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Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems
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We predict and theoretically investigate the unique possibility to control distribution of ultrafast local optical
fields in nanosystems in space with nanometer resolution and in time on the femtosecond scale. While the
spatial degrees of freedom of the optical radiation do not allow focusing of the light on nanoscale, the phase of
the excitation light constitute a functional degree of freedom that permits one to coherently control the
distribution of the energy of local fields, concentrating it at a desired location at certain times. We study both
a specially designed V-shaped nanostructure and a random planar nanocomposite. Several types of exciting
pulses are investigated, which has allowed us to distinguish effects of phase modulation and spectral compo-
sition of the excitation pulse. Possible applications of this effect include energy supply and control of ultrafast
optical computations in nanostructures, local optical probing of nanosystems, including nanosensors of chemi-
cal and biological agents, and nanomodification of surfaces~nanolithography!.
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I. INTRODUCTION

This paper is devoted to theoretical investigation of
processes of energy localization in space on a nanom
scale and in time on a femtosecond scale in nanosystems
coherent control of such processes. The idea of the cohe
control is based on excitation of a coherent packet of qu
tum states or classical waves that interfere in the process
the evolution of the system. In the processes of excitat
the different constituent waves of that coherent packet
generated with individual, controllable phases. These ph
represent the degrees of freedom that allow one to exert
trol over that system’s evolution.1–3 In the case of short-puls
excitation, for the coherent control to be efficient, the ex
tation time should be much shorter than the dephasing ti
in the system. For metal-dielectric nanosystem this requ
ultrashort, femtosecond excitation laser pulses.

From both the fundamental and applied points of vie
there are compelling reasons to consider phenomena tha
simultaneously ultrafast and localized on nanoscale. Inte
tions between different parts of a nanosystem are very str
due to small, nanoscale distances separating them. At op
frequencies, a universal part of such interactions at the in
mediate to large scales is the dipole-dipole interaction, w
at the minimum scale all multipoles should be taken in
account. Such interactions on the nanoscale lead to fem
second times of energy and polarization transfer and re
ation within the nanosystem. On the other hand, ultrash
external excitation allows one to preserve excitation ene
and temporal coherence of the nanosystem, which open
possibilities of coherent control. Additionally, nanosi
eliminates effects of electromagnetic retardation and thus
cilitates coherent ultrafast kinetics. The phenomena that
nanoscale and ultrafast have recently attracted significan
tention, see, e.g., Refs. 4–20.

The applications of ultrafast-nanoscale processes incl
but not limited to, time resolved nanoscale probing and
tection, in particular nano-Raman spectroscopies, nanom
0163-1829/2004/69~5!/054202~10!/$22.50 69 0542
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fication of nanosystems where ultrafast excitation and re
ation of the processes helps preserve nanoscale sp
resolution, and computing with the nanoscale devices wh
femtosecond cycle time is an ultimate goal for ultrafast co
putations. The coherent control over the spatiotemporal
calization of the excitation energy may be useful for a ran
of nanophotomodification and probing approaches, includ
those suggested, quite early, in Ref. 21. Among the poss
applications is optical drilling of nanoholes in different su
strates, nonlinear and Raman nanoprobing of single m
ecules that was carried out recently using the surfa
enhanced Raman scattering~SERS!,22,23 and Raman
microscopy and spectroscopy of separate chemical group
macromolecules, a technique demonstrated recently.24 For
the biological and defense applications the coherent con
in Raman spectroscopy of single biological objects such
viruses, spores, and cells and their fragments is promis
An interesting perspective application may be the coher
control of the optical excitation of the proposed spaser
quantum generator of high-intensity coherent local fields19

The general challenge in optically controlling the spat
distribution of optical excitation of a nanosystem is that o
tical radiation lacks its spatial degrees of freedom on
nanoscale: within a nano-object, any electromagnetic w
appears as aspatially uniform electric field oscillating in
time at optical frequencies. The only remaining function
degrees of freedom are the temporal ones: the freque
spectrum and phase of the exciting electric field. Posing
additional problem, the universal, long-range dipole inter
tion induces ultrafast transfer of excitation
nanostructures,16 which causes redistribution of the excita
tion energy across a nanosystem and may lead to deloca
tion. For instance, consider a local excitation of the syst
using a near-field scanning optical microscope~NSOM! or a
nanoaperture. In this case, the source of the excitatio
indeed well localized, but this initially localized excitatio
will spread over the entire nanosystem on the atto- to fe
tosecond scale due to the dipolar interaction between dif
©2004 The American Physical Society02-1



u

t
as
tia

on
-
c

e
he
in
t
he
r
nk
is
e
il

ee
o
a
t
th
i-
e

ra
at
n
a

s

a
a
n
ys

ity
at
on
so
e
ca
en
th
ul
or
e
n
th
s
he
th

a-
nc-
u-

cal
tail.
ed
for
s to
ase
wn

gy
aged
ci-
se

e
of

spa-
m,

s
of

the
not
ered
Sec.
be

mo-

cy

the
n a

ary

n
n-
be

STOCKMAN, BERGMAN, AND KOBAYASHI PHYSICAL REVIEW B 69, 054202 ~2004!
ent parts of the nanosystem.16,17 Note that additionally,
NSOM’s or nanoaperture’s spectral bandwidth may be ins
ficient to conduct theultrafast localized excitation.

To solve this problem, we have recently proposed
modulate the phase of an exciting femtosecond pulse
functional degree of freedom to coherently control spa
distribution of the excitation energy.18 This possibility exists
due to the fact that polar excitations, which are conventi
ally called surface plasmons~SP’s! in inhomogeneous nano
systems, tend to be localized with their oscillation frequen
~and, consequently, phase! correlated with the position insid
the system.25–28 The pulse phase modulation will cause t
exciting field to take energy away from SP’s localized
those parts of the system where the oscillations are ou
phase with the driving pulse and move it, with time, to t
SP excitations in other parts where such oscillations occu
phase with the driving pulse. Alternatively, one may thi
that the ‘‘instantaneous frequency’’ of the exciting pulse
changing, causing rapid adiabatic passage through the r
nance with a localized mode. As a result, this mode w
initially be excited and later, as the pulse progresses, d
cited and its excitation energy moved to the next group
modes and further in the frequency domain in the same m
ner. Because the frequency and localization in space for
eigenmodes of a nanosystem are correlated, it will lead to
flow of the excitation energy in space allowing for the d
rected localization of the entire excitation energy at a giv
site of the nanosystem.

Coherent control has been successfully used to spect
concentrate the energy of an ultrashort nonlinearly gener
pulse in a given high harmonic.29 Predictions have bee
made of the coherent control over spatial movement of p
ticles and polarization using continuous-wave fields~see,
e.g., Refs. 30,31, and references cited therein!. Following
these predictions, charge-free spin currents of electron
semiconductors have been observed.32,33 The possibility has
been shown to concentrate the energy of acoustic waves
given time and site inside a region when these waves
generated by a laser excitation of the surface of that regio34

Spatiotemporal behavior of phonon-polariton waves in cr
tals has been achieved by means of coherent control.35 Side-
band THz generation in quantum well/optical microcav
systems, coherently controlled, has been demonstr
theoretically.36 Later, coherent control has been used to c
trol the vibrational excitations of molecules under nonre
nant conditions.37 A phase-modulated ultrashort pulse serv
as a specific ‘‘reagent’’ to selectively excite desired chemi
transformations.2,3 Our approach is based on the same g
eral idea of interference between different components of
resonant exciting radiation, governed by the phase mod
tion. However, it is different, because it requires ultrash
pulses to preserve the coherence in time in contrast to R
30 and 31, but it is a linear effect unlike Refs. 29,31–33, a
it results in the concentration of energy in the space on
nanoscale and not on the microscale to macroscale a
Refs. 34 and 35. We differ from Ref. 3 by our relying on t
spatial-frequency correlations for chaotic eigenmodes of
complex composite nanosystems.

With respect to the original paper,18 most of this paper’s
05420
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material is significantly new. In Sec. II, we give the deriv
tion of the spectral expansion for the retarded Green’s fu
tion, which is the basis of both the analytic theory and n
merical computations. In Sec. III, we present numeri
procedures that were not described in Ref. 18 in any de
Section IV presents the original results for transform-limit
~compressed! pulses and compares them with the kinetics
the chirped pulses. Such a comparison has allowed u
distinguish effects of the excitation pulse spectrum, its ph
modulation, and temporal shape. In particular, it is sho
that the ultrashort~single-period! exciting pulse is not the
optimum one for achieving the spatial localization of ener
on the nanoscale. New results are presented for the aver
intensity of the local fields and the rates of two-photon ex
tation that is the first optically nonlinear process who
nanoscale spatial distribution is coherently controllable.

II. THEORY: EIGENMODES, GREEN’S FUNCTIONS,
AND ULTRAFAST DYNAMICS

We consider a nanosystem whose maximum sizeL is
much less than light wavelengthl. We also assume that th
skin-layer thickness greatly exceeds the minimum scale
the system. Under these conditions, we can neglect the
tial dependence of the excitation field that, within the syste
can be approximated as a uniform electric field,E0(r ,t)
5E0(t), oscillating in timet at optical frequencies. Wave’
magnetic component is unimportant under the conditions
this paper and will not be considered. This constitutes
well-known quasistatic approximation, whose name does
imply that the processes under consideration are consid
as slow. To the opposite, as we have discussed above in
I, under such conditions, photoprocesses may potentially
extremely fast.

We describe the material system as a continuous inho
geneous medium with a local dielectric function«(r ,v) that
at any pointr of the system depends on excitation frequen
v. The corresponding quasistatic, continuity equation is

“•@«~r ,v!“w~r ,v!#50, ~1!

where the frequency argument of field potential denotes
Fourier domain. We consider a system to be confined i
rectangular prizm 0<x<Lx , 0<y<Ly , 0<z<Lz . We im-
pose the conventional mixed Dirichlet-Neumann bound
conditions,

w~r ,v!5w0~r ,v!uz50,Lz
,

]w~r ,v!

]x
5

]w0~r ,v!

]x U
x50,Lx

, ~2!

]w~r ,v!

]y
5

]w0~r ,v!

]y U
y50,Ly

,

where w0(r ,v) is the potential of the external excitatio
field, which is also the volume-average electric-field pote
tial. In specific computations, this field is assumed to
uniform andz polarized, so
2-2
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w0~r ,v!52E0~v!z. ~3!

Note that the analytical results presented below in this ch
ter remain valid if the Dirichlet boundary conditions we
imposed on all six faces of the volume, and also for
periodic boundary conditions. The specific choice of t
mixed boundary conditions is due to the fact that we use
method not only for analytical derivations but also in n
merical computations where the mixed boundary conditio
as experience shows, are beneficial for efficiency.46

In what follows, we will assume the nanosystem cons
ing of two components with uniform compositions. One
these components, which will be called the host, is assu
to possess dielectric constant«h . The second is the inclu
sion, normally metallic or semiconductor, component w
the dielectric function« i(v). We will use the spectral theor
of Bergman-Milton38,39 in the differential-equation form o
Ref. 28. The dielectric function of the system can be cast
form «(r ,v)5Q(r )« i(v)1@12Q(r )#«h , where Q(r ) is
the characteristic function of the inclusion equal 1 inside t
component and equal 0 otherwise. We will use spectral
rameter

s~v![
«h

«h2« i~v!
. ~4!

We present the solution total fieldw(r ,t) as the sum of
external fieldw0(r ,t) and the induced field that we denote
c(r ,t). Settingw(r ,t)5w0(r ,t)1c(r ,t) and taking into ac-
count that the functionw0(r ,t) is harmonic, we obtain from
Eq. ~1! an equation for induced fieldc(r ,t) as

“•@Q~r !“c~r ,v!#2s~v!¹2c~r ,v!

52“•@Q~r !“w0~r ,v!#. ~5!

This induced field satisfies the homogeneous Dirich
Neumann boundary conditions,

c~r ,v!uz50,Lz
50,

]c~r ,v!

]x U
x50,Lx

5
]c~r ,v!

]y U
y50,Ly

50, ~6!

Following Ref. 28, we introduce a generalized eigenpr
lem defined by the following homogeneous equation in p
tial derivatives@cf. Eq. ~5!#

“•@Q~r !“wn~r !#5sn¹2wn~r !, ~7!

wherewn(r ) are the eigenfunctions that satisfy the same
mogeneous boundary conditions of Eq.~6! as the induced
field c(r ), andsn are the corresponding eigenvalues. Imp
tantly, this eigenproblem depends only on the geometry
the system, but not on its material composition.

The physical eigenmodes defined by this equation
SP’s whose complex frequenciesvn1 ign are found from the
complex equation

s~vn1 ign!5sn . ~8!
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For weak relaxation,gn!vn , one finds that the real part o
the SP frequencyvn satisfies the equation

Re@s~vn!#5sn , ~9!

and that the SP spectral widthgn is expressed as

gn5
Im@s~vn!#

sn8
, sn8[

d Re@s~v!#

dv U
v5vn

. ~10!

Note that these classical SP’s have been quantized in Re
in connection with the prediction of spaser, a nanosc
counterpart of laser.

All functions satisfying boundary conditions~6! and pos-
sessing second-order derivatives constitute a linear space
we denoteR. Consider two functions,c1(r )PR andc2(r )
PR. For such functions, we can define a scalar produc
the following operation:

~c1uc2!52E
V
c2* ~r !¹2c1~r !d3r , ~11!

where V5LxLyLz is the volume of the system. This con
struction possesses all the necessary and sufficient prope
of a scalar product: it is a binary, Hermitian self-adjoine
and positive-defined operation. Note that if at least one of
functionsc1(r )P” R or c2(r )P” R, but still both of them are
twice differentiable, then bilinear form Eq.~11! obviously
exists, but it does not necessarily satisfy the scalar prod
postulates of being positive defined and Hermitian.

From Eqs.~6!, ~7!, and ~11!, it follows that these eigen-
functions are orthogonal with respect to the scalar produc
Eq. ~11! and can be normalized,

~wnuwm!5dnm , ~12!

all eigenvaluessn are real, and all eigenfunctionswn(r ) can
be chosen to be real. Straightforwardly, it can also be sho
that all eigenvalues are limited, 1>sn>0, which is expected
because the differential equation formulation28 of the eigen-
problem employed in this paper is equivalent to the integ
equation formulation where this property is known.38,39

To be able to express the solution of the excitation pr
lem @Eqs.~5! and~6!# in terms of the eigenvalues and eige
functions, we have to impose a homogeneous Dirich
boundary condition for the characteristic functionQ,

Q~r ,v!ux50,Lx
5Q~r ,v!uy50,Ly

5Q~r ,v!uz50,Lz
50.

~13!

Though necessary in our approach, this additional bound
condition is not restrictive for a finite system, since one c
always position the boundary planes outside the volume
cupied by the system, in which case Eq.~13! is satisfied
automatically. From Eqs.~5!–~7! and ~11!–~13!, we obtain
the spectral expansion for the total field~cf. Ref. 38!,

w~r ,v!5w0~r ,v!1(
n

sn wn~r !

s~v!2sn
~w0uwn!* . ~14!
2-3
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Note thatw0(r ,v)P” R, therefore (w0uwn)Þ(wnuw0), where
in fact (wnuw0)50 sincew0 is harmonic.

We introduce a retarded Green’s function as a spec
expansion in the coordinate-frequency domain:

Gr~r ,r 8;v!5(
n

sn

s~v!2si
wn~r !wn~r 8!* . ~15!

Note that SP’s correspond to the poles ofGr(r ,r 8;v) @cf. Eq.
~8!# in accord with the general properties. From Eq.~14!, it
follows that the electric field potential in the real space a
time domain can be expressed as a contraction,

w~r ,t !5w0~r ,t !2E
V
d3r 8E

2`

`

dt8w0~r 8,t8!¹82

3Gr~r ,r 8;t2t8!. ~16!

Spectral expansion results of Eq.~15! and the total electric
field potential as the Green function contraction of Eq.~16!
represent the basis for both the analytical theory and me
of numerical computations that we employ.

III. NUMERICAL PROCEDURES

A few remarks regarding the present approach are d
The spectral expansion employed in the present paper o
the known principal advantage, namely, separation of g
metric and material properties. Specifically, the eigenpr
lem of Eqs.~6! and ~7! depends only on geometry of th
nanosystemvia the characteristic functionQ(r ), but not on
its material composition. Numerically, this eigenproblem
solved once for a given geometry, which is the most com
cated and time-consuming part of the procedure. After
eigenproblem is solved, for any material composition of
system, Green’s function in the real space and freque
domainGr(r ,r 8;v) is computed from Eq.~15! without solv-
ing any additional equations. Green’s function in real spa
time Gr(r ,r 8;t2t8) is then found by fast Fourier transform
~FFT! and stored. Then, the fields for any specific mate
composition for any point in space and time can be co
puted by numerical integration from Eq.~16!.

This approach is quite efficient with respect to the CP
time, though it requires a significant~multigigabyte! memory
for the required size of the system~the required memory
scales as sixth power of system’s geometric size!. However,
it is chosen by us not because of the efficiency consid
ations, but because of its exceptionally high numerical s
bility, which is due to the following. Owing to its structure
the spectral expansion Eq.~15! automatically possesses th
exact analytical properties of a retarded Green’s function
has only simple poles, and, provided that the constituent
electric functions satisfy the Kramers-Kroning dispersion
lations, it is causal, i.e., all those poles are in the lower h
plane. We emphasize that that these analytical properties
exactly satisfied by the form of the spectral expansion of
Green’s function, no matter how accurately the eigenprob
is approximated, as long as the eigenfunctions found are
thonormal. Importantly, this prevents violation of the caus
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ity, which is a nontrivial property for any Fourier-base
method.

We have discretized Eqs.~6! and ~7! on a three-
dimensional rectangular grid of sizenx3ny3nz whose di-
mensions~in the grid steps! are:nx5nz532; ny58,16, and
32. We use a third-order discretization scheme. The obta
results show no qualitative dependence onny within the
range indicated. This was expected from the investigation
the sensitivity of the eigenmodes and eigenvalues to the
size studied in Ref. 28. After the discretization, the obtain
linear generalized eigenproblem is solved by using a hig
efficient, multithread realization of theLAPACK linear algebra
package40 for Itanium 2 processors.41

The systems studied are planar metal nanostructures p
tioned in the centralx,z plane whose thickness~in the y
direction! is two grid steps. The nanostructures of two geo
etries have been employed displayed in Fig. 1: a speci
engineered~tailored! V-shape and a random planar compo
ite ~RPC! with the 50% coverage in the central plane of t
system. These nanostructures are embedded in the diele
host with the dielectric constant«h52.0. We choose silver a
the metal because it is a natural metal with the smallest
electric losses in the visible and near infrared~ir! regions.42

For silver as the metal component, the lifetimetn
51/(2gn), computed from Eq.~10!, is shown in Fig. 2 as a
function of the SP frequency.47 This lifetime is maximum
'60 fs in the near-ir region. For the coherent control to
effective, the pulse should be as long as possible, but
exceedingtn , qualitatively because the phase information
imprinted in the pulse as the change of the instantane
periods in the excitation wave form. Therefore, the num
of the phase degrees of freedom is;T/tn , whereT is the
pulse duration. From these considerations, we choosT
550 fs and the carrier frequency of the pulsev050.8 eV,

FIG. 1. Nanosized metallic inclusions in the centralxz plane:~a!
Engineered V shape and~b! random planar composite~RPC!. Dis-
tances are expressed as grid steps, with one step correspondin
distance of 3–5 nm~see text!.

FIG. 2. Surface plasmon lifetimetn as a function of SP eigen
frequencyv.
2-4
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so a significant part of the near-ir region is within the pu
spectrum.

The eigenmodes and Green’s function described in Se
depend only on the shape of the nanosystem, but not its
scale except for the trivial scaling ofr , r 8 with that size.
However, the applicability of the present theory impos
conditions on the size scale. Those, apart from the condi
of the quasistatic approximationL!l, include also the limi-
tations of the minimum sizel. For the dielectric response t
be local,l should be greater than the three characteristic
trinsic lengths of the system: electron mean-free pathl e ,
Debye screening radiusr D , and Fermi wavelength|F . Be-
cause in metalsl e@r D*|F , the conditionl * l e is violated
first. For good metals such as silver or gold,l e;5 –10 nm.
In Fig. 1, the minimum size is two grid steps, which requir
the grid step to be at least 3–5 nm; then the total size of
system is 60–100 nm, satisfying the quasistatic condit
When l becomes smaller, nonlocal effects may play imp
tant role. One of them is modeled as increase of the elec
relaxation rate by a quantitygnl;vF / l , wherevF is the elec-
tron velocity at the Fermi surface.43 The closest system
studied experimentally that possess the maximum and m
mum scale sizes on the same order as our systems were
nanorods44 ~note that the V-shape is two nanorods connec
at their end!. This experiment not only does not show a
increase of the resonance width corresponding tognl , but, to
the contrary, observes decrease of this width explained
Ref. 44 by the suppression of the interband transitions
contrast to Ref. 43, the nonlocality affects mainly the spat
not temporal, dispersion, as we argued in Ref. 45. Th
effects only become significant forl comparable withr D , at
distances on order of 1 nm or less.45 Based on this, we will
not consider the nonlocal effects in the present paper. G
erally, to the best of our knowledge, among the wealth
publications on nano optics, the spatial dispersion has no
far been taken into account for any system more comp
than a single nanosphere.

We consider four different exciting pulses shown in Fig
3~a!–3~d!. For the three of them@~a!, ~c!, and~d!#, the excit-
ing field w0(r ,t) is az-polarized chirped pulse with Gaussia
envelope and durationT,

FIG. 3. Temporal dependence of the four excitation pulses s
ied with common parameters:T550 fs, v050.8 eV, andE051.
Panel ~a!, zero chirp (a50); panel ~b!, compressed~transform-
limited! wide-band pulse (a50.3); panel~c!, positive-chirp pulse
(a50.3); panel~d! displays a negative-chirp pulse (a520.3) ~see
text!.
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w0~r ,t !52z expH 2 iv0S t2
T

2D F11
2

T
aS t2

T

2D G
2

3

2T F S t2
T

2D G2J 1c.c., ~17!

wherea is a dimensionless phase-modulation parameter.
fourth excitation pulse, panel~b!, is a compressed one, com
puted for uau50.3 asw0(r ,t)5*e2 ivt)uw0(r ,v)u dv/(2p),
wherew0(r ,v) is a Fourier transform of Eq.~17!. Note that
pulses ~b!–~d! possess identical power spectra and dif
only by frequency-phase modulation; pulses~a!, ~c!, and~d!
have identical temporal envelopes. Pulses~c! and ~d! are
time reversed~phase conjugated!. All these pulses have the
same average frequency. Comparison of the response
them enables one to isolate effects of spectral composi
and phase modulation. The integral intensityQ(0) for all
these pulses is the same: it does not depend on the p
modulation or compression,

Q(0)5E @E0~ t !#2 dt5E uE0~v!] 2
dv

2p
. ~18!

The characteristic function,Q(r ), that enters Eqs.~5! and
~7! is a unit-step function whose gradient has ad-function
singularity. If Eqs.~5! and ~7! are discretized directly, then
this singularity may be lost, and the resulting solutions w
be completely inaccurate. We took special care to deal w
this edge singularity. We have chosen to smooth this sin
larity by applying a Gaussian filter, i.e., by replacingQ(r )
→Q̃(r ), where

Q̃~r !5E expF S r2r 8
a D 2GQ~r 8!d3r 8, ~19!

and a is the smoothing length. Computationally, we ha
carried out the integration in Eq.~19! using FFT method. We
useda51 grid step; our experience shows that increasina
does not change the solutions significantly. On the ot
hand, settinga→0, or using the original stepwiseQ(r )
function would have brought about completely inaccur
results.

IV. COMPUTATIONAL RESULTS

A. V-shape: Transform limited excitation pulses

We display in Fig. 4 the kinetics of local fields fo
transform-limited excitation pulses at two characteris
points at the metal surface: the V shape opening~the widest
part of the V shape! @panels~b! and~e!# and the apex of the
V shape@~c! and~f!# along with the corresponding excitatio
pulses@~a! and ~d!#. For the narrow-band pulse@panels~a!–
~c!#, the response at both the characteristic points ha
smooth envelope where the pulse amplitude is significa
enhanced~by a factor of'25– 50) with respect to the exci
tation pulse. The pulse at the apex is about twice higher t
at the opening of the V shape, and both pulses are sig
cantly extended in time~to '150 fs).

d-
2-5
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The wide-band pulse displayed in Figs. 4~d!–4~f! has the
spectral width one order of magnitude greater than that
the narrow-band pulse. The excitation pulse is one full os
lation, and it is transform limited. Despite this extreme
short duration of the excitation pulse, the local-field respo
of the V shape is as long as for the narrow-band pulse
scribed above. At both the opening and apex of the V sha
the initial pulse of local fields is accompanied by a lo
period of ringing that is due to the existence of compa
tively long living SP’s within the spectral width of the exc
tation pulse.

More insight can be obtained from the spatial distributi
of local fields. That for the case of the narrow-ba
transform-limited pulse is shown on Fig. 5. At the first m
ment shown@ t569.1 fs, panel~a!# corresponding approxi
mately to the maximum of the exciting pulse, the fields a
concentrated predominantly at the apex of the V shape w
they enhanced by a factor of'45 with respect to the exci
tation field maximum magnitudeE0. However, in just 400
as, i.e., within the optical cycle, the maximum intensity
shifted to the opening@ t569.5 fs, ~b!#. Then at less than 1
fs, this maximum returns to the apex@ t570.3 fs, ~c!# and
then continues to oscillate between the opening and the
never concentrating at one site@cf. panel~d!#. Thus continu-
ing transfer of the excitation energy between the apex
the tip occurs in a fraction of the optical period during t
entire duration of the pulse and beyond it~cf. Fig. 4!. This is
a reflection of the general effect of giant attoseco
fluctuations:17 continuous oscillations of the local-filed en
ergy across the entire extent of a nanosystem during a f
tion of the optical period.

The spatial distributions of local fields for the wide-ba
unchirped, ultrashort exciting pulse are shown in Fig.
Qualitatively, they behave similar to the narrow-band exc
tion shown in the previous figure: there are high local fie

FIG. 4. Tranform-limited excitation pulses and the correspo
ing local fields for narrow-band excitation (a50) @panels~a!–~c!#
and wide-band excitation (uau50.3) @panels~d!–~f!#. Panels~b!
and ~e! display the local fields at the opening of the V shape, a
panels~c! and ~f! show the local fields at its apex. All pulses a
shown in the same units and are directly comparable to each o
Silver used as a material for the V shape.
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at the apex, and the energy is continuously transferred f
apex to the opening and back, which is in agreement with
overlap in time of the local fields at the apex and opening
the V shape evident in Fig. 4, supporting the general conc
of the giant attosecond fluctuations of local fields. Quant
tively, the maximum field is by a factor of'2 larger than in
Fig. 5. Thus, the dramatic~more than one order of magn
tude! broadening of the pulse spectrum and shortening of
duration, leads only to some quantitative, but not qualitat
improvement in the localization of energy at the tip.

B. V-shape: Chirped excitation pulses

Kinetics of local fields at the opening and apex of the
shape is displayed in Fig. 7. Different from the transfor

-

d

er.

FIG. 5. For narrow-band unchirped pulse (a50), spatial depen-
dence of the local fields in the plane of the V shape at its surfac
the moments of time shown in the graphs. The spatial scale co
sponds to Fig. 1, and the times correspond to Fig. 4. The magni
of the fields is in the units of the excitation fieldE0. For each
moment, the maximum componentx,y, or z of the local field that
corresponds is displayed.

FIG. 6. Same as in Fig. 5, but for wide-band unchirped pu
(uau50.3).
2-6



e
g
th
ly

ely

e
o
u
i

io
r

el
t
ion
-
th

er

e
e

s
th

tia
w
m

ng
ds
ly
a-

y

ic
ich
arily
le.
e-
-

n.
ao-

y-
m

fo

m
as

e at
rre-

tude

se

COHERENT CONTROL OF NANOSCALE LOCALIZATION . . . PHYSICAL REVIEW B69, 054202 ~2004!
limited pulses~Fig. 4!, the local-field pulse lengths are clos
to that of the exciting pulses: no significant ‘‘ringing’’ at lon
times is found. For the negative chirp, the local field at
opening @panel ~b!# reaches its maximum simultaneous
with the exciting field, while the field at the tip@panel~c!# is
delayed with its maximum att'100 fs, i.e., practically after
the end of the exciting pulse. In contrast, for the positiv
chirped pulse, the local fields@panels~e! and~f!# are concur-
rent in time with each other and with the exciting puls
Thus, the negatively chirped pulse yields the selective c
centration of the excitation energy at the tip of the nanostr
ture. Occurring after the end of the exciting pulse, this
clearly a coherent effect. For both the chirped excitat
pulses, the field at the tip is greatly enhanced, by a facto
'80.

The spatial distributions for the case of the negativ
chirped excitation are shown in Fig. 8 where we see tha
the moment of time close to the maximum of the excitat
pulse@ t557.3, panel~a!#, the local-field energy is concen
trated at the opening of the nanostructure. However, at
end of the excitation pulse@ t580.3–89.7 fs, panels~b! and
~c!# the excitation energy is localized at the tip where it p
sists long after the excitation pulse has ended@ t5118 fs,
panel~d!#. Thus, in this case, we achieve the desired conc
tration of the excitation energy at the tip of the V shap
where the local fields are enhanced by almost two order
magnitude at their maxima with respect to the peak of
excitation pulse.

In contrast, for the positively chirped pulse, the spa
distributions of the local fields displayed in Fig. 9 sho
the energy concentration at the tip at the moment of ti
close to the excitation-pulse maximum@ t558.5 fs, panel
~a!#. The maximum of local fields moves to the openi
of the V shape in less than two oscillation perio
@ t564.3 fs#. Then it moves back to the tip in approximate
one oscillation period, still within the duration of the excit

FIG. 7. Excitation pulses and the corresponding local fields
negatively chirped pulse (a520.3) @panels~a!–~c!# and positively
chirped pulse (a50.3) @panels~d!–~f!#. Panels~b! and ~e! display
the local fields at the opening of the V shape, and panels~c! and~f!
show the local fields at its apex. All pulses are shown in the sa
units and are directly comparable to each other. Silver used
material for the V shape.
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tion pulse @ t568.3 fs, panel~c!#. At comparatively long
times @ t598.4 fs, panel~d!#, the local fields are essentiall
delocalized.

The significant difference in the spatiotemporal dynam
between the positively and negatively chirped pulses, wh
are time-reversed with respect to each other, necess
shows that this dynamic is significantly not time reversib
This is certainly due to the dissipation in silver. This tim
reversibility violation is significant despite very low dielec
tric losses in silver within the bandwidth of the excitatio
We can interpret this fact as being due to the effect of ch
ticity of dipolar eigenmodes:26 this is similar to thermody-
namic irreversibility of statistical physics despite the d
namic reversibility of the underlying exact quantu

r

e
a

FIG. 8. For negatively chirped pulse (a520.3), spatial depen-
dence of the local fields in the plane of the V shape at its surfac
the moments of time shown in the graphs. The spatial scale co
sponds to Fig. 1, and the times correspond to Fig. 7. The magni
of the fields is in the units of the excitation fieldE0. For each
moment, the maximum componentx,y, or z of the local field that
corresponds is displayed.

FIG. 9. Same as in Fig. 8, but for positively chirped pul
(a50.3).
2-7
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mechanics that is due to randomness and complexity of
eigenstates. Comparing the dynamics induced by the
excitation pulses presented above~Secs. IV A and IV B!, we
arrive at the conclusion that both the spectral composi
and phase modulation of the excitation pulses significa
affect nanometer-femtosecond kinetics in metal nanost
tures. With respect to the spectrum, it is somewhat obvi
property, but the possibility to control this dynamics and co
centrate the excitation local energy at a desired site o
nanosystem with the excitation-pulse phase modulation
nontrivial and potentially useful.

C. Random planar composites

For RPC, the kinetics of local fields induced by the fo
wave forms of the excitation pulses~at the spatial points
where the global maximum is obtained in each case! is pre-
sented in Fig. 10. Panels~a!–~d! correspond to the excitatio
pulses of Fig. 3. Different from the V shape~cf. Fig. 7!, there
is a significant ‘‘ringing’’ of the induced local fields at time
appreciably longer than the duration of the excitation pu
Thus, in this case, it has been impossible to concentrate
local fields in time using the linear-chirped pulses. The a
plitude of the response is higher for the wide-band pul
and reaches the value of'80, close to that for the V shape
In this case, the positive-chirped excitation@panel ~d!# cre-
ates the maximum temporal delay of the response. This d
and ringing are the effects of the relatively long pha
memory of silver in the spectral region considered.

The spatial distributions of the local fields for RPC at t
moments when those fields reach their respective glo
maxima for the four excitation pulses under considerat
are shown in Fig. 11. The field distribution for the case of
narrow-band pulses@panel~a!# shows a pronounced conce
tration of energy at a dominating peak where the enhan
ment Ez'60. This concentration is unrelated to the pha
modulation and is the manifestation of the ‘‘ninth wav
effect obtained earlier with the use of the dipole-dipo
approximation.16 A similar spontaneous concentration, but
two sites is also seen in panel~b! for the wide-band
transform-limited pulse. In panel~c!, the negatively chirped
pulse excites a different distribution than that of panel~b!.

FIG. 10. For RPC, temporal dynamics of local fields for the fo
excitation pulses under consideration: narrow-band transfo
limited ~a!, wide-band transform limited~b!, negatively chirped~c!,
and positively chirped~d!. In each case, the maximum compone
of the local field is shown at the spatial site of their correspond
global maximum.
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The positively chirped pulse@panel~d!# is significantly dif-
ferent from the above distributions, though it does not sh
any enhanced concentration of energy at a single locatio

Thus for RPC, we could not show enhancement of
energy concentration using the linearly chirped pulse. N
ertheless, we have found that both the spectral compos
and the phase modulation do affect the spatiotemporal
namics. This still leaves open a possibility to control th
dynamics by a more sophisticated phase modulation.

D. Mean linear fields and two-photon excitation

We introduce the time-averaged distribution of the loc
field intensity

^I ~r !&5
1

TE2`

`

uE~r ,t !u2dt

5
1

TE dv

2p
uE0~v!u2U12E z8¹82Gr~r ,r 8,v!d3r 8U2

,

~20!

which, obviously, depends only on the power spectru
uE0(v)u2, but not on the phase of the excitation. Thus,the
average linear local-field intensities are not controllable b
the phase modulation. This conclusion is illustrated by the
direct temporal integration of the numerically obtained so
tions, whose results are shown in Fig. 12. Indeed, we see
the three pulses with identical spectra, namely, negativ
chirped@panel~b!#, positively chirped@panel~c!#, and wide
band@panel~d!#, have the identical average intensity dist
bution ^I (r )&, which is an independent check that the co
putations are correct. In contrast, distribution^I (r )& for the
transform limited narrow-band pulse@panel~a!# is completely
different.

In sharp contrast to the average linear local intensity@cf.
Eq. ~20! and Fig. 12#, there is no principle that forbids th
coherent~i.e., by means of phase-modulation! control of the

r
-

t
g

FIG. 11. Spatial distributions of local fields at the instances
their respective global maxima. The exciting pulses for panels~a!
and ~b! correspond to those in Fig. 10.
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average intensity ofnonlinearprocesses. In Fig. 13, we sho
the average enhancement factor of the two-photon absorp
calculated as

^@ I ~r !#2&5E
2`

`

uE~r ,t !u4dt. ~21!

From this we can clearly see that the negatively chirp
pulse@panel~c!# produces the best concentration of the tw
photon excitation at the tip of the V shape: it yields t
highest intensity at the tip and the relatively small excitat
at the opening. Note that this maximum enhancement is v
significant,'4.53107, exceeding that for the narrow-ban
pulse by an order of magnitude. This supports the possib
to concentrate the integral nonlinear excitation at the des
site of a nanostructure. Importantly, the time-averaged lo
enhancement of SERS~surface-enhanced Raman scatterin!
is given approximately by same factor,^@ I (r )#2&, as the two-
photon excitation and is also very significant,'4.53107,
and sharply localized at the tip of the V shape for t
negative-chirp pulse.

V. CONCLUDING REMARKS

Without repeating the specific discussion presented in
preceding sections, here we very briefly summarize the
jor results. We have demonstrated a possibility to control
spatotemporal dynamics of a nanosystem on the nanom
femtosecond scale. The degrees of freedom for such a
trol are provided by the spectral composition and spect
phase modulation of the excitation pulse. The broadenin
the spectrum of the excitation pulses to nearly one oct
leads to a significant enhancement of the local fields at
tip of the V-shaped nanostructure. The spectral-phase m

FIG. 12. Time-averaged spatial distributions^I (r )& of the local
fields. Panels~a!–~d! correspond to those for the excitation puls
in Fig. 3.
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lation ~at a constant spectral shape! of the excitation pulse
allows one to concentrate the excitation at the tip of
V-shaped nanosystem at a certain time interval, in particu
achieve the duration of the local-field pulse close to that
the excitation pulse, without any long-time ‘‘ringing’’ tails
However, for the linear photoprocesses, the time-aver
local-field intensity are not phase controllable. In contra
for nonlinear photoprocesses, the average yield can als
controlled by the phase modulation of the excitation pul
which is demonstrated on the example of two-photon exc
tion.

The effects of coherently controlling the spatial conce
tration on the nanoscale and temporal course on the fem
second scale of the ultrafast excitation energy in nanos
tems may find applications in a wide range of optical prob
and nanomodification of nanosystems. Some perspective
eas of application comprise metal-nanostructure enhan
probing and spectroscopy, in particular, surface-enhan
Raman spectroscopy, of single molecules or chemical gro
of larger molecules or biological objects. These applicatio
include the temporal resolution due to the short duration
the local-field pulses. Nanomodification of the nanosyste
such as the local photochemical modification of large m
ecules, bio-objects, or surfaces may be another perspe
area of applications.
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FIG. 13. Time-averaged spatial distributions of the local-fie
two-photon absorption enhancement^@ I (r )#2&. Panels~a!–~d! cor-
respond to those for the excitation pulses in Fig. 3.
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