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Mixed-spin Ising model and compensation temperature
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We presented a study of the magnetic properties of a mixed-spin Ising ferrimagnetic model on a hexagonal
lattice. The lattice is formed by alternate layers of spits1/2 andS= 1. For this spin arrangement, any spin
at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The
intersublattice interaction is antiferromagnetic. The compensation point is a special point that appears below
the critical temperature, for which the sublattice magnetizations cancel each other. We employed mean-field
calculations and Monte Carlo simulations to find the compensation point of the model. The role of the different
interactions in the Hamiltonian is explored. When the intrasublattice interaction fos- thgins exceeds a
minimum value, which depends on the other parameters of the Hamiltonian, a compensation point is possible.
We have also shown that the phase diagram in the plane magnitu8eSaéxchange interactions versus
crystal-field intensity exhibits a very narrow region of compensation points.
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[. INTRODUCTION materials. For instance, the work of Cheehal* reports
some measurements of the compensation point and phase
Ferrimagnetic systems have been the object of a largdiagram of FgO,/Mn;O, superlattices, which is a system
number of experimental and theoretical studies, because @fown by a deposition of alternate layers of;6g and
their great potential for technological applications, such advin3O, coupled antiferromagnetically. In the remainder of
the high-density magneto-optical recordig.Mixed-spin  this work, we present in Sec. Il the model and the dynamic
Ising systems were introduced as the simplest models th&quations for the sublattice magnetizations in the mean-field
can exhibit a ferrimagnetic order and compensation pointsapproximation. We next, in Sec. lll, describe the Monte
These systems have been studied by effective-fieldarlo simulations. In Sec. IV we show our results, and fi-
theories>* renormalization-group calculations’ and Monte  nally, we present our conclusions in Sec. V.
Carlo simulation$:®
In a ferrimagnetic material the different temperature de- Il. THE MODEL
pendences of the sublattice magnetizations cause the appear- '
ance of compensation points. The compensation temperature We consider a mixed-spin ferrimagnetic Ising model on a
is a temperature below the critical one, for which the totalhexagonal lattice. The two different types of spins are de-
magnetization is zert. It has been found that at this point scribed by Ising variables, which can take the values
some physical properties present a peculiar behavior. For ire= +1/2 andS= =1, 0. The two different spins are distrib-
stance, a divergence in the coercivity is observ€d?at the  uted in alternate layers of a hexagonal lattice, as we can see
compensation point only a small driving field is required toin Fig. 1.
reverse the sign of the magnetization of the system. Because

some ferrimagnetic materials have a compensation tempera-
ture (T¢omp Near room temperature, they are of fundamental
importance in the area of the thermomagnetic recording
devices>!?

The presence of a compensation point in the mixed-spin

models was already investigated on the square and honey-

comb lattices’®° In these lattice models only the-S inter-

actions were considered between nearest-neighbor spins.

Then, a mean-field calculation predicts a compensation point J
only for a very narrow region of negative values of the Z
crystal-field parameter. On the other hand, by Monte Carlo
simulations, it was demonstrated that it is necessary to in-
clude a ferromagnetic interaction betweeispins, which are \
next-nearest neighbors in a bipartite lattice, in order to have

a compensation point.
In the layered mixed-spin Ising model on the hexagonal //\ /\ /J\ /\ /J\

lattice, investigated in this work, only nearest-neighbor inter-

actions between spins are sufficient to predict a compensa- FIG. 1. Schematic representation of the hexagonal lattice. The
tion point. If this model would be extended to three dimen-lattice is formed by alternate layers af(open circley andS (solid
sions it could describe some properties of real ferrimagneticircles spins.
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FIG. 2. Sublattice and total magnetizations as
s a function of temperature obtained by Monte
E"’ Carlo simulations fod,=—J,, J;=1.05];, and
0.2 [ . D=-0.79J,|]. The inset shows the sublattice
: : magnetizationsT,m, and T, are shown in the
0.0 072 . 054 076. ofs 1.0 1 flgure'
The Hamiltonian model for the system is whereW(o,S—¢’,S') is the transition rate from the state
(0,9) to the state ¢’,S’). In this work, we assume that
M= digy Soi=Jagy oo ey §§ DL & W(o,5—0",S)=W(e,S—~0",S)+W(0,5—a,S).
(1) )

whereJ;, J,, andJ; are the exchange couplings betweenfor this transit?on6 rate we also assume the one-spin-flip
nearest-neighbor pairs of spisS, o-o, andS-S, respec- ~ Glauber dynamics; that is,

tively. The parameted; will be taken negative in all the .

subsequent analyses, that is, the intersublattice coupling is W(o,S—0",S')

antiferromagneticD is the crystal field that acts only at ti$e N

spin sites. In order to study this model in the mean-field => By gt Oy —gre By g
approximation, we consider the dynamic equations for the j=1 "t b NN

average sublattice magnetizations,
g g Xﬁslvsl""5Sk,5k""5SN,SN’WJ(‘T’)

N
m,(t)= >, oP(a,Sit) )
(c,S) + kzl 60-1,0'1’ e 60']- LA 5UN N’
and . ~,
Xﬁslvsl/- . ‘5Sk*$</. . ‘5SN'SN/Wk(S ), (6)
ms(t)=<025> SHo,Sit), (3 wherew;(o") andw(S') are the flipping probabilities for

the spins on ther and S sublattices, per unit time, respec-
where the sums are over all the possible spin configurationgively.
andP(o,S;t) is the probability to find the system in a give  Using Egs.(4) and(6) we find
state ¢,S) at timet.

The time evolution for the state probability is obtained i N .
from the master equatidif, gitoi=—2ow;(0)) (7
d and
—P(0,Sit)= >, [W(c',S'—0,S)P(c',S';t)
dt UI’SI d
~W(0,S—0",S)P(0,SD], (@) at{SO =S =SIwdS). ®)
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FIG. 3. (8 Fourth-order cumulants for the hexagonal lattices exp(— Ba)
with L=8 (square} L= 16 (circles, L=32 (up triangle$, and L Wi(1——-1)=w(0——1)= 2 costiBa)+exp —BD)’
=64 (down triangles (b) Susceptibility, andc) specific heat as a (13
function of temperature for the same parameters of Fig. 2 and for
L=64. T¢compandT, are shown in the figure. exp(Ba)

. o N W"(_l_)l)zwk(o_’l):2cosmﬂa)+exp(—,8D)’
The spins of thes sublattice flip with a probability per (14)

unit time given by the normalized Boltzmann factér,
Wherea:J12j0j+J32ij .

In the mean-field approximation, the probability of find-
exp(— BAH) © ing the system in the stater(S) at timet is equal to the
' product of the probabilities of the independent spin states:
> exp(— BAH)

’
(o8

Wj(O’):

P(o-,s;n:ﬂk P(oj,sk;n:ﬂk P(0j;t)P(Sc;t),

where 8= 1/kgT, kg is the Boltzmann constant ardis the

absolute temperaturd.}{ is the energy change of the system (19
when one spin of the sublattice flips. If the spinr; flips, where for the probabilities of the individual spin states we
write,*8
AH(o})=—20; J12k skJrJZZk ox, (10) P(oj;)=3(1+40ym,), (16)
. P(S;t)=1-S+3Sms—(1-3S)a, (17
an
where qk=E<UVS>SfP(a,S;t). Introducing these probabili-
_ _ ties in the expressions for the transition rates, we finally ar-
wi(o)= ex — pAM(0))] ) (11)  rive at the equations of motion for the sublattice magnetiza-
1+exd —BAH(oy)] tions in the mean-field approximation:
In a similar way, we define the transition rates for the d 1
. ! . _— = — + — +
spins on theS sublattice. We have gt Me= Mo+ Stan f(2dims+ Jom,) ] (18
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FIG. 5. Minimum value ofJ, for the appearance of a compen-  FIG. 6. Range of values af, giving rise to the compensation
sation point as a function of the crystal field, (2) Mean-field  points, as a function of the crystal field for J,=—J;. (2) Mean-
calculations forJ;=J;, and (b) Monte Carlo simulations fods  field calculations, andb) Monte Carlo simulationsB is the only
=0.98];. RegionA, mg>m,, for T<T., andB is the region where  region where we can have compensation points. For the regions

a compensation point appears. andC, we always havens>m, andm,>m;, respectively.
and different samples in our calculations. Although not shown in
) the figures, the error bars are smaller than the symbol sizes.
Em et 2 sinf 28(2J;m,+ Jzms) | Our algorithm calculates the and S sublattice magneti-
dt S ST 2 coshi2B(23;m,+Jsmg)]+exp(— BD) zations, defined as
(19
2
We solved this system of equations for the equilibrium mU:—2< : O'j>1 (20)
states as a function of the temperature, for different values of L !
the Hamiltonian parameters. )
ms=—2<2 sk> (21)
Ill. MONTE CARLO SIMULATIONS L k

The model described in the preceding section was simuand the total magnetization
lated by using standard importance sampling techniques. The .
initial configurations were taken randomly. We try to flip the Miot= 2 (Mg +Mg). (22)
spins according to the heat-bath algoritfitrand in each  The sums inj andk are over all the spins in the and S
Monte Carlo stegMCS), we performed_? trials to flip the sublattices, respectively.
spins. We considered hexagonal lattices seen in Fig. )1 The total magnetizatiom,,, vanishes at the compensation
with L? sites, and appheq periodic boundary Cond't'O”S-temperaturél'wmp. Then, the compensation point can be de-
Most of the data were obtained for=64, but we also con-  termined by looking for the crossing point between the ab-
sidered lattices of linear sizds=8, 16, 32, 48, and 128. sojyte values of the sublattice magnetizations. Therefore, at
For L =64, we performed around 4000 MCS, where the firstthe compensation point, we must have
1000 were discarded for the thermalization process. In order
to get reliable results, we also considered averages over 100 IM(Teomp | =Ms(Teomp| (23
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FIG. 8. Plots ofT;ompandT, as a function ofl,. (a) Mean-field
calculations foD =0 andJ;=J;, and(b) Monte Carlo simulations
for D=0 andJ;=0.98];.

FIG. 7. Behavior ofT,mpandT, as a function oD. (a) Mean-
field calculations forJ,= —J; andJ;=J;, (b) Monte Carlo simu-
lations forJ,=—J; andJ;=0.98);, and(c) Monte Carlo simula-
tions forJ,= —J, andJ;=0.40],.

enon; only afl, the critical behavior is observed through the

and crossing of the cumulants. We see in Fig)3and 3c) the
plots of the susceptibility and specific heat as a function of
sgiM(Teomp 1= =g Mg(Teomp ]- (24 temperature, fot. =64, respectively. Once again, it is clear
We also require thal com<T., whereT is the critical- that these properties are regular functiond @y, only at
point temperature. T. they display a singular behavior. The compensation point

These conditions show that &y, the o andS sublat- appears only c_iue to the di_ffergnt dependences on temp'erature
tice magnetizations cancel each other, whereds aoth are  ©f the sublattice magnetizations and does not exhibit any
zero. To illustrate this property, we show in Fig. 2 the sub-SPecial singularity. Figure 4 shows the different compensa-
lattice and total magnetizations as a function of the temperdi®n temperatures as a function of the lattice size. We note
ture for selected values of the Hamiltonian parametersti@t Tcomp iS NOt sensitive to the lattice size. This is the
which lead to a compensation point. In this case, we hav&eason we performed the calculations for the lattice &ize
Jy=—J;, J3=1.05);, andD=—0.75J,|. We call attention =64, when we are looking at the compensation point.
that for this value oD, the S sublattice magnetization is not
saturated aff=0. The simulation points can be obtained
down toT=0.02J,|/kg using safely 4000 Monte Carlo steps
as explained before. For temperatures below this, the time We start our analysis by looking for the Hamiltonian pa-
for thermalization is too long and the simulation points arerameters of the model for which a compensation point ap-
extrapolated ta' =0 to coincide with the mean-field values. pears. As we will see below, the compensation point is
Then, from the Monte Carlo simulations of Fig. 2, we havepresent only for a ferromagnetic intrasublattice coupling be-
Teomp= (0.26 0.02)|J,|/kg for the compensation point, and tweeno spins. Besides, we also require an antiferromagnetic
T.=(0.62+0.02) J,|/kg, for the transition temperature. coupling between spins on th® sublattice or a negative

In Fig. 3@ we show the fourth-order cumulants for the value for the crystal-field parameter. All these features are
same parameters of the Fig. 2, for lattices witkqual to 8, necessary in order fang to decrease faster than, when
16, 32 and 64. As can be seen in this figure, at the comperihe temperature increases.
sation point the model does not present any critical phenom- Figure §a) shows the minimum value of the ferromag-

IV. RESULTS
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netic intrasublattice interaction between spins, J,, as a
function of D, in the mean-field approximation fai;=J;.
For values ofJ, below the minimummg is always larger
thanm,, for any value of T<T.. The minimum value de-
pends on the intensity of the crystal-field paraméefThe 104 1
minimum value ofJ,, for which a compensation point ap- ¥
pears, is an increasing function Bf. As D decreases, the ?
sublattice magnetizatiomg decays faster, and the crossing " o5 J
point of the two sublattice magnetizations moves to lower
temperatures. For the exchange paramethrand J; con-
sidered in this plot, the model does not exhibit any compen- . .
sation point forD<—1.0J4]. In this region, the sublattice o0 10 15 20
magnetizationmg is lower thanm, for any value of the
intrasublattice interaction in the sublattice.

In Fig. 5(b) we present the minimum value d$ obtained ' ' '
through Monte Carlo simulations fdg=0.98],. Comparing 06 J
this plot with the one found in the mean-field calculation, we \
observe a different behavior in the range of values®
<0.50J,|, where the minimum value af, decreases with (|
D. We believe that this behavior must be attributed to a di-+
mensional crossover of the model, once we observed that fo g
D < —3.0J,| the system is represented by a set of uncoupled~
chains of o spins. Then, this behavior is not seen in the

(@ |

c

mean-field calculations because dimensional details are nc .

captured at this level of approximation.

~ On the other hand, the antiferromagnetic intrasublattice  *g; 4 os 100 102
interaction between spins at tiSesublattice establishes two J

limits for the existence of a compensation point. Below the
minimum value, thems does not decrease enough, and for  FIG. 9. Plots ofT .o, andT, as a function ofl;, for D=0 and
any temperature below the criticams>m, . Above the J,=-J,. (a) Mean-field calculations, andb) Monte Carlo simula-
maximum value, the antiferromagnetic interaction betweenions.
the S spins is too large thang is always lower tham,, for
any temperature below the critical one. Only in the regio
between these extreme valuesJaf a compensation point
can appear. These limits depend on the value,ds we can
see in Fig. 6, forJ,=—J;. Figures 6a) and Gb) give the
mean field and simulation results, respectively. Monte Carl . . .
simulations give a much more narrow rangelefvalues, for seenin the megn_—ﬂeld calculatlons.. -
which the compensation point exists. For the upperbond Figure 8 exh|p|ts the compensauo.n and cntpal tempera-
curve ofJs, the simulations also predict a different behavior {Ures as a function o8, for D=0. Figure &) gives the
as a function oD in the range—0.50J,|<D <0, compared mean-field results fod;=J; and Fig. &b) the S|mu_lat|on.
with the mean-field one. results forJ;=0.98];. As we can see, a compensation point
The dependence &f.om,and T, on the crystal-field pa- appears only when a minimum value &f is reached. The
rameterD is seen in Fig. 7. Figure() displays the mean- Ccritical temperature always increases with As to be ex-
field results for the parameteds=—J, andJ;=J;. As we  pected, increasing, above its minimum value, the sub-
can see, foD<—1.0J,| the system does not exhibit any lattice keeps ordered up to high temperatures. However, as
compensation point. However, whénincreasesT .,mpand — Mgis almost constant, the crossing point betwegnandmsg
T, both increase, andc,m, approaches tol.. For D changes a little, and@l¢,m, is nearly constant.
=0.6J4|, we haveTom,=T.. This picture is also observed Finally, we plotted in Fig. 9T ;ompandT, as a function of
in Fig. 6@ for J;=J,. Therefore, only in the range the antiferromagnetic intrasublattice interactibn In these
—1.0J,/]<D<0.6J4| there is a compensation point. Figure plots we usedl,=—J; and D=0. Figures %a) and 9b)
7(b) shows the simulation results fal,=—J; and J; represent the mean-field and simulation results, respectively.
=0.981;. In this figure only forD<—1.0J,| there is nota As we can se€Tcomp and T, are both decreasing functions
compensation point. The valug;=0.98); belongs to the of J;. These results were expected because incredsginge
narrow region of Fig. @) where, forD>—1.0J,|, a com- disorder theSsublattice. That is, increasinly, mg decreases
pensation point is possible to be realized. Simulations foand a lower temperature is needed for whinh=mg. Fi-
J;=0.4], give the curves shown in Fig.(@. In this case, nally, at a given value 083, the compensation temperature
there is a compensation point only in a very narrow range ofoes to zero.

"Values ofD, which can also be appreciated in Figbp As
observed in Figs. 5 and 6, the simulation results shown in
Figs. 7b) and 7c), are qualitatively different for all
cP> —1 and quantitatively different for othdd, from those
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V. CONCLUSIONS for the appearance of a compensation point. We also have

In this work we have considered mean-field calculationsShOWn that there is a very narrow range of values of the

and Monte Carlo simulations to study a mixed-spin IsingCOUplin.g betV\_/eerS spins where it is possible to find acom-

system, where the-=1/2 andS=1 spins occupy alternate pensat'lon point. We have seen that the mear_1—f|eld calcula-

layers 6f a hexagonal lattice. The Hamiltonian model in_t|ons give reSL_JIts that disagree from_thc_)se obt_amed by Monte
' Carlo simulations. They are quantitatively different for all

cludes intersublattice, intrasublattice, and crystal-field inters, "\ o< O the Hamiltonian parameters we have consid-

?g:,gc;nsﬁegzeiLntg:zgf)l?g'%Z\',Zte;agti'rﬁn|'es Eﬁ?séieriﬁ?e?en;gﬁréred, and are qualitatively different for a range of these pa-
mode? of a ferrimaanetic svstem Wephave vestioated thgrameters. Therefore, this layered spin model predicts a com-
9 Y ' 9 ensation point by taking into account only nearest-neighbor

;OL%I?: tgﬁs(zggrr]enéil:]]tt(iarﬁﬁtéorgzgzaIthce)lr'rar?slﬁﬁgIzrr:c:\?v ?r:z?'(t:;spin interactions. For the usual bipartite lattice, we also need
P P ' % include next nearest-neighbor interactions to have a com-

compensation point appears only when the intrasublattice in- : :
teraction between spins in the sublattice is ferromagnetic. rbensatlon point.
There is a minimum value of this coupling, which depends
on the other Hamiltonian parameters, for the appearance of a
compensation point. The intrasublattice interaction between
spins in theS sublattice and the crystal-field parameter must The authors acknowledge financial support by the Brazil-
contribute to decrease the magnetization of $hsublattice ian agencies CNPqg, CAPES, and FUNCITEC.
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