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Bias dependence and inversion of the tunneling magnetoresistance in ferromagnetic junctions
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This paper presents a microscopic theory for spin-polarized tunneling in the FM/I/FM junction under a finite
applied voltage. A significant decrease of the tunneling magnetoresistance~TMR! with increasing bias is
obtained from the theory. We note that the spin-dependent prefactor of the transmission coefficient plays an
important role in the tunneling. In particular, the bias-dependent quantum-coherence factorkR

2(Ex ,V)
2kR↑(Ex ,V)kR↓(Ex ,V) rather than the density of states controls the sign change of TMR at finite voltage. The
effects of an asymmetric potential profile within the barrier region is calculated in comparison with the
tunneling junctions of the composite barrier (Al2O3 /Ta2O5). Numerical results are in qualitative agreement
with experiments.
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I. INTRODUCTION

Electron tunneling through an insulating barrier betwe
two normal-metal electrodes with identical number of u
spin and down-spin electrons has been studied experim
tally and theoretically since the 1920s.1 In the 1960s,
Harrison2 discussed the tunneling theory within independe
particle approximation, and verified the applicability of th
WKB approximation. Afterwards, Brinkman an
co-workers3 and Simmons4 confirmed further the availability
of the WKB approximation for bias-dependent tunneling
normal-metal junctions. In the 1970s Tedrow and Meserv5

introduced the concept of spin-polarized tunneling, wh
the amounts of electrons for each spin are unequal. T
earlier study on the conservation of spin during tunnel
laid the foundation for the new research field of sp
dependent tunneling. Jullie`re6 made the first FM-I-FM
trilayer junction which showed a larger conductance for p
allel magnetization alignment of the two ferromagnetic el
trodes than that of antiparallel alignment. Furthermore, J
lière also presented a qualitative model to explain the cha
of conductance between different alignments, and defined
tunneling magnetoresistance~TMR!,

TMR5
GP2GAP

GP
5

2PP8

11PP8
, ~1!

whereP andP8 are the spin polarization of the left and rig
ferromagnetic electrodes expressed as

P5
N↑2N↓
N↑1N↓

, P85
N↑82N↓8

N↑81N↓8
, ~2!

whereN↑ andN↓ are the densities of states~DOS’s! at Fermi
level of the left electrode, andN↑8 andN↓8 are the ones for the
right electrode. In Jullie`re model, the left and right electrode
are treated separately, and the tunneling matrix elements
independent of momentum and energy. As a result, the
neling current of each spin channel is proportional to
product of the DOS’s of the two electrodes for given sp
channel. However, the independence of TMR on the ge
etry and the electronic structure of the barrier assumed
0163-1829/2004/69~5!/054410~8!/$22.50 69 0544
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Eq. ~2! is unrealistic, which has already been pointed out
MacLaren and co-workers.7 By a full quantum-mechanica
treatment, Slonczewski8 developed a better expression f
the TMR,

TMR5
2Pe f fPe f f8

11Pe f fPe f f8
~3!

with the effective spin polarizationsPe f f and Pe f f8 for the
two electrodes,

Pe f f5
~k↑2k↓!

~k↑1k↓!

~k22k↑k↓!

~k21k↑k↓!
5P

~k22k↑k↓!

~k21k↑k↓!
, ~4!

Pe f f8 5
~k↑82k↓8!

~k↑81k↓8!

~k22k↑8k↓8!

~k21k↑8k↓8!
5P8

~k22k↑8k↓8!

~k21k↑8k↓8!
, ~5!

wherek↑ ,k↓ are the Fermi wave numbers in the up-spin a
down-spin bands andk is the wave number in the barrie
The two former factors at the right-hand sides of Eqs.~4! and
~5! are the usual spin polarizations of the FM electrod
which arise from the effects of the DOS as shown in Eq.~2!.
The two latter factors originate from the quantum
mechanical matching of the electron wave functions at
two electrode/barrier interfaces. They reflect the quantum
herence among the barrier and the two electrodes. Howe
they are totally absent in Eq.~1! of the Jullière model.

Recently, many experiments have been performed to m
sure the bias dependence of TMR for various ferromagn
junctions within a wide range of applied voltage~about from
21.0 V to 1.0 V!. Most of the results show a significan
decrease of TMR with increasing voltage.9 Interestingly,
Sharmaet al.10 found that the TMR of junctions with pure
Ta2O5 barrier undergoes a negative excursion at high eno
positive and negative voltages, i.e., the TMR changes its s
at a large and finite voltage. In contrast, the junctions w
the same electrodes, but with different barriers~e.g., Al2O3),
exhibit mostly positive TMR in a decaying way before th
damage~breakdown! voltage of the junctions.~Experimen-
tally, beyond this voltage, the dielectric oxide barrier will b
broken down due to the smallness of the barrier thickn
©2004 The American Physical Society10-1
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and its resulting strong electric field.! Different from those
symmetrical barrier junctions, the composite barrier~e.g.,
Al2O3 /Ta2O5) junctions are found to undergo a negative e
cursion of TMR at one side of the applied voltage, but
main unchanged in sign at the other side. If the compo
barrier is reversed, for example, Al2O3 /Ta2O5 is substituted
by Ta2O5 /Al2O3, the negative excursion is reversed fro
one side to the other side of the applied voltage. Regretta
the expected inversion symmetry of the TMR versus volta
upon reversion is not observed in Ref. 10. Obviously,
interpret those behaviors of TMR, one needs a microsco
tunneling theory suitable for large applied voltages. Ho
ever, the Slonczewski model is confined only to the z
bias. The purpose of this paper is to extend the Slonczew
model to the finite bias case, and we hope that it could p
vide a reasonable explanation to the strong bias depend
of TMR within a wide range of applied voltage. To this en
we will treat the electrodes and the barrier as a sin
quantum-mechanical system to include the quantum co
ence which is physically essential for such a sandwich st
ture. Specifically, we will employ the WKB wave function
to describe the potential barrier and then match the w
functions and their derivatives at the electrode/barrier in
faces quantum mechanically. Our results show that the T
decreases significantly with the increase of the applied v
age. In particular, the TMR can change from positive
negative at a finite voltage due to the quantum cohere
Furthermore, the effects of an asymmetric potential of
composite barrier have also been given. These results
qualitatively in agreement with the experiments.

The rest of the paper is organized as follows. In Sec.
we extend the Slonczewski model by matching quantum
chanically the wave function through trapezoidal barrier d
to the finite applied voltage, and obtain the bias-depend
rather than bias-independent transmission probabilities
Sec. III, numerical results and theoretical analyses for b
symmetrical and asymmetrical barriers are given. Fina
our results are summarized in Sec. IV.

II. EXTENSION OF THE SLONCZEWSKI MODEL

Here we consider a junction consisting of two identic
ferromagnetic electrodes and a nonmagnetic insulating
rier. As usual, we will treat the ferromagnetic metals with t
free-electron approximation because it has been ado
widely and achieved great success in describing the s
polarized tunneling.7,8,11,12 Within this approximation, the
DOS for the two spin bands of the ferromagnetic electro
are parabolic, which are depicted in Fig. 1. With the pa
bolic DOS’s, the model of the FM/I/FM sandwich syste
can be described as

HL52
\2

2m

d2

dx2
2sLD1f~x!, ~6!

HB52
\2

2m

d2

dx2
1f~x!, ~7!
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HR52
\2

2m

d2

dx2
2sRD1f~x!, ~8!

where HL , HR , and HB are the longitudinal parts of the
Hamiltonians for the left and right electrodes and the barr
respectively;D half the exchange splitting between the tw
spin bands of the ferromagnetic electrodes;sL and sR the
conventional spin indices; andf(x) the single-particle po-
tential. We note that, in our model, the difference betwe
the effective masses of the electrons within the barrier
the electrodes is neglected, just as in the Slonczew
model.8 This simplification can reduce the adjustable para
eters in the model and will not alter the theoretical conc
sion qualitatively. The lateral~in-plane! parts of the Hamil-
tonians are assumed to be the simple free-electron type,
their effects will be accounted for by summing over t
transverse momentumkt in our later calculations. For conve
nience, the energy zero is selected at the center of the
change splitting of the left electrode, so the potentialf(x)
takes the following form:

f~x!5H 0, x<0

fL1
x

d
~fR2fL2eV!, 0,x,d

2eV, x>d,

~9!

whered is the barrier width;V the applied voltage; andfL
and fR the barrier potentials at the left and right barrie
electrode interfaces. This potential is shown schematicall
Fig. 2. It should be pointed out here that the barrier poten
f(x) (0,x,d) is a function of the applied voltageV, dif-
ferent from the Slonczewski model8 where V50 and fL
5fR , that is, only the zero-bias case is taken into acco
and the barrier potential is of square shape. Inclusion ofV in
the potentialf(x) enables us to easily investigate the TM
at large and finite applied voltage. Furthermore, just
Brinkman and co-workers,3 we do not assume the barrie
potential in Eq.~9! to be square even at zero bias. Often, t

FIG. 1. The densities of states for the up-spin and down-s
bands, showing positions of the energy zero and chemical pote
m for the ferromagnetic electrode.
0-2



o
te

an

ec

t

th
-
g
is
t

c-
na

3
k

the

en
e-
na-

y

wo

nc-
n

er
tw

BIAS DEPENDENCE AND INVERSION OF THE . . . PHYSICAL REVIEW B 69, 054410 ~2004!
would happen when unequal degree of oxidations occurs
each side of the insulator, or when the junction is fabrica
with a composite barrier such as Al2O3 /Ta2O5 insulator.10

First, we consider the case that a spin-up incident pl
wave with longitudinal energyEx and unit flux transports
from the left electrode to the right electrode. For the el
trode regions,x<0 andx>d, the potentialf(x) is assumed
to be constant, as indicated in Eq.~9!. Therefore, the solu-
tions to HamiltoniansHL andHR are simply plane waves,

cL↑~x!5kL↑
21/2eikL↑x1R↑e2 ikL↑x ~x<0!,

cL↓~x!5R↓e2 ikL↓x ~x<0!,

cR↑~x!5C↑eikR↑(x2d) ~x>d!,

cR↓~x!5C↓eikR↓(x2d) ~x>d!, ~10!

where

kLsL
~Ex!5S 2m

\2 D 1/2

AEx1sLD, ~11!

kRsR
~Ex ,V!5S 2m

\2 D 1/2

AEx1eV1sRD, ~12!

with sL ,sR561 corresponding to the spin orientation↑,↓,
respectively. Here we have assumed that the up spin is
majority spin. Inside the barrier, 0,x,d, the potentialf(x)
becomes now trapezoidal instead of rectangular. With
linear potential, the Schro¨dinger equation for the Hamil
tonianHB of Eq. ~7! can be solved rigorously by employin
the Airy function. However, the use of the Airy function
too complex to get analytical results. Therefore, we turn
the WKB approximation.13 This approximation has been su
cessfully used to study the tunneling in the conventio
junction with two paramagnetic electrodes in Refs. 2 and
As a result, the wave functions within the barrier region ta
the form,

FIG. 2. A schematic potential for the FM/I/FM junction und
the biasV.0 where the spin-quantization axes between the
ferromagnetic electrodes form angleu.
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cB↑~x!5@k~Ex ,x,V!#21/2FA↑ expS 2E
0

x

k~Ex ,x,V!dxD
1B↑ expS E

0

x

k~Ex ,x,V!dxD G ~0,x,d!,

cB↓~x!5@k~Ex ,x,V!#21/2FA↓expS 2E
0

x

k~Ex ,x,V!dxD
1B↓expS E

0

x

k~Ex ,x,V!dxD G ~0,x,d!,

~13!

where

k~Ex ,x,V!5S 2m

\2 D 1/2

AfL1
x

d
~fR2fL2eV!2Ex.

~14!

The WKB wave functions in Eq.~13! are applicable within
the barrier region if the potential shape is smooth in
interval 0,x,d. Just as pointed out by Harrison2 and
Brinkman,3 even if the potentialf(x) varies abruptly at the
interfacesx50 andx5d, the wave functions~13! can still
be connected with the wave functions~10! at x50 and x
5d by a full quantum-mechanical matching. As will be se
later on, the above WKB wave functions are quite conv
nient for us to discuss the bias dependence of the TMR a
lytically. On the other hand, the wave functions of Eq.~13!
reduce to the ones derived by Slonczewski8 if V50 and
fL5fR . In Eqs.~10! and ~13!, R↑ , R↓ , A↑ , A↓ , B↑ , B↓ ,
C↑ , and C↓ are coefficients, which will be determined b
quantum-mechanical matching in the following.

Setting the angle of the spin-quantization axes for the t
ferromagnetic electrodes to beu, the boundary conditions
for the quantum-mechanical matching among the wave fu
tions@Eqs.~10! and~13!# and their derivatives can be writte
as

cL↑~0!5cB↑~0!, ~15!

cL↓~0!5cB↓~0!, ~16!

cL↑8 ~0!5cB↑8 ~0!, ~17!

cL↓8 ~0!5cB↓8 ~0!, ~18!

cB↑~d!5cR↑~d!cosS u

2D1cR↓~d!sinS u

2D , ~19!

cB↓~d!52cR↑~d!sinS u

2D1cR↓~d!cosS u

2D , ~20!

cB↑8 ~d!5cR↑8 ~d!cosS u

2D1cR↓8 ~d!sinS u

2D , ~21!

cB↓8 ~d!52cR↑8 ~d!sinS u

2D1cR↓8 ~d!cosS u

2D , ~22!

o
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where a spinor transformation is performed in Eqs.~19!–~22!
at the interface ofx5d, because the spin-quantization ax
for the two electrodes differ by an angleu, as shown in Fig.
2.

If a spin-up electron tunnels from left electrode into rig
electrode and occupies the spin-up state of the right e
trode, the corresponding transmission coefficient is

T↑↑~Ex ,V,u!5kR↑~Ex ,V!uC↑u2, ~23!

and if it occupies the spin-down state of the right electro
the transmission coefficient becomes

T↑↓~Ex ,V,u!5kR↓~Ex ,V!uC↓u2. ~24!

The unknown coefficientsC↑ andC↓ can be determined by
Eqs.~10!–~22!, following Harrison2 and Brinkman.3 The ex-
pressions forT↑↑ andT↑↓ are obtained as

T↑↑~Ex ,V,u!

5
16kL↑~Ex!kR↑~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↑

2 ~Ex!#@kR
2~Ex ,V!1kR↑

2 ~Ex ,V!#

3cos2S u

2De22h(Ex ,V), ~25!

T↑↓~Ex ,V,u!

5
16kL↑~Ex!kR↓~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↑

2 ~Ex!#@kR
2~Ex ,V!1kR↓

2 ~Ex ,V!#

3sin2S u

2De22h(Ex ,V), ~26!

where

h~Ex ,V!5E
0

d

k~Ex ,x,V!dx, ~27!

andkL andkR are obtained from Eq.~14! as follows:

kL~Ex!5k~Ex,0,V!5S 2m

\2 D 1/2

AfL2Ex, ~28!

kR~Ex ,V!5k~Ex ,d,V!5S 2m

\2 D 1/2

AfR2eV2Ex.

~29!

Similarly, for the case that a spin-down incident pla
wave with longitudinal energyEx and unit flux transports
from the left electrode to the right electrode, the two tra
mission coefficients are
05441
c-

,

-

T↓↑~Ex ,V,u!

5
16kL↓~Ex!kR↑~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↓

2 ~Ex!#@kR
2~Ex ,V!1kR↑

2 ~Ex ,V!#

3sin2S u

2De22h(Ex ,V), ~30!

T↓↓~Ex ,V,u!

5
16kL↓~Ex!kR↓~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↓

2 ~Ex!#@kR
2~Ex ,V!1kR↓

2 ~Ex ,V!#

3cos2S u

2De22h(Ex ,V). ~31!

With Eqs.~25!, ~26!, ~30!, and~31!, the tunneling current
densities for parallel (u50) and antiparallel (u5p) align-
ments,JP(V) andJAP(V), can be represented1–3 as

JP~V!52
e

h (
kt

E
2`

1`

dExP1~Ex ,V!exp@22h~Ex ,V!#

3@ f ~E!2 f ~E2eV!#, ~32!

JAP~V!52
e

h (
kt

E
2`

1`

dExP2~Ex ,V!exp@22h~Ex ,V!#

3@ f ~E!2 f ~E2eV!#, ~33!

where the summation overkt represents the contributio
from the lateral part;E denotes the total energy of th
tunneling electron;f (E) the Fermi distribution function;
exp@22h(Ex ,V)# the exponential weighting factor in th
WKB approximation; P1 and P2 stand for the prefactors
Eqs.~32! and ~33! which are given by

FIG. 3. The curves of the TMR vs bias for symmetric barr
junctions whereEF↑55.0 eV, kF↓ /kF↑50.30, andd515 Å. The
curvesA, B, C, andD correspond tokF

2/kF↑
2 50.7, 0.6, 0.5, and 0.4,

respectively.
0-4
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P1~Ex ,V!

[ (
s,s8

Tss8~Ex ,V,0!exp@2h~Ex ,V!#

5
16kL↑~Ex!kR↑~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↑

2 ~Ex!#@kR
2~Ex ,V!1kR↑

2 ~Ex ,V!#

1
16kL↓~Ex!kR↓~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↓

2 ~Ex!#@kR
2~Ex ,V!1kR↓

2 ~Ex ,V!#
,

~34!

P2~Ex ,V!

[ (
s,s8

Tss8~Ex ,V,p!exp@2h~Ex ,V!#

5
16kL↑~Ex!kR↓~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↑

2 ~Ex!#@kR
2~Ex ,V!1kR↓

2 ~Ex ,V!#

1
16kL↓~Ex!kR↑~Ex ,V!kL~Ex!kR~Ex ,V!

@kL
2~Ex!1kL↓

2 ~Ex!#@kR
2~Ex ,V!1kR↑

2 ~Ex ,V!#
.

~35!

If the electrodes are paramagnetic instead of ferromagn
Eqs. ~32! and ~33! automatically reduce to the result o
Brinkman.3 In other words, Brinkman’s result3 for nonmag-
netic junctions has already been included in the pres
theory. In analogy to Ref. 3, the prefactors P1 and P2 in E
~32! and ~33! depend heavily on the energyEx and the ap-
plied voltageV. They can impose a strong influence on t
tunneling currents and will play a crucial role in the sig
change of TMR, as can be seen in the following section.

Experimentally, the tunneling conductance and the TM
are defined as

GP~V!5
JP~V!

V
, ~36!

GAP~V!5
JAP~V!

V
, ~37!

TMR[
GP~V!2GAP~V!

GP~V!
5

DG~V!

GP~V!
, ~38!

whereGP(V) andGAP(V) are the tunneling conductance
the parallel and antiparallel alignments, respectively, a
DG(V)[GP(V)2GAP(V). Now, the TMR can be calcu
lated through Eqs.~11!, ~12!, ~28!, ~29!, and~32!–~38!. Here,
we emphasize that the above derivation is proceeded u
the condition of a finite applied voltage. Therefore, the b
dependence of TMR can be obtained within a wide range
the applied voltage.
05441
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III. NUMERICAL RESULTS AND DISCUSSION

Following Slonczewski,8 four parameters are needed f
numerical evaluations:EF↑ , kF

2/kF↑
2 , kF↓ /kF↑ , andd, where

EF↑ represents the Fermi energy of the spin-up electron
the ferromagnetic electrodes; kF

2/kF↑
2 5(2m/\2)(f̄

2m)/EF↑ the relative barrier height withm the chemical
potential andf̄51/2(fL1fR); kF↓ /kF↑ the ratio of the
Fermi wave numbers for different spin bands; andd the bar-
rier width.

First, we consider the junctions with a symmetric barr
(fL5fR), the numerical results at zero temperature cal
lated through Eqs.~11!, ~12!, ~28!, ~29!, and ~32!–~38! are
shown in Fig. 3 where the curvesA, B, C, andD correspond
to kF

2/kF↑
2 50.7, 0.6, 0.5, and 0.4, respectively. As can

seen clearly, the TMR’s decrease quickly with the increase
the applied voltageV, and finally change from positive to
negative at a critical biasVc . Moreover, the higher the bar
rier potential, the larger the critical voltageVc will be. How-
ever, within the experimental measurable range of the
plied voltage~from 21.0 V to 1.0 V!, one sees that the TMR
changes sign for the junctions with low barrier potentia
~curvesC and D), but still remains positive for junctions
with high barrier potentials~curvesA andB). The curvesA
andB can be used to explain experimental data of the TM
for junctions with Al2O3 barrier where no inverse TMR is
observed before the damage~breakdown! voltage; the curves
C and D can be used to explain the appearance of inve
TMR in junctions with Ta2O5 barrier.10

To understand the rapid decreasing of TMR, we have c
culatedDG(V) andGP(V), which are shown in Fig. 4. As
indicated by Fig. 4,DG(V) decreases with the applied vol
ageV. In particular,GP(V) increases rapidly withV, which,
as is well known, is due to the WKB exponential weightin
factor. Consequently, the TMR defined in Eq.~38! must drop
significantly with increasingV.

We now discuss the origin of the sign change in TM
From Eqs.~36!–~38!, we have

TMR5
JP~V!2JAP~V!

JP~V!
5

DJ~V!

JP~V!
, ~39!

FIG. 4. The curves ofDG and GP vs V whereEF↑55.0 eV,
kF↓ /kF↑50.30, kF

2/kF↑
2 50.7, andd515 Å.
0-5
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whereDJ(V)5JP(V)2JAP(V). SubstitutingJP(V) of Eq.
~32! andJAP(V) of Eq. ~33! into DJ(V), we find

DJ~V!52
e

h (
kt

E
2`

1`

dEx@P1~Ex ,V!2P2~Ex ,V!#

3exp@22h~Ex ,V!#@ f ~E!2 f ~E2eV!#. ~40!
-

e
, a
th

e

s
lie
fe

tr
e

e

n

05441
As for P1(Ex ,V)2P2(Ex ,V), by using Eqs.~34! and
~35!, it can be separated into two factors,

P1~Ex ,V!2P2~Ex ,V!5A~Ex ,V!D~Ex ,V!, ~41!

where
A~Ex ,V!5
4kL~Ex!@kL↑~Ex!2kL↓~Ex!#@kL

2~Ex!2kL↑~Ex!kL↓~Ex!#

@kL
2~Ex!1kL↑

2 ~Ex!#@kL
2~Ex!1kL↓

2 ~Ex!#

4kR~Ex ,V!@kR↑~Ex ,V!2kR↓~Ex ,V!#

@kR
2~Ex ,V!1kR↑

2 ~Ex ,V!#@kR
2~Ex ,V!1kR↓

2 ~Ex ,V!#
,

~42!
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D~Ex ,V!5kR
2~Ex ,V!2kR↑~Ex ,V!kR↓~Ex ,V!. ~43!

The factorsA(Ex ,V) andD(Ex ,V) show different behaviors
with increasing voltage, which we will discuss in the follow
ing.

From Eqs.~11!, ~12!, and~14!, we have

kL↑~Ex!2kL↓~Ex!5S 2m

\2 D 1/2

@AEx1D2AEx2D#.0,

~44!

kR↑~Ex ,V!2kR↓~Ex ,V!5S 2m

\2 D 1/2

@AEx1eV1D

2AEx1eV2D#.0, ~45!

@kL
2~Ex!2kL↑~Ex!kL↓~Ex!#.0. ~46!

Equations~44! and ~45! are satisfied simply because th
spin-up band has been assumed to be the majority band
Eq. ~46! is satisfied because the effective polarization of
left ferromagnetic electrode,Pe f f of Eq. ~4!, is chosen to be
positive, as is the usual case for experimental ferromagn
metals. Their combination results in

A~Ex ,V!.0.

Obviously, the factorA(Ex ,V) is always positive and doe
not change in sign regardless of the magnitude of the app
voltage. As stated above, this result is due to the DOS ef
of the FM electrodes.

As to the other factorD(Ex ,V), one finds

D~Ex ,V!5S 2m

\2 D @~fR2Ex2eV!2A~Ex1eV!22D2#.

~47!

The first term on the right-hand side comes from the con
bution of kR

2(Ex ,V) given in Eq.~29!, and the second on
from the contribution ofkR↑(Ex ,V)kR↓(Ex ,V) given in Eq.
~12!. The former, i.e.,kR

2(Ex ,V), decreases with the increas
of V, but the latter, i.e.,kR↑(Ex ,V)kR↓(Ex ,V), increases
with V. Therefore,D(Ex ,V) is a rapidly decreasing functio
nd
e

tic

d
ct

i-

of V, and it will change from positive to negative if th
applied voltageV is sufficiently high. Clearly, this property
of D(Ex ,V) is not the DOS effect of the FM electrode
different from that ofA(Ex ,V). As a combined result of
A(Ex ,V) and D(Ex ,V), P1(Ex ,V)2P2(Ex ,V) of Eq. ~41!
will become negative at certain bias. Apparently, the s
change originates from the quantum-coherence fa
D(Ex ,V) in our model rather than the DOS effect include
in A(Ex ,V). On the other hand, the terms other th
P1(Ex ,V)2P2(Ex ,V) in the integrand of Eq.~40! do not
change sign for anyV. Therefore,DJ(V) of Eq. ~40! and the
TMR of Eq. ~39! will finally undergo a sign change at
sufficiently large critical voltageVc .

The above discussions show that the microscopic mec
nism responsible for the sign change of TMR is due to
quantum coherence effect rather than the DOS effect. Th
exist two terms in the quantum-coherence factorD(Ex ,V),
i.e., kR

2(Ex ,V) and kR↑(Ex ,V)kR↓(Ex ,V). Physically,
kR

2(Ex ,V) can be considered, on an average, as the pote
barrier height. The higher~lower! the potential barrier, the
larger ~smaller! the tunneling magnetoresistance. On t
other hand,kR↑(Ex ,V) and kR↓(Ex ,V) are directly propor-
tional to the transmission coefficient, as shown in Eqs.~23!
and ~24!. The larger the transmission coefficient, the low
the tunneling magnetoresistance. If the applied voltage
creases, then the average height of the potential barrier
creases, and the transmission coefficient increases. Th
fore, with the increase of the applied voltage, the tunnel
magnetoresistance will decrease rapidly and finally cha
its sign. This is the microscopic reason for the sign chang
TMR in the present model.

Now, we proceed to estimate the critical voltageVc where
the TMR changes sign. Because electrons with energyEx
near the Fermi level~i.e., the chemical potentialm at zero
temperature! give most contributions to the tunneling cu
rent, we can obtain the estimated critical voltageVest by
approximatingD(m,Vest)50, which results in

eVest5
1

2
fR1

D2

2fR
2m. ~48!
0-6
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Equation~48! shows thatVest depends linearly onfR for a
sufficiently high barrier potentialfR . In fact, we have cal-
culated the exact numerical value ofVc as a function of
kF

2/kF↑
2 for different values ofkF↓ /kF↑ from Eqs.~32!–~38!,

the results are shown in Fig. 5. All the curves in Fig. 5 sh
a good linear dependence betweenVc and kF

2/kF↑
2 for rela-

tively largekF
2/kF↑

2 , and also, a higher relative barrier heig
kF

2/kF↑
2 leads to a higher critical voltageVc , which is in

agreement with the qualitative analysis of Eq.~48!. This re-
lationship betweenVc and the relative barrier height can b
used to explain why no sign change is observed in ferrom
netic junctions with Al2O3 barrier. For Al2O3 barrier, the
relative barrier height is rather large, its critical voltageVc is
so high that the junction will undergo permanent dama
before the TMR changes sign.

Second, we consider the junctions with asymmetric b
rier (fLÞfR). To simplify the calculation, the influence o
the tunneling electron effective mass and the barrier sh
due to different barrier heights on the two side of the bar
will not be included. Two cases are considered in our cal
lation: fL /EF↑50.4 andfL /EF↑50.6, and their reversal
i.e., fL /EF↑50.6 andfL /EF↑50.4. The numerical result
are shown in Figs. 6~a! and 6~b!, respectively. It is clear tha
the inverse TMR only occurs at one side of the applied v
age, in contrast to the case with symmetric barrier shown
Fig. 3 where inverse TMR appears at both sides. The as
metry of TMR due tofLÞfR is in accordance with the
experimental results of composite barrier (Al2O3 /Ta2O5 and
Ta2O5 /Al2O3) junctions reported by Sharma an
co-workers.10 Although the expected mirror symmetry b
tween Figs. 6~a! and 6~b! is not observed in their experi
ments, we believe that this inversion should be observed
perimentally. Recently, we have been informed14 that TMR
curves of Al2O3 /ZrO2 junction and ZrO2 /Al2O3 actually ex-

FIG. 5. The curves ofVc vs kF
2/kF↑ whereEF↑55.0 eV andd

515 Å. The curves~1!, ~2!, ~3!, ~4!, and ~5! correspond to
kF↓ /kF↑50.20, 0.25, 0.30, 0.35, and 0.40, respectively.
05441
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e
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-
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hibit a good inversion symmetry as expected. Incidentally
indicated in Figs. 6~a! and 6~b!, the maximum of the TMR
deviates from the position ofV50, namely, there is an offse
in the TMR when the barrier potential is asymmetric. Th
behavior has also been observed experimentally.15,16

IV. CONCLUSIONS

By extending the Slonczewski model from a rectangu
barrier potential to a trapezoidal barrier potential, we ha
presented a spin-polarized tunneling theory for the FM/I/F
junctions within a wide range of the applied voltage a
provided a possible explanation to the sign change of
TMR. The trapezoidal potential within the barrier region
handled by the WKB approximation, and the wave functio
are quantum-mechanically matched on the interfaces foll
ing the treatment by Harrison.2 We found that, apart from the
usual DOS effects, there exists a quantum-coherence fa
D(Ex ,V)5kR

2(Ex ,V)2kR↑(Ex ,V)kR↓(Ex ,V), which is of
great importance for understanding the strong bias dep
dence of the tunneling, especially, the sign change in TM
with bias. Our theoretical results, including both symmet
and asymmetric barrier potentials, are in qualitative agr
ment with the experimental observations. The further ap
cation of the theory to the finite-temperature case is be
worked on and will be published elsewhere.
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FIG. 6. The curves of the TMR versus bias for asymmet
barrier junctions whereEF↑55.0 eV, kF↓ /kF↑50.30, and d
515 Å. The curve ~a! is for the case offL /EF↑50.4 and
fR /EF↑50.6 and the curve~b! for the case offL /EF↑50.6 and
fR /EF↑50.4.
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