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Coupled SÄ 1
2 Heisenberg antiferromagnetic chains in an effective staggered field
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We present a systematic study of coupledS51/2 Heisenberg antiferromagnetic chains in an effective
staggered field. We investigate several effects of the staggered field in thehigher ~two or three! dimensional
spin system analytically. In particular, in the case where the staggered field and the interchain interaction
compete with each other, we predict, using mean-field theory, a characteristic phase transition. The spin-wave
theory predicts that the behavior of the gaps induced by the staggered field is different between the competitive
case and the noncompetitive case. When the interchain interactions are sufficiently weak, we can improve the
mean-field phase diagram by using chain mean-field theory and the analytical results of field theories. The
ordered phase region predicted by the chain mean-field theory is substantially smaller than that by the mean-
field theory.
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I. INTRODUCTION

The effects induced by magnetic fields in magnets h
been a subject of theoretical research interest for a long t
In particular, recently the magnetization processes of vari
spin chains and ladders have been investigated intensi
Owing to the progress of the various experimental metho
there has been an increasing connection between the the
and the experiments. In such a context, one of the new
tractive subjects in magnetism is the effects of astaggered
magnetic field, namely, a magnetic field which changes
rection alternatingly. While it may sound unrealistic, the
exist at least three mechanisms generating the stagg
fields in real magnets, as discussed in Refs. 1 and 2.

The first mechanism is due to the staggered gyromagn
~g! tensor, which can be present if the crystal structure is
translationally invariant. The staggeredg tensorgab

st is de-
fined in the coupling between the spin and the external m
netic field ~Zeeman term! as

ĤZeeman52mB(
j

Ha@gab
u 1~21! jgab

st #Sj
b , ~1!

whereHW 5(Hx ,Hy ,Hz) is an applied uniform magnetic fiel
and Sj

b is the spin operator of the local magnetic mome
Here Hagab

st is nothing but an effective staggered field.
addition, the staggered field may also arise from the s
gered Dzyaloshinskii-Moriya~DM! interaction3,4

ĤDM5(
j

~21! jDW •~SW j3SW j 11!, ~2!

which can be present if the crystal symmetry is sufficien
low. It is shown in Refs. 1 and 5 that in the presence
the staggered DM interaction along the chain, an app
uniform field HW also generates an effective staggered fi
hW }DW 3HW . Several quasi-one-dimensional Heisenberg a
ferromagnets are now known to have the staggered fi
due to the above mechanisms. The well-known examp
are Cu-benzoate,6–8 @PM•Cu(NO3)2•(H2O)2#n ~PM
5pyrimidine!,9 and Yb4As3.10–12 All of these have low-
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symmetry crystal structures which allow a staggeredg tensor
and a DM interaction along the chain.13 It is expected in
Refs. 1, 5, and 14 that the staggered field induces an ex
tion gap in theS51/2 Heisenberg antiferromagnetic~HAF!
chain, which should be otherwise gapless. The excitation
caused by the staggered field is indeed found in th
materials.6,9,12 Moreover, low-temperature anomalies
physical quantities, such as the susceptibility and the elec
spin resonance linewidth,15,16are also successfully explaine
as effects of the staggered field.5 Thus it is confirmed that
they are described by anS51/2 HAF model with an effec-
tive staggered field.

There is another, rather different, mechanism to genera
staggered field. Let us suppose that the system consis
two sublattices, with a weak interlattice coupling and stro
intralattice one. If one of the sublattices is Ne´el ordered, the
interlattice coupling, as a mean field, could give an effect
staggered field on the other sublattice. The realization of
scenario is inR2BaNiO3 whereR is a magnetic rare earth
and theR-ion lattice provides a staggered field for Ni chai
(S51).17,18

Actually all the materials discussed above are highly o
dimensional~1D!. However, at lower temperature and low
energy, the interchain interaction will eventually be dom
nant. In addition, there are reports on a few materi
@CuCl2•2DMSO ~DMSO5dimethylsulphoxide! ~Refs. 19–
21! and BaCu2(Si12xGex)2O7 ~Ref. 22!# which seem to have
an effective staggered field and also a relatively large in
chain interaction. Therefore the work including the inte
chain interaction could be relevant for experiments.

Given these backgrounds, in the present paper, we wo
like to clarify the characteristic roles of staggered fields
higher-dimensionalspin systems. In this paper, we are co
cerned with dimensionshigher than1 but still realistic in
condensed-matter physics, namely,two or threedimensions.
However, most of the analyses in this paper apply straig
forwardly even to four dimensions or higher.

Varieties of spin models with effective staggered fields
conceivable. As a simplest model including both the st
gered field and the interchain coupling, in this paper,
concentrate on the followingS51/2 spatially anisotropic
Heisenberg Hamiltonian:
©2004 The American Physical Society06-1
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Ĥ5(
rW

~JSW i , j ,k•SW i 11,j ,k1J'SW i , j ,k•SW i , j 11,k

1J'8 SW i , j ,k•SW i , j ,k11!2H(
rW

Si , j ,k
z 2h(

rW
~21! iSi , j ,k

x ,

~3!

whereSW i , j ,k is the spin 1/2 operator onrW5( i , j ,k) site. The
coupling constants are restricted toJ.uJ'u>uJ'8 u, and thus
the i direction is the strongly antiferromagnetic~AF! coupled
one. The system withJ'8 50 is 2D, in which the indexk
vanishes. The last two terms represent the uniform and s
gered Zeeman terms, respectively.

In our model~3!, one can immediately find that when th
interchain interactions are AF, they compete with the st
gered Zeeman energy, while in the ferromagnetic~FM! case,
both the interactions and the staggered fieldh jointly make a
Néel state stable. Let us refer the AF case as thecompetitive
case, and the FM case as thenoncompetitiveone. As will be
explained later on, we predict that the competition bring
second-order phase transition in the competitive case
emergence is one of the most characteristic effects of
staggered field in our higher-dimensional spin model.

The rest of this paper is organized as follows. In Sec.
we apply mean-field theory to the model~3!. In the competi-
tive case a phase transition is predicted. Since we are pr
rily interested in the transition, which is characteristic for t
higher-dimensional system, in the later sections we w
mainly discuss the competitive case. The noncompeti
case is touched as a comparison to the competitive c
Besides the phase diagrams, the mean-field magnetiza
curves and critical exponents are derived from the s
consistent equations. In Sec. III, using linear spin-wave
proximation, we derive the spin-wave dispersions in
competitive case and in the noncompetitive case. As a re
we find that the excitation gap induced by the staggered fi
behaves differently between the competitive case and
noncompetitive case.

In Sec. IV, we improve the mean-field phase diagrams
using chain mean-field theory.23,24 The latter is expected to
be superior, when the interchain interactions are weak
the effective 1D model can be solved exactly. The improv
diagram shows that in the weakly coupling region of t
competitive case, the ordered phase becomes much narr
than the mean-field prediction. In the last section, we su
marize those results and discuss future problems. In the
pendix, the details of the spin-wave results are given.

II. MEAN-FIELD THEORY APPROACH

In this section, we treat the model~3! within mean-field
theory ~MFT! framework. We first discuss the competitiv
case, and then touch the noncompetitive case briefly.

In the competitive case, considering the advantage of b
the interchain energy and the staggered Zeeman energ
well as the intrachain couplingJ, we can expect that the spi
moment turns as Fig. 1 at sufficiently low temperature a
05440
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small fields comparable to the interchain couplings. The
sumed spin moment is

^SW i , j ,k&MFT5„~21! imx ,~21! i 1 j 1kmy ,mz…. ~4!

The choice of the mean field~4! is presumably valid as long
asJ is sufficiently larger thanJ' andJ'8 . On the other hand
for instance, in the limiting case:J→0, where the model is
reduced to a 2D or 1D AF one with a uniform field, there a
possibilities that̂ Sj ,k

x,z& are inhomogeneous along thej or k
directions, and thus Eq.~4! is invalid. In this paper, the MFT
in the competitive case is performed only within the me
field ~4!.

The minimal condition for the mean-field free energ
gives the following self-consistent equations:

ma5
ea

2e
tanh~be!, ~5a!

m25 1
4 tanh2~be!, ~5b!

where

ex[~J2J'2J'8 !mx1h/2,

ey[~J1J'1J'8 !my ,

ez[2~J1J'1J'8 !mz1H/2,

e[~ex
21ey

21ez
2!1/2, ~6!

andb andm are, respectively, the inverse temperature 1/kBT
and the total magnetization per site. The numerical soluti
of Eq. ~5a! are given in Fig. 2. They indicate that there is
second-order phase transition, and the corresponding o
parameter is they component of the spin moment,my

5u^Si , j ,k
y &u. Going back to Fig. 1, one sees that the pha

with finite my breaks the translational symmetry in th

FIG. 1. Directions of the magnetic fields and the spin mome
in the 2D competitive case. The short black arrows are the s
moments projected onto spinxy plane in the ordered phase~spon-
taneous symmetry breaking phase, see text! expected by the MFT.
The gray arrows indicate the direction of the staggered fieldh. The
uniform field H is applied perpendicular to this paper.
6-2
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weakly coupled direction. In the following, we call th
phase as the SSB~spontaneous symmetry breaking! phase.
The other phase, in which the spins are aligned to the fi
with my50, will be called as thesymmetricphase. We em-
phasize that the transition between these two phases oc
only in the high-dimensional spin systems and in the pr
ence of the competition. From these results, we can illust
the variation of the spin moment when the staggered fieh
is increased gradually at smallT andH with Fig. 3.

In the SSB phase, the relationsmx5h/@4(J'1J'8 )# and
mz5H/@4(J1J'1J'8 )# hold within the MFT. Inserting these
into Eq. ~5b! and taking the limitmy→0, we obtain the
mean-field critical surface in the space (kBT,H,h):

h̃c
21H̃c

25 1
4 tanh2$bc~J1J'1J'8 !Ah̃c

21H̃c
2%, ~7!

where h̃c[hc/@4(J'1J'8 )#, H̃c[Hc/@4(J1J'1J'8 )# and
the subscriptc represents critical values. It can be simplifie
in the casesT50, h50, andH50, respectively, as

FIG. 2. Magnetization curves of the competitive case
(J,J'1J'8 ,H)5(1,0.2,0.2). These are obtained by the numeri
iterative method for Eq.~5a!. The upper two parts~a! and~b! are in
h50.05 andh50.35, respectively. The lower two parts~c! and~d!
are inkBT50.3 andkBT50.7, respectively.
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21H̃c

25
1

4
,

H̃c5
1

2
tanhS bcHc

4 D ,

h̃c5
1

2
tanh$bc~J1J'1J'8 !h̃c%. ~8!

Thus the mean-field phase diagram can be represente
Fig. 4. Using the critical condition, one can calculate so
critical exponents within the MFT. Near the critical surfa
in the SSB side, the order parameter, the off-diagonal u
form and staggered susceptibilities,xu[]my /]H and xs
[]my /]h, behave, respectively, asmy;(Ac2A)b, xu

;2(Ac2A)g, andxs;2(Ac2A)g8 whereA stands forT,
H, or h. The critical exponentb is found to be the conven
tional mean-field value 1/2. On the other hand, bothg and
g8 turns out to be 1/2, which is different from the standa
MFT result 1. This is becausemy is perpendicular toH and
h, and thus the latter are not the conjugate field as in
standard case. The mean-field energy per site is given a

eMFT52$J~mx
21my

22mz
2!1Hmz1hmx

1~J'1J'8 !~my
22mx

22mz
2!%. ~9!

From this, one can easily confirm that the critical expon
for the specific heat is zero.

r
l

FIG. 3. Variation of the spin configuration in a plaquette wh
the staggered field is increased gradually in the 2D competi
case. The black arrows represent spin directions projected onto
xy plane. The gray arrows are the staggered fieldh.

FIG. 4. Schematic mean-field phase diagram in the competi
case.
6-3
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MASAHIRO SATO AND MASAKI OSHIKAWA PHYSICAL REVIEW B 69, 054406 ~2004!
Now, we turn to the noncompetitive case. Because of
competitions, no singular phenomena occur whenhÞ0.
Canting of the spins inzx plane lowers both the interchai
interactions and the Zeeman energies. Thus the expect
value of the spin moments can be put as

^SW i , j ,k&MFT5„~21! imx ,0,mz…. ~10!

The MFT in this case gives the self-consistent equati
mx(z)5(ex(z)8 /2e8)tanh(be8) where ex(z)8 [@(2)J1uJ'u
1uJ'8 u#mx(z)1h(H)/2 and e8[(ex

21ez
2)1/2. At h50, the

system reduces to a conventional AF magnet in a unifo
magnetic field. Hence, there must be a phase transition w
divides the AF and paramagnetic phases, characterize
the order parametermx . The critical line is given by

Hc

4J
5

1

2
tanhH bc~J1uJ'u1uJ'8 u!

Hc

4JJ . ~11!

The phase diagram and the variation of the spin moment
drawn in Fig. 5. In the three-dimensional parameter sp
(kBT,H,h), the AF phase gives a first-order phase transit
plane.

III. LINEAR SPIN-WAVE APPROXIMATION IN TÄ0

With the MFT described in the preceding section, we
vestigate the effects of the quantum fluctuations in both
competitive and the noncompetitive cases, atT50. The
standard linear spin-wave approximation, based on
Holstein-Primakoff transformation~HPT! ~Ref. 25! is em-
ployed. The detailed results are given in the Appendix.

First we discuss the SSB phase of the competitive c
which is the main subject. In the HPT, we replace the s
operator with a boson annihilation~creation! operatorc (c†)
as follows:

FIG. 5. ~a! Schematic mean-field phase diagram of the nonco
petitive case inh50. ~b! The variation of the spin moment whe
the uniform field is increased gradually inh5T50.
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2 S 12
c†c

2S D ~c†2c!

S2c†c

AS

2 S 12
c†c

2S D ~c†1c!
D 'S iAS

2
~c†2c!

S2c†c

AS

2
~c†1c!

D ,

~12!

where S is the spin quantum number generalized fromS
51/2 and the sign' denotes the leading approximation
the 1/S expansion. The above HPT is useful if the spin poin
to they direction in the classical ground state, as the bos
then represent quantum fluctuations.

In the SSB phase, actually, a canting structure~4! is ex-
pected in the classical ground state, which is equivalen
the MFT at T50. The canted spin moments may be e
pressed by the angles (u,f) as

^SW i , j ,k&5mS ~21! i cosu sinf

~21! i 1 j 1k cosu cosf

sinu
D . ~13!

Thus in order to apply the HPT to the present case, we
the representation

SW i , j ,k→Rx„~21! i 1 j 1ku…

3Rz„~21! j 1k~2f!1d i 1 j 1k,oddp…SW HP, ~14!

where the operatorRa(b) represents a rotation abouta axis
by angleb. The operation~14! is described in Fig. 6. For the
original spin model~3!, these rotations correspond to a un
tary transformation. After these transformations, the leadi
order terms in 1/S is retained to give a solvable Hamiltonia
which is quadratic in bosonic operators.

The canting angles of the classical ground state are g
by minimizing the classical Hamiltonian, which is equivale
to the MFT energy, Eq.~9!. The canting angles in the clas
sical ground state are thus given as

cosfcl sinucl5
H

4S~J1J'1J'8 !
, ~15!

-

FIG. 6. The definitions of the canting parameter. In the S
phase, as in~a!, each spin direction is given by two rotations~1!
Rz(2f) and ~2! Rx(u) applied in this order to spin pointing toy
direction. In the symmetric phase or in the noncompetitive ca
spins are canted in thezx plane as shown in~b!.
6-4
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sinfcl5
h

4S~J'1J'8 !
.

For the resulting quadratic HamiltonianĤHP, we perform a
Fourier transformation~FT! ci , j ,k

† 5N2d/2(kWe
ikW•rWckW

† , whereN
is the linear system size,d is the dimension of the system,ka
(ukau,p/aa) andaa are, respectively, the wave number a
the lattice constant for thea direction. A four-mode Bogo-
liubov transformation ~BT!,26 which mixes ckW ,c2kW ,
ckW2pW ,c2kW2pW and their Hermitian conjugates (pW
[(0,p/ay ,p/az)), leads to the diagonalized form

ĤHP5(
kW

v~kW ! c̃kW
†
c̃kW1const ~16!

with a single band in the first Brillouin zone, wherec̃kW is the
magnon annihilation operator and thekx direction corre-
sponds to the strongly AF one. The explicit results on
dispersionv(kW ) are lengthy and thus are given in the Appe
dix. Here we discuss physical implications of our results.

First, the obtained dispersion satisfiesv(kW )>0 for all val-
ues of parameters. This implies that the SSB phase, w
appears as the classical ground state, is stable against q
tum fluctuations, at least in the lowest order of 1/S. Some
representatives of the dispersion are shown in Fig. 7. At z
field (H5h50), there are two gapless pointskWh5(0,0,0)
and kWH5(p/ax ,p/ay ,p/az), with linear dispersions in the
neighborhoods. Let us defineDh5v(kWh) and DH5v(kWH).
Since our results in Section 1 of the Appendix indicates t
Dh (DH) is nonvanishing only whenhÞ0 (HÞ0), we call it
as h(H)-induced gap. The true excitation gap, namely,
minimum excitation energy, is given byD5min(Dh ,DH).
Thus the gapD vanishes exactly as long as eitherh or H
remains zero. This is contrasting to theS51/2 1D HAF
model, where the staggered field alone induces the ga27

The gapless excitations are identified as Nambu-Golds
~NG! modes. Indeed, when eitherH or h is zero, the Hamil-

FIG. 7. Magnon dispersions of the SSB phase in the 2D co
petitive case for (S,J,J')5(1/2,1,0.1) andax5ay51. The gray
circles represent the gapless points.
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spontaneously in the SSB phase.

In the noncompetitive case, the magnon dispersion r
tion ṽ(kW ) is given in Eq.~A20!. Now the staggered field
alone can open the gap, because the ground state doe
break any continuous symmetry spontaneously. On the o
hand, the system remains gapless atkW50 due to the NG
mechanism ifh50 andH is not too large. Theh-induced gap
is thus defined asD̃h5ṽ(kW50W ).

While theh-induced gap is defined for both cases, there
a characteristic difference in theh dependence of the gaps. I
the limit of small h, D̃h;h1/2 for the noncompetitive case
but Dh;h for the competitive case. In other words, one c
say that theh-induced gap in the competitive case ope
more slowly than in the noncompetitive case. This is na
rally understood because the competition betweenJ' ~or J'8 )
andh weakens the effect of the external symmetry break
by h. It also implies that the ground state is more stable
the noncompetitive case, against quantum and thermal fl
tuations. The opening gaps are drawn in Fig. 8. On the o
hand, in the limit of smallH, DH;H. Similarly to the case
of Dh , this may be interpreted as a result of the competit
between the uniform field and the AF couplings.

We expect the spin-wave theory for the gaps to be qu
tatively correct even forS51/2. As discussed in Sec. 2 of th
Appendix, the spin-wave dispersion of the symmetric ph
can be obtained by the replacement (uJ'u,uJ'8 u)
→(2J' ,2J'8 ) in the dispersion of the noncompetitive cas

Finally let us discuss the relation of the present results
the spin-wave theory in the 1D model (J'5J'8 50) with the
staggered fieldh discussed in Ref. 5. The spin-wave dispe
sion ṽ(kW ) for the noncompetitive case does approa
smoothly to the 1D dispersion@Eq. ~3.11! in Ref. 5#, when
J' ,J'8 →0. On the other hand, the dispersionv(kW ) for the
competitive case apparently does not reduce to the 1D on
the limit of J' ,J'8 →0. This is becausev(kW ) is the disper-
sion of the magnon excitation in the SSB phase, which
absent in the 1D model. In fact, for any finiteh, the SSB
phase is realized@and hencev(kW ) is applicable# only when
J' andJ'8 are above the critical values. Thus by decreas
J'(J'8 ) at a fixedh, the system undergoes a phase transit
into the symmetric phase. At the transition the dispers

-

FIG. 8. Dh and D̃h in the 2D case for (S,J,J' ,H)
5(1/2,1,0.1,0). In the present case whereH50, the gaps

have simple forms: Dh5(11J/J')1/2h and D̃h5@11h/
(4SJ)#1/2A4SJh ~see the Appendix!.
6-5
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MASAHIRO SATO AND MASAKI OSHIKAWA PHYSICAL REVIEW B 69, 054406 ~2004!
should also change drastically. In the symmetric phase, s
larly to the noncompetitive case, the dispersion does
proach continuously to the 1D dispersion.

IV. CHAIN MEAN-FIELD THEORY APPROACH

In this section, we reconstruct the phase diagram of
model using chain mean-field theory~CMFT!. In the CMFT,
weak couplings among the chains are treated with a M
and the resulting effective 1D problem is analyzed as p
cisely as possible. If the 1D problem can be treated exa
the CMFT is expected to be much more reliable when
one dimensionality is strong enough as in the case of
benzoate, since it includes the fluctuations in the stron
coupled direction correctly. The usefulness of the CMFT h
been demonstrated in several applications.23,24,28

In Sec. IV A, we discuss how the CMFT determines t
phase transition for our model~3!. Section IV B is a brief
overview of susceptibilities of theS51/2 HAF chain which
are necessary to the CMFT. In Sec. IV C, we present
CMFT phase diagrams and compare them to the MFT o

A. CMFT for our model

Let us derive the effective 1D model for our system~3!,
within the CMFT.

In the competitive case, we consider the symmetric ph
side for convenience. The mean-field procedure for the w
interchain couplings replaces them with the effective ex
nal fields. Thus the resulting Hamiltonian is

Ĥ→(
j ,k

Ĥ j ,k1Nd~J'1J'8 !~my
22mx

22mz
2!,

Ĥ j ,k5(
i

JSW i , j ,k•SW i 11,j ,k2~21! j 1k@h812~J'1J'8 !my#

3~21! iSi , j ,k
y 2@h22~J'1J'8 !mx#~21! iSi , j ,k

x

2@H22~J'1J'8 !mz#Si , j ,k
z , ~17!

where we introduced an infinitesimal staggered fi
(21)i 1 j 1kh8 parallel to the order parameter. The CMFT r
quires that the mean fieldsmx,y,z are equivalent to the corre
sponding moments of the effective chainĤ j ,k . It has the two
effective staggered fieldshx[h22(J'1J'8 )mx and hy[h8
12(J'1J'8 )my as well as the effective uniform fieldHz

[H22(J'1J'8 )mz . Clearly it is sufficient to consider on

chain wherej 1k is even, and we represent it asĤ1D . Within
the linear-response theory, the momentu^Si

y&u, in which

^•••& stands for the mean value ofĤ1D , can be approxi-
mated byxy

1D(Hz ,hx ,0)hy where the staggered susceptib
ity is defined asxy

1D(Hz ,hx ,hy)[]u^Si
y&u/]hy . Therefore

the above requirement leads tomy5xy
1Dhy which is trans-

formed to

my5
xy

1D

122~J'1J'8 !xy
1D

h8. ~18!
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Similarly mx and mz can be determined by the CMFT a
well. The critical condition of our model is

122~J'1J'8 !xy
1D~Hz ,hx,0!50. ~19!

At this point, one sees that the original 3D or 2D suscep
bilities and moments can be described by those of the ef
tive chain.

The staggered field inĤ1D has bothx andy components:
hx andhy . By the infinitesimal rotationRz(d) aboutz axis
by angle d, where sind52@hy

2/(hy
21hx

2)#1/2, the effective
Hamiltonian is simplified as

Ĥ1D8 5(
i

JSW i8•SW i 118 2HzSi8
z2hx8~21! iSi8

x ~20!

with the one-component staggered fieldhx85hx /cosd. In or-
der to obtain an alternative formula determiningmy instead
of Eq. ~18!, we focus on the relation

^Si8
x&85cosd^Si

x&2sind^Si
y&5~21! i~cosdmx2sindmy!,

~21!

where ^•••&8 represents the expectation value ofĤ1D8 and
the second equality is caused by the self-consistency of
CMFT. Here we define the susceptibilities of the HAF cha
~20! as xu

1D(T,Hz ,hx8)[]mz8/]Hz and xs
1D(T,Hz ,hx8)

[]mx8/]hx8 where mx,z8 5u^Si8
x,z&8u. Within the linear-

response theory Eq.~21! is reduced to

xs
1D~T,Hz ,hx8!hx85cosdmx2sind my . ~22!

Let us recall thatd is defined bymx andmy , and thatmx,z
are determined by the CMFT. Consequently,my can be de-
termined as a solution to Eq.~22!. The condition thatmy
diverges would determine the phase transition.

B. Susceptibilities ofSÄ1Õ2 AF chains

In order to solve Eq.~19! or ~22! in terms ofmy , we need
the explicit forms of the susceptibilities:xu

1D andxs
1D . Here

we briefly summarize the known results5,29–31on these quan-
tities, obtained by the bosonization technique.

In the absence of the staggered fieldhx8 , the low-energy
effective theory of the Heisenberg chain~20! is given by a
free boson field theory, and the uniform susceptibility at ze
temperature is obtained as

xu
1D~T,H,0!'

a

~2p!2R~H !2v~H !
, ~23!

whereHz5H, andR andv, respectively, are the compact
fication radius of the effective boson field theory29–33and the
spin-wave velocity. The exact valuesv(H) and R(H) as
functions of the uniform fieldH are given by a solution of a
set of the Bethe ansatz integral equations.34 In the case of
H50, they are explicitly given as

v5p J a/2, R51/A2p. ~24!
6-6
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For a small uniform fieldHz5H(!J), the asymptotic be-
havior of the radiusR follows5

2pR2'12
1

2ln~J/H !
. ~25!

The logarithmic temperature correction due to the marg
operator of the HAF chain is discussed in Ref. 35. Althou
the transverse staggered fieldhx8 induces a gap, it is expecte
d

t
fo

y
s

to
t

-

05440
l
h

to have little effect1,5 on the uniform susceptibilityxu
1D if hx8

is small enough.
Next we turn to the staggered susceptibilityxs

1D . In the
case J@hx8 , kBT, the low-energy effective theory of th
Hamiltonian ~20! is given by a quantum sine-Gordon fie
theory. Using the exact solutions of the HAF chain, the sc
ing arguments and Lukyanov-Zamolodchikov prediction,36,37

the staggered susceptibilityxs
1D for small Hz5H and hx8

5h at T501,5 is given as
xs
1D'5

D@2~122pR2!#21/3
pR2

22pR2 S J

H D 22(122pR2)/3S h

JD pR2/(22pR2)

h21 ~H@h!

D e21/3
1

3 F lnS J

H D G1/3S h

JD 1/3

h21 ~J@H@h!

D
21/3

34/3Fh

J
lnS J

hD G1/3

h21 ~H50!,

~26!
t

ive

re

q.

as
where the radiusR is that of the model without the staggere
field, andD[0.3868 . . . . Thefirst formula is actually valid
for H<2J ~below saturation field!, but the second is only so
for H!J. These formulas are correct inkBT!h!J. ~More
precisely, withinkBT!Dh!J whereDh is theh-induced gap
in the HAF chain.5!

In the intermediate temperature regimeh,H!kBT!J,
where the temperature is larger than the induced gap,
staggered susceptibility may be approximated by that
zero staggered field5 as

xs
1D~kBT@h!'D@ ln~J/kBT!#1/2

kBT
, ~27!

whereD[0.2779 . . . .

C. Phase diagrams in CMFT

Employing the results of Secs. IV A and IV B, we stud
the phase diagrams, in particular for the competitive ca
within the CMFT. Unfortunately, it can be applied only
several limited regions in the parameter space, where
susceptibilities of the 1D model are obtained exactly.

First, let us consider the region near (kBTc,0,0). In the
zero-field case, the effective modelĤ1D has only an infini-
tesimal staggered mean fieldhy as long as it is in the sym
metric phase. Therefore the formula~27! can give the self-
consistent value ofmy , and Eq.~19! is the critical condition
which serves the critical temperature:

kBTc52D~J'1J'8 !F lnS J

kBTc
D G1/2

'2D~J'1J'8 !F lnS J

2D~J'1J'8 !
D G 1/2

, ~28!
he
r

e,

he

which is reasonable whenkBTc , (J'1J'8 )!J and agrees
with the result of Ref. 24. Equation~28! is also stable agains
a small staggered fieldh, becausexs

1D is independent ofh in
Eq. ~27!. These results are also valid for the noncompetit
case, with the replacementJ'1J'8 →uJ'u1uJ'8 u. Figure 9
represents the comparison between the CMFT result~28! and
the mean-field prediction:kBTc5(J1J'1J'8 )/2.

Next we investigate the neighborhood of (0,0,hc). In this
case (H50), Ĥ1D has two staggered fields. Therefo
through the rotation of Sec. IV B, the order parametermy can
be fixed by Eq.~22!. Inserting the third formula of Eq.~26!
into Eq. ~22!, and performing the Taylor expansion of E
~26! aroundhy50, we obtain the linear-response relation

my5

H 2

3
2

1

6
@ ln~J/hx!#

21J mx

h2
1

3
$10~J'1J'8 !2@ ln~J/hx!#

21%mx

h8. ~29!

Therefore the critical condition can be written as

mx'
3 hc

10~J'1J'8 !
, ~30!

where we assumedhc , (J'1J'8 )!J. On the other hand,mx

should be fixed from the self-consistency of the CMFT
well. At T50, it leads to

mx5
xs

1D
„0,0,h22~J'1J'8 !mx…

112~J'1J'8 !xs
1D
„0,0,h22~J'1J'8 !mx…

h. ~31!

Combining Eqs.~30! and ~31!, we obtain the critical stag-
gered field
6-7
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hc5D8FJ'1J'8

J
lnS 5J

2hc
D G1/2

2~J'1J'8 !

'D8H J'1J'8

J
lnF 5

4D8
S J

J'1J'8
D 1/2G J 1/2

2~J'1J'8 !,

~32!

where we kept only the leading order of (J'1J'8 )/J and
D8[(23102D3327)1/2'7.27 . . .31022. This is valid if
hc , (J'1J'8 )!J, and is compared to the MFT resulthc

52(J'1J'8 ) extracted from Eq.~8! in Fig. 10. The CMFT
correction to the MFT is found as a significant multiplicati
factor D8@•••#1/2.

We consider furthermore the critical line in theT50
plane in the limit ofhc!Hc!J. In the symmetric phase nea
this line, the effective modelĤ1D has all three kinds of the
external fields. Hencemx and mz must be determined con
currently by the CMFT scheme. However, in the present c
hc!Hc , mx may be estimated independently by taking
approximationxu

1D(0,H,h);xu
1D(0,H,0) which was given in

Eq. ~23!. From this approximation,mz is also fixed as

mz'
H

p2J$12@ ln~J/H !#21%12~J'1J'8 !
, ~33!

which is justified inH,(J'1J'8 )!J. In the sufficiently small
field case,J@H(@h), the logarithmic part can be droppe
as well. From the second of Eqs.~26! and Eqs.~30!, ~31!,
and ~33!, we obtain the critical line inT50,

FIG. 9. (kBTc ,J'1J'8 ) in the competitive case forJ51. ~a!
and~b! are, respectively, predicted within the CMFT and the MF
It is confirmed that the SSB areas of the CMFT are considera
smaller than the MFT.

FIG. 10. (hc ,J'1J'8 ) in the competitive case forJ51. ~a! and
~b! are, respectively, predicted within the CMFT and the MF
Similarly to Fig. 9, the narrowing of the SSB areas occurs.
05440
e

hc5D9H J'1J'8

J F lnS p2J@12@ ln~J/Hc!#
21#12~J'1J'8 !

p2Hc
D

1@ ln~J/Hc!#
211•••G J 1/2

2~J'1J'8 !, ~34!

whereD9[(102D3e21326)1/2'5.40 . . .31022. This con-
dition is presumably suitable forkBTc!hc!Hc!J. Thus, in
order to obtain a more precise condition, it is necessary
adopt the first formula~26! and the exact values ofR andv.
Figure 11 exhibits the comparison between this line and
mean-field prediction.

Finally, we consider the point (0,Hc,0), whereĤ1D has
only the uniform fieldHz5Hc22(J'1J'8 )mz except for the
infinitesimal fieldhy . It has been known from Bethe ansa
that the magnetization saturates at the pointHz52J at T
50 in the HAF chain having only the fieldHz . The transi-
tion point between the SSB and symmetric phase in this c
should be identified with the saturation of the uniform ma
netization. Hence, within the CMFT, the critical uniform
field is given as

Hc52J1~J'1J'8 !. ~35!

The substitutionJ'1J'8 →2(uJ'u1uJ'8 u) gives the critical
field of the AF-paramagnetic transition in the noncompetit
case.

From these results, we can compare the CMFT and
MFT phase diagrams. The comparison for the competit
case is summarized in Fig. 12. In the case of weak interch
couplings (J@J' ,J'8 ), the SSB phase of the CMFT is muc
smaller than one of the MFT. Especially there is a signific
narrowing inkBT and h directions. As seen from Eq.~18!,
this is because the phase transition in the CMFT framew
is driven by the divergence of the susceptibility~in the
present case,xs

1D) in the effective chain, while temperatur
and the fieldhx ~or mx) suppress the divergence. On th
other hand, the reduction of the critical uniform fieldHc is
small in the weakly coupled case. This is because the

.
ly

.

FIG. 11. Critical surface (hc ,Hc) in the competitive case for
(J,T)5(1,0) obtained with the CMFT~34! ~upper panel! and the
MFT ~8! ~lower panel!. In the whole region of the CMFT panel, th
critical region surrounded by the dashed ring (hc!Hc!J) is
greatly reliable.
6-8
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form field competes with the intrachain AF interaction
well as with the interchain interactions.

Finally we review the validity of the two theories. Sinc
the strong one dimensionality is the basis of the CMFT p
cedure, it is expected that the CMFT is more reliable in
limit of J@J' ,J'8 . On the other hand, whenJ' andJ'8 are
comparable toJ, the special treatment of only one directio
is unjustified. Therefore the MFT, which treats all couplin
equally, is more reasonable forJ;J' ,J'8 .

V. SUMMARY AND DISCUSSION

We considered the effects of the staggered fieldh in an
S51/2 Heisenberg antiferromagnet~3! in two or three di-
mensions. The system behaves quite differently depen
on whether the staggered field and the interchain coupl
are competitive or not. In the competitive case, the app
ance of a characteristic ordered~SSB! phase is predicted by
the MFT. The SSB phase breaks the translational symm
of the weakly coupled direction, and therefore it is pecul
to high-dimensional systems. We also applied the CMFT
the model~3!, and predicted that the region of the SSB pha
becomes narrow in the CMFT scheme. The MFT and
CMFT are valid, respectively, inJ;J' ,J'8 and in J
@J' ,J'8 . The crossover behavior between these two regi
cannot be described by the mean-field type approach.38–40 It
would require a more precise treatment of fluctuations.

Moreover we studied spin-wave theory in both the co
petitive and noncompetitive cases atT50. When the uni-
form field H is nonvanishing, theh-induced gap opens a
Dh;h in the SSB phase, whileD̃h;h1/2 in the AF phase of
the noncompetitive case. This difference reflects the pa
cancellation of the staggered field effect due to the comp
tive interchain interaction in the SSB phase. The spin-w
dispersion in the SSB phase remains gapless due to
mechanism even under a nonvanishingh. This is in contrast
to the case of the 1D model.

Finally we comment on a few recent reports related to
study. In BaCu2Si2O7 reported in Ref. 41, both the stagger
field and the interchain interactions are expected, as in
models. However, the effect of the exchange anisotrop
which is ignored in the present paper, is argued to be resp
sible for the observed two spin-flop transitions. Extend

FIG. 12. Schematic phase diagrams of the CMFT and the M
in the competitive case.
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the present work to such a system would be an in
esting problem in the future. Furthermore,
BaCu2(Si12xGex)2O7,22 the sign of the interchain interactio
seems to depend on the doping parameter x. Thus, it c
provide a realization of the competitive and noncompetit
cases.

Wang et al.2 investigated anS51/2 AF ladder system
with a staggered field. They argue that the competition
tween the staggered field and the rung interaction bring
quantum criticality. It might be interesting to compare o
analysis on the higher-dimensional system with theirs.
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APPENDIX: DETAILS OF SPIN-WAVE RESULTS
IN SEC. III

Here we supplement the spin-wave results omitted in S
III.

1. The competitive case

We write down the details of the competitive case. Aft
the FT of the boson operatorci , j ,k , the spin-wave Hamil-
tonian can be expressed as the following matrix form:

ĤHP5(
kW

~ C kW
†T C kW

T! S jkW hkW

hkW
* jkW

* D S CkW

C kW
†D 24E1~kW !1Egs

cl ,

~A1!

where * andT, respectively, stand for the complex conjuga
of each matrix component and the transpose of matrices,
the 434 matricesjkW , hkW and the column four-vectorCkW are
given as

jkW5S E1~kW ! 0 0 iE4~ky,z!

0 E1~kW ! iE4~ky,z! 0

0 2 iE4~ky,z! F1~kW ! 0

2 iE4~ky,z! 0 0 F1~kW !

D ,

hkW5S 0 E2~kW ! 0 iE3~kx!

E2~kW ! 0 iE3~kx! 0

0 iE3~kx! 0 F2~kW !

iE3~kx! 0 F2~kW ! 0

D ,

CkW5~ckW c2kW ckW2pW c2kW2pW !T. ~A2!

HereE1,2,3,4are defined as

T

6-9
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E1~kW !5@2SJ~122 sin2 ucl cos2fcl!12S~J'1J'8 !

3~2cos2 ucl cos2 fcl21!

22SJsin2 ucl cos2 fcl coskxax

12S~cos2 ucl~11sin2 fcl!21!~J' coskyay

1J'8 coskzaz!1H sinucl cosfcl1h sinfcl#/8,

E2~kW !5@SJ~cos2 ucl2sin2 ucl sin2 fcl!coskxax

1Scos2 ucl cos2 fcl~J' coskyay1J'8 coskzaz!#/4,

E3~kx!52SJsin 2ucl sinfcl coskxax/4,

E4~ky,z!5Ssin2ucl sinfcl~J' coskyay1J'8 coskzaz!/4,
~A3!

and F1,2(kW )5E1,2(kW2pW ). Thus jkW is Hermitian andhkW is
symmetric. Let us suppose that a four-mode BT

S C̃kW

C̃kW
†D 5MBT~kW !S CkW

C kW
†D , ~A4!

where C̃kW5( c̃kW ,c̃2kW ,c̃kW2pW ,c̃2kW2pW )T is a set of new boson
~magnon! operators andMBT(kW ) is an 838 matrix, diago-
nalizes the Hamiltonian as follows:

ĤHP5(
kW

~ C̃kW
† T C̃kW

T! S VkW 0

0 VkW
D S C̃kW

C̃kW
†D 24E1~kW !1Egs

cl ,

~A5!

whereVkW5diag@v1(kW ),v2(kW ),v3(kW ),v4(kW )#. According to
Ref. 26, determiningVkW andMBT(kW ) is equivalent to solving
an eigenvalue problem

S jkW 2hkW

hkW
* 2jkW

* D MBT
† 5MBT

† S VkW 0

0 2VkW
D . ~A6!

The eight eigenvalues6v j (kW ) ( j 51,2,3,4) are given by
6l l ( l 51,2,3,4), where

l1~kW !5@1/2GkW21/2~GkW
2
24GkW

1
!1/2#1/2,

l2~kW !5@1/2GkW21/2~GkW
2
24GkW

2
!1/2#1/2,

l3~kW !5@1/2GkW11/2~GkW
2
24GkW

1
!1/2#1/2,

l4~kW !5@1/2GkW11/2~GkW
2
24GkW

2
!1/2#1/2, ~A7!

andGkW andGkW
6 are defined as

GkW5E1
22E2

21F1
22F2

222E3
212E4

2 ,

GkW
6

5~E3
22E4

2!21~E1
22E2

2!~F1
22F2

2!22~E1F12E2F2!

3~E3
21E4

2!74~E1F22E2F1!E3E4 . ~A8!
05440
The physical dispersionv(kW ) is given by either 4@l1(kW )
1l2(kW )# or 4@l3(kW )1l4(kW )#, depending on the value ofkW .
In the vicinity of the pointkW5kWh (kWH), which is the gapless
point whenh50 (H50), we find

v~kW !54@l1~kW !1l2~kW !#. ~A9!

If only one of the external fields (H or h) is nonvanishing,
the result is considerably simplified because we haveE3
5E450. The spin-wave Hamiltonian can be actually diag
nalized by a simpler two-mode BT which is the same type
we need in the noncompetitive case in the following subs
tion. The resulting magnon dispersion is

v~kW !5$@2SJ~122 sin2 ucl cos2 fcl!12S~J'1J'8 !

3~2 cos2 ucl cos2 fcl21!

22SJsin2 ucl cos2 fcl coskxax12S„ cos2 ucl~1

1sin2 fcl!21…~J' coskyay1J'8 coskzaz!1S#2

2@2SJ~cos2 ucl2sin2 ucl sin2 fcl!coskxax

12Scos2 ucl cos2 fcl~J' coskyay

1J'8 coskzaz!#
2%1/2, ~A10!

where S5H sinucl cosfcl when h50, and S5h sinfcl
whenH50. Of course, in these special cases, Eq.~A9! re-
duces to Eq.~A10! nearkW5kWh or kWH .

From the dispersion~A9!, let us estimate howDh (DH)
grows when a smallh ~H! is applied. To estimateDh , it is
sufficient to know the coefficients of Taylor expansion
E1,2,3,4(kW50W ), GkW50W , andGkW50W

6 aroundh50. As a result, in
the limit of smallh, the gap behaves as

Dh'2S~J1J'1J'8 !1/2~J'1J'8 !1/2~12H̃2!1/2

3S 12H̃21
J'1J'8

J
H̃2D 21/2

3F S 124H̃22
~J2J'2J'8 !2

J~J'1J'8 !
H̃4D 1/2

1S 12
~J2J'2J'8 !2

J~J'1J'8 !
H̃4D 1/2G h̃1•••, ~A11!

whereH̃5H/@4S(J1J'1J'8 )# and h̃5h/@4S(J'1J'8 )#. At
H50, Eq. ~A11! is reduced to the exact resultDh5@1
1J/(J'1J'8 )#1/2h which is derived from Eq.~A10! and is
drawn in Fig. 8. Similarly toDh , DH can be estimated. The
result is
6-10
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DH'2S@J1~J'1J'8 !~12h̃2!#1/2

3~J'1J'8 !1/2~12h̃2!21/2

3F S 12
~J2J'2J'8 !2

@J1~J'1J'8 !h̃2#~J1J'1J'8 !
h̃2D 1/2

1S 12
J1J'1J'8

@J1~J'1J'8 !h̃2#
h̃2D 1/2G H̃1•••, ~A12!

which is reduced to the conventional resultDH5H whenh
50. Both gaps have linear field dependence. The res
~A11! and~A12! indicate thatDh (DH) is nonvanishing only
when hÞ0 (HÞ0). As a consequence, the true gapD
5min(Dh ,DH) is zero when either ofh or H is zero.

2. The noncompetitive case

Here we summarize the spin-wave approximation on
noncompetitive case. We find that it can be straightforwar
applied also to the symmetric phase in the competitive c

According to the MFT and Fig. 6, the spin configuratio
in the classical ground state can be written as

SW 2n, j ,k;SRy~2u!x̂, ~A13!

SW 2n11,j ,k;SRz~p!Ry~2u!x̂, ~A14!

wherex̂ is the unit vector pointing tox direction andu is the
canting angle parameter. The minimization of the class
energy determinesu5ucl as

cosucl sinucl5
H

4SJ
cosucl2

h

4SJ
sinucl . ~A15!

A standard spin-wave theory on this classical ground s
gives the quadratic Hamiltonian in terms of bosons

ĤHP25(
kW

~akW
†

a2kW !S 1

2
AkW

Bkx

Bkx

1

2
AkW
D S akW

a
2kW
† D 2

1

2
AkW1const,

~A16!

where

AkW5A2kW52SJcos 2ucl22SJsin2 ucl coskxax

12SuJ'u~12coskyay!

12SuJ'8 u~12coskzaz!
ys

05440
lts

e
y
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te

1Hsinucl1h cosucl ,

Bkx
5B2kx

52SJcos2uclcoskxax . ~A17!

Now we apply the two-mode BT

S akW

a
2kW
† D 5S ukW vkW

vkW ukW
D S ãkW

ã
2kW
† D , ~A18!

where ukW
2
2vkW

2
51, to Eq. ~A16!. The Hamiltonian is then

diagonalized as

ĤHP25(
kW

ṽ~kW !ãkW
†
ãkW1const, ~A19!

if we choose ukW
2
5 1

2 (11AkW /ṽ(kW )) and vkW
2
5 1

2 (21

1AkW /ṽ(kW )). The dispersion relation is given by

ṽ~kW !5AAkW
2
24Bkx

2 . ~A20!

The above derivation and results apply exactly to the sy
metric phase in the competitive case, only with the repla
ment (uJ'u,uJ'8 u)→(2J' ,2J'8 ). The dispersion~A20! has

the gapless pointṽ(0,0,0) in the AF phase whereh50. It
corresponds to the NG mode due to the spontaneous br
ing of the U~1! symmetry. HenceD̃h5ṽ(0,0,0) can be re-
garded as theh-induced gap. At the small fieldh, the angle
variation aroundh50: du[sin21(H/4JS)2ucl is estimated
approximately as

du'2
H

~4SJ!22H2
h. ~A21!

Therefore expandingD̃h
2(h,du) aroundh5du50, one sees

that the gap grows as

D̃h'A4SJF12S H

4SJD
2G1/4F112S H

4SJD
2G1/2

h1/2.

~A22!

In contrast to the SSB phase~in the competitive case!, the
h-induced gap opens asD̃h}h1/2. Furthermore, it is remark-
able that Eq.~A22! has no dependence on the intercha
interactions. In fact, it is identical to the 1D result@Eq. ~3.17!
in Ref. 5#. This is a reflection of the smoothness which w
discussed in the final of Sec. III. AtH50, we can obtain the
simple exact resultD̃h5A4SJh@11h/(4SJ)#1/2 from the
dispersion~A20!.
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