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Bias dependence and inversion of the tunneling magnetoresistance in ferromagnetic junctions
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This paper presents a microscopic theory for spin-polarized tunneling in the FM/I/FM junction under a finite
applied voltage. A significant decrease of the tunneling magnetoresis@mi®) with increasing bias is
obtained from the theory. We note that the spin-dependent prefactor of the transmission coefficient plays an
important role in the tunneling. In particular, the bias-dependent quantum-coherence ;fé¢E;<r,V)
—kgr(Ex,V)Kkg (Ex,V) rather than the density of states controls the sign change of TMR at finite voltage. The
effects of an asymmetric potential profile within the barrier region is calculated in comparison with the
tunneling junctions of the composite barrier ¢85 /Ta,Os). Numerical results are in qualitative agreement
with experiments.
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[. INTRODUCTION Eq. (2) is unrealistic, which has already been pointed out by
MacLaren and co-workersBy a full quantum-mechanical

Electron tunneling through an insulating barrier betweertreatment, Slonczewskideveloped a better expression for
two normal-metal electrodes with identical number of up-the TMR,
spin and down-spin electrons has been studied experimen-
tally and theoretically since the 192bsln the 1960s, 2PtiPas
Harrisorf discussed the tunneling theory within independent- TMR= Tip . p . ()
particle approximation, and verified the applicability of the effleff
WKB  approximation. ~ Afterwards, — Brinkman and yih the effective spin polarizationBe; and PL;; for the
co-worker$ and Simmon&confirmed further the availability two electrodes
of the WKB approximation for bias-dependent tunneling in '

normal-metal junctions. In the 1970s Tedrow and Mesetvey (ki —k) (k2—KkK)) (k2—k;K|)
introduced the concept of spin-polarized tunneling, where Peffz(k TR (2 = 5 , 4)
the amounts of electrons for each spin are unequal. Their 1K) (et kik)) (k“+kik))

earlier study on the conservation of spin during tunneling
laid the foundation for the new research field of spin- ,(Ki=k]) (k®—kik]) (< —kik)) 5
d_epend_ent _tunnell_ng. Julié® made the first FM-I-FM eff (kﬁki) (K2+k{kl) (K2+k%kl),
trilayer junction which showed a larger conductance for par-
allel magnetization alignment of the two ferromagnetic elecwherekT .k, are the Fermi wave numbers in the up-spin and
trpdes than that of antiparallel alignment. Furthermore, Juldown-spin bands ané is the wave number in the barrier.
liere also presented a qualitative model to explain the changghe two former factors at the right-hand sides of Egsand
of conductance between different alignments, and defined thg) are the usual spin polarizations of the FM electrodes,
tunneling magnetoresistan¢éMR), which arise from the effects of the DOS as shown in &),
The two latter factors originate from the quantum-
mechanical matching of the electron wave functions at the
two electrode/barrier interfaces. They reflect the quantum co-
herence among the barrier and the two electrodes. However,
whereP andP’ are the spin polarization of the left and right they are totally absent in Eql) of the Julliee model.
ferromagnetic electrodes expressed as Recently, many experiments have been performed to mea-
sure the bias dependence of TMR for various ferromagnetic
~Ni—Ny , Ni=Nj junctions within a wide range of applied volta¢ebout from
P= N;+N,’ - N%JFNl’ 2) —1.0 V to 1.0 V). Most of the results show a significant
decrease of TMR with increasing voltagienterestingly,
whereN; andN, are the densities of staté30S’s) at Fermi  Sharmaet all% found that the TMR of junctions with pure
level of the left electrode, amsl% andNi are the ones for the Ta,Og barrier undergoes a negative excursion at high enough
right electrode. In Julliee model, the left and right electrodes positive and negative voltages, i.e., the TMR changes its sign
are treated separately, and the tunneling matrix elements aat a large and finite voltage. In contrast, the junctions with
independent of momentum and energy. As a result, the turthe same electrodes, but with different barrigrg., ALOs),
neling current of each spin channel is proportional to theexhibit mostly positive TMR in a decaying way before the
product of the DOS’s of the two electrodes for given spindamage(breakdown voltage of the junctions(Experimen-
channel. However, the independence of TMR on the geontally, beyond this voltage, the dielectric oxide barrier will be
etry and the electronic structure of the barrier assumed biproken down due to the smallness of the barrier thickness

Gp—Gpp  2PP

TMR= z
Gp 1+PP

oY)
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and its resulting strong electric fieJdDifferent from those E,
symmetrical barrier junctions, the composite barrierg.,
Al,03/Ta,05) junctions are found to undergo a negative ex-
cursion of TMR at one side of the applied voltage, but re-
main unchanged in sign at the other side. If the composite
barrier is reversed, for example, &3/ Ta,Os is substituted

by TaOg/Al,O3, the negative excursion is reversed from
one side to the other side of the applied voltage. Regrettably,
the expected inversion symmetry of the TMR versus voltage
upon reversion is not observed in Ref. 10. Obviously, to
interpret those behaviors of TMR, one needs a microscopic
tunneling theory suitable for large applied voltages. How-
ever, the Slonczewski model is confined only to the zero
bias. The purpose of this paper is to extend the Slonczewski
model to the finite bias case, and we hope that it could pro-
vide a reasonable explanation to the strong bias dependence
of TMR within a wide range of applied voltage. To this end, FIG. 1. The densities of states for the up-spin and down-spin
we will treat the electrodes and the barrier as a singlebands, showing positions of the energy zero and chemical potential
guantum-mechanical system to include the quantum cohejx for the ferromagnetic electrode.

ence which is physically essential for such a sandwich struc-

ture. Specifically, we will employ the WKB wave functions 52 g2

to describe the potential barrier and then match the wave Hr=—5—— —orA+&(X), (8
functions and their derivatives at the electrode/barrier inter- 2m dx

faces quantum mechanically. Our results show that the TMI%V

decreases significantly with the increase of the applied volt"e'€ HL, Hr, andHg are the longitudinal parts of the
9 y pplie Hamiltonians for the left and right electrodes and the barrier,
age. In particular, the TMR can change from positive to

) - respectively;A half the exchange splitting between the two
negative at a finite voltage due to the quantum coherence. . ? i
Spin bands of the ferromagnetic electrodes; and oy the

Furthermore, the effects of an asymmetric potential of the onventional spin indices; and(x) the single-particle po-

com_posqte barner have aIsQ been given. These results a &ntial. We note that, in our model, the difference between
qualitatively in agreement with the experiments.

. ) the effective masses of the electrons within the barrier and
The rest of the paper is organized as follows. In Sec. Il

! . the electrodes is neglected, just as in the Slonczewski
we extend the Slonczewski model by matching quantum me- P .
model? This simplification can reduce the adjustable param-

chanically the wave function through trapezoidal barrier due ters in the model and will not alter the theoretical conclu-

to the finite appllt_ed voltage, and obtapn _the bias dgp(_andenglon qualitatively. The lateralin-plane parts of the Hamil-
rather than bias-independent transmission probabilities. 10 . .

. . tonians are assumed to be the simple free-electron type, and
Sec. Ill, numerical results and theoretical analyses for botf}

. ) . : . their effects will be accounted for by summing over the
symmetrical and asymmetrical bariers are given. I:ma”y‘transverse momentuRy in our later calculations. For conve
our results are summarized in Sec. IV. '

nience, the energy zero is selected at the center of the ex-
change splitting of the left electrode, so the potendék)

II. EXTENSION OF THE SLONCZEWSKI MODEL takes the following form:
Here we consider a junction consisting of two identical 0 Xx<0
ferromagnetic electrodes and a nonmagnetic insulating bar-
rier. As usual, we will treat the ferromagnetic metals with the X
) treat _ X) = +=(pr—p—eV), 0<x<d (9
free-electron approximation because it has been adopted $(x) Pt G(drmdL—eV) ©
widely and achieved great success in describing the spin- —eV x=d

polarized tunneling:®12 Within this approximation, the
DOS for the two spin bands of the ferromagnetic electrodesvhered is the barrier width)V the applied voltage; ane,

are parabolic, which are depicted in Fig. 1. With the para-and ¢ the barrier potentials at the left and right barrier/
bolic DOS’s, the model of the FM/I/FM sandwich system electrode interfaces. This potential is shown schematically in

can be described as Fig. 2. It should be pointed out here that the barrier potential
$(x) (0<x<d) is a function of the applied voltagé, dif-
72 g2 ferent from the Slonczewski modewhere V=0 and ¢,

Ho=— - _2_‘TLA+ d(X), (6) = ¢r, that is, only the zero-bias case is taken into account
2m dx and the barrier potential is of square shape. Inclusio iof

the potential$(x) enables us to easily investigate the TMR
52 g2 at large and finite applied voltage. Furthermore, just as

Hg=— =— — + &(X), (7y  Brinkman and co-workers,we do not assume the barrier
2m dx2 potential in Eq.(9) to be square even at zero bias. Often, this
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"t r a1 (0 =[&(Ex,xV)] A exp( - JXK(EX,X,V)dX)
\(])R-eV 0
K M, M, N{L +BTexp( fOXK(EX,x,V)dx) (0<x<d),
' l//Bl(X):[K(EXvX-V)]llz[AleXF{—J' K(EX,X,V)dX)
0 0
R R : . , +Blexr{ fXK(EX,x,V)dx) (0<x<d),
0
0 d N

(13
FIG. 2. A schematic potential for the FM/I/FM junction under h
the biasV>0 where the spin-quantization axes between the two /Nere

ferromagnetic electrodes form angle om 1/2 X

K(Ey X,V)= —) \/¢ +=(dr—bL—eV)—E,.
would happen when unequal degree of oxidations occurs on § h? Ld TR .
each side of the insulator, or when the junction is fabricated (14
with a composite barrier such as,8l;/Ta,05 insulator: The WKB wave functions in Eq(13) are applicable within

First, we consider the case that a spin-up incident plang,e parrier region if the potential shape is smooth in the
wave with longitudinal energ§, and unit flux transports jnierval O<x<d. Just as pointed out by Harrisorand
from the left electrode to the right electrode. For the eleCBrinkman? even if the potentials(x) varies abruptly at the
trode regionsx<0 andx=d, the potentiaky(x) is assumed  inierfacesx=0 andx=d, the wave function$13) can still
to be constant, as indicated in E®). Therefore, the solu- be connected with the wave functiofs0) at x=0 and x

tions to Hamiltoniansd, andHg, are simply plane waves,  _ 4 py 5 full quantum-mechanical matching. As will be seen
o _ later on, the above WKB wave functions are quite conve-
Y (x) =k ek r Rie U (x<0), nient for us to discuss the bias dependence of the TMR ana-
lytically. On the other hand, the wave functions of E3)
YL () =R e X (x=<0), reduce to the ones derived by SlonczeWwski V=0 and

¢L:¢R' In Eqs(lO) and(lS), RT’ Rl’ AT’ Al’ BT’ Bl’
C,, andC, are coefficients, which will be determined by
quantum-mechanical matching in the following.

Setting the angle of the spin-quantization axes for the two

Pri(X)=Ce*RID  (x=d),

g (x)=C e*r=D  (x=d), (100 ferromagnetic electrodes to b# the boundary conditions
for the quantum-mechanical matching among the wave func-
where tions[EQgs.(10) and(13)] and their derivatives can be written
as
om 1/2
Ko (Ex) = ( ﬁ) VE,+ oA, (12) P11(0)= ¢ (0), (19
¥ (0)= ), (0), (16)
om 1/2
k(B V)=| —5 VE FeVtagh, (12) 1 1(0)= g (0), (17)

d/ﬁl(o):l/lel(o), (18
with o ,or= %1 corresponding to the spin orientation| ,
respectively. Here we have assumed that the up spin is the 0
majority spin. Inside the barrier,<0x<d, the potentiakp(x) gi(d)= 'ﬂRI(d)CO%E
becomes now trapezoidal instead of rectangular. With this
linear potential, the Schdinger equation for the Hamil- P P
tonianHg of Eq. (7) can be solved rigorously by employing g (d)=— szT(d)sin( 5) + zﬁRl(d)cos( E)’ (20
the Airy function. However, the use of the Airy function is
too complex to get analytical results. Therefore, we turn to 0
the WKB approximatiort® This approximation has been suc- o1 (d) = ! (d)cog(_
cessfully used to study the tunneling in the conventional ! Ri 2
junction with two paramagnetic electrodes in Refs. 2 and 3. )
ﬁ\]za;orrer;stjlt, the wave functions within the barrier region take zﬁél(d)= _ ‘ﬁﬁw(d)s'”(i

0
+ gle(d)sin(E), (19

6
+ ngl(d)sin(§>, (21

0
+ w’mm)cos(g), 22)

054410-3



LI, LI, XIAO, DU, XU, AND HU PHYSICAL REVIEW B 69, 054410(2004
where a spinor transformation is performed in E49)—(22)

at the interface ok=d, because the spin-quantization axes
for the two electrodes differ by an anghe as shown in Fig. 16k, | (Ex)Kgri(Ex,V) k (Ey) kr(Ex,V)

2. 2 2 2 2
If a spin-up electron tunnels from left electrode into right [t (B + ki (B JLRR(Ex V) Ky (B, V)]

TlT(EX 1V!0)

electrode and occupies the spin-up state of the right elec- L0 o
trode, the corresponding transmission coefficient is X sir? 5/e nEcV), (30
T1(Ey,V, 0 =kgr:(E,,V)|C|?, (23
17X RT\E=x | T| TU(EX,V,G)

and if it occupies the spin-down state of the right electrode,

the transmission coefficient becomes 16K, (Ex) Ky (Ex V) 1L (Ex) kR(Ex ., V)

T [RA(E)+ K2 (B LKE(Ex V) + K2, (Ex V)]

Tu(Ex1V,9):kR¢(Ex,V)|CL|2- (24

0
><co§<§ e 21(EBV), (31

The unknown coefficient€, andC, can be determined by
Egs.(10—(22), following Harrisorf and Brinkmar?. The ex-

pressions foil;; and T, are obtained as

T11(Ex,V,0)

_ 16K 1(Ex)Kri(Ex,V) Kk (Ey) kr(Ex,V)
[K(Ey) + ke (B [ KA(Ex V) + K& (Ex, V)]

0
cens{ e s

T, (Ex,V,0)

_ 16k, 1 (Ex)kg|(Ex,V) kL (Ex) kr(Ex,V)
[k (Ey) +kE (B[ kA(Ex V) + K& (Ex, V)]

Xsir?| 5 |e27EcY), (26)

0
2

where

d

(B V)= f K(Ex X V)dX, (27
0

and k; and kg are obtained from Eq.14) as follows:

Kk (Ey)=k(E,,0V)=

o) 12
?) VoL~ Ex (28)

kr(Eyx,V)=k(Ey,d,V)=

om 1/2
?) Vor—eV—E,.

(29

With Egs.(25), (26), (30), and(31), the tunneling current
densities for parallel §=0) and antiparallel §= =) align-
ments,Jp(V) andJ,p(V), can be representsd as

rW=-£3 [ aEPUE VIext-20(E V)]

X[f(E)—f(E—eV)], (32

IarV)=— ¢ > f_:dExpz(Ex,V>exp[—2n<Ex,V)]
X[f(E)—f(E—eV)], (33

where the summation ovek; represents the contribution
from the lateral part,E denotes the total energy of the
tunneling electron;f(E) the Fermi distribution function;
exgd —2n(Ey,V)] the exponential weighting factor in the
WKB approximation; P1 and P2 stand for the prefactors in
Egs.(32) and(33) which are given by

T T
A2 ) |
30 [ A Kke=07, |
2
| B: 16k, =0.6] '
. 2 ] ]
20 | C: ¥k =05 '
. 2 ) |
> Kk =04, '
S ! |
& 10 |
> . .
= | . .
s 00 [
0 ey N
. "/ . Ve (A
., Experimental U ®)
PR DN
10k L0 measurable range VO
. — -10V~10V ——wm N
. | I s (D
A A 1 A A
-2.0 -1.0 0.0 1.0 2.0

Voltage(V)

Similarly, for the case that a spin-down incident plane FiG. 3. The curves of the TMR vs bias for symmetric barrier
wave with longitudinal energye, and unit flux transports junctions whereEg, =5.0 eV, kg, /kg; =0.30, andd=15 A. The
from the left electrode to the right electrode, the two trans-curvesA, B, C, andD correspond tacz/kZ,=0.7, 0.6, 0.5, and 0.4,
mission coefficients are respectively.
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PI(EL.V)

= T,.(E,V,00exd27(E,,V)]

_ 16kLT(Ex)kRT(Ex1V)KL(EX)KR(EXaV)
[KE(Ex)+KE (B[ KA(Ex, V) + K& (Ex V)]

16K | (Ex)Kr) (Ex,V) kL(Ex) kr(Ex,V)
[KZ(E)+KE (BT KE(Ex V) + K& (Ex V)]’
(34)

PAE,.V)

= T o (Ex.V,m)exd2n(Ey,V)]

_ 16K 1(Ex)Kg| (Ex,V) Kk (Ey) kr(Ex,V)
[K(Ey) + ki (B[ KA(Ex V) + K& (Ex,V)]

16k|_¢(Ex)kRT(Ex V) ke (Ex) kr(Ex, V)
[kZ(Ex) +kE | (EN T K&(Ex, V) + ki (Ex V)]
(35

PHYSICAL REVIEW B 69, 054410(2004

-1.0 0.0 1.0
Voltage(V)

-1.0 0.0 1.0
Voltage(V)

FIG. 4. The curves oAG and Gp vs V whereEg;=5.0 eV,
ke, /ke;=0.30, kZ/kZ,=0.7, andd=15 A.

IIl. NUMERICAL RESULTS AND DISCUSSION

Following Slonczewsk?, four parameters are needed for
numerical evaluation€ , xZ/kg, , ke /kg;, andd, where
Er, represents the Fermi energy of the spin-up electrons in
the ferromagnetic ~ electrodes; «Z/kZ,=(2m/%?)(¢
—u)/Eg; the relative barrier height withw the chemical

potential and$= 172(¢+ ¢r); Kg|/kg; the ratio of the
Fermi wave numbers for different spin bands; ahtthe bar-

If the electrodes are paramagnetic instead of ferromagneti¢ier width.

Egs. (32) and (33) automatically reduce to the result of
Brinkman? In other words, Brinkman’s resdlfor nonmag-

First, we consider the junctions with a symmetric barrier
(.= ¢Rr), the numerical results at zero temperature calcu-

netic junctions has already been included in the preseriated through Eqgs(11), (12), (28), (29), and (32)—(38) are
theory. In analogy to Ref. 3, the prefactors P1 and P2 in Eqsshown in Fig. 3 where the curvés B, C, andD correspond

(32 and(33) depend heavily on the enerdy, and the ap-

to x¢/kf,=0.7, 0.6, 0.5, and 0.4, respectively. As can be

plied voltageV. They can impose a strong influence on theseen clearly, the TMR’s decrease quickly with the increase of
tunneling currents and will play a crucial role in the signthe applied voltagé/, and finally change from positive to

change of TMR, as can be seen in the following section.

negative at a critical bia¥.. Moreover, the higher the bar-

Experimentally, the tunneling conductance and the TMRrier potential, the larger the critical voltagg will be. How-

are defined as

Jo(V
Gp(V)= P\(, ', (36)

Japn(V
Gap(V)= Aﬁﬁ ), (37)
TMR= Gp(V)—=Gap(V) AG(V) (39)

Gp(V) - Gp(V)’

ever, within the experimental measurable range of the ap-
plied voltage(from — 1.0 V to 1.0 \), one sees that the TMR
changes sign for the junctions with low barrier potentials
(curvesC and D), but still remains positive for junctions
with high barrier potential§curvesA andB). The curvesA
andB can be used to explain experimental data of the TMR
for junctions with ALO5 barrier where no inverse TMR is
observed before the dama@@eakdown voltage; the curves

C and D can be used to explain the appearance of inverse
TMR in junctions with TaOs barrier*

To understand the rapid decreasing of TMR, we have cal-
culatedAG(V) and Gp(V), which are shown in Fig. 4. As
indicated by Fig. 4AG(V) decreases with the applied volt-
ageV. In particular,Gp(V) increases rapidly witv, which,

whereGp(V) andGap(V) are the tunneling conductance of as is well known, is due to the WKB exponential weighting
the parallel and antiparallel alignments, respectively, andactor. Consequently, the TMR defined in E88) must drop

AG(V)=Gp(V)—Gpp(V). Now, the TMR can be calcu-
lated through Eqg11), (12), (28), (29), and(32)—(38). Here,

significantly with increasing.
We now discuss the origin of the sign change in TMR.

we emphasize that the above derivation is proceeded undérom Egs.(36)—(38), we have
the condition of a finite applied voltage. Therefore, the bias

dependence of TMR can be obtained within a wide range of

the applied voltage.

Jp(V)—Jap(V) AJ(V)

MR=""3v)  ~ V)"

(39
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where AJ(V)=Jp(V) —Jap(V). SubstitutingJs(V) of Eq. As for P1E,,V)—P2E,,V), by using Egs.(34) and
(32) andJap(V) of Eqg. (33) into AJ(V), we find (35), it can be separated into two factors,
e +oo
AJ(V) =~ n Ek: f dEJ[PYE,,V)—-P2AE,,V)] PLEx,V)—P2AE,,V)=A(E«,V)D(E,,V), (4]
t —o0

xXexd —27(Ey,V)][f(E)—f(E—eV)]. (40)  where

4KL(Ex)[kLT(Ex) - kLl(Ex)][KE(Ex) - kLT(Ex)kLl(Ex)] 4rr(Eyx 1V)[kRT(Ex V) — le(Ex V)]

[kZ(Ex)+KE (BT KE(EQ) +KE (Ex)] [ K&(Ex V) + K& (Ex V) k&(E, V) + K& (Ey ,V(>] ’)
42

A(Ey, V)=

D(EX,V)=K§(EX,V)—km(Ex,V)le(Ex,V)- (43) of V, and it will change from positive to negative if the
) ) applied voltageV is sufficiently high. Clearly, this property
The factorsA(Ex,V) andD(E,,V) show different behaviors ¢ D(E,,V) is not the DOS effect of the FM electrodes,

mi@t]h increasing voltage, which we will discuss in the follow- et from that of A(E, V). As a combined result of
: A(E,,V) andD(E,,V), P1E,,V)—P2E,,V) of Eq. (41
From Eqs.(11), (12), and(14), we have will become negative at certain bias. Apparently, the sign
om) M2 change originates from the quantum-coherence factor
kLT(Ex)_kLL(Ex):(_Z) [VEx+A—VEx—A]>0, D(Ex,V) in our model rather than the DOS effect included
h in A(E,,V). On the other hand, the terms other than
(44) P1(E,,V)—P2(E,,V) in the integrand of Eq(40) do not
12 change sign for any. Therefore AJ(V) of Eq. (40) and the
2_m) [VE +eV+A TMR_of Eqg. (39 V\{il_l finally undergo a sign change at a
h? sufficiently large critical voltagd/...
The above discussions show that the microscopic mecha-
—VEx+eV-AJ>0, (49 nism responsible for the sign change of TMR is due to the
2 quantum coherence effect rather than the DOS effect. There
[kt (Ex) —ki 1 (ExkL (Ex)]>0. (46 exist two terms in the guantum-coherence fadgE,,V),
Equations(44) and (45) are satisfied simply because the i-€., K&(Ex,V) and kg(Ex,V)kg (E,V). Physically,
spin-up band has been assumed to be the majority band, am@(Ex,V) can be considered, on an average, as the potential
Eq. (46) is satisfied because the effective polarization of thebarrier height. The higheflower) the potential barrier, the
left ferromagnetic electrodé®¢; of Eq. (4), is chosen to be larger (smallej the tunneling magnetoresistance. On the
positive, as is the usual case for experimental ferromagnetiether handkg;(E,V) andkg, (Ey,V) are directly propor-

Kr1(Ex,V) —Kg (Ex,V)=

metals. Their combination results in tional to the transmission coefficient, as shown in E@S8)
and (24). The larger the transmission coefficient, the lower
A(E4,V)>0. the tunneling magnetoresistance. If the applied voltage in-

creases, then the average height of the potential barrier de-
reases, and the transmission coefficient increases. There-
pre, with the increase of the applied voltage, the tunneling
magnetoresistance will decrease rapidly and finally change
its sign. This is the microscopic reason for the sign change of
TMR in the present model.
om Now, we proceed to estimate the critical voltagewhere
D(EX,V):(_)[(d,R_ E,—eV)— J(E,+eV)?—A?]. the TMR changes sign. Because electrons with enégy
h? near the Fermi levefi.e., the chemical potentigk at zero
(47 temperature give most contributions to the tunneling cur-
The first term on the right-hand side comes from the contri/€Nt, We can obtain the estimated critical voltagg,; by
bution of «k4(E,,V) given in Eq.(29), and the second one aPProximatingD(u,Ves) =0, which results in
from the contribution okg,(Ex,V)kg (Ex,V) given in Eq.
(12). The former, i.e.x3(Ey,V), decreases with the increase
of V, but the latter, i.e.kg;(Ex,V)kgr (Ex,V), increases
with V. Therefore D (E,,V) is a rapidly decreasing function

Obviously, the factoA(E,,V) is always positive and does
not change in sign regardless of the magnitude of the applie
voltage. As stated above, this result is due to the DOS effe
of the FM electrodes.

As to the other factob(E,,V), one finds

AZ
evest:§¢R+ TéR_M- (48)
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40

14 () kpy kp=020 (2) 8,/Eg=06
(2): kp Rg-=0.25 g; 0 /Epy=04 ]
. - 20 420
2k (3): kFL/kF'_O'?’O (5)
(4): kg k=035 _ .
) (5): kg e =0.40 [SR) ORI SR SRR | OSSO S 103
> 1 : E

1
'
[
(=]

=20
0.8

0'6 L i i A L L
—_— 20 10 00 10 10 00 10 20
0.35 0.40 0.45 0.50 0.55 0.60 Voltage(V) Voltage(V)

@) (b)

Kk

FIG. 6. The curves of the TMR versus bias for asymmetric
barrier junctions whereEg;=5.0 eV, Kg /kg;=0.30, and d
=15A. The curve(a) is for the case of¢ /Ef;=0.4 and
¢r/Er;=0.6 and the curveb) for the case ofp /Er;=0.6 and
¢r/Er;=0.4.

FIG. 5. The curves o¥, vs K,";/kFT whereEg;=5.0 eV andd
=15A. The curves(1), (2), (3), (4), and (5) correspond to
ke, /kg;=0.20, 0.25, 0.30, 0.35, and 0.40, respectively.

Equation(48) shows thatV.s; depends linearly oy for a

sufficiently high barrier potentiadg. In fact, we have cal- hibit a good inversion symmetry as expected. Incidentally, as
culated the exact numerical value ¥ as a function of indicated in Figs. @) and @b), the maximum of the TMR
KE/k%T for different values ok, /kg; from Eqgs.(32)—(38), deviates from the position &f =0, namely, there is an offset
the results are shown in Fig. 5. All the curves in Fig. 5 showin the TMR when the barrier potential is asymmetric. This

a good linear dependence betweénand «2/k2, for rela- ~ behavior has also been observed experimentaffy.

tively large x#/kZ, , and also, a higher relative barrier height

xEIKE, leads to a higher critical voltag¥,, which is in IV. CONCLUSIONS

agreement with the qualitative analysis of E4g). This re- By extending the Slonczewski model from a rectangular
lationship betweelV and the relative barrier height can be parrier potential to a trapezoidal barrier potential, we have
used to explain why no sign change is observed in ferromagyresented a spin-polarized tunneling theory for the FM/I/FM
netic junctions with AJO; barrier. For AbO; barrier, the  jynctions within a wide range of the applied voltage and
relative barrier height is rather large, its critical voltageis  provided a possible explanation to the sign change of the
so high that the junction will undergo permanent damagervR. The trapezoidal potential within the barrier region is
before the TMR changes sign. _ _ handled by the WKB approximation, and the wave functions
Second, we consider the junctions with asymmetric barare quantum-mechanically matched on the interfaces follow-
rier (¢ # ¢r). To simplify the calculation, the influence of ing the treatment by HarrisodnWe found that, apart from the
the tunneling electron effective mass and the barrier shapgsyal DOS effects, there exists a quantum-coherence factor
dge to dlffe'rent barrier heights on the twc_) side qf the barnerD(EX V)= K%(EX V) —kg; (Ex,V)kg, (Ex,V), which is of
WI|.| not be included. Two cases are con3|dereq in our Calcugreat importance for understanding the strong bias depen-
lation: ¢ /Eg;=0.4 and ¢ /EF;=0.6, and their reversal, gence of the tunneling, especially, the sign change in TMR
i.e., ¢ /Ef;=0.6 and¢ /Eg;=0.4. The numerical results \yith pias. Our theoretical results, including both symmetric
are shown in Figs. @) and @b), respectively. It is clear that 5,4 asymmetric barrier potentials, are in qualitative agree-
the inverse TMR only occurs at one side of the applied voltment with the experimental observations. The further appli-
age, in contrast to the case with symmetric barrier shown iation of the theory to the finite-temperature case is being
Fig. 3 where inverse TMR appears at both sides. The asymyorked on and will be published elsewhere.
metry of TMR due to¢, # ¢ is in accordance with the
experimental results of composite barrier {84 /Ta,0O5 and
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co-workers'® Although the expected mirror symmetry be-  This work was supported by the State Key Project of Fun-
tween Figs. 68 and Gb) is not observed in their experi- damental Research under Grant No. 001CB610602 and the
ments, we believe that this inversion should be observed exNational Science Foundation of China. The authors would
perimentally. Recently, we have been inforrtfethat TMR  like to thank Dr. John Q. Xiao for useful discussions and his
curves of AbO3/ZrO, junction and ZrQ/Al,O; actually ex-  critical reading of the manuscript.

054410-7



LI, LI, XIAO, DU, XU, AND HU

1c. B. Duke, Tunneling in Solid§Academic, New York, 1969

2W.A. Harrison, Phys. Revl23 85 (1961).

SW.F. Brinkman, R.C. Dynes, and J.M. Rowell, J. Appl. Phy/.
1915(1970.

4J.G. Simmons, J. Appl. Phy84, 1793(1963.

SP.M. Tedrow and R. Meservey, Phys. Rev. Le#, 192 (1971.

5M. Julliere, Phys. Lett54A, 225 (1975.

7J.M. MacLaren, X.-G. Zhang, and W.H. Butler, Phys. Re\6@®
11 827(1997.

83.C. Slonczewski, Phys. Rev. B, 6995(1989.

93.S. Moodera and G. Mathon, J. Magn. Magn. Mag&0, 248
(1999.

PHYSICAL REVIEW B 69, 054410 (2004

0M. Sharma, S.X. Wang, and J.H. Nickel, Phys. Rev. L&2.616
(1999.

IM.B. Stearns, J. Magn. Magn. Maté,. 167 (1977).

12xjangdong Zhang, Bo-Zhang Li, Gang Sun, and Fu-Cho Pu,
Phys. Rev. B56, 5484(1997).

Bg, MerzbacherQuantum Mechani¢£2nd ed.(Wiley, New York,
1970.

14John Q. Xiao(private communication

153, Nowak, D. Song, and E. Murdock, J. Appl. Ph$s, 5203
(2000.

163. Du, X.H. Xiang, G. Landry, B. You, A. Hu, H.W. Zhao, and
John Q. Xiao, J. Appl. Phy€1, 8780(2002.

054410-8



