order
temperatureTN for which x21(v50, q50)50. The impor-
tant difference of the nesting case to a normal thr
dimensional~3D! antiferromagnet is the temperature depe
dence of the expansion coefficients. Because of this, s
fluctuations become relatively less important as the temp
ture is lowered, and thus fluctuation effects are less singu9

To see this, we approximatêM2&, the fluctuating stag-
gered moment, by its classical value (v!T)

^M2&5
T

2E d3q

~2p!3
x~q,0!5

Tqcx0

4p2Ngj2
. ~5!
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The latter equality assumes thatT5TN . If qc , the classical
cutoff, is assumed to satisfy the conditionG(qc)5T, then
one can show that the classical value is approximately e
to the true quantum-mechanical value for^M2&.14 Here,G is
the frequency half width of the dynamic susceptibilit
which, atT5TN is qc5AaT/j. Using this,̂ M2& reduces to

^M2&5
T4Aa8x0

4p2Ngj83
, ~6!

where a85aT and j85jT are temperature-independe
constants. Recognizing thatb85bT2 is also a temperature
independent constant,x21(0,0) reduces to

x21~0,0!5 ln
T

TMF
1

b8Aa8T2x0
2

4p2N2g2j83
. ~7!

That is, the correction toTMF goes asT2ln2T, which is less
singular than theT3/2 correction for an ordinary 3D
antiferromagnet.15 Our result agrees with earlier results
Hasegawa,9 though our derivation is more straightforward

SinceTN can never be driven to zero for a perfectly fl
Fermi surface~due to the logarithmic divergence ofx0),
then one might think that the quantum critical point is pro
ably not controlled by fluctuations.16 Rather, loss of nesting
is the likely cause of the quantum critical point. This is co
sistent with band theory results,6 which find an increasing
mismatch of the electron and hole octahedral surfaces as
hole doping is increased. Such warping corrections w
cause the fluctuation corrections to cross over to the stan
3D antiferromagnetic result near the critical point.

Having addressed the question of fluctuations, we n
turn to the question of the pseudogap. Postulating
pseudogap in the case of nesting is quite natural given
quasi-1D nature of the fermion dispersion. On the ot
hand, as we have seen above, despite this quasi-1D beha
the spin fluctuation spectrum is still 3D-like, and this rais
questions about how strong the pseudogap effect will be
address this, we derive the fermionic self-energy to low
order. We note that this is given by a convolution of
effective interactionV with the fermion Greens function
where17

V5g1g2x1g2x/~11gx0!.~3g/2!x/x0 , ~8!

with the first term the bare interaction, the second one fr
summing a ladder series, and the third from summing
bubble series. The most singular part of the fermionic s
energy comes from the classical fluctuations, and can be
proximated as18

S5
3T

2NE d3q

~2p!3

1

A1j2q2

1

v2ek1Q1q
, ~9!

where e is the fermionic dispersion andA5 ln(T/TMF)
1(bx0 /Ng)^M2&. In the flat case,ek1Q1q52ek2vqi , where
v is the Fermi velocity andqi is normal to the flat surface.S
now becomes
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3T

2NE dqid
2q'

~2p!3

1

A1j2~qi
21q'

2 !

1

v1ek1vqi
. ~10!

The integral overq' gives (j2qc
25aT),

S5
3T

8pNj2E dqi

2p
lnS A1j2qi

21aT

A1j2qi
2 D 1

v1ek1vqi
. ~11!

The qi integral is convergent, and the cutoff can be taken
infinity. The result is

ReS5
3T

8pNvj2 S tan21
j~v1ek!

vAA
2tan21

j~v1ek!

vAA1aT
D ,

~12!

ImS5
3T

16pNvj2
ln

A1~j/v !2~v1ek!
21aT

A1~j/v !2~v1ek!
2

. ~13!

To understand these expressions further, we assume
T5TN (A50) where the pseudogap effect should be m
pronounced. This yields

ReS5
D̄2

2.7TN
S p

2
sgn~v1ek!2tan21

v1ek

2.7TN
D , ~14!

ImS5
D̄2

5.4TN
lnF11S 2.7TN

v1ek
D 2G , ~15!

where a typical energy scaleD̄ is defined as

D̄258.1TN
4 /~8pNvj82!. ~16!

These were obtained by noting that for the flat case,9 a8
5p/8 and j85vA7j(3)/(16p2), where j(3)51.202. We
note that 2.7TN is the natural frequency scale of the proble
and thatD̄ has units of energy.

The fermion spectral function is given as

A~k,v!5
1

p

ImS

~v2ek2ReS!21~ ImS!2
. ~17!

In Fig. 1, we show the spectral function at the Fermi surfa
for two cases,D̄52.7TN and 0.27TN . In the first case
~strong-coupling limit!, the spectral gap is approximate
equal toD̄. In the second case~more appropriate for chro
mium as will be seen below!, the spectral gap is significantl
smaller thanD̄. In Fig. 2, we plot the spectral gap obtaine
from half the spectral peak to peak separation in Fig. 1 v
sus D̄. For large D̄ ~comparable toTN), the spectral gap
scales withD̄, whereas for smallD̄, the spectral gap scale
quadratically withD̄.

To understand these results analytically, we note that
pole of the fermion Greens function on the Fermi surface
given by the conditionv2ReS(v)50. Let us first assume
2-2
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FIG. 1. Spectral functionA on the Fermi sur-
face derived using Eqs.~14!–~17! for two values

of D̄. Note differing energy scales in the tw
plots.
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this pole energy is of order 2.7TN . Then under these cond
tions, ReS in Eq. ~12! can be approximated as~high-
frequency expansion!

ReShigh5
D̄2

v
. ~18!

This expression is identical to the BCS expression for
self-energy, and the pole can easily be seen to occur a
energyD̄. That is, there is a spectral gap equal toD̄, and this
explains the behavior for largeD̄ in Fig. 2. By noting that the
density of states for the flat case,N, is 1/(2pva2), then

D̄56.2TN
2 a/v. ~19!

Sincev/a;EF (a is the lattice constant!, this would imply
that TN must be of the order of Fermi energyEF for this
high-frequency approximation to be valid. This is not sat
fied for chromium, sinceTN!EF in that case.

In the other limit, one expands the self-energy for sm
v, obtaining~low frequency expansion!

ReS low5
D̄2

2.7TN
S p

2
sgn~v!2

v

2.7TN
D . ~20!

The pole energy is then given approximately
(p/2)D̄2/(2.7TN). Therefore, for the case whereTN!EF ,
then the spectral gap scales asTN

3 /EF
2 .

FIG. 2. Spectral gapD ~half the peak to peak separation in Fi

1! vs D̄ derived using Eqs.~14!–~17!. Note quadratic behavior o

the spectral gap for smallD̄ and linear behavior for largeD̄.
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Pure chromium exhibits a classic mean-field transition
far as specific-heat measurements are concerned.4 This im-
plies that it is in the weak-coupling limit, consistent with th
small ratio ofTN to EF . We can quantify this by using pa
rameters extracted from neutron-scattering data. In Ref
the authors use a form for the susceptibility identical to
one employed here

x~q,v!5
xQ

11q2/k0
22 iv/vs f

. ~21!

By comparing to our expressions, we see thatk0
25A/j2 and

vs f5A/a. Using this, the prefactor outside the parenthe
in Eq. ~12! becomes 6T2k0

2a2/(pvs f) and the quantities di-
viding (v1ek) in the tan21 functions in Eq. ~12! are
2.7Avs fT and 2.7Avs fT1T2 respectively. For Cr-V 5%,
k050.11 Å21 and vs f588 meV for T512 K (a
52.88 Å). We plot the resulting self-energy from Eqs.~12!
and~13! in Fig. 3. Though thev structure ofS is reasonable
~looking like a damped version of Eq.~18! with a maximum
in ReS at 26 meV!, the value ofS itself ~nanovolts! is far
too small to cause a pseudogap.

Based on this, we expect only weak pseudogap effe
even in the magnetically ordered part of the phase diagr
We note that our derivation of the self-energy assumes
the spin structure factor is quasistatic, a property of
renormalized classical regime.18 That is, we would not nec-

FIG. 3. Self-energy on the Fermi surface calculated from E
~12! and ~13! using neutron-scattering parameters from Cr-V 5
Although thev scale is reasonable, the magnitude ofS is so small
~nanovolts! that a pseudogap does not develop.
2-3
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essarily expect pseudogap effects in the quantum critica
gime. This conclusion is bolstered by our evaluation of qu
tum corrections to the self-energy, which we do not find to
singular.

On the other hand, in the flat modelTMF never vanishes
as a function of doping. It is a loss of nesting which leads
the quantum critical point. Therefore, it is possible tha
pseudogap exists for all dopings which satisfyTN,T
,TMF . This is illustrated in Fig. 4. Still, we expect tha
although pseudogap effects are possible near the qua
critical point of vanadium doped chromium, they are like
to be weak. They could perhaps be best searched fo
photoemission, which sees the spectral gap quite easil
pure chromium.19

This begs the question of what is responsible for
strong temperature dependence of the Hall number obse

FIG. 4. Illustration of a possible scenario for the pseudog
phase in the V doped Cr system.TMF

f lat is the mean-field temperatur
for a flat Fermi surface,TN the actual transition temperature whic
is suppressed by loss of nesting~warping of the Fermi surface!. The
pseudogap, if it exists, should be confined to the region betw
these two temperatures.
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by Yeh et al.3 which occurs even for dopings far beyond th
quantum critical point. The Hall number is temperature d
pendent in transition metals such as Cu, which can be at
uted to the temperature dependence of the electron-pho
scattering rate.12 For the vanadium doped chromium cas
this would be consistent with theT3 dependence of the
resistivity,3 which points to the prevalence of electro
phonon effects. Moreover, the experimental Hall number3 is
in excess of the paramagnetic band theory value6 for tem-
peratures above 150 K, again indicating the presence o
inelastic-scattering contribution~which could be of magnetic
origin as well!. Calculation of theT dependence of the Hal
number, though, is technically challenging12 since it involves
going beyond the Boltzmann approximation, so we do
consider this further here.

On the other hand, our results do indicate a la
pseudogap in the strong-coupling limit. We note that th
are examples of quantum critical points where Fermi-liqu
theory is known to break down, and where nesting may
playing an important role, such as in the case of the bila
ruthenate Sr3Ru2O7.20 Moreover, magnetic incommensura
bility is seen in most quantum critical heavy fermion sy
tems, such as Au doped CeCu6.21 It is possible that the re-
sults presented here, which were derived for the case whe
strong Fermi surface rearrangement takes place at the q
tum critical point, are quite relevant for these systems. Ba
on this, we suggest that pseudogap effects be searched f
heavy fermion quantum critical systems.
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