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Sound-mode broadening in quasicrystals: A simple phenomenological model
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We propose a simple phenomenological model to analyze vibrational characteristics of quasicrystals~QCs!.
The interpretation of the obtained recently data is based on the existence of almost dispersionless optical modes
most probably related to the specific clusters which constitute the characteristic building blocks of any QC
structure. We generalize to QCs the well-known Akhiezer mechanism~responsible for the absorption of sound
even in an ideal crystal!, which in our case is related to a ‘‘long wave’’ disturbance of the quasicrystalline
optical modes by the propagating sound modes. At higher wave vectors strong hybridization of acoustic and
optical modes takes place, and it leads to a more steep broadening dependence on wave vectors, and besides
the excitation can no longer be described as a single acoustic mode with a well defined wave vector. We show
that the observed sound-mode attenuation behavior can be consistently described by these scenarios without
invoking additional mechanisms.
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I. INTRODUCTION

In most many body systems there is a fairly sharp disti
tion between elementary excitations~quasi-particles! and the
collective modes involving a coherent mixture of qua
particles. In a harmonic dielectric crystal these element
excitations are phonons, having the linear dispersion law
finite temperaturesT the great majority of phonons have e
ergies at most of the order ofT due to the nature of the
Bose–Einstein distribution, and the thermodynamic prop
ties of crystals are determined almost entirely by these e
tations. The wave vector associated with a phonon in a re
lar lattice is only defined modulo a reciprocal lattice vector
feature which plays a crucial role in the dynamical propert
of crystals. In this respect phonons in crystals are quite
ferent from sound waves in liquids which carry true mome
tum. Each atom in the crystalline lattice executes only a
nite amplitude motion~the oscillation about the lattice site!.
Evidently the mean momentum of such a motion is iden
cally zero, and therefore, the phonon flux associated with
energy flux in a crystal is not accompanied by a transfer
mass.

QC systems are quite different from conventional so
crystals. QCs are built roughly speaking according to
following principles: Being homogeneous like crystalline a
loys QCs nevertheless posses specific structural elemen
clusters~see Refs. 1–3!. The resulting construction has n
translational symmetry but has long-range order. In spite
0163-1829/2004/69~5!/054205~8!/$22.50 69 0542
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the fact that QC systems do not show lattice periodicity,
above statement on zero mean momentum of phonons sh
be true for QCs also. Thus one must admit that phonon
QC systems carry not momentum but only quasi-moment
which is defined, unlike in conventional crystals, modulo
dense set of reciprocal vectors.4 Both systems~crystals and
QCs! in this respect are different from liquids, where th
phonon momentum is the actual momentum and the pho
flux does involve a transfer of mass, since in a sufficien
long time any atom or molecule can reach any point in
volume.

Thus one could say that i-QCs are quasicrystalline on
near atomic scale, and isotropic solids at macroscopic sc
Somewhere there ought to be a crossover from the loca
rangement to macroscopic isotropy. If this structural cro
over is sufficiently abrupt, it might also mark in reciproc
space the upper frequency end of the isotropic acou
branches. Besides, because QC systems do not show la
periodicity, the concept of Brillouin zone and its use for ch
acterizing elementary excitations like phonons, stric
speaking is not adequate5 ~see also, Refs. 6 and 7!. On the
other hand, at least at first glimpse, it can be argued
because in the long-wavelength limit the phonons can
described as sound waves propagating through an el
continuum, there should be little difference between QCs
crystalline materials in this regime where the phonons
insensitive to microscopic structure. Nevertheless, exp
©2004 The American Physical Society05-1
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mental results are fairly different in the two types of system
The following correlation is characteristic of classical mon
crystals: The higher the quality of the diffraction pattern o
mono-crystal, the lower the line-widths of the phonons. T
correlation reflects the wave nature of phonons: The be
the conditions for the propagation, the smaller the scatte
of the Bloch-type waves. Since QCs do not posses lat
periodicity vibrational excitations QCs are intrinsically n
Bloch-type eigenmodes and, therefore, this correlation d
not hold.

The same kind of problem has been discussed in the
erature on electronic excitations in QCs. Some unusual e
tronic properties~e.g., a very low value of the electrical con
ductivity, a negative temperature coefficient of the resistiv
and so on! as it was shown recently8 are the consequences
the spectral properties of quasiperiodic Hamiltonians. It
common knowledge now that Anderson localization9 is a
second-order phase transition between eigenstates tha
spatially localized and those that are delocalized, and th
are well defined conditions at which the localization
delocalization transition occurs. Many numerical investig
tions of quasiperiodic Hamiltonians reveal that their eige
states are critical, i.e., they are characterized by a power
decay of the amplitudes~see Refs. 10 and 11!. The existence
of the critical electronic states can be understood as relate
the self-similarity of the QC structures: A given atomic clu
ter is repeated within a distance of the order of its size,
therefore an eigenstate from any cluster can easily tunne
the next one which has an identical form. Thus electro
properties of QCs are critical, at least from the point of vie
of the second-order Anderson localization–delocalizat
transition.

However this analogy can not be bluntly applied to t
study of vibrational modes in QCs. There are two princip
differences between the Anderson electron and the vi
tional problems, which are our main concern here. Firs
when the system is mechanically stable, there are no n
tive eigenvalues~unlike in the electron case!. Secondly in the
3d vibrational case, there are always at least 3 ze
frequency~in the long wavelength limit! Goldstone modes
that can not be localized. Therefore, since the modes at
lower energy bound of the spectrum must have exten
character, one can expect something similar to critical st
~and to localization–delocalization transitions! only near the
relatively high-frequency band edge.

The issue~elementary vibrational excitations in QCs! was
intensively studied recently, and inelastic neutron scatte
data~see, e.g., Refs. 11–17 and the monographs2,3! reveal in
the long wavelength limit well defined acoustic modes. T
experimental quantity investigated in these experiments,
so-called scattering functionS(Q,v), is measured close to
Bragg reflection located at a certain reciprocal vectorG in
momentum space, and it probes phonons with frequencv
and wave vectorq5G2Q. To measure the largest sign
one should measureS(Q,v) at high momentum transfer an
close to a strong Bragg peak. Neutron scattering invest
tions were performed for different icosahedral12–15 and
decagonal16 structures and it turned out that in spite of t
fact that, structurally, decagonal and icosahedral QCs
05420
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rather different, and that their physical properties~e.g., elas-
tic moduli! might be also very different, they exhibit man
common vibrational features. The purpose of our paper i
propose a simple phenomenological model to try to obtain
much theoretical information concerning vibrations in Q
as is possible on a phenomenological level without spec
microscopic treatment. The rest of the paper is organized
follows: In Sec. II we give a short outline of neutron da
related to vibrational mode studies in i-QCs AlPdMn a
ZnMgY. Section III is devoted to the description of our ph
nomenological model. Finally, Sec. IV deals with miscell
neous subjects related to the vibrational dynamics in QC

II. EXPERIMENTAL OVERVIEW

The excitation spectrum of different QCs has been stud
by inelastic neutron scattering on single grain samples
spite of the often contradictory results of experimental inv
tigations ~see, e.g., discussions in Refs. 18 and 19!, a few
conclusions listed below seem inescapable. As explai
above, it is only in the acoustic regime that a one to o
correspondence can be made between the observed s
and a phonon, i.e., that the phonon wave vector can be
fined. Generally, results are presented in an ‘‘extended’’ z
scheme, with a strong Bragg peak acting as the zone ce
~for crystallographic details see, e.g., Ref. 20!. As proposed
by Niizeki,21,22 important pseudo Brillouin zone boundarie
~PZB! can be defined. They correspond to strong Fou
components of the atomic density from which acous
modes are Bragg reflected. The positions of these pse
zone boundaries obviously depend on the details of
atomic structure. Moreover, because of the quasi periodic
several successive PZBs are stacked around each strong
center.

In the following we will focus on two icosahedral phas
for which detailed studies have been carried out:i
2AlPdMn andi 2ZnMgY. These two icosahedral phase
have a very different atomic structure. Nevertheless their
citation spectra share a lot of common features. Their
namical response can be separated into two well defined
gimes: the acoustic regime for wave vectors smaller th
0.6 Å21, and, for larger wave vectors, a regime in which t
dynamical response is characterized by a broad band of
persionless opticlike modes. In the acoustic regime, exc
tions are generally resolution limited forq smaller than
0.3 Å21, and then broaden.

The way in which the broadening develops strongly d
pends on the atomic structure of the icosahedral phase:
instance, it is much more rapid in thei 2AlPdMn phase than
in the i 2ZnMgY phase. The optic like spectrum genera
consists of 3 or 4 broad ‘‘bands’’~a few meV wide! around 7,
12, 16, and 24 meV. Although no gap opening could be
served at the PZBs, the energy of the lower optical mo
roughly corresponds to the intersection of the acou
branch with the PZBs.

Figure 1 summarizes results obtained for transve
modes propagating along a two-fold axis and polarized i
two-fold direction. The upper part is for thei 2AlPdMn
phase and the lower one for thei 2ZnMgY one. The trans-
5-2
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verse acoustic phonon dispersion relation is given by the
circles. The dashed line is the corresponding sound velo
as extracted from ultrasonic measurements. The open ci
correspond to the width of theTA modes. The other ope
symbols correspond to the different broad optic ban
whose width is of the order 4 meV. For both phases
crossover between the acoustic and, say, hybridized regim
fairly abrupt: For thei 2AlPdMn phase it shows up as
rapid broadening of theTA acoustic mode, whereas for th
i 2ZnMgY there is a coupling with an optic like excitatio
localized at 10 meV. In both cases theTA limit is given by
q50.6 Å21. Above this value theTA acoustic mode mixes
up with optical excitations and the observed signal can
longer be described as a single excitation.

The broadening ofTA excitations also depends on th
structure: it is about two times larger in thei 2AlPdMn
phase than in thei 2ZnMgY one. From the local slope of th
TA dispersion relation and width of the excitations it is al
interesting to compute the mean free path ofTA phonons at
the upper limit of the acoustic regime. We find a mean f

FIG. 1. Dispersion relation measured around the strong two-
Bragg reflection withN/M indices equal to 52/84 and propagatin
along a two-fold axis in thei 2AlPdMn ~the upper figure! and i
2ZnMgY phase~the lower figure!. Results are presented in a
extended zone scheme, the pseudo Brillouin zone boundarie
shown as vertical dashed lines. The transverse acoustic mode
tions are shown as full circles and their width as open one.
dashed line is the linear dispersion relation as deduced from u
sonic measurements and the solid line is aq2 fit to the width in-
crease. The other open symbols correspond to dispersionless
like excitations, whose width is of the order 4 meV.
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path of 12 and 24 Å for thei 2AlPdMn and i 2ZnMgY
phases, respectively. Structural x-ray studies23 have shown
one special geometric aspect of all QC structures, nam
atomic clusters, with a characteristic diameterDcl510 Å,
which are part of the building blocks of QCs and their clo
approximants. Summarizing the experimental dynam
study, we can thus say that the crossover between the ac
tic and mixed regime occurs for a phonon wavelength eq
to Dcl . The mean free path of theTA phonon is equal toDcl
and 2Dcl for the i 2AlPdMn andi 2ZnMgY phases, respec
tively.

Line broadening is a nuisance in some circumstanc
while in our case of QCs it provides valued physical info
mation. We show in Fig. 2 dependences of line width
longitudinal ~the upper panel! modes propagating along
five-fold axis and for the transverse modes~the lower panel!
propagating along a two-fold axis in thei 2ZnMgY phase,
and the width for the transverse mode propagating alon
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FIG. 2. Line width for longitudinal~the upper figure! modes
propagating along a five-fold axis~experimental data andq2-fitting!
and for the transversal modes~the lower figure! propagating along a
two-fold axis ~experimental data andq4-fitting! in the i 2ZnMgY
phase.
5-3



-

he
s
x

ni
h

or
C

r
p
e
th

o
ra
ce
th
l o
s

g
te
ea
tic

s
ec

ab
a
ic
s

sses
ted

on-
and
ell

ed
ms
s-
ical
the

is a
all
in-
the

t the
m,
e.

the
cies.
m,
can

tart
ell-

all
be

the
s

and

tant

turb
is

ver,

up
to
pa-
ffer-

g
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two-fold axis for i 2AlPdMn is shown in Fig. 3. The instru
mental width for longitudinal modes~about 2 meV! is larger
than for transverse~about 1 meV!. To gain further insight
into the nature of broadening we show in Figs. 2 and 3 t
oretical fitting byq2 dependence for the longitudinal wave
and byq4 for the transverse modes. We will see in the ne
section that these dependences correspond to broade
dominated respectively by Akhiezer and by resonance
bridization sound absorption.

It is worth noting that very similar results are obtained f
physically and structurally very different systems like i-Q
CdYb or decagonal-QC AlNiCo~see Refs. 12–16!. Even nu-
merical values for the acoustic line-width are not very diffe
ent, however, to be specific we restrict ourselves in this pa
to the i-QCs AlPdMn and ZnMgY only for which we hav
more detailed and reliable data due to the high quality of
samples.

III. PHENOMENOLOGICAL AKHIEZER MODEL

Whereas the knowledge on the sound propagation in
dered crystals or disordered glass-like structures is now
idly improving ~see e.g., Refs. 24 and 25, and referen
therein!, little is known about the behavior in systems wi
nonperiodic long-range order, such as QCs. The genera
jective of this study is to determine the structural and phy
cal mechanisms associated with phonon line broadenin
order to identify those features of QCs which differentia
them from conventional crystalline systems. Since both f
tures~characteristic clusters and almost dispersionless op
modes! are interrelated and practically ubiquitous for all QC
it is natural to look for a model based on these widely r
ognized specific features. The primary aim of this section
to present such a physical model that reproduces avail
experimental data on vibrational eigenmodes in QC. In p
ticular we are going to consider general phenomenolog
processes leading to sound absorption and dispersion, a

FIG. 3. Line width for the transversal mode propagating alon
two-fold axis ~experimental data andq4-fitting! in the i 2AlPdMn
phase.
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detailed microscopic mechanisms governing these proce
are not fully understood yet and have been heavily deba
in the literature.18,19

The occurrence of many broad optical, almost dispersi
less modes has been, at least qualitatively, established
their origin can be easily understood. Indeed, as is w
known,26 the number of optical modes in a crystal is relat
to the number of atoms in the unit cell. Since in QC syste
the unit cell size is strictly speaking infinite, it is not surpri
ing to have in a certain energy window a dense set of opt
modes. Moreover, due to natural energetic restrictions,
energy window where all the optical modes are confined
relatively narrow one, which unavoidably leads to sm
mode dispersion. We shall thus include from the very beg
ning these modes into the model. On the other hand
dispersionless character of the optic modes means tha
corresponding excitations see an almost uniform mediu
the strain of which is slowly modulated by the sound wav
Due to the anharmonicity of the system the strain of
sound field causes a change of the optic mode frequen
Despite the apparent analytic intractability of the proble
the various approaches suggest that all the complications
be subsumed by a simple phenomenological form.

In order for the discussion to proceed smoothly, we s
first with a simple argument. We generalize to QCs the w
known Akhiezer mechanism of sound absorption~see, Refs.
27 and 28!. In the case~we will be interested in below! when
the frequency of the sound waves is much smaller than
relevant inverse relaxation times, the sound vibrations can
considered as a certain external field which modulates
QC structure, and therefore, the optical mode frequencie

v0
(a,a)5v0

(a,a)~11g i j
(a,a)ui j ! ~1!

wherea denotes the polarization of the optic modea, g i j
(a,a)

is the second rank tensor which characterizes the QC
depends on the direction of the optic mode (a,a) propaga-
tion. It can be viewed as the generalized Gruneisen cons
tensor~see Refs. 27 and 28!.

To simplify the matter~though it is not a crucial point! we
assume thatg does not depend on the frequencyv. It can be
shown using standard thermodynamic relations29 that in this
case the optical mode frequency modulation does not dis
the thermodynamic equilibrium within this branch, thus it
still proper to attribute a temperatureT to it

S DT

T D (a,a)

}S Dv0

v0
D (a,a)

. ~2!

This relation ~2! is valid if during the strain deformation
collisions with other branches can be neglected. Howe
since for different modes the values ofg can be different
~even could be negative or positive!, after a strain deforma-
tion each branch has in general a different temperature~some
branches might be cooled down, while others are heated!.

It might be useful first to separate all optical modes in
two groups with different average temperatures but com
rable specific heats. The average relative temperature di
ence between the groups, and according to~1! and ~2!, the
average generalized Gruneisen coefficientĝa av can be then

a

5-4
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easily calculated. Indeed one should bear in mind that
though the modes contribute additively to the free energy,
Gruneisen coefficients are determined by a ratio of der
tives, i.e., a ratio of sums

ĝa av5

(
a

ĝ (a,a)Ca

(
a

Ca

,

whereCa is the specific heat associated to the modea.
If a sound wave propagates through a system, a peri

temperature difference will be set up between the t
groups. Therefore in a certain characteristic relaxation t
t, heat exchange takes place between them, leading to
tropy production, and absorption of the sound wave. T
absorption coefficient per unit lengthaa ~in cm21) is deter-
mined by the entropy production rate and reads30

aa5
CaTga av

2

rca
3

v2t

11v2t2
, ~3!

whereCa is the heat capacity at constant strain correspo
ing to each sound mode polarization~constant volume for
longitudinal waves and constant shear for transversal on!,
r is the mass density, andca[(cl ,ct) is the longitudinal or
transverse sound mode velocity.

It seems reasonable to assume that the energy exch
between the two groups takes place by means of phon
phonon scattering processes. The relevant point is that
same kind of processes determine the heat conductivity31 k

k5 1
3Cvcl

2t, ~4!

whereCv is the constant-volume specific heat, andcl is the
longitudinal mode velocity.

The expressions can be brought into more compact fo
by taking into account that at high enough temperatures
relaxation timet is much shorter than the sound perio
Comparing~3! and~4! we end up with the following coeffi-
cients for the longitudinal (a l) and transverse (a t) sound
absorption

a l.
kg l ,av

2

rcl
5

Tv2, ~5!

and

a t.
kg t,av

2

rct
3cl

2

Ct

Cv
Tv2, ~6!

whereCt is the heat capacity at constant shear strain.
For the benefit of the skeptical reader, some comme

about the applicability of the mechanism described in t
section to transverse modes, seem in order. Indeed con
tional wisdom claims that the Akhiezer mechanism canno
applied directly to transverse sound modes, since only d
tation or compression deformations may provide nonunifo
temperature variations and thermo-diffusive dissipation.
05420
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resolve the contradiction we should recall that the build
blocks of all QC structures are atomic clusters. These c
ters are not mere geometrical constructions but real phys
entities responsible for specific features in the QC vibratio
spectrum~e.g., responsible for localized modes!. Hence, one
expects acoustic vibrations to induce stress inhomogene
around each cluster, with a resulting strain field that w
consist of a superposition of a dilation and of a shear.

Therefore in this case the internal thermoelastic dissi
tion occurs even for the pure transverse vibrations. It is re
niscent of a phenomenon known in classical elastic
theory32 whereby a spherical inclusion placed in a vibrati
medium containing only pure shears, introduces local stra
which have dilationD(r ,u,f) (r , u, and f are spherical
coordinates! proportional to the shear deformations at large
distances from the inclusion

D52sS 5m

9l114m D S Dcl

r D 2

sin2 u cosf sinf, ~7!

where, for an isotropic material,m and l are the only two
nonzero elastic constants. To find Akhiezer line broaden
following from the dilation~7! one should calculate and av
erage the corresponding Gruneisen coefficient. For
spherical inclusion in a bulk isotropic material the total effe
will be zero due to angular integration. But of course th
picture of one isolated cluster in a vibrating medium is n
adequate for QC clusters. A complete account of the stra
induced by the sound modes in real QC structures requ
considerable computational work, that is beyond the scop
our purely phenomenological model. Thus we use in~6! phe-
nomenologically the average transverse Gruneisen co
cient g t,av. However, from simple arguments present
above concerning the expression~7! we can come to the
conclusion that due to the clusterlike nature of all QC str
tures, the Akhiezer broadening is expected to be less effic
for the transverse phonons than for the longitudinal on
Therefore at least for the former case we have to look
another mechanisms contributing to transverse mode br
ening in QCs.

QC clusters play also a crucial role for sound mode h
bridization in QCs. Indeed, if we consider the vibrations
an isolated cluster of sizeDcl , then the high-frequency
modes withl!Dcl will not be affected by the change in th
boundary conditions at scaleDcl , involved in partial discon-
necting the cluster from the rest of the system. On the ot
hand, the low-frequency modes for whichl@Dcl will disap-
pear from the spectrum. Very qualitatively one can then th
of such a material as a dense packing of connected clus
Phonon scattering from fluctuations in the local velocity
soundc2(r ), depends on the variance parameter

n~l![
^c4~r !&l

^c2~r !&l
2

21.n~a!S a

l D 3

,

wherel52p/q is the phonon wavelength, anda is the scale
at which elementary fluctuations occur~i.e., for QCs a
.Dcl). Let us haven(a)@1. Sincec2(r ) is always positive,
the only way this can occur is by having a small number
5-5
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‘‘hard’’ regions for whichc2 is larger than the average, whic
dominate the variance, and a much larger number of ‘‘so
regions. If the hard scatterers~of size Dcl) are isolated, the
only propagating modes are those of the soft backgro
medium. The scatterers act as rigid inclusions in the medi
Roughly, the hard scatterers simply increase the effec
elastic constant by a factor proportional to the small volu
factor they occupy. The above argument neglects the lo
modes centered around the hard scatterers. For a single
terer they would be localized and have a high frequen
When they are dilute and uncorrelated, so that they cou
weakly, they can only form an relatively high-frequency o
tical band. On the other hand, when they are correlated
coupled sufficiently strongly, they can dominate the elas
properties and the low-frequency velocity and damping
sound. As a rule of thumb we can estimate the character
frequency for mode hybridization asca /Dcl . In this region
phonon wavefunctions are repetitively localized on the cl
ters and this recurrent localization comes from the fact th
unlike for periodic crystals, it is not possible for the wav
length to be commensurate simultaneously with all int
cluster distances in a quasiperiodic structure. Evidently
cluster vibration mode is not an exact eigenstate. It intera
with other vibration modes of similar energy and as w
with acoustic phonons. This interaction affects both the cl
ter vibration mode and the phonons, which are for the sa
reason also not exact eigenstates. In other words due to
above described mode-hybridization the excitations will
broadened and shifted.

Physically these cluster vibrations are caused by a lo
deviation of the force constant matrix and atomic mass fr
the average values. The hybridization phonon broadeninG
for a phonon with wave vectork, polarization j, and fre-
quencyv0 depends on a ‘‘concentration’’@i.e., density of
statesg(k)] of these cluster vibrations and is proportional
the phonon-cluster mode scattering matrixt̂

G„v0~k, j !…5g~k!
1

2

I^k, j u t̂ uk, j &
v0~k, j !

. ~8!

To obtain total hybridization broadening this expression~8!
has to be averaged and integrated over all cluster vibrat
with frequencies approximately equal tov0. If the structure
of the mode does not strongly depend on its frequency,
their distribution is smooth on a scale of their width,G will
havek-dependence coming mainly from the density of sta
factor in ~8!. Using the arguments borrowed from the sta
dard glass theory33 we can conclude thatg}k4.

IV. DISCUSSION AND CONCLUSION

Let us summarize now the experimental results and
theoretical interpretation presented in this paper. The ph
cal essence of the model is as follows. If the wavelengthl of
the sound is larger than the characteristic cluster sizeDcl we
can assume that each cluster is subject to a uniformly dis
uted stress. However, due to not spherical cluster shape
boundary conditions at their surfaces, the resulting defor
tion is not uniform. It varies considerably over the dimensi
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of a cluster~not over sound wavelength as in a uniform bu
body!. Hence sound broadening due to thermal conduct
~Akhiezer mechanism! is essential for the case. To be sp
cific this scenario can be rationalized as sound mo
~mainly longitudinal but as we have seen also transve!
somehow perturb the manifold of optic modes or QC clus
vibrations~the characteristic features of QC materials tak
into account by the model!. These perturbations in terms o
Gruneisen parameters are reduced to temperature variat
and the latter ones lead to thermo-diffusional relaxatio
sound absorption. It might at first sight seem that the mo
contains no QC-specific features: But in fact all QC prop
ties are hidden in the material parameter values entering
formula.

The discussed above~in the previous Sec. III! second
broadening mechanism—resonance hybridization of so
and cluster vibration modes—can compete with the Akhie
absorption even for the longitudinal modes in the relativ
high q-region. All the more it is true for the transverse wav
where the Akhiezer broadening is expected to be less
cient. Fortunately they do have differentq-dependencies tha
allow us to disentangle them analysing experimental data
span a wide range of possibilities let us discuss first
Akhiezer mechanism. To compare the expressions with n
tron data it is more convenient to use:

~i! the absorption coefficientG@s21#5a@cm21#ca ;
~ii ! the wave vectorq instead ofv.
Thus we come from~5! to

G5
kgav

2 T

rca
3

q2. ~9!

The proposed model can be checked against experime
data along three lines: The wave vector dependence of
acoustic mode broadening which should be proportiona
q2, its temperature variation and its order of magnitude.

The q2 increase of the acoustic phonon width was gen
ally observed for longitudinal acoustic excitations. ForTA
modes the width increase seems to be more abrupt,~for a
wave vector larger than 0.3 Å21) and goes rather as aq4 law
as shown in Figs. 2 and 3. Presented by the solid line in F
1 a q2 fit to the observed widths, illustrates this stateme
and besides, can be used to extract some quantitative in
mation on the magnitudes ofq2 and q4 parameters. As ex-
pected, the coefficient of the fit is twice as large in thei
2AlPdMn phase as in thei 2ZnMgY one ~9.8 and
4.9 meV/Å22). In the i 2ZnMgY, we also found that the
LA mode broadens twice as fast as theTA modes. More
accurate inspection of the data presented in Fig. 1 cle
shows that for a region close to the mixed regime~i.e., to
q.0.6 Å) the broadening is more rapid than aq2 law. It can
be attributed to Rayleigh scattering arising from local flu
tuation in sound velocity due to either mass density or ela
constant fluctuations~in own turn related to the cluster struc
ture of all QCs! or to acoustic-optic mode hybridization. I
mathematical form both phenomena lead toq4 broadening,33

though of course the Rayleigh scattering seems generally
weak in homogeneous materials like QCs.
5-6
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The next test concerns temperature dependences. Sin
high enough temperaturesk}1/T, in the present approxima
tion the effect of the temperature dependent factors canc
and therefore, the absorption due to Akhiezer mechanism
only weakly depend on temperature. It is worth noting a
that the very possibility to characterize the system by o
one Gruneisen function is based on the assumption tha
dependence of the energy levels on the volume~or more
generally on the deformationsuik) is expressible in terms o
a single characteristic energy. This assumption is correct
Einstein or Debye models, partly also for conventional~with
relatively small elementary cell! crystalline solids but not
evident at all for QC systems where a number of differ
contributions to the free energy can control the thermo
namic properties~see discussion in Refs. 18 and 19!.

Thus in this approximation~namely, in the high tempera
ture regime whereT.QD , QD being the Debye tempera
ture, 400–500 K, within the classical Debye approach va
in this region,k}1/T ~all other parameters determiningG do
not depend noticeably onT) andG is temperature indepen
dent in agreement with experimental data. Of course i
only an approximation and we are aware that QCs are
classical Debye insulators, and besides we are not in
regimeT@QD , but it identifies correctly the characterist
scales in the problem. A detailed temperature dependenc
the lattice dynamics has only been carried out in thei
2AlPdMn phase. AtT51050 K the slope of the transvers
acoustic mode displays only a 10% decrease as compar
room temperature and the broadening of the modes did
show any significant variation. This is thus in agreement w
the model since the Debye temperature of thei 2AlPdMn
phase is about 500 K~see, e.g., Ref. 18!.

Quantitative comparison of our model predictions w
experimental data is more difficult since there are only sca
data available for the model input parameters and their t
perature dependences~there are no systematic measureme
of all needed material parameters, and experimental data
still not very accurate!. Thus from here on in this section w
shall not attempt to maintain numerical accuracy, but o
indicate the form of the answer. Our model can be used
estimate theq2 coefficient in the phonon line broadenin
Namely, from Refs. 18, 19, and 34

k.1
W

mK
5105

erg

scmK
,

r55g/cm3; gav.1,

and, besides,T.300 K. Using also the literature~Refs.
13 and 14! data for i-QC materials ~ZnMgY cl
54.83105 cm/s, ct53.13105 cm/s), and neutron measure
ments~Refs. 13, 14, and our data shown in Figs. 1–3!, one
can find that atq.0.5Å21, for the longitudinal phonons
G l.1.5 meV, and for the transverse modes, depend
on propagation directionsG t.1 meV; for AlPdMn (cl
56.33105 cm/s, ct53.53105 cm/s), at the same q
.0.5 Å21, G t.2 meV ~no data for longitudinal mode line
widths!. Putting all values together we find for theq2 coef-
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ficient about 10 meV/Å2 in reasonable agreement with th
experimental value quoted above.

One more interesting line of thought is to apply our r
sults to estimate the anisotropic Gruneisen parameters, in
duced in~1!. The observed difference in width increase ra
between transverse and longitudinal excitations means th
different Gruneisen parameter should be used in each c
Comparing experimental data for longitudinal and transve
modes in the same material~for the moment such data ar
available only fori 2ZnMgY) we can conclude that the vol
ume Gruneisen parameter entering the longitudinal pho
broadening~5! should be four times larger than the she
anisotropic Gruneisen coefficient which determines
transverse phonon line broadening~6!.

These Gruneisen parameters can be seen as a phenom
logical way of taking into account the interaction betwe
LA or TA modes and optical branches. Various phonon
teraction processes result when anharmonic terms of the
~and higher! order in the displacements are taken into a
count. The first anharmonic term corresponds to the deca
one phonon into two or to the coalescence of two collidi
phonons into one. For conventional crystals, usually
main contribution comes from processes within the same
tical branch. For QCs, the dispersionless character of
optical branches could lead to a situation where the con
tions for phonon decay or recombination are satisfied ab
a finite threshold wave vector~corresponding to the crossin
with the lowest frequency optical branch!, and not for a dis-
crete set of wave vectors but for a whole spherical shell iq
space.

The coefficient atq4 for the resonance hybridizatio
broadening, is a model dependent quantity. However, it
be always presented in the following form:33

aa,res5La

v

ca
S v

vcl
D 3

, ~10!

whereLa is a model and mode polarization dependent co
ficient, andvcl is a characteristic frequency for cluster vibr
tions. To illustrate this issue we show in Figs. 2 and
q-dependences of line width for longitudinal and transver
modes in thei 2ZnMgY andi 2AlPdMn QCs. These results
are clearly indicating that for the longitudinal modes t
broadening are governed mainly by the Akhiezer mec
nism, whereas for the transversal wavesq4 fitting leads to a
reasonable agreement with the data. Moreover the coeffic
at q4 found from such a fitting is conformed with~10! de-
scribing resonance hybridization sound absorption.

Of course the imperfect knowledge of the parameters
large temperature interval makes our predictions only qu
tatively or semiquantitatively correct, and at this stage
number of open questions must be stressed. For example
forbidden gaps have been observed experimentally. The
also some inconsistency between thermodynamic and ine
tic neutron scattering data.18,19 A possible origin of this in-
consistency may be related to contributions, say to the s
cific heat, from the cluster vibrations. It is worth notin
however, that all scattering experiments measure a dyna
structure factorS(q,v), which is the Fourier transform o
5-7
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the displacement correlation function, and therefore does
carry direct information about propagation or nonpropa
tion of modes. But to put these speculations on a firm fo
ing, further experimental and theoretical efforts are requir
Nevertheless for a model with such a small amount of ph
cal input, our results show quite good agreement with exp
ments~the order of magnitudes together with its evoluti
with T and q). In addition we can give some qualitativ
predictions concerning Gruneisen parameters and anha
nicity in different QC materials. It is worth noting in thi
respect one very recent theoretical prediction35 that Grun-
eisen parameters should diverge close to a quantum cri
point. In a certain sense QC phonon and electron states
critical over the whole region of the QC state stability. Ho
ever, it should be noted that dynamics of QC is still a dev
oping field and much of the excitement arises from the p
sibility of discovering novel physics beyond say the classi
paradigms discussed here.

As this paper was being written for publication we b
came aware of parallel efforts24,25 to investigate the cross
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