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Pseudogaps in nested antiferromagnets
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We analyze the fluctuation corrections to magnetic ordering in the case of a three-dimensional antiferromag-
net with flat Fermi surfaces, as physically realized in the case of chromium, and find that they are insufficient
to produce a quantum critical point. This implies that the critical point observed in vandium doped chromium
is due to a loss of nesting. We also derive the fermion self-energy in the paramagnetic phase and find that a
pseudogap exists, though its magnitude is significantly reduced as compared to the spectral gap in the ordered
state in the limit where the latter is small in comparison to the Fermi energy.
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The subject of magnetic quantum critical points has<Eg, whereEr is the Fermi energy, and thus is likely to be
sparked much interest in the physics community. In the castoo small to be responsible for the strong temperature varia-
of heavy fermion metals, this interest has largely been motition of the Hall numbe?.Instead, the observed variation may
vated by the observation that Fermi-liquid theory breaksoe due to the temperature dependence of the inelastic scat-
down in the vicinity of such critical pointsAt present, the ~ tering rate, as observed in other transition meta®n the
theory behind this breakdown is not well understood becausether hand, for more strongly correlated systems whgre
of the strong coupling nature of the Kondo lattice probfem. ~Eg, then the pseudogap does scaleTgs

Recently, Yehet al® have studied the more straightfor-  The polarization bubble for the flat case is identical to that
ward case of vanadium doped chromium. Chromium is thef the BCS theory for superconductivity.That is,
classic example of a spin-density wave magnet driven by B 5 9,
Fermi surface nestiny.Upon doping with vanadium, the Xo=N[In(1.1D/T) - &g +iaw], @
Neel temperaturd y is rapidly suppressed to zero. Motivated where D is the ultraviolet cutoff(bandwidth and N is the
by the speculation that the Hall number may jump at a magdensity of states. The expansion coefficiéns isotropic for
netic quantum critical point due to Fermi surfacethe commensurate caseQ€2m/a for chromium, and
rearrangemerftthe authors of Ref. 3 studied the Hall con- weakly anisotropic for the incommensurate dage is de-
ductivity and indeed identified such a jump. Moreover, theyfined relative to the ordering wave vectdd). In linear-

found a strong temperature dependence of the Hall numberesponse theory, the interacting susceptibility is
which they speculated was due to the presence of a

pseudogap near the critical point. The corresponding signa- XmE= Xo/(1=0xo0), ()
ture of this pseudogap has been looked for as a spin gap
the dynamic susceptibility, but so far results are
inconclusive’

The simplicity of the case of vanadium doped chromium

Whereg is the exchange interaction. The zero of this denomi-
nator defines the mean-field transition temperatrge
=1.14De Y9N, The mean-field inverse susceptibility is then

obviously begs for a theoretical treatment. Recently, it has g T
been shown that the jump of the Hall number can be under- XmE=— InT—+§2q2—iaw . ®)
stood due to the sudden removal of flat parts of the Fermi Xo MF

surface upon magnetic orderifigihe presence of flat Fermi Fluctuation corrections in the Hartree approximation give a
surfaces obviously points to the possibility of a pseudogaptrue inverse susceptibility &f
given the quasi-one-dimensional nature of the fermion
dispersior. X 1= xuetb(M?), 4

In this paper, we consider the flat Fermi surface model of . . . 5
chromium originally proposed by Shibataeti al® where the with b diverging as IF » aas 1T, andf as 1m. Thg system
Fermi surface is approximated as a cube. We find, in agre Indergoes a transition towards antiferromagnetic order at a

X e e . i
ment with earlier work, that fluctuation corrections are less emtp((ejr;turéN for }Nrt"hChX (tf”_o’ q—O%—O. The ImIpOtL
singular than in a nonnested antiferromagnet, and thus at?n ierence of the nesting case 1o a normal three-
insufficient to drive the Nel temperature to zero. Rather, the imensionak3D) antlfefrromagn'et' is the temperature d_epem
i dence of the expansion coefficients. Because of this, spin

critical temperature must be driven to zero by loss of Ferm ) . :
P y %Iuctuatlons become relatively less important as the tempera-

surface nestind® This is consistent with recent pressuret re is lowered, and thus fluctuation effects are less sindular
data!® which indicate scaling exponents near the critical ure Is lowered, us fluctu '2 . inguiar.
To see this, we approximatM <), the fluctuating stag-

point for the Nel temperature and Hall number in agreement d ' by its classical val T
with analytic results based on a curved Fermi surface 9€r€d moment, by Its classica value €T)

Moreover, we evaluate the fermion self-energy in the para- T 4 T
magnetic phase, and indeed find a pseudogap in the spectral (M2)= _J q (0.0 = O ®)
function. This pseudogap, though, scalesTa¢EZ for Ty 2) (2m)3 47°Ngé?
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The latter equality assumes thB& Ty . If g, the classical 3T [ dgd?q, 1
cutoff, is assumed to satisfy the conditidi{q.,)=T, then szf H 3 7 orer . (10
one can show that the classical value is approximately equal (2m)° A+&%(qj+q) @7 &TUq
to the true quantum-mechanical value {o42).** Here,I' is The intearal _ 2l o T
the frequency half width of the dynamic susceptibility, € integral oven, gives €°qc=aT),
which, atT=Ty is q.= JaT/&. Using this(M?) reduces to
NS e £ Using this(M") 3T f dg [A+ £qt+aT 1 o
(M) T*a' xo © gmNg2) 2m A+&qf | oteactoqp
4mNge'’

Theq integral is convergent, and the cutoff can be taken to

where o' =aT and & =¢T are temperature-independent INfinity. The result is
constants. Recognizing thht =bT? is also a temperature-

independent constant,”(0,0) reduces to 3T ot &) _, fote)
Re> = —tan '——=|,
8Ny &2 v\/K vVA+aT
T b'Va'T?%3 (12
x 1(0,0=In + . (7)
TMF 477.2N292§/3

3T A+ (&lv)*(w+e)?+aT

; ; 2|22 P Im2 = In . (13

That is, the correction td,r goes asT<In-T, which is less 167N &2 A+ (El0)2(w+ €)?

singular than theT®? correction for an ordinary 3D k

antiferromagnet® Our result agrees with earlier results of

Hasegawd, though our derivation is more straightforward.
SinceTy can never be driven to zero for a perfectly flat

Fermi surface(due to the logarithmic divergence afp),

then one might think that the quantum critical point is prob- A2

To understand these expressions further, we assume that
T=Ty (A=0) where the pseudogap effect should be most
pronounced. This yields

ably not controlled by fluctuation'$. Rather, loss of nesting ReS = (ng,(w+ ) —tan ! w ¥ 6")' (14)
is the likely cause of the quantum critical point. This is con- 2.7y \ 2 2.y
sistent with band theory resuftswhich find an increasing
mismatch of the electron and hole octahedral surfaces as the A2 2.7T\\?
hole doping is increased. Such warping corrections will Im2 = sar.n 1t a)-l—e) : (15
cause the fluctuation corrections to cross over to the standard TN K
3D antiferromagnetic result near the critical point. where a typical energy scalke is defined as
Having addressed the question of fluctuations, we now
turn to the question of the pseudogap. Postulating a KZ=8.1T‘§,/(87TNU§’2). (16)

pseudogap in the case of nesting is quite natural given the

quasi-1D nature of the fermion dispersion. On the othefrhese were obtained by noting that for the flat chse,
hand, as we have seen above, despite this quasi-1D behaviar, g 44q ¢ =v\JTE(3)/(1679), where £(3)=1.202. We

the spin fluctuation spectrum is still 3D-like, and thig raises, ot that 2.7, is the natural frequency scale of the problem,
guestions about how strong the pseudogap effect will be. To — .
nd thatA has units of energy.

address this, we derive the fermionic self-energy to lowesf The fermi tral function is ai
order. We note that this is given by a convolution of an € fermion Spectral function IS given as
effective interactionV with the fermion Greens function,

7 1 I
wheré AKw)= = m _
T (w— e,—REY)%+(Im3)?

17

V=g+0°x+0*x/(1+9x0)=(39/2x/x0, (8
. . ) ] In Fig. 1, we show the spectral function at the Fermi surface
with the first term the bare interaction, the second one from . cases,A=2.7Ty and 0.27Ty. In the first case

summing a ladder series, and the third from summing _ : : . .
bubble series. The most singular part of the fermionic sel ?StL(;T%oCAEUFI)rl:nt?\elTioche CZZZEZ":; 22;(');;‘:2%’;'”;3:?3'

energy comes from the classical fluctuations, and can be a4

proximated a¥ mium as WiII_be seen belowthe spectral gap is significantly
smaller thanA. In Fig. 2, we plot the spectral gap obtained
3T J. d3q 1 1 © from_half the spec_tral peak to peak separation in Fig. 1 ver-
2NJ (2m)° A+ 2 O € grq’ SUSA. For_largeA (comparable_toTN), the spectral gap

scales withA, whereas for smald, the spectral gap scales
where € is the fermionic dispersion and\=In(T/Tyg) quadratically withA.

+(bxo/Ng}{M?). In the flat casesy g+ q= — €k—vqj, where To understand these results analytically, we note that the
v is the Fermi velocity andj; is normal to the flat surfac& pole of the fermion Greens function on the Fermi surface is
now becomes given by the conditiorw— ReX (w)=0. Let us first assume
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this pole energy is of order 2T¢;. Then under these condi- Pure chromium exhibits a classic mean-field transition as
tions, R& in Eq. (12 can be approximated agigh- far as specific-heat measurements are concétiféis im-
frequency expansign plies that it is in the weak-coupling limit, consistent with the
_ small ratio of Ty to Er. We can quantify this by using pa-
_A2 rameters extracted from neutron-scattering data. In Ref. 5,
Rezhigh_j' (18 the authors use a form for the susceptibility identical to the

one employed here
This expression is identical to the BCS expression for the

self-energy, and the pole can easily be seen to occur at an

— X
energyA. That is, there is a spectral gap equalitpand this x(g,w)= T Q ; (21
explains the behavior for largk in Fig. 2. By noting that the a7k wst
density of states for the flat cafi, is 1/(2mva?), then By comparing to our expressions, we see k&t A/£2 and
=A/«. Using this, the prefactor outside the parentheses
A=6.2T2alv. (19 s A oSG s, N P ! P

in Eq. (12) becomes 62«3a’/(mws) and the quantities di-
Sincev/a~Eg (a is the lattice constantthis would imply ~ viding (o+€) in the tan* functions in Eq.(12) are
that Ty, must be of the order of Fermi enerd for this  2.7JwgT and Z.R/cquTJrT2 respectively. For Cr-V 5%,
high-frequency approximation to be valid. This is not satis-ko=0.11 A'! and =88 meV for T=12K (a

fied for chromium, sinc& <Eg in that case. =2.88 A). We plot the resulting self-energy from E$2)
In the other limit, one expands the self-energy for smalland(13) in Fig. 3. Though thev structure of%, is reasonable
w, obtaining(low frequency expansion (looking like a damped version of EGL8) with a maximum
o in Re2, at 26 meV, the value of itself (nanovoltg is far
A? [ 1) too small to cause a pseudogap.
ReleW:2_—7TN Esgr(w)— 2—71-N) (20 Based on this, we expect only weak pseudogap effects,

_ _ . even in the magnetically ordered part of the phase diagram.
The _poIe energy is then given approximately bywe note that our derivation of the self-energy assumes that

(m/2)A%/(2.7Ty). Therefore, for the case whefg<Eg, the spin structure factor is quasistatic, a property of the
then the spectral gap scalesBYEZ. renormalized classical regim&That is, we would not nec-
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FIG. 3. Self-energy on the Fermi surface calculated from Eqgs.
FIG. 2. Spectral gap (half the peak to peak separation in Fig. (12) and (13) using neutron-scattering parameters from Cr-V 5%.
1) vs A derived using Eqs(14)—(17). Note quadratic behavior of ~Although thew scale is reasonable, the magnitudeSols so small
the spectral gap for smal and linear behavior for IargA (nanovolts that a pseudogap does not develop.
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Tt by Yehet al2 which occurs even for dopings far beyond the

] quantum critical point. The Hall number is temperature de-

] pendent in transition metals such as Cu, which can be attrib-

] uted to the temperature dependence of the electron-phonon
~~~-..;___TMFﬂa' ] scattering raté? For the vanadium doped chromium case,

7] this would be consistent with th&® dependence of the

resistivity> which points to the prevalence of electron-

] phonon effects. Moreover, the experimental Hall nurlier

] in excess of the paramagnetic band theory afoe tem-

] peratures above 150 K, again indicating the presence of an

] inelastic-scattering contributiofwhich could be of magnetic

c origin as wel). Calculation of theT dependence of the Hall

FIG. 4. lllustration of a possible scenario for the pseudogapnumber’ though, is technically challeng’rﬁglnce itinvolves

phase in the V doped Cr systeﬂ’{,’f‘Ft is the mean-field temperature 90'”9 beyo_nd the Boltzmann approximation, so we do not
for a flat Fermi surfaceT, the actual transition temperature which consider this further here.

pseudogap (7)

is suppressed by loss of nestitwgarping of the Fermi surfageThe On the other hand, our results do indicate a large
pseudogap, if it exists, should be confined to the region betweefiseudogap in the strong-coupling limit. We note that there
these two temperatures. are examples of quantum critical points where Fermi-liquid

theory is known to break down, and where nesting may be

essarily expect pseudogap effects in the quantum critical ré2/ying an importar;g role, such as in the case of the bilayer
gime. This conclusion is bolstered by our evaluation of quanfuthenate SiRu,0,.“" Moreover, magnetic incommensura-

tum corrections to the self-energy, which we do not find to be?ility is seen in most quantum critical heavy fermion sys-
singular. tems, such as Au doped Cegtt It is possible that the re-

On the other hand, in the flat mod&|,r never vanishes Sults presented here, which were derived for the case where a
as a function of doping. It is a loss of nesting which leads tostrong Fermi surface rearrangement takes place at the quan-
the quantum critical point. Therefore, it is possible that atum critical point, are quite relevant for these systems. Based
pseudogap exists for all dopings which satisfy<T  on this, we suggest that pseudogap effects be searched for in
<Tme. This is illustrated in Fig. 4. Still, we expect that heavy fermion quantum critical systems.
although pseudogap effects are possible near the quantum
critical point of vanadium doped chromium, they are likely ~We would like to thank the authors of Ref. 3, particularly
to be weak. They could perhaps be best searched for b'pom Rosenbaum, for communicating their work to us prior
photoemission, which sees the spectral gap quite easily it® publication. This work was supported by the U. S. Dept.
pure chromiumt® of Energy, Office of Science, under Contract No. W-31-109-

This begs the question of what is responsible for theENG-38. C.P. would like to thank the hospitality of ANL and
strong temperature dependence of the Hall number observéd.N. that of the SPhT, while this work was in progress.
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