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Ginzburg-Landau theory of vortices in a multigap superconductor
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The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS
model. The interaction between the two condensates is described by a unique Josephson-type mixing term. The
two-gap Ginzburg-Landau theory is then applied to investigate various magnetic properties of MgB2 including
an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated
vortex. The orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel
to thec axis. A peculiar 30° rotation of the vortex lattice with increasing strength of an applied field observed
by neutron scattering is attributed to the multigap nature of superconductivity in MgB2.
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I. INTRODUCTION

Superconductivity in MgB2 discovered a few years ago1

has attracted a lot of interest both from fundamental a
technological points of view.2 Unique physical properties o
MgB2 includeTc539 K, the highest amongs-wave phonon-
mediated superconductors, and the presence of two
D1'7 meV and D2'2.5 meV evidenced by scannin
tunneling3,4 and point contact5,6 spectroscopies and by he
capacity measurements.7–10 The latter property brings bac
the concept of a multigap superconductivity11,12 formulated
more than 40 years ago for materials with a large disparity
the electron-phonon interaction for different pieces of
Fermi surface.

Theoretical understanding of normal and superconduc
properties of MgB2 has been advanced in the direction
first-principles calculations of the electronic band struct
and the electron-phonon interaction, which identified t
distinct groups of bands with large and small supercond
ing gaps.13–19 Quantitative analysis of various thermod
namic and transport properties in the superconducting s
of MgB2 was made in the framework of the two-band BC
model.20–28 An outside observer would notice, however,
certain lack of effective Ginzburg-Landau- or London-ty
theories applied to MgB2. This fact is explained by the quan
titative essence of the discussed problems, though effec
theories can often give a simpler insight. Besides, new
periments constantly raise different types of questions.
example, a recent neutron diffraction study in the mixed s
of MgB2 has found a strange 30° reorientation of the vor
lattice with increasing strength of a magnetic field appl
along thec axis.29 Such a transition represents a mark
qualitative departure from the well-known behavior of t
Abrikosov vortex lattice in single-gap type-II supercondu
ors. The nature and origin of phase transitions in the vor
lattice are most straightforwardly addressed by the Ginzbu
Landau theory.

In the present work we first derive the appropria
Ginzburg-Landau functional for a two-gap superconduc
from the microscopic BCS model. We then investigate va
ous magnetic properties of MgB2 using the Ginzburg-Landau
theory. Our main results include demonstration of the
ward curvature ofHc2(T) for transverse magnetic fields, in
0163-1829/2004/69~5!/054508~11!/$22.50 69 0545
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vestigation of the vortex core structure, and explanation
the reorientational transition in the vortex lattice. The pap
is organized as follows. Section II describes the two-ba
BCS model and discusses the fit of experimental data on
temperature dependence of the specific heat. Section I
devoted to a derivation of the Ginzburg-Landau function
for a two-gap weak-coupling superconductor. In Section
we discuss various magnetic properties including the up
critical field and the structure of an isolated vortex. Section
considers the general problem of the orientation of the vor
lattice in a hexagonal superconductor in a magnetic fi
applied parallel to thec axis and then demonstrates how t
multigap nature of superconductivity in MgB2 determines a
reorientational transition in the mixed state.

II. TWO-BAND BCS MODEL

A. General theory

In this subsection we briefly summarize the thermod
namics of ans-wave two-gap superconductor with the aim
extract subsequently microscopic parameters of the mo
from available experimental data for MgB2. We write the
pairing interaction as

V̂BCS52 (
n,n8

gnn8E dxCn↑
† ~x!Cn↓

† ~x!Cn8↓~x!Cn8↑~x!,

~1!

wheren51,2 is the band index. A real-space representat
~1! is obtained from a general momentum-space form of
model11,12 under the assumption of weak momentum dep
dence of the scattering amplitudesgnn8 . We also assume tha
the active band has the strongest pairing interactiong11
5g1 compared to the interaction in the passive bandg22
5g2 and to interband scattering of the Cooper pairsg12
5g215g3. Defining two gap functions

Dn~x!52(
n8

gnn8^Cn8↓~x!Cn8↑~x!&, ~2!

the total Hamiltonian is transformed to the mean-field for
©2004 The American Physical Society08-1
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ĤMF5Econst1(
n
E dx@Cns

† ~x!ĥ~x!Cns~x!

1Dn~x!Cn↑
† ~x!Cn↓

† ~x!1H.c.#, ~3!

ĥ(x) being a single-particle Hamiltonian of the norm
metal. The constant term is a quadratic form of anomal
averageŝCn↓(x)Cn↑(x)&. Using Eq.~2! it can be expressed
via the gap functions

Econst5
1

GE dx@g2uD1u21g1uD2u22g3~D1* D21D2* D1!#,

~4!

with G5det$gnn8%5g1g22g3
2. The above expression has

be modified forG50. In this case the two equations~2! are
linearly dependent. As a result, the ratio of the two gaps
the same for all temperatures and magnetic fie
D2(x)/D1(x)5g3 /g1, while the constant term reduces
Econst5*dxuD1u2/g1.

The standard Gorkov’s technique can then be applied
derive the Green’s functions and energy spectra in unifo
and nonuniform states with and without impurities. In
clean superconductor in zero magnetic field the two sup
conducting gaps are related via the self-consistent gap e
tions

Dn5(
n8

lnn8Dn8E
0

vD d«

A«21Dn8
2

tanh
A«21Dn8

2

2T
, ~5!

with dimensionless coupling constantslnn85gnn8Nn8 , Nn
being the density of states at the Fermi level for each ba
The transition temperature is given by Tc
5(2vDeC/p)e21/l, wherevD is the Debye frequency,C is
the Euler constant, andl is the largest eigenvalue of th
matrix lnn8 :

l5~l111l22!/21A~l112l22!
2/41l12l21. ~6!

Sincel.l11, the interband scattering always increases
superconducting transition temperature compared to an in
bility in the single-band case. The ratio of the two gaps
T5Tc is D2 /D15l21/(l2l22). At zero temperature the
gap equations~5! are reduced to

Dn5(
n8

lnn8Dn8ln
2vD

Dn8

. ~7!

By substitutingDn52vDr ne21/l the above equation is trans
formed to

r n5(
n8

lnn8r n8S 1

l
2 ln r n8D . ~8!

For 1/l@ ln rn , one can neglect logarithms on the right-ha
side and obtain for the ratio of the two gaps the same eq
tion as at T5Tc , implying that D2 /D1 is temperature
05450
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independent.30 This approximation is valid only for
r n.1—i.e., if all the coupling constantslnn8 have the same
order of magnitude.~For g3

25g1g2 the above property is an
exact one: the gap ratio does not change either with temp
ture or in a magnetic field.! However, forg3!g2,g1, the
passive gapD2 is significantly smaller than the active gapD1
and r 2!1 so that the corresponding logarithm cannot
neglected. It follows from Eq.~8! that the ratioD2 /D1 in-
creases betweenT5Tc and T50 for small g3. Such varia-
tions become more pronounced in superconductors w
larger values ofl, which are away from the extreme wea
coupling limit l!1. Ab initio calculations indicate tha
MgB2 has an intermediate strength of the electron-phon
coupling with l12(21)!l11&1, making this superconducto
an ideal system to observe effects related to variations of
ratio of two gaps.

The jump in the specific heat at the superconducting tr
sition can be expressed analytically as12,30,31

DC

C
5

12

7z~3!

~N1D1
21N2D2

2!2

~N11N2!~N1D1
41N2D2

4!
, ~9!

where the limitT→Tc has to be taken for the ratio of the tw
gaps. The specific heat jump is always smaller than
single-band BCS resultDC/C512/7z(3)'1.43, unlessD1
5D2.

B. Fit to experimental data

One of the striking pieces of experimental evidence
double-gap behavior in MgB2 is an unusual temperature de
pendence of the specific heat with a shoulder-type anom
around 0.25Tc ~Refs. 7–10!. We use here the multiband BC
theory to fit the experimental data forC(T). The Fermi sur-
face in MgB2 consists of four sheets: two nearly cylindric
hole sheets arising from quasi-two-dimensionalpx,y boron
bands and two sheets from three-dimensionalpz bonding and
antibonding bands.13,32 The electronic structure of MgB2 is
now well understood from a number of density-function
studies,13–19 which generally agree with each other, thou
differ in certain details. Specifically, we choose as a ref
ence the work of Konget al.,16 where the tight-binding fits
for all Fermi surface sheets in MgB2 are provided. Using
these fits we have calculated various Fermi surface aver
for each band. The density of states at the Fermi leve
N(0)50.41 states/eV/cell/spin, which includesNs(0)
50.1650.04910.111 states/eV/cell/spin in light and heav
s bands andNp(0)50.2550.12410.126 states/eV/cell/spin
in the twop bands. Note that the obtainedNp(0) is some-
what larger than the number 0.205 cited by Konget al.,16

while the results for thes bands agree. Because of a stro
mismatch in the electron-phonon coupling between t
group of bands,15–18the twos bands can be represented as
single active band, which hasN150.4N(0) of the total den-
sity of states and drives superconducting instability, wher
a combinedp band contributesN250.6N(0) to the total
density of states and plays a passive role in the super
ducting instability. The above numbers are consistent w
8-2
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GINZBURG-LANDAU THEORY OF VORTICES IN A . . . PHYSICAL REVIEW B69, 054508 ~2004!
N150.45N(0) andN150.42N(0) for the partial density of
states of the electrons in thes bands obtained in the othe
studies.14,17

The gap equations~5! have been solved self-consistent
for N2 /N151.5 and various values of coupling constan
The specific heat is calculated from

C~T!5(
nk

Enk

dnF~Enk!

dT
, ~10!

whereEnk5A«k1Dn
2 is a quasiparticle energy for each ba

and nF(«) is the Fermi distribution. Figure 1 shows tw
theoretical fits to the experimental data of Geneva group7,10

using a weakg1N150.4 and a moderateg1N150.8 strength
of the coupling constant in the active band. Constantsg2 and
g3 have been varied to get the best fits. In the first case
gap ratio changes in the rangeD1 /D253.–2.5 betweenT
5Tc andT50, while in the second caseD1 /D2.2.7. Both
theoretical curves reproduce quite well the qualitative beh
ior of C(T). Somewhat better fits can be obtained by
creasing the partial density of states in thes band. Quanti-
tative discrepancies between various theoretical fits and
experimental data are, however, less significant than dif
ences between different samples.10 We therefore conclude
that though the specific heat data clearly agree with the t
gap superconducting model in the regime of weak interb
interaction, a unique identification of coupling constants
not possible from available data.

III. GINZBURG-LANDAU FUNCTIONAL

We use the microscopic theory formulated in the previo
section to derive the Ginzburg-Landau functional of a tw
gap superconductor. In the vicinity ofTc the anomalous
terms in the mean-field Hamiltonian~3! are treated as a per
turbationVa . Then, the thermodynamic potential of the s
perconducting state is expressed as

FIG. 1. Theoretical dependence of the specific heat in the t
band BCS model. Numbers for each curve indicate values ofg1 ,
g2, andg3 (N150.4, N250.6). Open circles are the experiment
data~Refs. 7 and 10!.
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Vs5Econst2
1

b
lnK Tt expF2E

0

b

Va~t!dtG L , ~11!

whereb51/T. Expansion of Eq.~11! in powers ofVa yields
the Ginzburg-Landau functional. Since the normal-st
Green’s functions are diagonal in the band index, the Wic
decoupling ofVa in Vs does not produce any mixing term
between the gaps. As a result, the weak-coupling Ginzbu
Landau functional has a single Josephson-type interac
term:

FGL5E dxFa1uD1u21a2uD2u22g~D1* D21D2* D1!

1
1

2
b1uD1u41

1

2
b2uD2u41K1i u¹iD1u21K2i u¹iD2u2G ,

¹i5] i1 i
2p

F0
Ai , a1,25

g2,1

G
2N1,2 ln

2vDeC

pT
,

bn5
7z~3!Nn

16p2Tc
2

, g5
g3

G
, Kni5

7z~3!Nn

16p2Tc
2 ^vFni

2 &,

~12!

F0 being the flux quantum. Forg.0, the interaction term
favors the same phase for the two gaps. Forg,0, if, e.g.,
the Coulomb interactions dominate the interband scatte
of the Cooper pairs andg3,0, the smaller gap acquires ap
shift relative to the larger gap.33,34

The gradient term coefficients depend in a standard w
on the averages of Fermi velocitiesvFn over various sheets
of the Fermi surface. Numerical integration of the tigh
binding fits16 yields the following results: for thes band
^vFx

2 &52.13 (3.55,1.51) and̂ vFz
2 &50.05 (0.05,0.05); for

the p band ^vFx
2 &51.51 (1.47,1.55) and^vFz

2 &52.96
(2.81,3.10) in units of 1015 cm2/s2, numbers in parenthese
corresponding to each of the constituent bands. The effec
masses of the quasi-two-dimensionals band exhibit a factor
of 40 anisotropy between in-plane and out-of-plane dir
tions. In contrast, the three-dimensionalp band has a some
what smaller mass along thec axis. UsingN2 /N151.5 we
find that the in-plane gradient constants for the two bands
practically the sameK2' /K1''1.06, while thec-axis con-
stants differ by almost two orders of magnitudeK2z /K1z
'90. These estimates forK2i /K1i do not include the effect
of electron-phonon interaction. Due to a moderate strengt
electron-phonon coupling and its large disparity between
bands, the effective mass of thes band is twice larger than a
band theory estimate, whereas the electron mass of thp
band is only slightly renormalized.19 As a result, the ratio
K2 /K1 can significantly increase compared to the above v
ues based on the density-functional calculations.

A very simple form of the two-gap weak-couplin
Ginzburg-Landau functional is somewhat unexpected.
general symmetry grounds, there are possible various ty
of interaction in quartic and gradient terms between two
perconducting condensates of the same symmetry, w

-

8-3
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have been considered in the literature.35–38 The above form
of the Ginzburg-Landau functional is, nevertheless,
straightforward extension of the well-known result for u
conventional superconductors. For example, the quartic t
for a momentum-dependent gap isuD(k)u4 in the weak-
coupling approximation.39,40 In the two-band modelD(k)
assumes a steplike dependence between different piec
the Fermi surface, which immediately leads to the express
~12!.

The Ginzburg-Landau equations for the two-gap sup
conductor, which are identical to those obtained from E
~12!, have been first derived by an expansion of the g
equations in powers ofD.30 Recently, a similar calculation
has been done for a dirty superconductor, with onlyintra-
band impurity scattering, and the corresponding form of t
Ginzburg-Landau functional has been guessed, though
incorrect sign of the coupling term.26 Here, we have directly
derived the free energy of the two-gap superconductor.
derivation can be straightforwardly generalized to obta
e.g., higher-order gradient terms, which are needed to fin
orientation of the vortex lattice relative to crystal axis~see
below!. We also note that strong-coupling effects—e.g.,
pendence of the pairing interactions on the gap amplitude
will produce other weaker mixing terms of the fourth ord
in D. The interbandscattering by impurities can generate
mixing gradient term as well.

Finally, for G5(g1g22g3
2),0 a number of spurious fea

tures appears in the theory: the matrixlnn8 and the quadratic
form ~4! acquire negative eigenvalues, while a formal mi
mization of the Ginzburg-Landau functional~12! leads to an
unphysical solution at high temperatures. The sign ofD2 /D1
for such a solution is opposite to the sign ofg3. The origin of
this ill behavior lies in the approximation of positive inte
grals on the right-hand side of Eq.~5! by logarithms, which
can become negative. Therefore, negative eigenvalue
lnn8 andEconst yield no physical solution similar to the cas
when the BCS theory is applied to the Fermi gas with rep
sion. The consequence for the Ginzburg-Landau theory~12!
is that one should keep the correct sign ofD2 /D1 and use the
Ginzburg-Landau equations—i.e., look for a saddle-point
lution rather than seeking for an absolute minimum.

IV. TWO-GAP GINZBURG-LANDAU THEORY

In order to discuss various properties of a two-gap sup
conductor in the framework of the Ginzburg-Landau theo
we write a152a1t with a15N1 , t5 ln(T1 /T)'(12T/T1)
and T15(2vDeC/p)e2g2 /GN1 for the first active band and
a25a202a2t with a25N2 , a205(l112l22)/GN1 for the
passive band.

A. Zero magnetic field

For completeness, we briefly mention here the behavio
zero magnetic field. The transition temperature is found fr
diagonalization of the quadratic form in Eq.~12!:

tc5
a20

2a2
2Aa20

2

4a2
2

1
g2

a1a2
. ~13!
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For smallg, one findstc'2g2/(a1a20). A negative sign of
tc means that the superconducting transition takes p
aboveT1, which is an intrinsic temperature of supercondu
ing instability in the first band. The ratio of the two gap
r5D2 /D15g/(a202a2tc). Below the transition tempera
ture, the gap ratior obeys

a2r2g1
b2

b1
r3~a1t1gr!50. ~14!

For small g, one can approximater'g/a2 and due to a
decrease ofa2 with temperature, small to large gap ratior
increases away fromtc .

B. Upper critical field

1. Magnetic field parallel to the c axis

Due to the rotational symmetry about thec axis, the gra-
dient terms in thea-b plane are isotropic with single consta
Kn'[Kn for each band. The linearized Ginzburg-Land
equations describe a system of two coupled oscillators
have a solution in the formD15c0f 0(x) andD25d0f 0(x),
wheref 0(x) is a state on the zeroth Landau level. The upp
critical field is given byHc25hc2F0/2p:

hc25
a1t

2K1
2

a2

2K2
1AS a1t

2K1
1

a2

2K2
D 2

1
g2

K1K2
. ~15!

The ratio of the two gapsr5d0 /c0 along the upper critical
line is

r5
g

a21K2hc2
. ~16!

The above expression indicates that an applied magn
field generally tends to suppress a smaller gap. Whether
effect overcomes an opposite tendency to an increase
D2 /D1 due to a decrease ofa2 with temperature depends o
the gradient term constants. For example, in the lim
g!a20 we find from Eq. ~16! r'g/@a202(a2
2a1K2 /K1)t#. If K2 is significantly larger thanK1, while
a2.a1, the smaller gap is quickly suppressed along the
per critical field line. The situation in MgB2 is not clear at
the moment. The density-functional theory suggestsK2 /K1
'1; however, the electron-phonon interaction yiel
K2 /K153 –4. Impurity scattering can also affect the abo
ratio. For example, Mg disorder strongly affects thep band22

and can significantly reduce the gradient constantK2. Mea-
surements performed on different samples also give con
dictory results: with observations of a suppression41 of the
small gap byHic and reports of no relative suppression
D2 ~Ref. 42!.

2. Transverse magnetic field

We assume thatHi ŷ and consider a homogeneous sup
conducting state along the field direction. The gradient ter
in two transverse directionsx̂ and ẑ have different stiffness
8-4
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constantsKn andKnz , respectively. In the single-band cas
rescalingx→x(Kx /Kz)

1/4 andz→z(Kz /Kx)
1/4 allows to re-

duce the anisotropic problem to an isotropic one in resca
coordinates. A multigap superconductor has several diffe
ratios Kn /Knz and the above rescaling procedure does
work. In other words, coupled harmonic oscillators describ
by the linearized Ginzburg-Landau equations have differ
resonance frequencies. To solve this problem we follow
variational approach, which is known to give a good ac
racy in similar cases. The vector potential is chosen in
Landau gaugeA5(Hz,0,0) and we look for a solution in th
form

S D1

D2
D 5S l

p D 1/4

e2lz2/2S c

dD , ~17!

wherel, c, and d are variational parameters. After spati
integration and substitutionl5h/m, h52pH/F0, the qua-
dratic terms in the Ginzburg-Landau functional become

F25~2a1t1hK̃1!ucu21~a21hK̃2!udu22g~c* d1d* c!,

K̃n5
1

2
~Knm1Knz /m!. ~18!

The determinant of the quadratic form vanishes at the tr
sition into the superconducting state. The transition field
given by the same expression as in the isotropic case~15!,
whereKn have to be replaced withK̃n . The upper critical
field is, then, obtained from maximizing the correspond
expression with respect to the variational parameterm. In
general, the maximization procedure has to be done num
cally. Analytic expressions are possible in two temperat
regimes. At low temperaturest@utcu, the upper critical field
is entirely determined by the active band and

hc25
a1t

AK1K1z

. ~19!

In the vicinity of Tc , an external magnetic field has a sm
effect on the gap ratior5d/c'g/a20 and an effective
single-gap Ginzburg-Landau theory can be applied. The
per critical field is given by a combination of the gradie
constantsKni weighted according to the gap amplitudes

hc25
a1~ t2tc!

A~K11r2K2!~K1z1r2K2z!
. ~20!

Since in MgB2 one hasK1z.0.01K2z andr2.0.1, the slope
of the upper critical field nearTc is determined by an effec
tive gradient constant Kz

eff'r2K2z.K1z @while (K1

1r2K2)'K1]. Thus, the upper critical field lineHc2(T)
shows a marked upturn curvature between the two regi
~20! and~19!. Such a temperature behavior observed exp
mentally in MgB2 ~Refs. 43–45! has been recently address
in a number of theoretical works based on various forms
05450
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the two-band BCS theory.24–27 We suggest here a simple
description of the above effect within the two-gap Ginzbu
Landau theory.

Finally, we compare the Ginzburg-Landau theory with t
experimental data on the temperature dependence of the
per critical field for a magnetic field parallel to the bas
plane.45 We choose ratios of the gradient term constants
the densities of states in accordance with the band struc
calculations16 and change the parametersg anda20, which
are known less accurately, to fit the experimental data.
best fit shown in Fig. 2 is obtained fora20/a150.65 and
g/a150.4. The prominent upward curvature ofHc2(T) takes
place between tc520.18 (Tc536 K) and t.0.2 (T
526 K)—i.e., well within the range of validity of the
Ginzburg-Landau theory. The above values ofa20 andg can
be related tog2 /g1 andg3 /g1 and they appear to be closer
the second choice ofgn used for Fig. 1. The ratio of the two
gaps, as it changes along theHc2(T) line, is shown on the
inset in Fig. 2. It varies fromD1 /D2'2.3 nearTc536 K to
D1 /D2'45 atT518 K, where the Ginzburg-Landau theor
breaks down. Due to a large difference in thec-axis coher-
ence lengths between the two bands, the smaller ga
quickly suppressed by the transverse magnetic field. A
the strong upward curvature ofHc2(T) leads to temperature
variations of the anisotropy ratiogan5Hc2

' (T)/Hc2
c (T),

which changes fromgan51.7 near Tc to gan54.3 at T
518 K. These values are again consistent with experime
observations,46 as well as with theoretical studies.24–26

C. Structure of a single vortex

The structure of an isolated superconducting vortex p
allel to the c axis has been studied in MgB2 by scanning
tunneling microscopy.47 Tunneling along thec axis used in
the experiment probes predominantly the three-dimensio
p band and the obtained spectra provide information abo
small passive gap. A large vortex core size of about fi
coherence lengthsjc5AF0/2pHc2

c was reported and attrib

FIG. 2. Temperature dependence of the upper critical field
MgB2 for a magnetic field in the basal plane. Solid line: the tw
gap Ginzburg-Landau theory with parameters given in the te
Squares: experimental data by Lyardet al. ~Ref. 45!. The inset
shows variation of the gap ratio along theHc2(T) line for the same
set of parameters.
8-5
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uted to a fast suppression of a passive gap by magnetic fi
whereas thec-axis upper critical field is controlled by a larg
gap in thes band.47 The experimental observations we
confirmed within the two-band model using th
Bogoliubov–de Gennes23 and the Usadel equations.28 We
have, however, seen in the previous subsection that ap gap
in MgB2 is not suppressed nearHc2(T) for fields applied
along thec axis. To resolve this discrepancy we present h
a systematic study of the vortex core in a two-gap superc
ductor in the framework of the Ginzburg-Landau theory.

We investigate the structure of a single-quantum vor
oriented parallel to the hexagonalc axis. The two gaps are
parametrized asDn(r )5cn(r )e2 iu, whereu is an azimuthal
angle andr is a distance from the vortex axis. Since t
Ginzburg-Landau parameter for MgB2 is quite large,2 k
.25, the magnetic field can be neglected inside vortex c
leading to the following system of the Ginzburg-Land
equations:

ancn2gcn81bncn
32Kn~cn91cn8/r 2Q2cn!50 ~21!

for n51,2 (n852,1) andQ'1/r . Away from the center of a
vortex, the two gaps approach their asymptotic amplitu
c0n :

c015Aa1t1gr

b1
, c025Ag/r2a2

b2
, ~22!

with r obeying Eq.~14!. All distances are measured in uni
of a temperature-dependent coherence length derived
the upper critical field, Eq.~15!. In order to solve Eq.~21!
numerically, a relaxation method has been used48 on a linear
array of 4000 points uniformly set on a length of 80j from
the vortex center. The achieved accuracy is of the orde
1026.

The obtained results are shown in Figs. 3–5, where
plitudescn(r ) are normalized to the asymptotic value of t
large gapc01. To quantify the size of the vortex core fo
each component we determine the distancedn , wherecn(r )
reaches half of its maximum valuec0n . In the case of a
single-gap superconductor such a distance is given with
few percent by the coherence length. In a two-gap superc

FIG. 3. ~Color online! Spatial dependences of the gaps for va
ous temperatures witht5 ln T1 /T'12T/T1 andK2 /K159.
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ductor the characteristic length scale for the large gapd1
remains close toj, while d2 can substantially vary. The siz
of the vortex core is given bydv5max(2d1,2d2).

Results for the temperature dependence of the vortex
are presented in Fig. 3. The parametersa20 andg are taken
the same as in the study of the upper critical field, while
chooseK2 /K159 in order to amplify the effect for the sma
gap. As was discussed above, the equilibrium ratio of the
gaps,c02/c01, grows with decreasing temperature~increas-
ing t). Simultaneously, the small gap becomes less c
strained with its interaction to the large gap and the ha
amplitude distanced2 shows a noticeable growth. ForK2
'K1 such a less constrained behavior ofc2(r ) at low tem-
peratures does not lead to an increase of the core size
cause both gaps have similar intrinsic coherence lengths

This trend becomes more obvious if the coupling const
g is changed for fixed values of all other parameters; see
4. For vanishingg, the distanced2 approaches asymptoti
cally an intrinsic coherence length in the passive band. T
length scale depends onK2 (d2 /d1ug50.AK2 /K153), but
is not directly related to an equilibrium value of the sm
gap: the small gap is reduced by a factor of 7 betweeng
50.6 andg50.03, while the core size increases by 50
only. Therefore, the single-band BCS estimatej2
5vF /(pD2) for the characteristic length scale of the sm

FIG. 4. ~Color online! Spatial dependences of the gaps for va
ous values ofg ~given in units ofa1) for t50.3 andK2 /K159.

FIG. 5. ~Color online! Spatial dependences of the gaps for va
ous values ofK2 /K1 for t50.3.
8-6
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gap sometimes used for interpretation of experimental da47

is not, in fact, applicable for a multi-gap superconductor.
Finally, Fig. 5 presents the evolution of the vortex co

with varying ratio K2 /K1, where againa20/a150.65 and
g/a150.4. The apparent size of the vortex coredv.2d2
becomes about five to six coherence lengths forK2, exceed-
ing K1 by an order of magnitude. ForK2 /K1.1 –4, which
follows from the band structure calculations, the vortex c
size does not change significantly compared to the stan
single-gap case. These results generally agree with the
vious study,28 though we conclude that unrealistically larg
values ofK2 /K1 are required to explain the experiment47

Different strengths of the impurity scattering in the tw
bands cannot explain this discrepancy either. It is argued
the p band is in the dirty limit.22 The coefficientK2 in Eq.
~12! is accordingly replaced by asmallerdiffusion constant.
The numerical results~Fig. 5! as well as qualitative consid
eration show that in such a case the core size forc2(r ) can
only decrease. Note that the spatial ansatzc(r );tanh(r/a)
with a5j used to fit the experimental data47 should be ap-
plied with a51.8j even for a single-gap superconductor
the large-k limit.49

V. ORIENTATION OF VORTEX LATTICE

Recent neutron scattering measurements29 in MgB2 for
fields along the hexagonalc axis have discovered a new in
teresting phase transition in the mixed state of this superc
ductor: a triangular vortex lattice rotates by 30° such t
below the first transition field~0.5 T atT52 K) a nearest-
neighbor direction is aligned perpendicular to the crystaa
axis, whereas above the second transition field~0.9 T! the
shortest intervortex spacing is parallel to thea axis.29 We
show in this section that such a peculiar behavior is de
mined by the two-gap nature of superconductivity in MgB2.

A. Single-gap superconductor

The orientation of the flux line lattice in tetragonal an
cubic superconductors has been theoretically studied
Takanaka.50 Recently, such a crystal field effect was found
be responsible for the formation of a square vortex lattice
the borocarbides.51,52The case of a single-gap hexagonal s
perconductor is treated by a straightforward generalizatio
the previous works. Symmetry arguments suggest that c
pling between the superconducting order parameter an
hexagonal crystal lattice appears at the sixth-order grad
terms in the Ginzburg-Landau functional. For simplicity, w
assume that the gap anisotropy is negligible. Then, the si
order gradient terms derived from the BCS theory are

F65
z~7!N0

32p6Tc
6 S 12

1

27D ^vFivF jvFkvFlvFmvFn&~¹i¹j¹kD* !

3~¹l¹m¹nD!. ~23!

The above terms can be split into an isotropic part and
isotropic contribution, the latter being
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F6
an52

z~7!N0

64p6Tc
6 S 12

1

27D ~^vFx
6 &2^vFy

6 &!D* @¹x
6215¹x

4¹y
2

115¹x
2¹y

42¹y
6#D

52
1

2
K6D* @~¹x1 i¹y!61~¹x2 i¹y!6#D. ~24!

In this expressionx̂ is fixed to thea axis in the basal plane
~An alternative choice is theb axis.! If x̂ and ŷ are simulta-
neously rotated by anglew about thec axis, (¹x6 i¹y)

6 ac-
quires an extra factore66iw. In the following we always
make such a rotation in order to havex̂ pointing between
nearest-neighbor vortices. Periodic Abrikosov solutions w
chains of vortices parallel to thex axis are most easily writ-
ten in the Landau gaugeA5(2Hy,0,0) ~Ref. 53!.

The higher-order gradient terms, Eq.~24!, give a small
factor H2;(12T/Tc)

2 and can be treated as a perturbati
in the Ginzburg-Landau regime. The Landau level expans
yields D(x)5c0f 0(x)1c6f 6(x)1•••, where the coeffi-
cient for the admixed sixth Landau level isc6 /c0

'2(A6!/3)h2e6iwK6 /K. When substituted into the quarti
Ginzburg-Landau term, this expression produces the follo
ing angular-dependent part of the free energy:

dF~w!52
2A6!K6

3K
hc2

2 buc0u4^u f 0u2f 0* f 6&cos~6w!,

~25!

with uc0u25K(hc22h)^u f 0u2&/(b^u f 0u4&). Spatial averaging
of the combination of the Landau levels is done in a stand
way:

^u f 0u2f 0* f 6&

^u f 0u2&2
5

As

12A5
(
n,m

cos~2prnm!e2ps(n21m2)

3Fp3s3~n2m!62
15

2
p2s2~n2m!4

1
45

4
ps~n2m!22

15

8 G , ~26!

where the summation goes over all integern andm and pa-
rametersr ands describe an arbitrary vortex lattice.53 For a
hexagonal lattice (r51/2, s5A3/2), the numerical value o
the lattice factor is^u f 0u2f 0* f 6&/^u f 0u4&520.279. Hence,
dF(w).1K6cos(6w) and for ^vFx

6 &.^vFy
6 &(K6.0) the

equilibrium angle isw5p/2 (p/6), which means that the
shortest spacing between vortices in a triangular lattice
oriented perpendicular to thea axis, while for the other sign
of anisotropy the shortest side of a vortex triangle is alo
thea axis. Thus, the Fermi surface anisotropy fixes uniqu
the orientation of the flux line lattice near the upper critic
field.
8-7
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B. Two-gap superconductor

In a multiband superconductor the effect of crystal anis
ropy may vary from one sheet of the Fermi surface to
other. We apply again the tight-binding representation16 to
obtain a quantitative insight about such effects in MgB2.
Explicit expressions for dispersions of the two-holes bands
are presented in the Appendix. The hexagonal anisotrop
the narrows cylinders is enhanced by a nonanalytic form
the hole dispersions. The combined anisotropy of thes band
is ^vFx

6 &54.608, ^vFy
6 &54.601, while for thep band^vFx

6 &
51.514, ^vFy

6 &51.776 in units of 1046 (cm/s) ~Ref. 6!. Ac-

cording to the choice of coordinate system,16 the x̂ axis is
parallel to theb direction and theŷ axis is parallel to thea
direction in the boron plane. The above values might be
very accurate due to the uncertainty of the local density
proximation~LDA ! results; however, they suggest two sp
cial qualitative features for MgB2. First, the relative hexago
nal anisotropy of the Fermi velocityvFn(w) differs by
almost two orders of magnitude between the two sets
bands. Second, the corresponding hexagonal terms have
ferent signs in the two bands. In the Appendix, we show t
the sign difference is a robust feature of the tight-bind
approximation and cannot be changed by a small chang
the tight-binding parameters.

We investigate the equilibrium orientation of the vort
lattice in MgB2 within the two-gap Ginzburg-Landau theor
Anisotropic sixth-order gradient terms of the type~24! have
to be added to the functional~12! separately for each of th
two superconducting order parameters. As was discusse
the previous paragraph the anisotropy constants have d
ent signsK61.0 andK62,0 and obeyuK61u!uK62u. In the
vicinity of the upper critical field the two gaps are expand
as D1(x)5c0f 0(x)1c6f 6(x) and D2(x)5d0f 0(x)
1d6f 6(x). Solution of the linearized Ginzburg-Landa
equations yields the following amplitudes for the sixth La
dau levels:

c6524A6!h3e6iw
K61ã2c01K62gd0

ã1ã22g2
,

d6524A6!h3e6iw
K62ã1d01K61gc0

ã1ã22g2
, ~27!

with ã1,25a1,2113K1,2h. Subsequent calculations follow
closely the single-gap case from the preceding subsec
The angular-dependent part of the free energy is obtaine
substituting Eqs.~27! into the fourth-order terms:

dF~w!5@b1c0
3~c61c6* !1b2d0

3~d61d6* !#^u f 0u2f 0* f 6&.
~28!

The resulting expression can be greatly simplified if one u
(D2 /D1)2.0.1 as a small parameter. With accura
O@(D2 /D1)4# we can neglect the angular-dependent part
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termined by the small gap. This yields in close analogy w
Eq. ~25! the following anisotropy energy for the vortex la
tice nearHc2:

dF~w!52
2A6!

3K1
hc2

2 b1uc0u4^u f 0u2f 0* f 6&K6
effcos~6w!,

K6
eff5K611K62

g2

~a21K2h!~a2113K2h!
. ~29!

Despite the fact that we have omitted terms;d0
3d6, the

Fermi surface anisotropy of the second band still contribu
to the effective anisotropy constantK6

effvia linearized
Ginzburg-Landau equations. Along the upper critical line t
contribution decreases, suggesting the following scenario
MgB2.

In the region nearTcthe second band makes the large
contribution to K6

eff : a small factor g2/a2
2;0.1 is out-

weighed byuK61/K62u,0.1. As a result,K6
eff is negative and

w50, which means that the shortest intervortex spacing
parallel to theb axis. At lower temperatures and higher ma
netic fields the second term inK6

eff decreases and the Ferm
surface anisotropy of the first band starts to determine
~positive! sign of K6

eff . In this case,w5p/2 (p/6) and the
side of the vortex triangle is parallel to thea axis. The very
small uK61/K62u51.831022, which follows from the band
structure data,16 is insufficient to have such a reorientatio
transition in the Ginzburg-Landau region. Absolute values
anisotropy coefficients are, however, quite sensitive to
precise values of the tight-binding parameters and it is r
sonable to assume that experimental values ofK6n are such
that the reorientation transition is allowed.

The derived sequence of orientations of the flux line l
tice in MgB2 completely agrees with the neutron scatteri
data,29 though we have used a different scan line in theH-T
plane in order to demonstrate the presence of
30°-orientational transformation; see Fig. 6. The condit
K6

eff50, or a similar one applied to Eq.~28!, defines a line
H* (T) in the H-T plane which has a negative slope at t

FIG. 6. Phase diagram of MgB2 for fields parallel to thec axis.
The shaded region corresponds to intermediate orientations o
vortex lattice separated by dotted lines of the second-order tra
tions. Dashed lines indicate the scans used in the experiment~ver-
tical! and in the presented theory.
8-8
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GINZBURG-LANDAU THEORY OF VORTICES IN A . . . PHYSICAL REVIEW B69, 054508 ~2004!
crossing point withHc2(T). The sixfold anisotropy for the
vortex lattice vanishes alongH* (T) and all orientations with
different anglesw become degenerate in the adopted
proximation. The sequence of orientational phase transit
in such a case depends on weaker higher-order harmo
One can generally write

dF~w!5K6 cos~6w!1K12 cos~12w!, ~30!

where the higher-order harmonics comes with a small co
ficient uK12u!uK6u. Depending on the sign ofK12 the trans-
formation between low-fieldw50 and high-fieldw5p/6
(p/2) orientations, whenK6 changes sign, goes either v
two second-order transitions (K12.0) or via a single first-
order transition (K12,0). In the former case the transition
take place atK6564K12, whereas in the latter case th
first-order transition is atK650. These conclusions are ea
ily obtained by comparing the energy of a saddle-point so
tion cos(6w)52K6 /(4K12) for Eq. ~30!, which is dFsp

52K6
2/(8K12), to the energies of two extreme orientation

In order to determine sign of the higher-order harmon
for a two-gap superconductor we expand the fourth-or
terms in the Ginzburg-Landau functional~12! to the next
order:

dF8~w!5
1

2
@b1c0

2~c6
21c6*

2!1b2d0
2~d6

21d6*
2!#^ f 0*

2f 6
2&.

~31!

These terms are responsible for the cos(12w) anisotropy in-
troduced before. A similar angular dependence is also
duced by the higher-order harmonics of the Fermi veloc
vF(w), though our estimate shows that even for thep bands
the corresponding modulations are very small.54 The sign
of the cos(12w) term in Eq.~31! depends only on a geome
ric factor, the spatial average of the Landau levels wa
functions. We find for a perfect triangular lattic
^ f 0*

2f 6
2&/^u f 0u2&250.804. Thus, the 12th-order harmonics

Eq. ~30! has a positive coefficient and the transformati
between the low-field state withw50 and the high-field state
w5p/6 goes via a phase with intermediate values ofw sepa-
rated by two second-order transitions.

Anisotropy terms of the type~24! also produce a sixfold
modulation of the upper critical field in the basal plane. T
sign of the corresponding modulations ofHc2(w) should also
change at a certain temperature, which is determined b
suppression of the small gap in transverse magnetic field
is not, therefore, related to the intersection point ofHc2(T)
andH* (T) lines on the phase diagram forHic, Fig. 6.

VI. CONCLUSIONS

We have derived the Ginzburg-Landau functional of
two-gap superconductor within the weak-coupling BC
theory. The functional contains only a single interaction te
between the two superconducting gaps~condensates!. This
property allows a meaningful analysis of various magne
properties of a multigap superconductor in the framework
the Ginzburg-Landau theory. Apart from confirming the p
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vious results on an unusual temperature dependence o
transverse upper critical field in MgB2, we have presented
detailed investigation of the vortex core structure and h
shown that the orientational phase transitions observed in
flux line lattice in MgB2 is a manifestation of the multiban
nature of superconductivity in this material. The propos
minimal model for the 30° rotation of the vortex lattice in
cludes only the anisotropy of the Fermi surface. An ad
tional source of six fold anisotropy for the vortex lattice c
arise from the angular dependence of the superconduc
gap. It was argued that the latter source of~fourfold! anisot-
ropy is essential for the physics of the square to distor
triangular lattice transition in the mixed state
borocarbides.55 For phonon-mediated superconductivity
MgB2, the gap modulations should be quite small, especi
for the large gap on the narrows cylinders of the Fermi
surface. Experimentally, the role of gap anisotropy can
judged from the position ofH* (T) line in the H-T plane.
H* (T) does not cross theHc2(T) line in scenarios with sig-
nificant gap anisotropy.55 A further insight into the aniso-
tropic properties of different Fermi surface sheets in Mg2
can be obtained by studying experimentally and theoretic
the hexagonal anisotropy of the upper critical field in t
basal plane.
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APPENDIX: ANISOTROPY IN s BANDS

We present here expressions for the dispersions and F
surface anisotropies in the twos bands, which are derived
from the tight-binding fits of Konget al.16 The in-planepx,y
boron orbitals in MgB2 undergo ansp2 hybridization withs
orbitals and form three bonding bands. Atk'50 these bands
are split into a nondegenerateA-symmetric band and doubly
degenerateE-symmetric band, which lies slightly above th
Fermi level. Away from thek'50 line theE band splits into
light- and heavy-hole bands. Their dispersions are obtai
by expansion of the tight-binding matrix16 in small k' :

« l~k!5«~kz!22t'F1

8
k'

2 1dk'
4 2g~k!1121/d

384~11d! G ,
«h~k!5«~kz!22t'F3

8
dk'

2 2dk'
4 2g~k!1719d

384~11d! G ,
where «(kz)5«022tz coskz and g(k)5(kx

6215kx
4ky

2

115kx
2ky

42ky
6)/k'

6 . The tight-binding parameters present
in Ref. 16 are«050.58 eV,t'55.69 eV,tz50.094 eV, and
d50.16. The sixfold anisotropy is given by unusual nonan
lytic terms, which are formally of the fourth order ink. The
appearance of such nonanalytic terms is a direct consequ
8-9
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of the degeneracy of the two bands atk50. For example, a
nonanalytic form of«(k) is known for fourfold-degenerate
hole bands of Si and Ge,56 which have cubic anisotropy al
ready in O(k2) order. Nonanalyticity of« l ,h(k) leads to a
relative enhancement of the hexagonal anisotropy on
d

re

J
ys

.
J.

ru
e

ys

or

.

, A

L.

ov

e

ie

K.
on

,

s
s.

05450
o

narrow Fermi surface cylinders. The hexagonal harmon
have opposite signs in the light- and heavy-hole bands.
net anisotropy of the combineds band is determined mostly
by the light holes, which have larger in-plane Fermi velo
ties.
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