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Mixed-spin Ising model and compensation temperature

Maurı́cio Godoy, Vanessa Souza Leite, and Wagner Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, Santa Catarina, Brazil

~Received 12 September 2003; revised manuscript received 18 November 2003; published 27 February 2004!

We presented a study of the magnetic properties of a mixed-spin Ising ferrimagnetic model on a hexagonal
lattice. The lattice is formed by alternate layers of spinss51/2 andS51. For this spin arrangement, any spin
at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The
intersublattice interaction is antiferromagnetic. The compensation point is a special point that appears below
the critical temperature, for which the sublattice magnetizations cancel each other. We employed mean-field
calculations and Monte Carlo simulations to find the compensation point of the model. The role of the different
interactions in the Hamiltonian is explored. When the intrasublattice interaction for thes spins exceeds a
minimum value, which depends on the other parameters of the Hamiltonian, a compensation point is possible.
We have also shown that the phase diagram in the plane magnitude ofS-S exchange interactions versus
crystal-field intensity exhibits a very narrow region of compensation points.
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I. INTRODUCTION

Ferrimagnetic systems have been the object of a la
number of experimental and theoretical studies, becaus
their great potential for technological applications, such
the high-density magneto-optical recording.1,2 Mixed-spin
Ising systems were introduced as the simplest models
can exhibit a ferrimagnetic order and compensation poi
These systems have been studied by effective-fi
theories,3,4 renormalization-group calculations,5–7 and Monte
Carlo simulations.8,9

In a ferrimagnetic material the different temperature d
pendences of the sublattice magnetizations cause the ap
ance of compensation points. The compensation tempera
is a temperature below the critical one, for which the to
magnetization is zero.10 It has been found that at this poin
some physical properties present a peculiar behavior. Fo
stance, a divergence in the coercivity is observed:2,11,12at the
compensation point only a small driving field is required
reverse the sign of the magnetization of the system. Beca
some ferrimagnetic materials have a compensation temp
ture (Tcomp) near room temperature, they are of fundamen
importance in the area of the thermomagnetic record
devices.2,13

The presence of a compensation point in the mixed-s
models was already investigated on the square and ho
comb lattices.3,8,9 In these lattice models only thes-S inter-
actions were considered between nearest-neighbor s
Then, a mean-field calculation predicts a compensation p
only for a very narrow region of negative values of t
crystal-field parameter. On the other hand, by Monte Ca
simulations, it was demonstrated that it is necessary to
clude a ferromagnetic interaction betweens spins, which are
next-nearest neighbors in a bipartite lattice, in order to h
a compensation point.

In the layered mixed-spin Ising model on the hexago
lattice, investigated in this work, only nearest-neighbor int
actions between spins are sufficient to predict a compe
tion point. If this model would be extended to three dime
sions it could describe some properties of real ferrimagn
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materials. For instance, the work of Chernet al.14 reports
some measurements of the compensation point and p
diagram of Fe3O4 /Mn3O4 superlattices, which is a system
grown by a deposition of alternate layers of Fe3O4 and
Mn3O4 coupled antiferromagnetically. In the remainder
this work, we present in Sec. II the model and the dynam
equations for the sublattice magnetizations in the mean-fi
approximation. We next, in Sec. III, describe the Mon
Carlo simulations. In Sec. IV we show our results, and
nally, we present our conclusions in Sec. V.

II. THE MODEL

We consider a mixed-spin ferrimagnetic Ising model on
hexagonal lattice. The two different types of spins are
scribed by Ising variables, which can take the valu
s561/2 andS561, 0. The two different spins are distrib
uted in alternate layers of a hexagonal lattice, as we can
in Fig. 1.

FIG. 1. Schematic representation of the hexagonal lattice.
lattice is formed by alternate layers ofs ~open circles! andS ~solid
circles! spins.
©2004 The American Physical Society28-1
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FIG. 2. Sublattice and total magnetizations
a function of temperature obtained by Mon
Carlo simulations forJ252J1 , J351.05J1, and
D520.75uJ1u. The inset shows the sublattic
magnetizations.Tcomp and Tc are shown in the
figure.
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The Hamiltonian model for the system is

H52J1(̂
i j &

Sis j2J2(̂
i j &

s is j2J3(̂
i j &

SiSj2D(
i

Si
2 ,

~1!

whereJ1 , J2, and J3 are the exchange couplings betwe
nearest-neighbor pairs of spinss-S, s-s, andS-S, respec-
tively. The parameterJ1 will be taken negative in all the
subsequent analyses, that is, the intersublattice couplin
antiferromagnetic.D is the crystal field that acts only at theS
spin sites. In order to study this model in the mean-fi
approximation, we consider the dynamic equations for
average sublattice magnetizations,

ms~ t !5 (
^s,S&

sP~s,S;t ! ~2!

and

mS~ t !5 (
^s,S&

SP~s,S;t !, ~3!

where the sums are over all the possible spin configurati
and P(s,S;t) is the probability to find the system in a giv
state (s,S) at time t.

The time evolution for the state probability is obtain
from the master equation,15

d

dt
P~s,S;t !5 (

s8,S8
@W~s8,S8→s,S!P~s8,S8;t !

2W~s,S→s8,S8!P~s,S;t !#, ~4!
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whereW(s,S→s8,S8) is the transition rate from the stat
(s,S) to the state (s8,S8). In this work, we assume that

W~s,S→s8,S8!5W~s,S→s8,S!1W~s,S→s,S8!.
~5!

For this transition rate we also assume the one-spin-
Glauber dynamics,16 that is,

W~s,S→s8,S8!

5(
j 51

N

ds1 ,s18•••ds j ,2s j8•••dsN ,sN8

3dS1 ,S18•••dSk ,Sk8•••dSN ,SN8wj~s8!

1 (
k51

N

ds1 ,s18•••ds j ,s j8•••dsN ,sN8

3dS1 ,S18•••dSk ,S̃k8•••dSN ,SN8wk~S̃8!, ~6!

wherewj (s8) and wk(S̃8) are the flipping probabilities for
the spins on thes and S sublattices, per unit time, respec
tively.

Using Eqs.~4! and ~6! we find

d

dt
^s j&522^s jwj~s!& ~7!

and

d

dt
^Sk&5^~Sk82Sk!wk~S!&. ~8!
8-2
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The spins of thes sublattice flip with a probability per
unit time given by the normalized Boltzmann factor,17

wj~s!5
exp~2bDH!

(
s8

exp~2bDH!

, ~9!

whereb51/kBT, kB is the Boltzmann constant andT is the
absolute temperature.DH is the energy change of the syste
when one spin of thes sublattice flips. If the spins j flips,

DH~s j !522s j S J1(
k

Sk1J2(
k

skD , ~10!

and

wj~s!5
exp@2bDH~s j !#

11exp@2bDH~s j !#
. ~11!

In a similar way, we define the transition rates for t
spins on theS sublattice. We have

FIG. 3. ~a! Fourth-order cumulants for the hexagonal lattic
with L58 ~squares!, L516 ~circles!, L532 ~up triangles!, andL
564 ~down triangles!. ~b! Susceptibility, and~c! specific heat as a
function of temperature for the same parameters of Fig. 2 and
L564. Tcomp andTc are shown in the figure.
05442
wk~1→0!5wk~21→0!5
exp~2bD !

2 cosh~ba!1exp~2bD !
,

~12!

wk~1→21!5wk~0→21!5
exp~2ba!

2 cosh~ba!1exp~2bD !
,

~13!

wk~21→1!5wk~0→1!5
exp~ba!

2 cosh~ba!1exp~2bD !
,

~14!

wherea5J1( js j1J3( jSj .
In the mean-field approximation, the probability of find

ing the system in the state (s,S) at time t is equal to the
product of the probabilities of the independent spin state

P~s,S;t !5)
j ,k

P~s j ,Sk ;t !5)
j ,k

P~s j ;t !P~Sk ;t !,

~15!

where for the probabilities of the individual spin states w
write,18

P~s j ;t !5 1
2 ~114s jms!, ~16!

P~Sk ;t !512Sk
21 1

2 SkmS2~12 3
2 Sk

2!qk , ~17!

where qk5(^s,S&Sk
2P(s,S;t). Introducing these probabili-

ties in the expressions for the transition rates, we finally
rive at the equations of motion for the sublattice magneti
tions in the mean-field approximation:

d

dt
ms52ms1

1

2
tanh@b~2J1mS1J2ms!# ~18!

or

FIG. 4. Compensation temperatures determined for different
tice sizes and for the same parameters of Fig. 2.Tc is also shown in
the figure.
8-3
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and

d

dt
mS52mS1

2 sinh@2b~2J1ms1J3mS!#

2 cosh@2b~2J1ms1J3mS!#1exp~2bD !
.

~19!

We solved this system of equations for the equilibriu
states as a function of the temperature, for different value
the Hamiltonian parameters.

III. MONTE CARLO SIMULATIONS

The model described in the preceding section was si
lated by using standard importance sampling techniques.
initial configurations were taken randomly. We try to flip th
spins according to the heat-bath algorithm,19 and in each
Monte Carlo step~MCS!, we performedL2 trials to flip the
spins. We considered hexagonal lattices~as seen in Fig. 1!
with L2 sites, and applied periodic boundary condition
Most of the data were obtained forL564, but we also con-
sidered lattices of linear sizesL58, 16, 32, 48, and 128
For L564, we performed around 4000 MCS, where the fi
1000 were discarded for the thermalization process. In o
to get reliable results, we also considered averages over

FIG. 5. Minimum value ofJ2 for the appearance of a compe
sation point as a function of the crystal field,D. ~a! Mean-field
calculations forJ35J1, and ~b! Monte Carlo simulations forJ3

50.98J1. RegionA, mS.ms for T,Tc , andB is the region where
a compensation point appears.
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different samples in our calculations. Although not shown
the figures, the error bars are smaller than the symbol si

Our algorithm calculates thes andS sublattice magneti-
zations, defined as

ms5
2

L2 K (j
s j L , ~20!

mS5
2

L2 K (k
SkL , ~21!

and the total magnetization

mtot5
1
2 ~ms1mS!. ~22!

The sums inj and k are over all the spins in thes and S
sublattices, respectively.

The total magnetizationmtot vanishes at the compensatio
temperatureTcomp. Then, the compensation point can be d
termined by looking for the crossing point between the a
solute values of the sublattice magnetizations. Therefore
the compensation point, we must have

ums~Tcomp!u5umS~Tcomp!u ~23!

FIG. 6. Range of values ofJ3 giving rise to the compensation
points, as a function of the crystal fieldD for J252J1. ~a! Mean-
field calculations, and~b! Monte Carlo simulations.B is the only
region where we can have compensation points. For the regioA
andC, we always havemS.ms andms.ms , respectively.
8-4
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and

sgn@ms~Tcomp!#52sgn@mS~Tcomp!#. ~24!

We also require thatTcomp,Tc , where Tc is the critical-
point temperature.

These conditions show that atTcomp, thes andS sublat-
tice magnetizations cancel each other, whereas atTc both are
zero. To illustrate this property, we show in Fig. 2 the su
lattice and total magnetizations as a function of the temp
ture for selected values of the Hamiltonian paramete
which lead to a compensation point. In this case, we h
J252J1 , J351.05J1, andD520.75uJ1u. We call attention
that for this value ofD, theSsublattice magnetization is no
saturated atT50. The simulation points can be obtaine
down toT50.02uJ1u/kB using safely 4000 Monte Carlo step
as explained before. For temperatures below this, the t
for thermalization is too long and the simulation points a
extrapolated toT50 to coincide with the mean-field value
Then, from the Monte Carlo simulations of Fig. 2, we ha
Tcomp5(0.2660.02)uJ1u/kB for the compensation point, an
Tc5(0.6260.02)uJ1u/kB , for the transition temperature.

In Fig. 3~a! we show the fourth-order cumulants for th
same parameters of the Fig. 2, for lattices withL equal to 8,
16, 32 and 64. As can be seen in this figure, at the comp
sation point the model does not present any critical phen

FIG. 7. Behavior ofTcomp andTc as a function ofD. ~a! Mean-
field calculations forJ252J1 andJ35J1, ~b! Monte Carlo simu-
lations forJ252J1 andJ350.98J1, and~c! Monte Carlo simula-
tions for J252J1 andJ350.40J1.
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-
a-
s,
e

e

n-
-

enon; only atTc the critical behavior is observed through th
crossing of the cumulants. We see in Figs. 3~b! and 3~c! the
plots of the susceptibility and specific heat as a function
temperature, forL564, respectively. Once again, it is clea
that these properties are regular functions atTcomp; only at
Tc they display a singular behavior. The compensation po
appears only due to the different dependences on temper
of the sublattice magnetizations and does not exhibit
special singularity. Figure 4 shows the different compen
tion temperatures as a function of the lattice size. We n
that Tcomp is not sensitive to the lattice size. This is th
reason we performed the calculations for the lattice sizeL
564, when we are looking at the compensation point.

IV. RESULTS

We start our analysis by looking for the Hamiltonian p
rameters of the model for which a compensation point
pears. As we will see below, the compensation point
present only for a ferromagnetic intrasublattice coupling
tweens spins. Besides, we also require an antiferromagn
coupling between spins on theS sublattice or a negative
value for the crystal-field parameter. All these features
necessary in order formS to decrease faster thanms when
the temperature increases.

Figure 5~a! shows the minimum value of the ferromag

FIG. 8. Plots ofTcomp andTc as a function ofJ2. ~a! Mean-field
calculations forD50 andJ35J1, and~b! Monte Carlo simulations
for D50 andJ350.98J1.
8-5
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netic intrasublattice interaction betweens spins, J2, as a
function of D, in the mean-field approximation forJ35J1.
For values ofJ2 below the minimum,mS is always larger
than ms for any value ofT,Tc . The minimum value de-
pends on the intensity of the crystal-field parameterD. The
minimum value ofJ2, for which a compensation point ap
pears, is an increasing function ofD. As D decreases, the
sublattice magnetizationmS decays faster, and the crossin
point of the two sublattice magnetizations moves to low
temperatures. For the exchange parameters,J1 and J3 con-
sidered in this plot, the model does not exhibit any comp
sation point forD,21.0uJ1u. In this region, the sublattice
magnetizationmS is lower thanms for any value of the
intrasublattice interaction in thes sublattice.

In Fig. 5~b! we present the minimum value ofJ2 obtained
through Monte Carlo simulations forJ350.98J1. Comparing
this plot with the one found in the mean-field calculation, w
observe a different behavior in the range of values 0,D
,0.50uJ1u, where the minimum value ofJ2 decreases with
D. We believe that this behavior must be attributed to a
mensional crossover of the model, once we observed tha
D,23.0uJ1u the system is represented by a set of uncoup
chains of s spins. Then, this behavior is not seen in t
mean-field calculations because dimensional details are
captured at this level of approximation.

On the other hand, the antiferromagnetic intrasublat
interaction between spins at theS sublattice establishes tw
limits for the existence of a compensation point. Below t
minimum value, themS does not decrease enough, and
any temperature below the critical,mS.ms . Above the
maximum value, the antiferromagnetic interaction betwe
the S spins is too large thatmS is always lower thanms for
any temperature below the critical one. Only in the reg
between these extreme values ofJ3, a compensation poin
can appear. These limits depend on the value ofD, as we can
see in Fig. 6, forJ252J1. Figures 6~a! and 6~b! give the
mean field and simulation results, respectively. Monte Ca
simulations give a much more narrow range ofJ3 values, for
which the compensation point exists. For the upperbo
curve ofJ3, the simulations also predict a different behav
as a function ofD in the range20.50uJ1u,D,0, compared
with the mean-field one.

The dependence ofTcomp andTc on the crystal-field pa-
rameterD is seen in Fig. 7. Figure 7~a! displays the mean
field results for the parametersJ252J1 andJ35J1. As we
can see, forD,21.0uJ1u the system does not exhibit an
compensation point. However, whenD increases,Tcomp and
Tc both increase, andTcomp approaches toTc . For D
50.6uJ1u, we haveTcomp5Tc . This picture is also observe
in Fig. 6~a! for J35J1. Therefore, only in the range
21.0uJ1u,D,0.6uJ1u there is a compensation point. Figu
7~b! shows the simulation results forJ252J1 and J3
50.98J1. In this figure only forD,21.0uJ1u there is not a
compensation point. The valueJ350.98J1 belongs to the
narrow region of Fig. 6~b! where, forD.21.0uJ1u, a com-
pensation point is possible to be realized. Simulations
J350.4J1 give the curves shown in Fig. 7~c!. In this case,
there is a compensation point only in a very narrow range
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values ofD, which can also be appreciated in Fig. 6~b!. As
observed in Figs. 5 and 6, the simulation results shown
Figs. 7~b! and 7~c!, are qualitatively different for all
D.21 and quantitatively different for otherD, from those
seen in the mean-field calculations.

Figure 8 exhibits the compensation and critical tempe
tures as a function ofJ2 for D50. Figure 8~a! gives the
mean-field results forJ35J1 and Fig. 8~b! the simulation
results forJ350.98J1. As we can see, a compensation po
appears only when a minimum value ofJ2 is reached. The
critical temperature always increases withJ2. As to be ex-
pected, increasingJ2 above its minimum value, thes sub-
lattice keeps ordered up to high temperatures. However
mS is almost constant, the crossing point betweenms andmS

changes a little, andTcomp is nearly constant.
Finally, we plotted in Fig. 9,TcompandTc as a function of

the antiferromagnetic intrasublattice interactionJ3. In these
plots we usedJ252J1 and D50. Figures 9~a! and 9~b!
represent the mean-field and simulation results, respectiv
As we can see,Tcomp andTc are both decreasing function
of J3. These results were expected because increasingJ3, we
disorder theSsublattice. That is, increasingJ3 , mS decreases
and a lower temperature is needed for whichms5mS . Fi-
nally, at a given value ofJ3, the compensation temperatu
goes to zero.

FIG. 9. Plots ofTcomp andTc as a function ofJ3, for D50 and
J252J1. ~a! Mean-field calculations, and~b! Monte Carlo simula-
tions.
8-6
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V. CONCLUSIONS

In this work we have considered mean-field calculatio
and Monte Carlo simulations to study a mixed-spin Isi
system, where thes51/2 andS51 spins occupy alternat
layers of a hexagonal lattice. The Hamiltonian model
cludes intersublattice, intrasublattice, and crystal-field in
actions. The intersublattice interaction is considered anti
romagnetic in order to have a simple but an interest
model of a ferrimagnetic system. We have investigated
role of the different interactions in the Hamiltonian to pred
a compensation point in the model. Our results show that,
compensation point appears only when the intrasublattice
teraction between spins in thes sublattice is ferromagnetic
There is a minimum value of this coupling, which depen
on the other Hamiltonian parameters, for the appearance
compensation point. The intrasublattice interaction betw
spins in theS sublattice and the crystal-field parameter m
contribute to decrease the magnetization of theS sublattice
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