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Sound-mode broadening in quasicrystals: A simple phenomenological model
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We propose a simple phenomenological model to analyze vibrational characteristics of quasic@@sals
The interpretation of the obtained recently data is based on the existence of almost dispersionless optical modes
most probably related to the specific clusters which constitute the characteristic building blocks of any QC
structure. We generalize to QCs the well-known Akhiezer mechafissponsible for the absorption of sound
even in an ideal crystglwhich in our case is related to a “long wave” disturbance of the quasicrystalline
optical modes by the propagating sound modes. At higher wave vectors strong hybridization of acoustic and
optical modes takes place, and it leads to a more steep broadening dependence on wave vectors, and besides
the excitation can no longer be described as a single acoustic mode with a well defined wave vector. We show
that the observed sound-mode attenuation behavior can be consistently described by these scenarios without
invoking additional mechanisms.
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[. INTRODUCTION the fact that QC systems do not show lattice periodicity, the

In most many body systems there is a fairly sharp distincabove statement on zero mean momentum of phonons should
tion between elementary excitatiofeguasi-particlesand the  be true for QCs also. Thus one must admit that phonons in
collective modes involving a coherent mixture of quasi-QC systems carry not momentum but only quasi-momentum,
particles. In a harmonic dielectric crystal these elementarwhich is defined, unlike in conventional crystals, modulo a
excitations are phonons, having the linear dispersion law. Atlense set of reciprocal vectdr®oth systemgcrystals and
finite temperature3 the great majority of phonons have en- QCs in this respect are different from liquids, where the
ergies at most of the order &f due to the nature of the phonon momentum is the actual momentum and the phonon
Bose—Einstein distribution, and the thermodynamic properflux does involve a transfer of mass, since in a sufficiently
ties of crystals are determined almost entirely by these excitong time any atom or molecule can reach any point in the
tations. The wave vector associated with a phonon in a regurolume.
lar lattice is only defined modulo a reciprocal lattice vector, a Thus one could say that i-QCs are quasicrystalline on the
feature which plays a crucial role in the dynamical propertiesear atomic scale, and isotropic solids at macroscopic scales.
of crystals. In this respect phonons in crystals are quite difSomewhere there ought to be a crossover from the local ar-
ferent from sound waves in liquids which carry true momen-rangement to macroscopic isotropy. If this structural cross-
tum. Each atom in the crystalline lattice executes only a fi-over is sufficiently abrupt, it might also mark in reciprocal
nite amplitude motior{the oscillation about the lattice sjte  space the upper frequency end of the isotropic acoustic
Evidently the mean momentum of such a motion is identi-branches. Besides, because QC systems do not show lattice
cally zero, and therefore, the phonon flux associated with theeriodicity, the concept of Brillouin zone and its use for char-
energy flux in a crystal is not accompanied by a transfer ofcterizing elementary excitations like phonons, strictly
mass. speaking is not adequdtésee also, Refs. 6 and.70On the

QC systems are quite different from conventional solidother hand, at least at first glimpse, it can be argued that
crystals. QCs are built roughly speaking according to thebecause in the long-wavelength limit the phonons can be
following principles: Being homogeneous like crystalline al- described as sound waves propagating through an elastic
loys QCs nevertheless posses specific structural elements, continuum, there should be little difference between QCs and
clusters(see Refs. 193 The resulting construction has no crystalline materials in this regime where the phonons are
translational symmetry but has long-range order. In spite oinsensitive to microscopic structure. Nevertheless, experi-
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mental results are fairly different in the two types of systemsrather different, and that their physical propertiesy., elas-
The following correlation is characteristic of classical mono-tic moduli) might be also very different, they exhibit many
crystals: The higher the quality of the diffraction pattern of acommon vibrational features. The purpose of our paper is to
mono-crystal, the lower the line-widths of the phonons. Thepropose a simple phenomenological model to try to obtain as
correlation reflects the wave nature of phonons: The betteiuch theoretical information concerning vibrations in QCs
the conditions for the propagation, the smaller the scatteringS is possible on a phenomenological level without specific
of the Bloch-type waves. Since QCs do not posses lattic8licroscopic treatment. The rest of the paper is organized as
periodicity vibrational excitations QCs are intrinsically not follows: In Sec. Il we give a short outline of neutron data
Bloch-type eigenmodes and, therefore, this correlation dog&¢lated to vibrational mode studies in i-QCs AlPdMn and
not hold. ZnMgY. Section Ill is devoted to the description of our phe-
The same kind of problem has been discussed in the |itnomenological model. Finally, _Sec._IV deals Wit_h miscella-
erature on electronic excitations in QCs. Some unusual eledl€0us subjects related to the vibrational dynamics in QCs.
tronic propertiege.g., a very low value of the electrical con-
ductivity, a negative temperature coefficient of the resistivity, Il. EXPERIMENTAL OVERVIEW
and so onas it was shown recenfhare the consequences of
the spectral properties of quasiperiodic Hamiltonians. It is The excitation spectrum of different QCs has been studied
common knowledge now that Anderson localizafios a by inelastic neutron scattering on single grain samples. In
second-order phase transition between eigenstates that Seite of the often contradictory results of experimental inves-
spatially localized and those that are delocalized, and therégations (see, e.g., discussions in Refs. 18 and, Efew
are well defined conditions at which the localization—conclusions listed below seem inescapable. As explained
delocalization transition occurs. Many numerical investiga-2bove, it is only in the acoustic regime that a one to one
tions of quasiperiodic Hamiltonians reveal that their eigencorrespondence can be made between the observed signal
states are critical, i.e., they are characterized by a power-la@nd a phonon, i.e., that the phonon wave vector can be de-
decay of the amplitudesee Refs. 10 and 11The existence fined. Generally, results are presented in an “extended” zone
of the critical electronic states can be understood as related &sheme, with a strong Bragg peak acting as the zone center
the self-similarity of the QC structures: A given atomic clus- (for crystallographic details see, e.g., Ref).28s proposed
ter is repeated within a distance of the order of its size, andyy Niizeki,??*? important pseudo Brillouin zone boundaries
therefore an eigenstate from any cluster can easily tunnel td?ZB) can be defined. They correspond to strong Fourier
the next one which has an identical form. Thus electroniccomponents of the atomic density from which acoustic
properties of QCs are critical, at least from the point of viewmodes are Bragg reflected. The positions of these pseudo
of the second-order Anderson localization—delocalizatiorzone boundaries obviously depend on the details of the
transition. atomic structure. Moreover, because of the quasi periodicity,
However this analogy can not be bluntly applied to theseveral successive PZBs are stacked around each strong zone
study of vibrational modes in QCs. There are two principalcenter.
differences between the Anderson electron and the vibra- In the following we will focus on two icosahedral phases
tional problems, which are our main concern here. Firstlyfor which detailed studies have been carried out:
when the system is mechanically stable, there are no nega-AlPdMn andi —ZnMgY. These two icosahedral phases
tive eigenvaluesunlike in the electron cageSecondly in the have a very different atomic structure. Nevertheless their ex-
3d vibrational case, there are always at least 3 zeroeitation spectra share a lot of common features. Their dy-
frequency(in the long wavelength limjtGoldstone modes namical response can be separated into two well defined re-
that can not be localized. Therefore, since the modes at thgimes: the acoustic regime for wave vectors smaller than
lower energy bound of the spectrum must have extende@.6 A%, and, for larger wave vectors, a regime in which the
character, one can expect something similar to critical statedynamical response is characterized by a broad band of dis-
(and to localization—delocalization transitioranly near the persionless opticlike modes. In the acoustic regime, excita-
relatively high-frequency band edge. tions are generally resolution limited fay smaller than
The issugelementary vibrational excitations in QGsas 0.3 A%, and then broaden.
intensively studied recently, and inelastic neutron scattering The way in which the broadening develops strongly de-
data(see, e.g., Refs. 11-17 and the monograph®veal in  pends on the atomic structure of the icosahedral phase: For
the long wavelength limit well defined acoustic modes. Theinstance, it is much more rapid in the AIPdMn phase than
experimental quantity investigated in these experiments, thim the i —ZnMgY phase. The optic like spectrum generally
so-called scattering functio®(Q, w), is measured close to a consists of 3 or 4 broad “bandga few meV wide around 7,
Bragg reflection located at a certain reciprocal vecom 12, 16, and 24 meV. Although no gap opening could be ob-
momentum space, and it probes phonons with frequency served at the PZBs, the energy of the lower optical modes
and wave vectog=G—Q. To measure the largest signal roughly corresponds to the intersection of the acoustic
one should measui®(Q,w) at high momentum transfer and branch with the PZBs.
close to a strong Bragg peak. Neutron scattering investiga- Figure 1 summarizes results obtained for transverse
tions were performed for different icosahedfal® and modes propagating along a two-fold axis and polarized in a
decagonaf structures and it turned out that in spite of the two-fold direction. The upper part is for thie— AIPdMn
fact that, structurally, decagonal and icosahedral QCs arghase and the lower one for the ZnMgY one. The trans-
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FIG. 1. Dispersion relation measured around the strong two-fold - [ ]
Bragg reflection withN/M indices equal to 52/84 and propagating ol ]
along a two-fold axis in the —AlPdMn (the upper figureandi C ]
—ZnMgY phase(the lower figure. Results are presented in an [ . | . . . | . ]

R

extended zone scheme, the pseudo Brillouin zone boundaries ar
shown as vertical dashed lines. The transverse acoustic mode pos .1
tions are shown as full circles and their width as open one. The q(A7)

dashed line is the linear dispersion relation as deduced from ultra- ) . o _
sonic measurements and the solid line ig2afit to the width in- FIG. 2. Line width for longitudinal(the upper figure modes

crease. The other open symbols correspond to dispersionless opRECPagating along a five-fold axisxperimental data angffitting)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

like excitations, whose width is of the order 4 meV. and for the transversal modéke lower figurg propagating along a
two-fold axis (experimental data ang*-fitting) in the i — ZnMgY
verse acoustic phonon dispersion relation is given by the fulP"3S€

circles. The dashed line is the corresponding sound velocity
as extracted from ultrasonic measurements. The open circlgmth of 12 and 24 A for thé — AIPdMn andi—ZnMgY
correspond to the width of thEA modes. The other open phases, respectively. Structural x-ray stutfidsave shown
symbols correspond to the different broad optic bandsone special geometric aspect of all QC structures, namely,
whose width is of the order 4 meV. For both phases theatomic clusters, with a characteristic diameRg=10 A,
crossover between the acoustic and, say, hybridized regime ghich are part of the building blocks of QCs and their close
fairly abrupt: For thei —AIPdMn phase it shows up as a approximants. Summarizing the experimental dynamics
rapid broadening of th& A acoustic mode, whereas for the study, we can thus say that the crossover between the acous-
i—ZnMgY there is a coupling with an optic like excitation tic and mixed regime occurs for a phonon wavelength equal
localized at 10 meV. In both cases thé\ limit is given by  to D. The mean free path of tiRA phonon is equal t®
q=0.6 A1, Above this value thd A acoustic mode mixes and D, for thei —AlPdMn andi —ZnMgY phases, respec-
up with optical excitations and the observed signal can naively.
longer be described as a single excitation. Line broadening is a nuisance in some circumstances,
The broadening off A excitations also depends on the while in our case of QCs it provides valued physical infor-
structure: it is about two times larger in thie- AIPAMn  mation. We show in Fig. 2 dependences of line width for
phase than in the—ZnMgY one. From the local slope of the longitudinal (the upper pangélmodes propagating along a
TA dispersion relation and width of the excitations it is alsofive-fold axis and for the transverse modése lower panel
interesting to compute the mean free pathiréf phonons at  propagating along a two-fold axis in the-ZnMgY phase,
the upper limit of the acoustic regime. We find a mean freeand the width for the transverse mode propagating along a
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ST ] detailed microscopic mechanisms governing these processes
i~AIPdMn 2f T 1 are not fully understood yet and have been heavily debated
- in the literature®°
The occurrence of many broad optical, almost dispersion-
less modes has been, at least qualitatively, established and
] their origin can be easily understood. Indeed, as is well
known?2® the number of optical modes in a crystal is related
to the number of atoms in the unit cell. Since in QC systems
the unit cell size is strictly speaking infinite, it is not surpris-
] ing to have in a certain energy window a dense set of optical
] modes. Moreover, due to natural energetic restrictions, the
] energy window where all the optical modes are confined is a
] relatively narrow one, which unavoidably leads to small
] mode dispersion. We shall thus include from the very begin-
elewe b b e b b e b s e ning these modes into the model. On the other hand the
0 o1 02 03 04 05 06 07 08 dispersionless character of the optic modes means that the
q(A'l) corresponding excitations see an almost uniform medium,
the strain of which is slowly modulated by the sound wave.
FIG. 3. Line width for the transversal mode propagating along abue to the anharmonicity of the system the strain of the
two-fold axis (experimental data ang'-fitting) in thei—AIPdMn  sound field causes a change of the optic mode frequencies.
phase. Despite the apparent analytic intractability of the problem,
the various approaches suggest that all the complications can
two-fold axis fori — AIPdMn is shown in Fig. 3. The instru- be subsumed by a simple phenomenological form.
mental width for longitudinal mode@bout 2 meV is larger In order for the discussion to proceed smoothly, we start
than for transvers€about 1 meV. To gain further insight first with a simple argument. We generalize to QCs the well-
into the nature of broadening we show in Figs. 2 and 3 theknown Akhiezer mechanism of sound absorptieae, Refs.
oretical fitting byg? dependence for the longitudinal waves 27 and 28. In the caséwe will be interested in beloyjwhen
and byq* for the transverse modes. We will see in the nextthe frequency of the sound waves is much smaller than all
section that these dependences correspond to broadeninggevant inverse relaxation times, the sound vibrations can be
dominated respectively by Akhiezer and by resonance hyconsidered as a certain external field which modulates the
bridization sound absorption. QC structure, and therefore, the optical mode frequencies
It is worth noting that very similar results are obtained for (@a)_  (aa) (@)
physically and structurally very different systems like i-QC wp = wg (1 ;) @
CdYb or decagonal-QC AINiC(see Refs. 12-16Even nu- \\hereq denotes the polarization of the optic moaley|?
merical values for the acoustic Ilne—\{wdth are not .very_dn‘fer—iS the second rank tensor which characterizes the QC and
ent, however, to be specific we restrict ourselves in this PaP&iepends on the direction of the optic mode &) propaga-

to the i-QCs AlPdMn and ZnMgY only for which we have 4o, 1t can pe viewed as the generalized Gruneisen constant
more detailed and reliable data due to the high quality of the(ensor(see Refs. 27 and 28

FWHM (meV)

samples. To simplify the mattexthough it is not a crucial pointe
assume thay does not depend on the frequeney It can be
IIl. PHENOMENOLOGICAL AKHIEZER MODEL shown using standard thermodynamic relatfrisat in this

case the optical mode frequency modulation does not disturb

Whereas the knowledge on the sound propagation in Otthe thermodynamic equilibrium within this branch, thus it is
dered crystals or disordered glass-like structures is now ragstill proper to attribute a temperatuteto it
idly improving (see e.g., Refs. 24 and 25, and references
therein, little is known about the behavior in systems with AT\ (@3 [ Awg) (@
nonperiodic long-range order, such as QCs. The general ob- T i :
jective of this study is to determine the structural and physi-
cal mechanisms associated with phonon line broadening ifhis relation(2) is valid if during the strain deformation
order to identify those features of QCs which differentiatecollisions with other branches can be neglected. However,
them from conventional crystalline systems. Since both feasince for different modes the values gfcan be different
tures(characteristic clusters and almost dispersionless opticdEven could be negative or positivafter a strain deforma-
modes are interrelated and practically ubiquitous for all QCstion each branch has in general a different temperatome
it is natural to look for a model based on these widely recPranches might be cooled down, while others are heatgd up
ognized specific features. The primary aim of this section is It might be useful first to separate all optical modes into
to present such a physical model that reproduces availabfo groups with different average temperatures but compa-
experimental data on vibrational eigenmodes in QC. In partable specific heats. The average relative temperature differ-
ticular we are going to consider general phenomenologicagnce between the groups, and accordinglioand (2), the
processes leading to sound absorption and dispersion, as theerage generalized Gruneisen coefficigpt,, can be then

@

wo
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easily calculated. Indeed one should bear in mind that alresolve the contradiction we should recall that the building
though the modes contribute additively to the free energy, thélocks of all QC structures are atomic clusters. These clus-
Gruneisen coefficients are determined by a ratio of derivaters are not mere geometrical constructions but real physical
tives, i.e., a ratio of sums entities responsible for specific features in the QC vibrational
spectrum(e.g., responsible for localized modeklence, one
2 NERTS expects acoustic vibrations to induce stress inhomogeneities
~ 2 a around each cluster, with a resulting strain field that will
Yoa™ consist of a superposition of a dilation and of a shear.
> C, Therefore in this case the internal thermoelastic dissipa-
a tion occurs even for the pure transverse vibrations. It is remi-

whereC, is the specific heat associated to the made niscent of a phenomenon known in classical elasticity
If a sound wave propagates through a system, a periodi@eo_ry? wherepy a spherical |nclu5|on. placed in a V|brat|n_g

temperature difference will be set up between the twdne.dlum containing only pure shears, introduces Iocal'strams

groups. Therefore in a certain characteristic relaxation tim@vhich have dilationA(r,6,¢) (r, 6, and ¢ are spherical

7, heat exchange takes place between them, leading to eﬁg_)ordlnate}sproportl_onal t_o the shear deformatisrat large

tropy production, and absorption of the sound wave. Thélistances from the inclusion

absorption coefficient per unit length, (in cm™ 1) is deter-

mined by the entropy production rate and rédds A=_s oK )
ON+14u

Dcl)2 . .
—| sirf fcosgsing,  (7)

r

CQT'yi av w°T

. 3 S5 (3)  where, for an isotropic materialy and\ are the only two
pc, lt+wr nonzero elastic constants. To find Akhiezer line broadening
whereC,, is the heat capacity at constant strain correspond‘iOIIOWIng from the d|Iat|pn(7) one S.hOUId calgu!ate and av-
erage the corresponding Gruneisen coefficient. For one

ing to each sound mode polarizatigconstant volume for L R ) ) ;
longitudinal waves and constant shear for transversal)pnessPhe”Cal inclusion in a bulk isotropic material the total effect

is the mass density, ard,=(c; ,c,) is the longitudinal or will be zero due to angular integration. But of course this
fransverse sound moae veIocit;/’ t picture of one isolated cluster in a vibrating medium is not

gequate for QC clusters. A complete account of the strains

It seems reasonable to assume that the energy exchan X .
between the two groups takes place by means of phonon%duced by the sound modes in real QC structures requires

phonon scattering processes. The relevant point is that th%onsiderable computational work, that is beyond the scope of

same kind of processes determine the heat conducfivity our purely phenomenologmal model. Thus we uséf_ii»rphe- .
nomenologically the average transverse Gruneisen coeffi-

= %CvaTa (4) cient vy ay- Hoyvever, from simple arguments presented
above concerning the expressi¢rf) we can come to the
whereC, is the constant-volume specific heat, ands the  conclusion that due to the clusterlike nature of all QC struc-
longitudinal mode velocity. tures, the Akhiezer broadening is expected to be less efficient
The expressions can be brought into more compact formfor the transverse phonons than for the longitudinal ones.
by taking into account that at high enough temperatures th&herefore at least for the former case we have to look for
relaxation timer is much shorter than the sound period. another mechanisms contributing to transverse mode broad-
Comparing(3) and(4) we end up with the following coeffi- ening in QCs.
cients for the longitudinal ;) and transversed}) sound QC clusters play also a crucial role for sound mode hy-
absorption bridization in QCs. Indeed, if we consider the vibrations of
an isolated cluster of siz®., then the high-frequency
KV av, - modes withA <D will not be affected by the change in the
a= 5 107 (5 boundary conditions at scalg,, involved in partial discon-
necting the cluster from the rest of the system. On the other
and hand, the low-frequency modes for whikk>D . will disap-
pear from the spectrum. Very qualitatively one can then think
of such a material as a dense packing of connected clusters.
=—52C Tw?, (6)  Phonon scattering from fluctuations in the local velocity of
PCLC ~v soundc?(r), depends on the variance parameter

a

whereC; is the heat capacity at constant shear strain. 4

For the benefit of the skeptical reader, some comments V(N)= (e (NN —1=1(a)
about the applicability of the mechanism described in this (cz(r)ﬁ
section to transverse modes, seem in order. Indeed conven-
tional wisdom claims that the Akhiezer mechanism cannot bavhere\ =27/q is the phonon wavelength, aids the scale
applied directly to transverse sound modes, since only dilaat which elementary fluctuations occure., for QCsa
tation or compression deformations may provide nonuniform=D,). Let us haver(a)>1. Sincec?(r) is always positive,
temperature variations and thermo-diffusive dissipation. Tahe only way this can occur is by having a small number of

3
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“hard” regions for whichc? is larger than the average, which of a cluster(not over sound wavelength as in a uniform bulk
dominate the variance, and a much larger number of “soft’body). Hence sound broadening due to thermal conduction
regions. If the hard scattere(sf size D) are isolated, the (Akhiezer mechanisinis essential for the case. To be spe-
only propagating modes are those of the soft backgroundific this scenario can be rationalized as sound modes
medium. The scatterers act as rigid inclusions in the medium(mainly longitudinal but as we have seen also transyerse
Roughly, the hard scatterers simply increase the effectiveomehow perturb the manifold of optic modes or QC cluster
elastic constant by a factor proportional to the small volumevibrations(the characteristic features of QC materials taken
factor they occupy. The above argument neglects the locahto account by the modelThese perturbations in terms of
modes centered around the hard scatterers. For a single sc@&runeisen parameters are reduced to temperature variations,
terer they would be localized and have a high frequencyand the latter ones lead to thermo-diffusional relaxational
When they are dilute and uncorrelated, so that they coupleound absorption. It might at first sight seem that the model
weakly, they can only form an relatively high-frequency op-contains no QC-specific features: But in fact all QC proper-
tical band. On the other hand, when they are correlated anties are hidden in the material parameter values entering the
coupled sufficiently strongly, they can dominate the elastidormula.
properties and the low-frequency velocity and damping of The discussed abovén the previous Sec. IJl second
sound. As a rule of thumb we can estimate the characteristioroadening mechanism—resonance hybridization of sound
frequency for mode hybridization as,/D. In this region  and cluster vibration modes—can compete with the Akhiezer
phonon wavefunctions are repetitively localized on the clusabsorption even for the longitudinal modes in the relatively
ters and this recurrent localization comes from the fact thathigh g-region. All the more it is true for the transverse waves
unlike for periodic crystals, it is not possible for the wave- where the Akhiezer broadening is expected to be less effi-
length to be commensurate simultaneously with all interient. Fortunately they do have differaptdependencies that
cluster distances in a quasiperiodic structure. Evidently thisilow us to disentangle them analysing experimental data. To
cluster vibration mode is not an exact eigenstate. It interactspan a wide range of possibilities let us discuss first the
with other vibration modes of similar energy and as well Akhiezer mechanism. To compare the expressions with neu-
with acoustic phonons. This interaction affects both the clustron data it is more convenient to use:
ter vibration mode and the phonons, which are for the same (i) the absorption coefficierff[s~*]=a[cm™ !]c,,;
reason also not exact eigenstates. In other words due to the (ii) the wave vecton instead ofw.
above described mode-hybridization the excitations will be Thus we come front5) to
broadened and shifted.
Physically these cluster vibrations are caused by a local 2
2 . N KYaT
deviation of the force constant matrix and atomic mass from I'=——>-0q 9
the average values. The hybridization phonon broadehing pPC,
for a phonon with wave vectok, polarizationj, and fre-
qguency wy depends on a “concentration(i.e., density of The proposed model can be checked against experimental
statesg(k)] of these cluster vibrations and is proportional to data along three lines: The wave vector dependence of the
the phonon-cluster mode scattering matrix acoustic mode broadening which should be proportional to
g, its temperature variation and its order of magnitude.
_ 1 (K, ] |f|k,j> The g2 increase of the acoustic phonon width was gener-
I(wo(K,j)=09(K) 5 ——F—— (8) ally observed for longitudinal acoustic excitations. Fok
2 wolk)) modes the width increase seems to be more abftgt,a
To obtain total hybridization broadening this expressign ~ wave vector larger than 0.3°&) and goes rather as law
has to be averaged and integrated over all cluster vibration&s shown in Figs. 2 and 3. Presented by the solid line in Fig.
with frequencies approximately equal &g, If the structure 1 aqz fit to the observed widths, illustrates this statement,
of the mode does not strongly depend on its frequency, andnd besides, can be used to extract some quantitative infor-
their distribution is smooth on a scale of their widfh will mation on the magnitudes of andq* parameters. As ex-
havek-dependence coming mainly from the density of stategected, the coefficient of the fit is twice as large in the
factor in (8). Using the arguments borrowed from the stan-—AIPdMn phase as in the—ZnMgY one (9.8 and
dard glass theof§ we can conclude thagok®. 4.9 meV/A ?). In thei—2ZnMgY, we also found that the
LA mode broadens twice as fast as th& modes. More
accurate inspection of the data presented in Fig. 1 clearly
shows that for a region close to the mixed regithe., to
Let us summarize now the experimental results and thg=0.6 A) the broadening is more rapid thamalaw. It can
theoretical interpretation presented in this paper. The physie attributed to Rayleigh scattering arising from local fluc-
cal essence of the model is as follows. If the wavelengtti ~ tuation in sound velocity due to either mass density or elastic
the sound is larger than the characteristic clusterBigave  constant fluctuation€n own turn related to the cluster struc-
can assume that each cluster is subject to a uniformly distribture of all QC$ or to acoustic-optic mode hybridization. In
uted stress. However, due to not spherical cluster shape amdathematical form both phenomena leadjfcbroadening’®
boundary conditions at their surfaces, the resulting deformathough of course the Rayleigh scattering seems generally too
tion is not uniform. It varies considerably over the dimensionweak in homogeneous materials like QCs.

IV. DISCUSSION AND CONCLUSION
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The next test concerns temperature dependences. Sincef@fent about 10 meV/A in reasonable agreement with the
high enough temperaturas<1/T, in the present approxima- experimental value quoted above.
tion the effect of the temperature dependent factors cancels, One more interesting line of thought is to apply our re-
and therefore, the absorption due to Akhiezer mechanism casults to estimate the anisotropic Gruneisen parameters, intro-
only weakly depend on temperature. It is worth noting alsoduced in(1). The observed difference in width increase rate
that the very possibility to characterize the system by onlybetween transverse and longitudinal excitations means that a
one Gruneisen function is based on the assumption that thifferent Gruneisen parameter should be used in each case.
dependence of the energy levels on the volue more  Comparing experimental data for longitudinal and transverse
generally on the deformations,) is expressible in terms of modes in the same materidbr the moment such data are
a single characteristic energy. This assumption is correct fogvailable only fori — ZnMgY) we can conclude that the vol-
Einstein or Debye models, partly also for conventiofwéith ~ ume Gruneisen parameter entering the longitudinal phonon
relatively small elementary celicrystalline solids but not broadening(5) should be four times larger than the shear
evident at all for QC systems where a number of differentanisotropic Gruneisen coefficient which determines the
contributions to the free energy can control the thermodytransverse phonon line broadeni(&).
namic propertiegsee discussion in Refs. 18 and)19 These Gruneisen parameters can be seen as a phenomeno-
Thus in this approximationamely, in the high tempera- |ogical way of taking into account the interaction between
ture regime wherél >0p, Op being the Debye tempera- LA or TA modes and optical branches. Various phonon in-
ture, 400-500 K, within the classical Debye approach valideraction processes result when anharmonic terms of the third
in this region,x= 1/T (all other parameters determinitgdo  (and highey order in the displacements are taken into ac-
not depend noticeably ofi) andI" is temperature indepen- count. The first anharmonic term corresponds to the decay of
dent in agreement with experimental data. Of course it ine phonon into two or to the coalescence of two colliding
only an approximation and we are aware that QCs are ngshonons into one. For conventional crystals, usually the
classical Debye insulators, and besides we are not in theain contribution comes from processes within the same op-
regimeT>0p, but it identifies correctly the characteristic tical branch. For QCs, the dispersionless character of the
scales in the problem. A detailed temperature dependence optical branches could lead to a situation where the condi-
the lattice dynamics has only been carried out in the tions for phonon decay or recombination are satisfied above
—AIPdMn phase. AT=1050 K the slope of the transverse a finite threshold wave vectgcorresponding to the crossing
acoustic mode displays only a 10% decrease as comparedwith the lowest frequency optical brangtand not for a dis-
room temperature and the broadening of the modes did nafrete set of wave vectors but for a whole spherical shedj in
show any significant variation. This is thus in agreement withspace.
the model since the Debye temperature of theAlPdMn The coefficient atq* for the resonance hybridization
phase is about 500 Ksee, e.g., Ref. 18 broadening, is a model dependent quantity. However, it can
Quantitative comparison of our model predictions with be always presented in the following forth:
experimental data is more difficult since there are only scarce
data available for the model input parameters and their tem- o o
perature dependencébere are no systematic measurements aa,res:AaC_<_
of all needed material parameters, and experimental data are “
still not very accurate Thus from here on in this section we whereA , is a model and mode polarization dependent coef-
shall not attempt to maintain numerical accuracy, but onlyficient, andw,, is a characteristic frequency for cluster vibra-
indicate the form of the answer. Our model can be used téions. To illustrate this issue we show in Figs. 2 and 3
estimate theq® coefficient in the phonon line broadening. g-dependences of line width for longitudinal and transversal

3
: (10

Wl

Namely, from Refs. 18, 19, and 34 modes in thé — ZnMgY andi — AIPdMn QCs. These results
are clearly indicating that for the longitudinal modes the
w erg broadening are governed mainly by the Akhiezer mecha-

k=1 = 10° semK’ nism, whereas for the transversal waegdfitting leads to a

reasonable agreement with the data. Moreover the coefficient
at g* found from such a fitting is conformed witt10) de-
p=>5glcn?; Ya=1, scribing resonance hybridization sound absorption.

Of course the imperfect knowledge of the parameters in a
and, besidesT=300 K. Using also the literatur¢Refs. large temperature interval makes our predictions only quali-
13 and 14 data for i-QC materials (ZnMgY c; tatively or semiquantitatively correct, and at this stage, a
=4.8x10° cm/s, ¢,=3.1x 10° cm/s), and neutron measure- number of open questions must be stressed. For example, no
ments(Refs. 13, 14, and our data shown in Figs. L-&e forbidden gaps have been observed experimentally. There is
can find that atg=0.5A"1, for the longitudinal phonons, also some inconsistency between thermodynamic and inelas-
I''=1.5meV, and for the transverse modes, dependingc neutron scattering dat&!° A possible origin of this in-
on propagation directiond’;=1 meV; for AIPdMn (c consistency may be related to contributions, say to the spe-
=6.3x10° cm/s, c,=3.5x10° cm/s), at the sameq cific heat, from the cluster vibrations. It is worth noting,
=0.5 A"1, I';=2 meV (no data for longitudinal mode line- however, that all scattering experiments measure a dynamic
widths). Putting all values together we find for tlgg coef-  structure factorS(q,w), which is the Fourier transform of
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the displacement correlation function, and therefore does naiver from propagating to strongly attenuated acoustic modes
carry direct information about propagation or nonpropagain densified silica glasses. Although physically the two sys-
tion of modes. But to put these speculations on a firm foottems (QCs and glassgsare very different, acoustic mode
ing, further experimental and theoretical efforts are requiredproadening reported in these papers and its interpretation
Nevertheless for a model with such a small amount of physitAkhiezer attenuation due to optical mode perturbations and
cal input, our results show quite good agreement with experiacoustic-optic modes scattering and hybridizatiare quite
ments (the order of magnitudes together with its evolution similar to our results. Of course the nature of these optical
with T and q). In addition we can give some qualitative ynoges is different in each case: In glasses it is related to
predictions concerning Gruneisen parameters and anharmgisrder(in silica glasses it corresponds to librations of $iO

nicity in different QC materials. It is Worﬂé?noting in this tetrahedrg in QCs the optic modes are related to cluster
respect one very recent theoretlcal predictiothat Grun- vfbrations or, in other words, to the translational or orienta-
eisen parameters should diverge close to a quantum criicgl) 1 frustrations intrinsic to all QCs

point. In a certain sense QC phonon and electron states are
critical over the whole region of the QC state stability. How-
ever, it should be noted that dynamics of QC is still a devel-
oping field and much of the excitement arises from the pos-
sibility of discovering novel physics beyond say the classical
paradigms discussed here. One of us(E.K.) acknowledges support from INTAGNn-

As this paper was being written for publication we be-der Grant No. 01-0105We thank T. Janssen for thought-
came aware of parallel effofs®® to investigate the cross- provoking discussions.

ACKNOWLEDGMENTS

*Electronic mail: kats@ill.fr

IM. Quilichini and T. Janssen, Rev. Mod. Phg8, 277 (1997).

2R. Bellissent, M. de Boissieu, and G. Codden$>Hysical prop-
erties of quasicrystalsedited by Z. M. StadniKSpringer, New

173. Hafner and M. Krajci, J. Phys.: Condens. Matfer2489
(1993.

18C. A. Swenson, I. R. Fisher, N. E. Anderson Jr., P. C. Canfield,
and A. Migliori, Phys. Rev. B55, 184206(2002.

York, 1999. 19¢. A. Swenson, T. A. Lograsso, A. R. Ross, and N. E. Anderson
3C. Janot, Quasicrystals: A Primer(Oxford Science, Oxford, Jr., Phys. Rev. B56, 184206(2002.
1992. 0J. W. Cahn, D. Shechtman, and D. Gratias, J. Mater. Re$3

(1986.

21K, Niizeki, J. Phys. A22, 4295(1989.

22K. Niizeki and T. Akamatsu, J. Phys.: Condens. Ma2e2759
(1990.

ZW. Steurer and F. Frey, Phase Transitiés 319 (1998.

24E. Courtens, M. Foret, B. Hehlen, B. Ruffland R. Vacher, J.

Phys.: Condens. Matter5, 1281 (2003.
8
S. Roche, D. Mayou, Phys. Rev. Lef9, 2518(1997. 258, Ruffle, M. Foret, E. Courtens, R. Vacher, and G. Monaco,

9P. W. Anderson,Basic Notions of Condensed Matter Physics, Phys. Rev. Lett90, 095502(2003
Frontier in Physics(Addison-Wesley, Reading, Massachusetts, 26y, \ Ashcroft ana N. D. MerminSolid State Physic§Holt

10 1984. Rinehart, and Winston, New York, 196
C. Janot, Phys. Rev. B3, 181(1996. 27p. Akhiezer, J. Phys(Moscow 1, 277 (1939.
T, Fujiwara, T. Mitsui, and S. Yamamoto, Phys. ReV5® 2910 284 E. Bgmmel and K. Dransfeld, Phys. Reld7, 1245(1960.
(1986. 2. D. Landau and E. M. LifshitsStatistical Physics, Part {Per-
12F Dugain, M. de Boissieu, K. Shibata, R. Currat, T. J. Sato, A. R. gamon, New York, 1980
Kortan, J. B. Suck, K. Hradil, F. Frey, and A. P. Tsai, Eur. Phys.3°L. D. Landau and E. M. LifshitsTheory of Elasticity Pergamon,

4P, A. Kalugin, M. A. Chernikov, A. Bianchi, and H. R. Ott, Phys.
Rev. B53, 14 145(1996.

5T. Janssen, Ferroelectrieg6, 157 (2000.

6M. Kleman, Eur. Phys. J. B1, 315(2003.

V. V. Savkin, A. N. Rubtsov, and T. Janssen, Eur. Phys. 31B
525(2003.

J. B7, 513(1999.
M. de Boissieu, M. Boudard, R. Bellissent, M. Quilichini, B.

Hennion, R. Currat, A. I. Goldman, and C. Janot, J. Phys.: Con-

dens. Mattels, 4945(1993.

M. Boudard, M. de Boissieu, S. Kycia, A. I. Goldman, B. Hen-
nion, R. Bellissent, M. Quilichini, R. Currat, and C. Janot, J.
Phys.: Condens. Mattét, 7299(1995.

5M. A. Chernikov, H. R. Oftt, A. Bianchi, A. Migliori, and T. W.
Darling, Phys. Rev. Leti80, 321(1998.

New York, 1986.

1L, D. Landau and E. M. LifshitsPhysical Kinetics, Course of

Theoretical Physics, Vol. 1Pergamon, New York, 1981

32A. E. H. Love,A treatise on the mathematical theory of elasticity
(Dover, Oxford, 1944 Chap. XI.

33Amorphous Solids - Low Temperature Propertiedited by W.
Phillips (Springer, New York, 1980

34K. Gianno, A. V. Sologubenko, M. A. Chernikov, H. R. Ott, I. R.
Fisher, and P. C. Canfield Phys. Rev6R 292 (2000.

16K . Shibata, R. Currat, M. de Boissieu, T. J. Sato, H. Takakura, and®°L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lé,

A. P. Tsai, J. Phys.: Condens. Mattet, 1847(2002.

066404(2003.

054205-8



