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Ginzburg-Landau theory of vortices in a multigap superconductor
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The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS
model. The interaction between the two condensates is described by a unique Josephson-type mixing term. The
two-gap Ginzburg-Landau theory is then applied to investigate various magnetic properties piriéigBing
an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated
vortex. The orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel
to thec axis. A peculiar 30° rotation of the vortex lattice with increasing strength of an applied field observed
by neutron scattering is attributed to the multigap nature of superconductivity ir, MgB
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[. INTRODUCTION vestigation of the vortex core structure, and explanation of
the reorientational transition in the vortex lattice. The paper

Superconductivity in MgB discovered a few years afjo is organized as follows. Section Il describes the two-band
has attracted a lot of interest both from fundamental andCS model and discusses the fit of experimental data on the
technological points of view.Unique physical properties of temperature dependence of the specific heat. Section Ill is
MgB, includeT,=39 K, the highest amongwave phonon- devoted to a derivation of the Ginzburg-Landau functional
mediated superconductors, and the presence of two gafier a two-gap weak-coupling superconductor. In Section IV
A;~7 meV and A,~2.5meV evidenced by scanning We discuss various magnetic properties including the upper
tunneling'*'4 and point contaét® spectroscopies and by heat critical field and the structure of an isolated vortex. Section V
capacity measurementst® The latter property brings back considers the general problem of the orientation of the vortex
the concept of a multigap superconductivity’ formulated  lattice in a hexagonal superconductor in a magnetic field
more than 40 years ago for materials with a large disparity ofipplied parallel to the axis and then demonstrates how the
the electron-phonon interaction for different pieces of themultigap nature of superconductivity in MgRietermines a
Fermi surface. reorientational transition in the mixed state.

Theoretical understanding of normal and superconducting
properties of MgB has been advanced in the direction of
first-principles calculations of the electronic band structure
and the electron-phonon interaction, which identified two A. General theory
distinct groups of bands with large and small superconduct-
ing gaps:>~'° Quantitative analysis of various thermody- na
namic and transport properties in the superconducting stalg
of MgB, was made in the framework of the two-band BCSfr
model?*~28 An outside observer would notice, however, a
certain lack of effective Ginzburg-Landau- or London-type
theories applied to Mg This fact is explained by the quan-
titative essence of the discussed problems, though effectivey, t +
theories can often give a simpler insight. Besides, new ex- 55 E g””'f W g (X)W ) (X)W COW (%),
periments constantly raise different types of questions. For ' 1)
example, a recent neutron diffraction study in the mixed state
of MgB, has found a strange 30° reorientation of the vortexwheren=1,2 is the band index. A real-space representation
lattice with increasing strength of a magnetic field applied(1) is obtained from a general momentum-space form of the
along thec axis?® Such a transition represents a markedmodel**2under the assumption of weak momentum depen-
qualitative departure from the well-known behavior of the dence of the scattering amplitudgs, . We also assume that
Abrikosov vortex lattice in single-gap type-ll superconduct-the active band has the strongest pairing interactign
ors. The nature and origin of phase transitions in the vortex=g, compared to the interaction in the passive bapd
lattice are most straightforwardly addressed by the Ginzburg=g, and to interband scattering of the Cooper paifs
Landau theory. =g,,=03. Defining two gap functions

In the present work we first derive the appropriate
Ginzburg-Landau functional for a two-gap superconductor
from the microscopic BCS modell. We then investigate vari- Ay(X)=—2, G (P ()W 01(X)), 2
ous magnetic properties of MgRising the Ginzburg-Landau n’
theory. Our main results include demonstration of the up-
ward curvature oH.,(T) for transverse magnetic fields, in- the total Hamiltonian is transformed to the mean-field form

Il. TWO-BAND BCS MODEL

In this subsection we briefly summarize the thermody-
mics of ars-wave two-gap superconductor with the aim to
tract subsequently microscopic parameters of the model
om available experimental data for MgBWe write the
pairing interaction as
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A A independent® This approximation is valid only for

Hr= Econst 2 J dX[ W 1 ()h() W ,(x) r,=1—i.e., if all the coupling constants,, have the same

" order of magnitude(Forg§=9192 the above property is an
+An(x)\IfxT(x)\I'§l(x)+ H.cl], (3)  exact one: the gap ratio does not change either with tempera-

R ture or in a magnetic fielt. However, forg;<g,<g;, the
h(x) being a single-particle Hamiltonian of the normal passive gap, is significantly smaller than the active gAp
metal. The constant term is a quadratic form of anomalougng r,<1 so that the corresponding logarithm cannot be
averagegW, (X)W (x)). Using Eq.(2) it can be expressed neglected. It follows from Eq(8) that the ratioA,/A; in-
via the gap functions creases betweefi=T, andT=0 for smallg;. Such varia-
tions become more pronounced in superconductors with
1 5 5 larger values oh, which are away from the extreme weak-
Econst:§J dx{ gl A]?+g1|A5|*—ga(AT A+ AZA)], coupling limit A<1. Ab initio calculations indicate that
4) MgB, has an intermediate strength of the electron-phonon
_ ) ) coupling with X 15,15<A1;=<1, making this superconductor
with G=def{gny} =919, 093. The above expression has to an jdeal system to observe effects related to variations of the
be modified forG=0. In this case the two equatio(@) are  ratio of two gaps.
linearly dependent. As a result, the ratio of the two gaps is The jump in the specific heat at the superconducting tran-
the same for all temperatures and magnetic fieldsition can be expressed analytically}a®-3!
Az(x)/Al(x)=923/gl, while the constant term reduces to
Econst:fdxlAﬂ 19;.

The standard Gorkov’s technique can then be applied to AC_ 12 (N;AT+NRA%)?
derive the Green’s functions and energy spectra in uniform C  74(3) (N;+Ny)(N;AY+N,AS
and nonuniform states with and without impurities. In a
clean superconductor in zero magnetic field the two supefwhere the limitT— T has to be taken for the ratio of the two
conducting gaps are related via the self-consistent gap equgaps. The specific heat jump is always smaller than the

(C)

tions single-band BCS resulh C/C=12/7;(3)~1.43, unless\;
:Az.
vy de Ve2+ A2,
An=2 )\nn,An,f = tanh T (5) B. Fit to experimental data
’ 0 [o2
n e+ AL One of the striking pieces of experimental evidence of

with dimensionless coupling constants,, =g, N, , N, double-gap behavior in MgBis an unusual temperature de-
being the density of states at the Fermi level for each band?€ndence of the specific heat with a shoulder-type anomaly
= (2wpeS/m)e" ™, wherewp is the Debye frequencg is  theory to fit the experimental data fQ(T). The Fermi sur-

matrix A - hole sheets arising from quasi-two-dimensiopgl, boron

bands and two sheets from three-dimensignydlonding and
B 5 antibonding band$>3? The electronic structure of MgBis
A= (Aaat o224+ V(g = o2 A+ N iahoy ©) now well understood from a number of density-functional

Sincex>\4,, the interband scattering always increases thétudies,* **which generally agree with each other, though
superconducting transition temperature compared to an instéliffer in certain details. SP%%Iflca"y, we choose as a refer-
bility in the single-band case. The ratio of the two gaps athce the work of Kongt al,” where the tight-binding fits

T:TC is AZ/Alz)\Zl/()\_)\ZZ)' At zero temperature the for all Fermi surface sheets in Mg&re pI’OVided. USing
gap equationg5) are reduced to these fits we have calculated various Fermi surface averages

for each band. The density of states at the Fermi level is
N(0)=0.41 states/eV/cell/spin, which includesN,(0)
A =E Ao A ,Inzﬂ. 7) =0.16=0.049+0.111 states/eV/cell/spin in light and heavy
noae e iy o bands andN,(0)=0.25=0.124+ 0.126 states/eV/cell/spin
o B TN o in the two 7= bands. Note that the obtainétl.(0) is some-
By substitutingA ,=2wpr,e the above equation is trans- \ynat larger than the number 0.205 cited by Kcetgal.1®
formed to while the results for ther bands agree. Because of a strong
mismatch in the electron-phonon coupling between two
1 group of band$?~*8the two o bands can be represented as a
rn=2 )\nn,rn,(x—ln rn')- (8  single active band, which has,=0.4N(0) of the total den-
. sity of states and drives superconducting instability, whereas
For 1A>Inr,, one can neglect logarithms on the right-handa combineds band contributedN,=0.6N(0) to the total
side and obtain for the ratio of the two gaps the same equalensity of states and plays a passive role in the supercon-
tion as atT=T., implying that A,/A; is temperature ducting instability. The above numbers are consistent with

054508-2



GINZBURG-LANDAU THEORY OF VORTICES INA . .. PHYSICAL REVIEW B69, 054508 (2004

[\~

- N Qs=Econst %In< T, exp{ - f:va( md7 > , (1)
Lse m where8=1/T. Expansion of Eq(11) in powers ofV, yields
- _ the Ginzburg-Landau functional. Since the normal-state
QZ 1= = Green'’s functions are diagonal in the band index, the Wick’s
S r ] decoupling ofV, in Q4 does not produce any mixing terms
B . between the gaps. As a result, the weak-coupling Ginzburg-
0.5 — Landau functional has a single Josephson-type interaction
~ ] term:
ol L b b b 1ol
0 0.25 0.5 0.75 1
. Fou= | dx il agla- y(a1A,+ A58y
FIG. 1. Theoretical dependence of the specific heat in the two- 1 1
band BCS model. Numbers for each curve indicate valueg, of + = B Aq|* 2 Bo| A+ Ky | VA |2+ Ky A,
d,, andg; (N;=0.4, N,=0.6). Open circles are the experimental 2 2
data(Refs. 7 and 1D
27 J2,1 2wpe’
N,=0.43N(0) andN,=0.42N(0) for the partial density of Vi=aitig A =g N In =,
states of the electrons in the bands obtained in the other
studiest**’
The gap equation&) have been solved self-consistently _ T{(3)N, CE CTL3)N,, ,
for N,/N;=1.5 and various values of coupling constants. " 16m2T2 ] Aoy ni— 16m2T2 (VEni)s
The specific heat is calculated from ¢ ¢ (12)

®, being the flux quantum. Foy>0, the interaction term
dne(E, ) favors the same phase for the_ two gaps. er0, if, e.g., _
c(m=> Enk':—“k, (100  the Coulomb interactions dominate the interband scattering
nk dT of the Cooper pairs ang;<0, the smaller gap acquiresma
shift relative to the larger gap:>*
The gradient term coefficients depend in a standard way
on the averages of Fermi velocitigg,, over various sheets
of the Fermi surface. Numerical integration of the tight-
binding fits'® yields the following results: for ther band
(vg,)=2.13 (3.55,1.51) andvZ,)=0.05 (0.05,0.05); for
he 7 band (vZ,)=1.51(1.47,1.55) and(vZ,)=2.96

whereE, ;= e+ Anz is a quasiparticle energy for each band
and ng(¢g) is the Fermi distribution. Figure 1 shows two
theoretical fits to the experimental data of Geneva grotip
using a wealg;N;=0.4 and a moderatg; N, = 0.8 strength
of the coupling constant in the active band. Constgatand

g3 have been varied to get the best fits. In the first case th : . .
. . o 2.81,3.10) in units of 18 cm?/s?, numbers in parentheses
gap ratio changes in the rand/A,=3.-2.5 betweerl corresponding to each of the constituent bands. The effective

=T, andT=0, while in the second cask;/A,=2.7. Both . : . -
theoretical curves reproduce quite well the qualitative behayMasses of the quasi-two-dimensiosaband exhibit a factor

ior of C(T). Somewhat better fits can be obtained by in-g;rf'so l?]n(':so?]t{&g ?r?;vzﬁreene-Igi-nglgr?;oigtljaaonudt-ﬁfa_slgns%nciler(-ec-
creasing the partial density of states in #heéband. Quanti- ' ’

tative discrepancies between various theoretical fits and th I:;:hsTg:leznm?sr? alcr)ngi t:x;:an:. tUr?':nngertLNlt\Tvl'g Vr\]’g ;
experimental data are, however, less significant than differ- hat the in-plane gradient constants for the two bands are
ractically the sam&,, /K, ~1.06, while thec-axis con-

ences between different sampl8sWe therefore conclude P . .
that though the specific heat data clearly agree with the fwostants differ by _almost two orders of magn't““ﬁlz/ K1z
gap superconducting model in the regime of weak interband’, 90. These estimates féf;; /Ky; do not include the effect
interaction, a unique identification of coupling constants isOf electron-phonon |nte.ract|on..Due toa r.node.rate strength of
not possible from available data. electron-phonon _coupllng and its Iarg_e dls_parlty between the
bands, the effective mass of theband is twice larger than a
band theory estimate, whereas the electron mass ofrthe
Ill. GINZBURG-LANDAU FUNCTIONAL band is only slightly renormalizeld. As a result, the ratio
K, /K, can significantly increase compared to the above val-
We use the microscopic theory formulated in the previousues based on the density-functional calculations.
section to derive the Ginzburg-Landau functional of a two- A very simple form of the two-gap weak-coupling
gap superconductor. In the vicinity of. the anomalous Ginzburg-Landau functional is somewhat unexpected. On
terms in the mean-field HamiltoniaB) are treated as a per- general symmetry grounds, there are possible various types
turbationV,. Then, the thermodynamic potential of the su- of interaction in quartic and gradient terms between two su-

perconducting state is expressed as perconducting condensates of the same symmetry, which
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have been considered in the literatd?e>® The above form  For smally, one findst,~ — y%/(a;a,). A negative sign of
of the Ginzburg-Landau functional is, nevertheless, &, means that the superconducting transition takes place
straightforward extension of the well-known result for un- aboveT;, which is an intrinsic temperature of superconduct-
conventional superconductors. For example, the quartic teriimg instability in the first band. The ratio of the two gaps,
for a momentum-dependent gap [i&(k)|* in the weak- p=A,/A;=17/(ay—ast.). Below the transition tempera-
coupling approximatiof?“® In the two-band modelA(k)  ture, the gap ratip obeys
assumes a steplike dependence between different pieces of
the Fermi surface, which immediately leads to the expression B
(12 ap—y+ =2 p¥(agt+ yp)=0. (14)

The Ginzburg-Landau equations for the two-gap super- B1
conductor, which are identical to those obtained from Eq
(12), have been first derived by an expansion of the ga|
equations in powers oh.%° Recently, a similar calculation
has been done for a dirty superconductor, with onlya-
bandimpurity scattering, and the corresponding form of the
Ginzburg-Landau functional has been guessed, though with
incorrect sign of the coupling terfi.Here, we have directly 1. Magnetic field parallel to the ¢ axis
derived the free energy of the two-gap superconductor. The
derivation can be straightforwardly generalized to obtain,
e.g., higher-order gradient terms, which are needed to find

orientation of the vortex lattice relative to crystal axsee eauations describe a svstem of two counled oscillators and
below). We also note that strong-coupling effects—e.g., de- q e y P
have a solution in the form ;=cyfo(X) andA,=dyfy(x),

pendence of the pairing interactions on the gap amplitudes— .
will produce other weaker mixing terms of the fourth orderWherefO(X) is a state on the zeroth Landau level. The upper

in A. The interbandscattering by impurities can generate a c1tical field is given byHc, =he®o/27
mixing gradient term as well.
Finally, for G=(g;9,—93)<0 a number of spurious fea- ait \/

For small v, one can approximatgp~ y/a, and due to a
Riecrease ofv, with temperature, small to large gap rapo
increases away fror, .

B. Upper critical field

Due to the rotational symmetry about tbexis, the gra-
ient terms in the&-b plane are isotropic with single constant
=K, for each band. The linearized Ginzburg-Landau

2

tures appears in the theory: the matix,, and the quadratic h°2=2K1 2K,
form (4) acquire negative eigenvalues, while a formal mini-

mization of the Ginzburg-Landau functiondl?) leads to an  The ratio of the two gapp=dy/c, along the upper critical
unphysical solution at high temperatures. The sighofA;  line is

for such a solution is opposite to the signgaf The origin of

this ill behavior lies in the approximation of positive inte-

grals on the right-hand side of Ep) by logarithms, which p
can become negative. Therefore, negative eigenvalues of

Anr @ndEgqngtyield no physical solution similar to the case The above expression indicates that an applied magnetic
when the BCS theory is applied to the Fermi gas with repulfield generally tends to suppress a smaller gap. Whether this
sion. The consequence for the Ginzburg-Landau théb?y  effect overcomes an opposite tendency to an increase of
is that one should keep the correct sign\ef/A; and use the  A,/A; due to a decrease af, with temperature depends on
Ginzburg-Landau equations—i.e., look for a saddle-point sothe gradient term constants. For example, in the limit

(19

ait  a 2+ Y
2K, 2K, | KiK'

Y

B a,tKohey (18

lution rather than seeking for an absolute minimum. y<a, we find from Eq. (16) p~yl[ay—(a,
—a;K,/K)t]. If K, is significantly larger tharK,, while
IV. TWO-GAP GINZBURG-LANDAU THEORY a,=a,, the smaller gap is quickly suppressed along the up-

In order to discuss various properties of a two-gap superP€" critical field line. The situation in MgBis not clear at

conductor in the framework of the Ginzburg-Landau theorythe moment. The density-functional theory suggesisk,

we write a;=—ajt with a;=Ny, t=In(T/T)~(1—T/Ty) ~1; however, thg electron—phonon interaction yields
and T, = (2wpe/7)e~92/CNi for the first active band and K2./K1=3—4. Impurity s_cattenng can also affect the atzaove
o= - Ayt With a,= Ny, ayg=(N11—N)/GN; for the ratio. For Qxample, Mg disorder strongly affects thdand
passive band. and can significantly reduce the gradient constént Mea-
surements performed on different samples also give contra-
dictory results: with observations of a suppresétosf the

. ] ~small gap byH|c and reports of no relative suppression of
For completeness, we briefly mention here the behavior i\, (Ref, 42.

zero magnetic field. The transition temperature is found from
diagonalization of the quadratic form in EQ.2): 2. Transverse magnetic field

A. Zero magnetic field

o2 > We assume thafl||§/ and consider a homogeneous super-
t.= @20 20 v (13 conducting state along the field direction. The gradient terms

c— 232 - 4a2 alaz' . . .ooA ~ . .
2 in two transverse directions and z have different stiffness

054508-4



GINZBURG-LANDAU THEORY OF VORTICES INA . .. PHYSICAL REVIEW B69, 054508 (2004

constantX,, andK,,,, respectively. In the single-band case, BT T T T T T T T T T T T T T
rescalingx—x(K,/K,)¥* and z— z(K,/K,)** allows to re- - RAALARRERARRRRRS
duce the anisotropic problem to an isotropic one in rescaled _ 20|~ ER
coordinates. A multigap superconductor has several different < | [ 14
ratios K,/K,, and the above rescaling procedure does not g 15 B o el
work. In other words, coupled harmonic oscillators described % | N TR TR e
by the linearized Ginzburg-Landau equations have different % . | o 20 80 40
resonance frequencies. To solve this problem we follow a § i i
variational approach, which is known to give a good accu- =
racy in similar cases. The vector potential is chosen in the S 7]
Landau gaugé& = (Hz,0,0) and we look for a solution in the B L | 7]
form % 10 20 30 20
Temperature (K)
Ay N 255 © FIG. 2. Temperature dependence of the upper critical field in
( :<_ e—)\z 12 , (17) B p A _p pp_ .
A, T d MgB, for a magnetic field in the basal plane. Solid line: the two-

gap Ginzburg-Landau theory with parameters given in the text.
where\, ¢, andd are variational parameters. After spatial squares: experimental data by Lyaetial. (Ref. 45. The inset
integration and substitution=h/u, h=27H/®,, the qua-  shows variation of the gap ratio along tHe,(T) line for the same
dratic terms in the Ginzburg-Landau functional become  set of parameters.

Fo=(—ast+hKy)[c|2+ (ay+hKy)|d]2— y(c*d+d*c), the two-band BCS theoR/."2" We suggest here a simpler
description of the above effect within the two-gap Ginzburg-
Landau theory.
~ 1 Finally, we compare the Ginzburg-Landau theory with the
K“_E(K“M+K”Z/“)' (18 experimental data on the temperature dependence of the up-

_ _ ) per critical field for a magnetic field parallel to the basal
The determinant of the quadratic form vanishes at the tra”plane‘.‘f’ We choose ratios of the gradient term constants and

sition into the superconducting state. The transition field ishe densities of states in accordance with the band structure
given by the same expression as in the isotropic ¢&SE  ca|culation® and change the parameteysand o, which
whereK,, have to be replaced witK,. The upper critical are known less accurately, to fit the experimental data. The
field is, then, obtained from maximizing the correspondingbest fit shown in Fig. 2 is obtained fat,o/a,=0.65 and
expression with respect to the variational parameterin  y/a,;=0.4. The prominent upward curvaturelf,(T) takes
general, the maximization procedure has to be done numerplace betweent,=—0.18 (T.=36 K) and t=0.2 (T
cally. Analytic expressions are possible in two temperature=26 K)—i.e., well within the range of validity of the
regimes. At low temperaturds> |t |, the upper critical field ~ Ginzburg-Landau theory. The above valueswg§ and y can
is entirely determined by the active band and be related t@, /g, andg;/g, and they appear to be closer to
the second choice af,, used for Fig. 1. The ratio of the two
gaps, as it changes along thk,(T) line, is shown on the
. (19 inset in Fig. 2. It varies from\;/A,~2.3 nearT.=36 K to
VK1K1, A,/A,~45 atT=18 K, where the Ginzburg-Landau theory
In the vicinity of T., an external magnetic field has a small breaks down. Due to a large difference in thexis coher- :
e ence lengths between the two bands, the smaller gap is

effect on the gap ratigp=d/c~yl/a,y and an effective . g
single-gap Ginzburg-Landau theory can be applied. The up?wckly suppressed by the transverse magnetic field. Also,

per critical field is given by a combination of the gradient he strong upward curvature éf.;(T) leads to temperature

. . i variations of the anisotropy ratioy,,=Hz,(T)/HS,(T)
nstan . weigh rdin h mpli . an— Mc2 c2l ),
constantsy; weighted according to the gap amplitudes which changes fromy,,=1.7 nearT, to y,=4.3 atT

=18 K. These values are again consistent with experimental

ayt

heo=

o a(t—t,) 20 observationé?® as well as with theoretical studié$.2°
2™ .
V(K1+p%Ky) (K, +p7Ko,)
Since in MgB, one hax,,~0.01K,, andp?=0.1, the slope C. Structure of a single vortex
of the upper critical field neaf. is determined by an effec- The structure of an isolated superconducting vortex par-

tive gradient constantkK™~p?K,,>K,;, [while (K; allel to thec axis has been studied in MgEby scanning
+p2K,)~K,]. Thus, the upper critical field lindd.,(T)  tunneling microscop§’ Tunneling along thes axis used in
shows a marked upturn curvature between the two regimei§ie experiment probes predominantly the three-dimensional
(20) and(19). Such a temperature behavior observed experisr band and the obtained spectra provide information about a
mentally in MgB, (Refs. 43—45has been recently addressed small passive gap. A large vortex core size of about five
in a number of theoretical works based on various forms otoherence length&. = \/®y/27HZ, was reported and attrib-

054508-5



M. E. ZHITOMIRSKY AND V.-H. DAO PHYSICAL REVIEW B 69, 054508 (2004

1

v=0.6/d,=1.8| |

¥=0.3/d,=2.1] |

0.5 05

Normalized gaps
Normalized gaps

7=01/d-26] T
g v=0.03/0,=2.7 |

0 f:-’ﬂ'_'l-\ P T T N T N NN R S
10 15 0 5 10 15
Distance (&) Distance (&)

FIG. 3. (Color online Spatial dependences of the gaps for vari-  FIG. 4. (Color onling Spatial dependences of the gaps for vari-
ous temperatures with=In T, /T~1-T/T; andK,/K;=9. ous values ofy (given in units ofa;) for t=0.3 andK,/K;=9.

uted to a fast suppression of a passive gap by magnetic fiel
whereas the-axis upper critical field is controlled by a large
gap in theo band?’ The experimental observations were
confirmed within the two-band model using the
Bogoliubov—de Genné$ and the Usadel equatioi%.We
have, however, seen in the previous subsection thatgap

(aUCtor the characteristic length scale for the large dap
remains close t@, while d, can substantially vary. The size
of the vortex core is given by, =max(2d,2d,).

Results for the temperature dependence of the vortex core
are presented in Fig. 3. The parametess and y are taken
the same as in the study of the upper critical field, while we

in MgB, is not suppressed neaf,(T) for fields applied chooseK, /K ;=9 in order to amplify the effect for the small

along thec axis. To resolve this dlscrepancy we present heregap. As was discussed above, the equilibrium ratio of the two
a systematic study of the vortex core in a two-gap supercon:

. ; aps, oo/ y1, grows with decreasing temperatuiecreas-
ductor in the framework of the Ginzburg-Landau theory. %gpt).oéimﬁlta%eously the small ggap bgcomes less Con-
We investigate the structure of a single-quantum VOrt®trained with its interaction to the large gap and the half-
oriented _parallel o the hexagggmlams. The two gaps are amplitude distancel, shows a noticeable growth. Fét,
parametnzeq aA”(.r): Yn(r)e "%, whered is an az'”.‘“tha' ~K, such a less constrained behavioryaf(r) at low tem-
angle andr is a distance from the vortex axis. Since the !

Ginzbura-Landau parameter for MaHs aquite large peratures does not lead to an increase of the core size be-
9 P 9 q g€, K cause both gaps have similar intrinsic coherence lengths.

:25.’ the magnetic fie_ld can be neglected in_side vortex core, This trend becomes more obvious if the coupling constant
fafgggngo_ the following system of the Ginzburg-Landau v is changed for fixed values of all other parameters; see Fig.
q : 4. For vanishingy, the distanced, approaches asymptoti-
cally an intrinsic coherence length in the passive band. This
o= Yo + Batby— Kn(¥n+ /T =Q%%,)=0 (21)  length scale depends dt, (da/dy|,-o=VK,/K;=3), but
is not directly related to an equilibrium value of the small
gap: the small gap is reduced by a factor of 7 betwgen
=0.6 andy=0.03, while the core size increases by 50%
only. Therefore, the single-band BCS estimat®
=ve/(mA,) for the characteristic length scale of the small

forn=1,2 (n'=2,1) andQ~ 1/r. Away from the center of a
vortex, the two gaps approach their asymptotic amplitude

Yon':
at+ [p—
Po1= \/118—179' Y=\ %' (22

with p obeying Eq.(14). All distances are measured in units
of a temperature-dependent coherence length derived from
the upper critical field, Eq(15). In order to solve Eq(21)
numerically, a relaxation method has been (8ed a linear
array of 4000 points uniformly set on a length ofé&8om

the vortex center. The achieved accuracy is of the order of

e memme————
c——

= K,/K,=0.01:d,=0.68

Normalized gaps

1076, —— K/K=1:0,-1.08
The obtained results are shown in Figs. 3-5, where am- _ E;ﬁ‘;‘a “'gjlfi

plitudesy,(r) are normalized to the asymptotic value of the [ Ko/Ki=36:h=3.54 ]
large gapiyo,. To quantify the size of the vortex core for 0 0 5 — 1'0 — 15
each component we determine the distati¢cewherey,(r) Distance (&)

reaches half of its maximum valugg,. In the case of a

single-gap superconductor such a distance is given within a FIG. 5. (Color onling Spatial dependences of the gaps for vari-
few percent by the coherence length. In a two-gap supercorous values oK, /K, for t=0.3.

054508-6



GINZBURG-LANDAU THEORY OF VORTICES INA . .. PHYSICAL REVIEW B69, 054508 (2004

gap sometimes used for interpretation of experimental*data £(T)N, 1
is not, in fact, applicable for a multi-gap superconductor. ~ Fg'=————-|{ 1- — (VR — (VR ) A*[Ve—15ViV5
Finally, Fig. 5 presents the evolution of the vortex core 64m°T¢ 2

with varying ratioK, /K, where againa,y/a;=0.65 and
yla;=0.4. The apparent size of the vortex catg=2d,
becomes about five to six coherence lengthfgr exceed- 1
ing K, by an order of magnitude. Fd¢,/K,=1-4, which =- EKGA*[(Vx+iVy)6+(VX_iVy)G]A- (24)
follows from the band structure calculations, the vortex core
size does not change significantly compared to the standard R
single-gap case. These results generally agree with the préa this expressionx is fixed to thea axis in the basal plane.
vious study,® though we conclude that unrealistically large (An alternative choice is thb axis) If X andy are simulta-
values ofK,/K; are required to explain the experiméft. neously rotated by angle about thec axis, (W +iV,)° ac-
Different strengths of the impurity scattering in the two quires an extra factoe™®¢. In the following we always
bands cannot explain this discrepancy either. It is argued thahaye sych a rotation in order to haxepointing between
the 7 band is in the dirty limi€? The coefficientK in Eq. nearest-neighbor vortices. Periodic Abrikosov solutions with
(12) is accordingly replaced by smallerdiffusion constant.  opaing of vortices parallel to theaxis are most easily writ-
The numerical resultéFig. 5 as well as qualitative consid- ten in the Landau gaugg=(—Hy,0,0) (Ref. 53.
eration show that in such a case the core siza/idr) can The higher-order gradient terr’ns’;, EQ@4), give a small
only decrease. Note that the spatial ansa(e) ~tanh€/a)  ¢actor 42~ (1—T/T,)2 and can be treated as a perturbation
with a= ¢ used to fit the experimental défeshould be ap- in the Ginzburg-Landau regime. The Landau level expansion
plied with a= .1.% even for a single-gap superconductor in yields A(xX)=cofo(X)+Cefa(X)+ -+, where the coeffi-
the largex limit. cient for the admixed sixth Landau level isg/c,
~ —(/61/3)h?e%¢K s /K. When substituted into the quartic

V. ORIENTATION OF VORTEX LATTICE Ginzburg-Landau term, this expression produces the follow-

ing angular-dependent part of the free energy:

+15ViVI—VIIA

Recent neutron scattering measurenténits MgB, for
fields along the hexagonalaxis have discovered a new in-
teresting phase transition in the mixed state of this supercon- 261K
ductor: a triangular vortex lattice rotates by 30° such that  sF(¢)=— _'6h§2[3|c0|4<|f0|2f3f6>cos{6¢)'
below the first transition field0.5 T atT=2 K) a nearest- 3K
neighbor direction is aligned perpendicular to the crystal (29
axis, whereas above the second transition fl@l® T) the
shortest intervortex spacing is parallel to theaxis®® We  with |cq|2=K(he,—h){|fol?)/(B{|fo|*)). Spatial averaging
show in this section that such a peculiar behavior is deteref the combination of the Landau levels is done in a standard
mined by the two-gap nature of superconductivity in MgB way:

A. Single-gap superconductor
N : o (Ifol*f5fe) Vo (e m?
The orientation of the flux line lattice in tetragonal and R E cog2mpnm)e” 7MY
cubic superconductors has been theoretically studied by (Ifol®) 125 am
Takanaka? Recently, such a crystal field effect was found to 15
be responsible for the formation of a square vortex lattices in x| m2ad¥(n—m)®— = 72e?(n—m)*
the borocarbide®->? The case of a single-gap hexagonal su- 2
perconductor is treated by a straightforward generalization of
the previous works. Symmetry arguments suggest that cou- + —mo(n—m)2— — (26)
pling between the superconducting order parameter and a
hexagonal crystal lattice appears at the sixth-order gradient
terms in the Ginzburg-Landau functional. For simplicity, we where the summation goes over all integesindm and pa-
assume that the gap anisotropy is negligible. Then, the sixtirametersp ando describe an arbitrary vortex lattiC& For a
order gradient terms derived from the BCS theory are hexagonal latticed=1/2, o= \/3/2), the numerical value of
the lattice factor is{|fo|?f§fe)/(|fol*y=—0.279. Hence,
SF (@)= +Kecos(6p) and for (v},)>(v} )(Ke>0) the
equilibrium angle isp=#/2 (7/6), which means that the
shortest spacing between vortices in a triangular lattice is
oriented perpendicular to theaxis, while for the other sign
X(ViVnVhd). (23)  of anisotropy the shortest side of a vortex triangle is along
thea axis. Thus, the Fermi surface anisotropy fixes uniquely
The above terms can be split into an isotropic part and anthe orientation of the flux line lattice near the upper critical
isotropic contribution, the latter being field.

1
27

_ (NN
327578

6

)<UFiUFjUFkUFIUFmUFn>(ViVijA*)
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B. Two-gap superconductor

In a multiband superconductor the effect of crystal anisot-
ropy may vary from one sheet of the Fermi surface to an-
other. We apply again the tight-binding representdfian
obtain a quantitative insight about such effects in MgB
Explicit expressions for dispersions of the two-heldands
are presented in the Appendix. The hexagonal anisotropy in
the narrowo cylinders is enhanced by a nonanalytic form of
the hole dispersions. The combined anisotropy ofahHzand
is (v,)=4.608, (v} )=4.601, while for ther band(vf,)
=1.514,(v},)=1.776 in units of 16 (cm/s) (Ref. 6. Ac-
cording to the choice of coordinate systéfthe x axis is

parallel to theb direction and thé/ axis is parallel to thea FIG. 6. Phase diagram of MgBor fields parallel to the axis.
direction in the boron plane. The above values might be nothe shaded region corresponds to intermediate orientations of the
very accurate due to the uncertainty of the local density apvortex lattice separated by dotted lines of the second-order transi-
proximation (LDA) results; however, they suggest two spe-tions. Dashed lines indicate the scans used in the experifment

cial qualitative features for Mgp First, the relative hexago- tical) and in the presented theory.

nal anisotropy of the Fermi velocity,(¢) differs by ] o ) ]
almost two orders of magnitude between the two sets ofermined by the small gap. This yields in close analogy with
bands. Second, the corresponding hexagonal terms have dff9- (25 the following anisotropy energy for the vortex lat-
ferent signs in the two bands. In the Appendix, we show thatiC€ nearH,:

the sign difference is a robust feature of the tight-binding

approximation and cannot be changed by a small change of 2+/6!

the tight-binding parameters. oF(¢)=— %hgzﬂﬂco“(“dz% fe)KE'cog6¢),

We investigate the equilibrium orientation of the vortex !
lattice in MgB, within the two-gap Ginzburg-Landau theory.
Anisotropic sixth-order gradient terms of the ty(#) have
to be added to the functionél?) separately for each of the
two superconducting order parameters. As was discussed in . ,
the preF\)/ious paragrgph the IC:):misotropy constants have diffePeSPIte t?e fact that we ?ar:/e omitted termsj%de, the
ent signsK ;>0 andKg,<0 and obey K gy <|KgJ. In the Fermi surface _anlsotrppy of the second lg?nd st_l cor_1tr|butes
vicinity of the upper critical field the two gaps are expanded!© the effective anisotropy constarkgvia linearized
as  A;(X)=Cofo(X)+Cefe(X) and  A,(x)=dofo(X) Glnzk_)urg_-Landau equations. Alo_ng the upper _cr|t|cal Ime_thls
+dsfg(x). Solution of the linearized Ginzburg-Landau contribution decreases, suggesting the following scenario for

equations yields the following amplitudes for the sixth Lan-M9B2. i
dau levels: In the region neai .the second band makes the largest

contribution to KE™: a small factor y*/a3~0.1 is out-
weighed by|Kg;/Kg;<0.1. As a resultkg" is negative and
. Ke1@aCo+ Keydo =0, which means that the shortest intervortex spacing is
Ce= —4/61h%ebe == > ' parallel to theb axis. At lower temperatures and higher mag-
Sada netic fields the second term K" decreases and the Fermi
surface anisotropy of the first band starts to determine the
Kosmiado+ Kopye (positive) sign ongf_f. In this casep=/2 (/6) and the
dg= —4/61h3ebie 210~ 0170 (27)  side of the vortex triangle is parallel to tiaeaxis. The very
aa,— y? small |K61/K62£= 1.8x 10 2, which follows from the band
structure data’ is insufficient to have such a reorientation
with @, ,= ey ,+ 13K, h. Subsequent calculations follow ftransition in the Ginzburg-Landau region. Absolute values of
closely the single-gap case from the preceding subsectio@nisotropy coefficients are, however, quite sensitive to the
The angular-dependent part of the free energy is obtained bjfecise values of the tight-binding parameters and it is rea-

substituting Eqs(27) into the fourth-order terms: sonable to assume that experimental valuek gf are such
that the reorientation transition is allowed.

The derived sequence of orientations of the flux line lat-
OF (@) =[B1c3(Ce+CE )+ Boda(dg+dE) (|0l 25 fs). tice in MgB, completely agrees with the neutron scattering
(28)  data?® though we have used a different scan line in ith@
plane in order to demonstrate the presence of the
The resulting expression can be greatly simplified if one use80°-orientational transformation; see Fig. 6. The condition
(A,/A))?=0.1 as a small parameter. With accuracyKSﬁzo, or a similar one applied to E@28), defines a line
O[(A,/A4)*] we can neglect the angular-dependent part deH* (T) in the H-T plane which has a negative slope at the

’)’2

2+ th)(a2+ 13K2h) ’

KE'=Kert Koo, (29
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crossing point withH,(T). The sixfold anisotropy for the vious results on an unusual temperature dependence of the
vortex lattice vanishes alortg* (T) and all orientations with  transverse upper critical field in MgBwe have presented a
different anglesey become degenerate in the adopted ap-detailed investigation of the vortex core structure and have
proximation. The sequence of orientational phase transitionshown that the orientational phase transitions observed in the
in such a case depends on weaker higher-order harmoniddux line lattice in MgB, is a manifestation of the multiband

One can generally write nature of superconductivity in this material. The proposed
minimal model for the 30° rotation of the vortex lattice in-
SF(¢)=Kg cog6¢)+ Ky, cog120), (30) cludes only the anisotropy of the Fermi surface. An addi-

tional source of six fold anisotropy for the vortex lattice can
where the higher-order harmonics comes with a small coefarise from the angular dependence of the superconducting
ficient |K 5 <|Kg|. Depending on the sign d€;, the trans-  gap. It was argued that the latter sourcefofurfold) anisot-
formation between low-fieldp=0 and high-fielde=7/6  ropy is essential for the physics of the square to distorted
(7/2) orientations, wherKg changes sign, goes either via triangular lattice transition in the mixed state of
two second-order transitiond¢,>0) or via a single first- borocarbides® For phonon-mediated superconductivity in
order transition K;,<0). In the former case the transitions MgB,, the gap modulations should be quite small, especially
take place atKg=*=4K,,, whereas in the latter case the for the large gap on the narrow cylinders of the Fermi
first-order transition is alkg=0. These conclusions are eas- surface. Experimentally, the role of gap anisotropy can be
ily obtained by comparing the energy of a saddle-point solujudged from the position oH*(T) line in the H-T plane.
tion cos(@)=—Kg/(4K;y) for Eq. (30), which is 6Fs,  H*(T) does not cross thiel,(T) line in scenarios with sig-
=— Ké/(SKlz), to the energies of two extreme orientations. nificant gap anisotropy®. A further insight into the aniso-

In order to determine sign of the higher-order harmonicdgropic properties of different Fermi surface sheets in MgB
for a two-gap superconductor we expand the fourth-ordegan be obtained by studying experimentally and theoretically
terms in the Ginzburg-Landau functionél?) to the next the hexagonal anisotropy of the upper critical field in the
order: basal plane.
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ve(e), though our estimate shows that even for theands

the corresponding modulations are very smallhe sign APPENDIX: ANISOTROPY IN o BANDS
of the cos(12) term in Eq.(31) depends only on a geomet-

ric factor, the spatial average of the Landau levels wave |
functions. We find for a perfect triangular lattice
(f52£2)1(|f0|%)?=0.804. Thus, the 12th-order harmonics in
Eqg. (30) has a positive coefficient and the transformation
between the low-field state with=0 and the high-field state
¢= /6 goes via a phase with intermediate valueg &epa-

We present here expressions for the dispersions and Fermi
rface anisotropies in the tw® bands, which are derived
from the tight-binding fits of Kongt al® The in-planep, ,
boron orbitals in MgB undergo arsp? hybridization withs
orbitals and form three bonding bands.lAt=0 these bands
are split into a nondegeneratesymmetric band and doubly
degeneraté&-symmetric band, which lies slightly above the

rated _by two second-order transitions. ) Fermi level. Away from thé, =0 line theE band splits into
Anisotropy terms of the type24) also produce a sixfold light- and heavy-hole bands. Their dispersions are obtained

modulation of the upper critical field in the basal plane. Theb expansion of the tight-bindina mattkin smallk. :
sign of the corresponding modulationstdf,(¢) should also y exp ¢ g L

change at a certain temperature, which is determined by a
suppression of the small gap in transverse magnetic field and
is not, therefore, related to the intersection pointHh(T)
andH* (T) lines on the phase diagram fblc, Fig. 6.

1

eik)=2(k) =2t | 5

2 4
Kitdk —zgq1+a)

2g(k)+1—1/d}

2g(K)+7+9d

VI. CONCLUSIONS en(k)=s(k,)—2t, 3BT

3
gdkf—olkj

We have derived the Ginzburg-Landau functional of a
two-gap superconductor within the weak-coupling BCSWhere (k) =#o—2t, cosk, and g(k)=(k;—15kgk?
theory. The functional contains only a single interaction term+ 15kZky—k)/k$ . The tight-binding parameters presented
between the two superconducting gdpendensatgs This  in Ref. 16 ares;=0.58 eV,t, =5.69 eV,t,=0.094 eV, and
property allows a meaningful analysis of various magnetiad=0.16. The sixfold anisotropy is given by unusual nonana-
properties of a multigap superconductor in the framework ofytic terms, which are formally of the fourth order ka The
the Ginzburg-Landau theory. Apart from confirming the pre-appearance of such nonanalytic terms is a direct consequence
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of the degeneracy of the two bandskat0. For example, a narrow Fermi surface cylinders. The hexagonal harmonics
nonanalytic form ofe (k) is known for fourfold-degenerate have opposite signs in the light- and heavy-hole bands. The
hole bands of Si and G& which have cubic anisotropy al- net anisotropy of the combinead band is determined mostly
ready inO(k?) order. Nonanalyticity ofe, ,(k) leads to a by the light holes, which have larger in-plane Fermi veloci-
relative enhancement of the hexagonal anisotropy on twties.
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