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We predict and theoretically investigate the unique possibility to control distribution of ultrafast local optical
fields in nanosystems in space with nanometer resolution and in time on the femtosecond scale. While the
spatial degrees of freedom of the optical radiation do not allow focusing of the light on nanoscale, the phase of
the excitation light constitute a functional degree of freedom that permits one to coherently control the
distribution of the energy of local fields, concentrating it at a desired location at certain times. We study both
a specially designed V-shaped nanostructure and a random planar nanocomposite. Several types of exciting
pulses are investigated, which has allowed us to distinguish effects of phase modulation and spectral compo-
sition of the excitation pulse. Possible applications of this effect include energy supply and control of ultrafast
optical computations in nanostructures, local optical probing of nanosystems, including nanosensors of chemi-
cal and biological agents, and nanomodification of surfdnasolithography.
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[. INTRODUCTION fication of nanosystems where ultrafast excitation and relax-
ation of the processes helps preserve nanoscale spatial
This paper is devoted to theoretical investigation of theresolution, and computing with the nanoscale devices where
processes of energy localization in space on a nanometémtosecond cycle time is an ultimate goal for ultrafast com-
scale and in time on a femtosecond scale in nanosystems apdtations. The coherent control over the spatiotemporal lo-
coherent control of such processes. The idea of the cohereaélization of the excitation energy may be useful for a range
control is based on excitation of a coherent packet of quanef nanophotomodification and probing approaches, including
tum states or classical waves that interfere in the processes tifose suggested, quite early, in Ref. 21. Among the possible
the evolution of the system. In the processes of excitationapplications is optical drilling of nanoholes in different sub-
the different constituent waves of that coherent packet arstrates, nonlinear and Raman nanoprobing of single mol-
generated with individual, controllable phases. These phasexules that was carried out recently using the surface-
represent the degrees of freedom that allow one to exert comnhanced Raman scatteringSERS,?>?®* and Raman
trol over that system’s evolutioh2 In the case of short-pulse microscopy and spectroscopy of separate chemical groups of
excitation, for the coherent control to be efficient, the exci-macromolecules, a technique demonstrated rec&hfior
tation time should be much shorter than the dephasing timethe biological and defense applications the coherent control
in the system. For metal-dielectric nanosystem this requiresn Raman spectroscopy of single biological objects such as
ultrashort, femtosecond excitation laser pulses. viruses, spores, and cells and their fragments is promising.
From both the fundamental and applied points of view,An interesting perspective application may be the coherent
there are compelling reasons to consider phenomena that azentrol of the optical excitation of the proposed spaser, a
simultaneously ultrafast and localized on nanoscale. Interaguantum generator of high-intensity coherent local fiéfds.
tions between different parts of a nanosystem are very strong The general challenge in optically controlling the spatial
due to small, nanoscale distances separating them. At opticélstribution of optical excitation of a nanosystem is that op-
frequencies, a universal part of such interactions at the intetical radiation lacks its spatial degrees of freedom on the
mediate to large scales is the dipole-dipole interaction, whileanoscale: within a nano-object, any electromagnetic wave
at the minimum scale all multipoles should be taken intoappears as a&patially uniform electric field oscillating in
account. Such interactions on the nanoscale lead to femtdime at optical frequencies. The only remaining functional
second times of energy and polarization transfer and relaxdegrees of freedom are the temporal ones: the frequency
ation within the nanosystem. On the other hand, ultrashorspectrum and phase of the exciting electric field. Posing an
external excitation allows one to preserve excitation energwydditional problem, the universal, long-range dipole interac-
and temporal coherence of the nanosystem, which opens djpn induces ultrafast transfer of excitation in
possibilities of coherent control. Additionally, nanosize nanostructure¥ which causes redistribution of the excita-
eliminates effects of electromagnetic retardation and thus faion energy across a nanosystem and may lead to delocaliza-
cilitates coherent ultrafast kinetics. The phenomena that aréon. For instance, consider a local excitation of the system
nanoscale and ultrafast have recently attracted significant attsing a near-field scanning optical microscgp&OM) or a
tention, see, e.g., Refs. 4-20. nanoaperture. In this case, the source of the excitation is
The applications of ultrafast-nanoscale processes includédeed well localized, but this initially localized excitation
but not limited to, time resolved nanoscale probing and dewill spread over the entire nanosystem on the atto- to fem-
tection, in particular nano-Raman spectroscopies, hanomodiesecond scale due to the dipolar interaction between differ-
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ent parts of the nanosystefh!’ Note that additionally, material is significantly new. In Sec. Il, we give the deriva-
NSOM'’s or nanoaperture’s spectral bandwidth may be insuftion of the spectral expansion for the retarded Green'’s func-
ficient to conduct thaultrafast localized excitation. tion, which is the basis of both the analytic theory and nu-
To solve this problem, we have recently proposed tomerical computations. In Sec. lll, we present numerical
modulate the phase of an exciting femtosecond pulse as Rfocedures that were not described in Ref. 18 in any detail.
functional degree of freedom to coherently control spatialSection IV presents the original results for transform-limited
distribution of the excitation enerdf}.This possibility exists ~(Compressedpulses and compares them with the kinetics for
due to the fact that polar excitations, which are conventiontN€ chirped pulses. Such a comparison has allowed us to
ally called surface plasmor(§P’s in inhomogeneous nano- distinguish effects of the excitation pulse spectrum, its phase

systems, tend to be localized with their oscillation frequency™edulation, and temporal shape. In particular, it is shown

(and, consequently, phaseorrelated with the position inside that the ultrashortsingle-period exciting pulse is not the
the systen?®~28 The pulse phase modulation will cause the OPtimum one for achieving the spatial localization of energy
exciting field to take energy away from SP’s localized in©" the nanoscale. New results are presented for the averaged

those parts of the system where the oscillations are out dftensity of the local fields and the rates of two-photon exci-
phase with the driving pulse and move it, with time, to thetation that is t_he f_lrst_ op_tlca_lly nonlinear process whose
SP excitations in other parts where such oscillations occur ifanoscale spatial distribution is coherently controliable.
phase with the driving pulse. Alternatively, one may think

that the “instantaneous frequency” of the exciting pulse is Il. THEORY: EIGENMODES, GREEN'S FUNCTIONS,
changing, causing rapid adiabatic passage through the reso- AND ULTRAFAST DYNAMICS

nance with a localized mode. As a result, this mode will

Lnt'gﬁ"gn%e .;Xg'ti(.jta?%(rj] Igﬁleer; asnt]rcl)e ede|'[Soe tﬁgogreestsersc; dei nuch less than light wavelength We also assume that the
: IS exciiat gy mov Xt group skin-layer thickness greatly exceeds the minimum scale of

nmordeBs and furttl?erfrln the;requ§gﬁy dcl)ir;a}tlin I;ni:]he samef T?%e system. Under these conditions, we can neglect the spa-
er. because Ine irequency and localization In space 1o h‘f?al dependence of the excitation field that, within the system,
eigenmodes of a nanosystem are correlated, it will lead to th

flow of the excitation energy in space allowing for the di- €an be approximated as a uniform electric fiefg(r,t)

rected localization of the entire excitation energy at a given_ Eq(t), oscillating in timet at optical frequencies. Wave's
; ay 9 r}nagnetic component is unimportant under the conditions of
site of the nanosystem.

Coherent control has been successfully used to spectralfg‘:s paper and will not be considered. This constitutes the
i

concentrate the energy of an ultrashort nonlinearly generate ell-known quasistatic approximation, whose name does not
gy Y9 ply that the processes under consideration are considered

2]“;32 (')r; tﬁegclz\é)ilrgﬁhc:r?t:gqlog\fi.rzregtli(;tllonr"n]ivza\/:ntbc?fenar‘:’ls slow. To the opposite, as we have discussed above in Sec.
. R ; SP : P I, under such conditions, photoprocesses may potentially be
ticles and polarization using continuous-wave fieldge,

) : extremely fast.
e.g. Refs. .39’31’ and referenceg cited thereffiwllowing . We describe the material system as a continuous inhomo-
these predictions, charge-free spin currents of electrons in

semiconductors have been obserd&# The possibility has oo cous medium with a local dielectric functis(r, ) that
: at any pointr of the system depends on excitation frequency

been shown to concentrate the energy of acoustic waves at a Th di istafi tinit tion i
given time and site inside a region when these waves ar@- '€ corresponding quasistatic, continuity equation 15
gengrated by a laser e'xcitation of the surface of that r_eﬁion. V [e(r,0)Vo(r,w)]=0, (1)
Spatiotemporal behavior of phonon-polariton waves in crys-

tals has been achieved by means of coherent cofttRide-  Where the frequency argument of field potential denotes the
band THz generation in quantum well/optical microcavity Fourier domain. We consider a system to be confined in a
systems, coherently controlled, has been demonstrategctangular prizm &x<L,, Osys<L,, Oszs<L,. We im-
theoretically*® Later, coherent control has been used to conpose the conventional mixed Dirichlet-Neumann boundary
trol the vibrational excitations of molecules under nonreso-conditions,

nant conditions’ A phase-modulated ultrashort pulse serves

We consider a nanosystem whose maximum dizes

as a specific “reagent” to selectively excite desired chemical e(r,w)= @O(r’w)|z=0,LZv
transformationg:® Our approach is based on the same gen-

eral idea of interference between different components of the do(r,m) Jdeg(r,w)

resonant exciting radiation, governed by the phase modula- ox  ox : @
tion. However, it is different, because it requires ultrashort x=0Ly

pulses to preserve the coherence in time in contrast to Refs.

30 and 31, but it is a linear effect unlike Refs. 29,31-33, and dp(r,@) Jeo(r, )

it results in the concentration of energy in the space on the ay ay y:0,Ly,

nanoscale and not on the microscale to macroscale as in

Refs. 34 and 35. We differ from Ref. 3 by our relying on the where ¢q(r,w) is the potential of the external excitation

spatial-frequency correlations for chaotic eigenmodes of théield, which is also the volume-average electric-field poten-

complex composite nanosystems. tial. In specific computations, this field is assumed to be
With respect to the original pap&tmost of this paper’s uniform andz polarized, so
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¢o(r,w)=—Eg(w)z 3 For weak relaxationy,<w,, one finds that the real part of

) S the SP frequencw, satisfies the equation
Note that the analytical results presented below in this chap-

ter remain valid if the Dirichlet boundary conditions were Res(wy)]=S,, (9)
imposed on all six faces of the volume, and also for the

periodic boundary conditions. The specific choice of theand that the SP spectral widty, is expressed as

mixed boundary conditions is due to the fact that we use this

method not only for analytical derivations but also in nu- Im[s(wp)] . dRes(w)]
merical computations where the mixed boundary conditions, Y=, Sh= T deo . (10
as experience shows, are beneficial for efficieficy. Sn o=,

In what follows, we will assume the nanosystem consist- . , . .
ing of two components with uniform compositions. One of:\Iozeoghnaééggsevaltisstfsl Sg;g%’f l;?esn gg:rnt';e?];]ssigég
these components, which will be called the host, is assumel P P ’

to possess dielectric constasyf. The second is the inclu- Counterpart of laser.
sion, normally metallic or semiconductor, component with All functions satisfying boundary conditions) and pos-

the dielectric function:;(«). We will use the spectral theory sessing second-order derivatives constitute a linear space that
(). : .
of Bergman-Miltori®39in the differential-equation form of "€ denoteli. Consider two functionsy (r) « & and yp(r)

Ref. 28. The dielectric function of the system can be cast int(%iR'f Ilzlor TQ’UCh funcpon_s, we can define a scalar product as
form &(r,®)=0(r)e;(o)+[1—O(r)]e,, where O(r) is € following operation.

the characteristic function of the inclusion equal 1 inside that

component and equal 0 otherwise. We will use spectral pa- (| )= _f W5 (r)V2(r)dr, (12)
rameter v

where V=L,L,L, is the volume of the system. This con-

(4) struction possesses all the necessary and sufficient properties
of a scalar product: it is a binary, Hermitian self-adjoined,
and positive-defined operation. Note that if at least one of the
functions ¢4 (r) € R or ¢,(r) € R, but still both of them are
twice differentiable, then bilinear form Edq11l) obviously
exists, but it does not necessarily satisfy the scalar product
postulates of being positive defined and Hermitian.

From Eqgs.(6), (7), and(11), it follows that these eigen-

. _ 2 functions are orthogonal with respect to the scalar product of
V-IOOV(re)]=s(@)V(r,e) Eg. (11) and can be normalized,

(@)= —
S(w)=———.
e ei(0)

We present the solution total field(r,t) as the sum of
external fieldpy(r,t) and the induced field that we denote as
P(r,t). Settingo(r,t)= ¢o(r,t)+ ¢(r,t) and taking into ac-
count that the functiorpy(r,t) is harmonic, we obtain from
Eqg. (1) an equation for induced fielg(r,t) as

==V [0(r)Veurw)]l. S s "
This induced field satisfies the homogeneous Dirichlet- (¢nlem) = dnm, 12
Neumann boundary conditions, all eigenvalues, are real, and all eigenfunctions,(r) can
be chosen to be real. Straightforwardly, it can also be shown
P(r,0)[,=01,=0, that all eigenvalues are limited=1s,,=0, which is expected
because the differential equation formulafdof the eigen-
aY(r,w) AY(r,w) problem employed in this paper is equivalent to the integral
“ax ==y =0, (6)  equation formulation where this property is kno#r’
_ y _ . o
x=0Ly y=0L, To be able to express the solution of the excitation prob-

) ) ) ) lem[Egs.(5) and(6)] in terms of the eigenvalues and eigen-
Following Ref. 28, we introduce a generalized eigenprobfynctions, we have to impose a homogeneous Dirichlet
lem defined by the following homogeneous equation in Parpoundary condition for the characteristic function
tial derivatives(cf. Eq. (5)]
Or,w)ly—oL =0 (r,w)|y—oL =0(r,w)|,—o,. =0.
V-[O(r)Veu(r)]=5,Y2pu(1), (7) o, ly-or, lz-ot, 3

wheregp,(r) are the eigenfunctions that satisfy the same ho- : : L
mogeneous boundary conditions of H6) as the induced Though necessary in our approach, this additional boundary

field 4(r), ands, are the corresponding eigenvalues. Impor_COI’]dItIOI’I is not restrictive for a finite system, since one can

S Iways position the boundary planes outside the volume oc-
tantly, this eigenproblem depends only on the geometry of W : / . L
the system, but not on its material composition. cupied by the system, in which case H43) is satisfied

The physical eigenmodes defined by this equation ar utomatically. From Eqs(5)—(7) and (1)—(13), we obtain

SP’s whose complex frequencieg+i vy, are found from the e spectral expansion for the total figltf. Ref. 39,
complex equation

o(r,0) = oo(r,)+ S, o)

S(wn+iyn)=5,. (8) - m(¢o|¢n)*- (14)
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Note thatey(r,w) é R, therefore ¢g|¢n) # (¢l ¢o), Where
in fact (¢, o) =0 sinceey is harmonic.

We introduce a retarded Green’s function as a spectral

expansion in the coordinate-frequency domain:

G(rriw)=3 s g (e, (19

n Si

Note that SP’s correspond to the pole<®{r,r’; w) [cf. Eq.
(8)] in accord with the general properties. From Etg), it

PHYSICAL REVIEW B 69, 054202 (2004
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FIG. 1. Nanosized metallic inclusions in the centralplane:(a)

follows that the electric field potential in the real space andengineered V shape ar(}) random planar composit&®kPQO. Dis-

time domain can be expressed as a contraction,

go(r,t)Zgoo(r,t)—f d3r’f dt’ @o(r’,t")V'2
V — o0
XG'(r,r';t—t"). (16)

Spectral expansion results of E{.5) and the total electric

tances are expressed as grid steps, with one step corresponding to a
distance of 3—5 nnfsee text

ity, which is a nontrivial property for any Fourier-based
method.

We have discretized Eqs(6) and (7) on a three-
dimensional rectangular grid of sizgxn,xn, whose di-

field potential as the Green function contraction of Eig) ~ Mensions(in the grid stepsare:n,=n,=32; n,=8,16, and
represent the basis for both the analytical theory and methog?- We use a third-order discretization scheme. The obtained

range indicated. This was expected from the investigation of

the sensitivity of the eigenmodes and eigenvalues to the grid
Il NUMERICAL PROCEDURES size studied in Ref. 28. After the discretization, the obtained
A few remarks regarding the present approach are dudinéar generalized eigenproblem is solved by using a highly
The spectral expansion employed in the present paper Oﬁe@‘ﬂment,omuluthrgad realization of the\PACK linear algebra
the known principal advantage, namely, separation of ged®ackagé” for Itanium 2 processors. _
metric and material properties. Specifically, the eigenprob- The systems studied are planar metal nanostructures posi-
lem of Egs.(6) and (7) depends only on geometry of the tioned in the centrak,z plane whose thicknesgn the y
nanosystenvia the characteristic functio®(r), but not on  direction is two grid steps. The nanostructures of two geom-
its material composition. Numerically, this eigenproblem is€lfiés have been employed displayed in Fig. 1: a specially
solved once for a given geometry, which is the most compli-€ndineeredtailored V-shape and a random planar compos-
cated and time-consuming part of the procedure. After thdf® (RPQ with the 50% coverage in the central plane of the
eigenproblem is solved, for any material composition of theSyStem. These nanostructures are embedded in the dielectric
system, Green’s function in the real space and frequencfOSt with the dielectric constanf,=2.0. We choose silver as
domainG'(r,r’; w) is computed from Eq(15) without solv- he metal because it is a natural metal with the smallgst di-
ing any additional equations. Green’s function in real space€ectric losses in the visible and near infrar@dl regions.
time G'(r,r’;t—t’) is then found by fast Fourier transform FOr silver as the metal component, the lifetime,
(FFT) and stored. Then, the fields for any specific material~1/(27n), computed from Eq(10), is shown in Fig. 2 as a
composition for any point in space and time can be Cc,m_functlon_ of the SP _frequ_ené‘y. This lifetime is maximum
puted by numerical integration from E€L6). ~60 fs in the near-ir region. For the coherent cgntrol to be
This approach is quite efficient with respect to the cpueffective, the pulse should be as long as possible, but not
time, though it requires a significatmultigigabyté memory gxcgedlngn, qualitatively because the phase |r_1format|0n is
for the required size of the systefthe required memory |mp_r|nte(_JI in the p_uls_e as the change of the instantaneous
scales as sixth power of system’s geometric )sie®wever, periods in the excitation wave form. Therefore, thg number
it is chosen by us not because of the efficiency considerof the phase degrees of freedom~isl/7,,, whereT is the
ations, but because of its exceptionally high numerical staPulse duration. From these considerations, we chobse
bility, which is due to the following. Owing to its structure, =50 fs and the carrier frequency of the puleg=0.8 eV,
the spectral expansion E¢l5) automatically possesses the

exact analytical properties of a retarded Green’s function: it I, (£s)

has only simple poles, and, provided that the constituent di- 75

electric functions satisfy the Kramers-Kroning dispersion re- 50

lations, it is causal, i.e., all those poles are in the lower half

plane. We emphasize that that these analytical properties are 25

exactly satisfied by the form of the spectral expansion of the 0 i ; 3 @ (eV)

Green’s function, no matter how accurately the eigenproblem

is approximated, as long as the eigenfunctions found are or- FIG. 2. Surface plasmon lifetime, as a function of SP eigen-
thonormal. Importantly, this prevents violation of the causal-frequencyw.
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Exciting Pulses

. T
Es (t) @  (a=0) E;(t) ® (x=03) <p0(r,t)=—zexp[—|w0(t—§)

]

1 Transform Limited g Transform Limited
Narrow Band Pulse 1 Wide Band Pulse 3 T 2
0 t(f S B
00 200 (£s) -‘f 2oot(fs) 2T (t 2 tee, (17
-1 -2
E. (t) © E.(t) @ wherea is a dimensionless phase-modulation parameter. The
1 - C(‘?=P?]'l3) 1 (@=-03) fourth excitation pulse, panéb), is a compressed one, com-
o osteve h”i(tf:) o Negam"cmfg‘(";lsse) puted for|a|=0.3 asey(r,t)=fe Y| ¢y(r,0)| do/(27),
00 200 00 200 where ¢y(r,w) is a Fourier transform of Eq17). Note that
-1 -1 pulses (b)—(d) possess identical power spectra and differ

FIG. 3. Temporal dependence of the four excitation pulses stud(-)nly b_y frequency-phase modulation; pulsa (c), and(d)
ied with common parameterd=50 fs, wo=0.8 eV, andEy=1. have identical temporal _envelopes. Pulges and (d) are
Panel (a), zero chirp @=0); panel(b), compressedtransform- time reversedphase conjugatedAll these pulses have the

limited) wide-band pulse ¢=0.3); panel(c), positive-chirp pulse ~Sa&Me average freque.ncy. Comparison of the responses to
(a=0.3): paneld) displays a negative-chirp pulse & —0.3) (see them enables one to isolate effects of spectral composition

text). and phase modulation. The integral intens@® for all
these pulses is the same: it does not depend on the phase

so a significant part of the near-ir region is within the pulsemodulation or compression,
spectrum.

The eigenmodes and Green'’s function described in Sec. Il ©0)_ 9 ,do
depend only on the shape of the nanosystem, but not its size Q _f [Eo(D)] dt_f |Eo(w)] on (18)
scale except for the trivial scaling of r’ with that size.
However, the applicability of the present theory imposes The characteristic functio® (r), that enters Eq¢5) and
conditions on the size scale. Those, apart from the conditiom) is a unit-step function whose gradient hag-dunction
of the quasistatic approximatidn<\, include also the limi-  gingyarity. If Egs.(5) and (7) are discretized directly, then
tations of the minimum sizé For the dielectric response t0 thjs singularity may be lost, and the resulting solutions will
be local,| should be greater than the three characteristic inyg completely inaccurate. We took special care to deal with
trinsic lengths of the system: electron mean-free fath  this edge singularity. We have chosen to smooth this singu-

Debye screening radius, , and Fermi wavelengtic. Be-  |arity by applying a Gaussian filter, i.e., by replacifiyr)
cause in metal§;>rp= A, the conditionl=l, is violated —.®(r), where

first. For good metals such as silver or gdlgh-5—10 nm.

In Fig. 1, the minimum size is two grid steps, which requires fr\2
the grid step to be at least 3—5 nm; then the total size of the @(r):f exp{(—) }(r’)d3r’, (19)
system is 60—100 nm, satisfying the quasistatic condition. a

When| becomes smaller, nonlocal effects may play impor- dais th thing lenath. C tationall h
tant role. One of them is modeled as increase of the electrofi’’® @ !S theé smoothing fengih. Lomputationaly, we have

relaxation rate by a quantity,~vg/l, wherev is the elec- carried out the integration in Eg19) using FFT me_thod. We
tron velocity at the Fermi surfadd.The closest systems US€da=1 grid step; our experience shows that increasing
studied experimentally that possess the maximum and ming0es not phange the sol_utlons S|gr_1|f_|cantly. O’? the other
mum scale sizes on the same order as our systems were g 8“0‘; settinga—0, or using the original stepms@(r)
nanorod&* (note that the V-shape is two nanorods connecte unction would have brought about completely inaccurate
at their end. This experiment not only does not show any "eSults.
increase of the resonance width corresponding,o but, to
the contrary, observes decrease of this width explained in IV. COMPUTATIONAL RESULTS
Ref. 44 by the suppression of the interband transitions. In
contrast to Ref. 43, the nonlocality affects mainly the spatial,
not temporal, dispersion, as we argued in Ref. 45. These We display in Fig. 4 the kinetics of local fields for
effects only become significant fbrcomparable withrp, at  transform-limited excitation pulses at two characteristic
distances on order of 1 nm or I€8sBased on this, we will points at the metal surface: the V shape operithg widest
not consider the nonlocal effects in the present paper. Gempart of the V shape[panels(b) and(e)] and the apex of the
erally, to the best of our knowledge, among the wealth ofV shape[(c) and(f)] along with the corresponding excitation
publications on nano optics, the spatial dispersion has not saulses[(a) and(d)]. For the narrow-band puld@anels(a)—
far been taken into account for any system more complexc)], the response at both the characteristic points has a
than a single nanosphere. smooth envelope where the pulse amplitude is significantly
We consider four different exciting pulses shown in Figs.enhancedby a factor of~25-50) with respect to the exci-
3(a)—3(d). For the three of therf(a), (c), and(d)], the excit- tation pulse. The pulse at the apex is about twice higher than
ing field ¢o(r,t) is az-polarized chirped pulse with Gaussian at the opening of the V shape, and both pulses are signifi-
envelope and duratiom, cantly extended in timéto ~150 fs).

A. V-shape: Transform limited excitation pulses
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Kinetics for V-shape; Transform Limited Pulses Local Fields for V-shape; Transform Limited Pulse (¢ =0)
E{® (t) Narow Band ESO (1) Wide Band t=69.1 fs t=69.5 fs
1 (@=0) 5 (@=03) 80 80
MM M N @ @ 40 )
00 200 R |} |
-1 100 200 E,0 E,0 *"*‘w
gé(t) ® -40 -40
40 mso X -80
O Tt £ (£5)
~40 100 200 £=70.3 fs
80 80
©
40 ll 40
E,0 T M ¥ 0 E,O
-40 -40
-80 -80
V4 X V4 X

FIG. 4. Tranform-limited excitation pulses and the correspond-

ing local fields for narrow-band excitatiorr(=0) [panels@—(c)]  yence of the local fields in the plane of the \V shape at its surface at
and wide-band excitation|¢|=0.3) [panels(d)—(f)]. Panels(b)  {he moments of time shown in the graphs. The spatial scale corre-

and (e) display the local fields at the opening of the V shape, andg;,nqs to Fig. 1, and the times correspond to Fig. 4. The magnitude
panels(c) and (f) show the local fields at its apex. All pulses are ¢ i« fields is in the units of the excitation fiel,. For each

shown in the same units and are directly comparable to each Other‘homent the maximum componexyy, or z of the local field that
Silver used as a material for the V shape. correspo,nds is displayed. '

FIG. 5. For narrow-band unchirped pulse<0), spatial depen-

pt the apex, and the energy is continuously transferred from

the narrow-band pulse. The excitation pulse is one full oscil2Pex to the opening and back, which is in agreement with the

lation, and it is transform limited. Despite this extremely overlap in time of the local fields at the apex and opening of

short duration of the excitation pulse, the local-field responséhe V shape evident in Fig. 4, supporting the general concept

of the VV shape is as long as for the narrow-band pulse geof the giant attosecond fluctuations of local fields. Quantita-

scribed above. At both the opening and apex of the V shapd!Vely the maximum field is by a factor ot 2 larger than in

the initial pulse of local fields is accompanied by a long ig. 55 Thgs’ _the o]lcra;]mati({nore than one grdﬁr of r_nagn]ic-_
period of ringing that is due to the existence of compara{ud® broadening of the pulse spectrum and shortening of its

tively long living SP’s within the spectral width of the exci- QUration, Iead_s only to some quantitative, but not _qualitative
tation pulse improvement in the localization of energy at the tip.

More insight can be obtained from the spatial distribution ) -
of local fields. That for the case of the narrow-band B. V-shape: Chirped excitation pulses

transform-limited pulse is shown on Fig. 5. At the first mo-  Kinetics of local fields at the opening and apex of the V

ment shown[t=69.1 fs, panela)] corresponding approxi- shape is displayed in Fig. 7. Different from the transform-
mately to the maximum of the exciting pulse, the fields are

concentrated predominantly at the apex of the V shape where Local Fields for V-shape; Transform Limited Pulse (2 =0.3)

they enhanced by a factor ef45 with respect to the exci- t=58.7 fs t=77.2 fs
tation field maximum magnitud&,. However, in just 400 80 80
as, i.e., within the optical cycle, the maximum intensity is 40 @ 40
shifted to the openin@it=69.5 fs, (b)]. Then at less than 1 * ‘ ok A o
fs, this maximum returns to the ap¢k=70.3 fs, (c)] and Byl B -

then continues to oscillate between the opening and the tip, -4¢
never concentrating at one sf&f. panel(d)]. Thus continu- -80
ing transfer of the excitation energy between the apex and
the tip occurs in a fraction of the optical period during the
entire duration of the pulse and beyonddt. Fig. 4). This is

80

a reflection of the general effect of giant attosecond 40
fluctuations’ continuous oscillations of the local-filed en- i
ergy across the entire extent of a nanosystem during a frac- i
tion of the optical period. -40
The spatial distributions of local fields for the wide-band -80

unchirped, ultrashort exciting pulse are shown in Fig. 6.
Qualitatively, they behave similar to the narrow-band excita- FIG. 6. Same as in Fig. 5, but for wide-band unchirped pulse
tion shown in the previous figure: there are high local fields(|«|=0.3).
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Kinetics for V-shape; Chirped Pulses (& =F0.3) Local Fields for V-shape; Negative Chirp Pulse (2 =—-0.3)
EZ(O) (t) Negative Chirp EZ(O) (t) Positive Chirp t=57.3 fs +=80.3 fs
1 (¢=-0.3) 1 (@=03) 80 @ 80
(@ @ ]% ¢ (b)‘J J
0 t(£s) 0 £ (£s) 40 40
00 200 00 200 -
== = T I

-1 -1 E.0 "" 'A g Ey0 \7&“\*&
B (€) . E, (t) 40}/\ -40 ‘
80 ® 80 © a0

40 -80
OHW——-« t(fs) 0 t(fS) Z X z X
-40 00 200 -40 00 200

-80 _80 t=89.7 fs t=118 fs
80 80
gé(t) E, (t) () (d
a0 © 80 ® 40 40
0 t(£s)| 49 - ~_,@...;«‘
-40 200 0 t(fs) E,0 e e RS e
Z80 -40 00 200 'y
-80 -40 -40
o . . -80 -80
FIG. 7. Excitation pulses and the corresponding local fields for z x z x

negatively chirped pulsea(= — 0.3) [panels(a)—(c)] and positively
chirped pulse ¢=0.3) [panels(d)~(f)]. Panels(b) and (e) display dence of the local fields in the plane of the V shape at its surface at

he local fiel h i f the V sh afoe f ! : .

the local fields a_tt € opening o the V shape, and p _land( ) the moments of time shown in the graphs. The spatial scale corre-

show the local fields at its apex. All pulses are shown in the same : . . .
) . . sponds to Fig. 1, and the times correspond to Fig. 7. The magnitude

units and are directly comparable to each other. Silver used as the fields is in th its of th itation fi F h

material for the V shape. of the fields is in the units of the excitation field,. For eac

moment, the maximum componexyly, or z of the local field that

limited pulses(Fig. 4), the local-field pulse lengths are close corresponds is displayed.
to that of the exciting pulses: no significant “ringing” at long
times is found. For the negative chirp, the local field at thetion pulse[t=68.3 fs, panel(c)]. At comparatively long
opening [panel (b)] reaches its maximum simultaneously times[t=98.4 fs, paneld)], the local fields are essentially
with the exciting field, while the field at the t{panel(c)]is  delocalized.
delayed with its maximum at=100 fs, i.e., practically after ~ The significant difference in the spatiotemporal dynamic
the end of the exciting pulse. In contrast, for the positivelybetween the positively and negatively chirped pulses, which
chirped pulse, the local fieldpanels(e) and(f)] are concur- ~are time-reversed with respect to each other, necessarily
rent in time with each other and with the exciting pulse.shows that this dynamic is significantly not time reversible.
Thus, the negatively chirped pulse vyields the selective conThis is certainly due to the dissipation in silver. This time-
centration of the excitation energy at the tip of the nanostructeversibility violation is significant despite very low dielec-
ture. Occurring after the end of the exciting pulse, this istric losses in silver within the bandwidth of the excitation.
clearly a coherent effect. For both the chirped excitation/Ve can interpret this fact as being due to the effect of chao-
pulses, the field at the tip is greatly enhanced, by a factor dficity of dipolar eigenmode#’ this is similar to thermody-
~80. namic irreversibility of statistical physics despite the dy-

The spatial distributions for the case of the negativelynamic reversibility of the underlying exact quantum
chirped excitation are shown in Fig. 8 where we see that at
the moment of time close to the maximum of the excitation ~ Local Fields for V-shape; Positive Chirp Pulse (2 =0.3)

FIG. 8. For negatively chirped pulsex& —0.3), spatial depen-

pulse[t=57.3, panel@@], the local-field energy is concen- t=58.5 fs t=64.3 fs

trated at the opening of the nanostructure. However, at the 89 (a) 80 (b)

end of the excitation pulsg=80.3—-89.7 fs, panel&) and 40 A“ 40

(c)] the excitation energy is localized at the tip where it per- £.0 {l :é‘ E.0 4*4 AL;‘AL
sists long after the excitation pulse has endied 118 fs, ’ d o | i o

-40

panel(d)]. Thus, in this case, we achieve the desired concen- ~40
tration of the excitation energy at the tip of the V shape, -80
where the local fields are enhanced by almost two orders of
magnitude at their maxima with respect to the peak of the
excitation pulse. 89

In contrast, for the positively chirped pulse, the spatial 40
distributions of the local fields displayed in Fig. 9 show
the energy concentration at the tip at the moment of time
close to the excitation-pulse maximuph=58.5 fs, panel
(@]. The maximum of local fields moves to the opening  -80
of the V shape in less than two oscillation periods
[t=64.3 f9. Then it moves back to the tip in approximately  FIG. 9. Same as in Fig. 8, but for positively chirped pulse
one oscillation period, still within the duration of the excita- (¢=0.3).

80
40
ExO
-40

E,0
-40

-80
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Local Fields for RPC at Sites of Maximums Local Fields for RPC at Instants of Maximums

E, (t E,(t t=76.2 fs t=63.5 fs
(t) (t) ®) o0

100 (@ 100 100
50 50
0 t(fs) 0 t (£s) 50
50 200 -50 0 200 k“‘
-100 -100 E.0 x:“ = == E,0
}/\ -50
@ -100 -100
V4 X zZ X
Hﬁ%ﬂ@é}% t (£s)
200 . =86,

FIG. 10. For RPC, temporal dynamics of local fields for the four
excitation pulses under consideration: narrow-band transform-
limited (a), wide-band transform limitecb), negatively chirpedc),
and positively chirpedd). In each case, the maximum component
of the local field is shown at the spatial site of their corresponding
global maximum.

B, (t E. (t)
106( ' @ :
8
50 4

0 t (fs)
-50 100 200 _4
-100 -8

OO0

FIG. 11. Spatial distributions of local fields at the instances of
mechanics that is due to randomness and complexity of theneir respective global maxima. The exciting pulses for pafsls
eigenstates. Comparing the dynamics induced by the fouand(b) correspond to those in Fig. 10.
excitation pulses presented aba®ecs. IV Aand IV B, we
arrive at the conclusion that both the spectral compositiomhe positively chirped pulsgpanel(d)] is significantly dif-
and phase modulation of the excitation pulses significanthferent from the above distributions, though it does not show
affect nanometer-femtosecond kinetics in metal nanostrucany enhanced concentration of energy at a single location.
tures. With respect to the spectrum, it is somewhat obvious Thus for RPC, we could not show enhancement of the
property, but the possibility to control this dynamics and con-energy concentration using the linearly chirped pulse. Nev-
centrate the excitation local energy at a desired site of &rtheless, we have found that both the spectral composition
nanosystem with the excitation-pulse phase modulation iand the phase modulation do affect the spatiotemporal dy-
nontrivial and potentially useful. namics. This still leaves open a possibility to control this

dynamics by a more sophisticated phase modulation.

C. Random planar composites

For RPC, the kinetics of local fields induced by the four D. Mean linear fields and two-photon excitation
wave forms of the excitation pulsest the spatial points We introduce the time-averaged distribution of the local-
where the global maximum is obtained in each gas@re-  field intensity
sented in Fig. 10. Pane{s)—(d) correspond to the excitation
pulses of Fig. 3. Different from the V shapef. Fig. 7), there 1 (=
is a significant “ringing” of the induced local fields at times  (I(r))== f |E(r,t)|%dt
appreciably longer than the duration of the excitation pulse. *
Thus, in this case, it has been impossible to concentrate the do
local fields in time using the linear-chirped pulses. The am- = —f
plitude of the response is higher for the wide-band pulses T)2
and reaches the value 680, close to that for the V shape. (20)
In this case, the positive-chirped excitatigmanel (d)] cre-
ates the maximum temporal delay of the response. This delayhich, obviously, depends only on the power spectrum,
and ringing are the effects of the relatively long phase Eq(w)|?, but not on the phase of the excitation. Thtis
memory of silver in the spectral region considered. average linear local-field intensities are not controllable by
The spatial distributions of the local fields for RPC at thethe phase modulationThis conclusion is illustrated by the
moments when those fields reach their respective globalirect temporal integration of the numerically obtained solu-
maxima for the four excitation pulses under consideratiortions, whose results are shown in Fig. 12. Indeed, we see that
are shown in Fig. 11. The field distribution for the case of thethe three pulses with identical spectra, namely, negatively
narrow-band pulselgpanel(a)] shows a pronounced concen- chirped[panel(b)], positively chirpedpanel(c)], and wide
tration of energy at a dominating peak where the enhancéand[panel(d)], have the identical average intensity distri-
ment E,~60. This concentration is unrelated to the phasebution{I(r)}), which is an independent check that the com-
modulation and is the manifestation of the “ninth wave” putations are correct. In contrast, distributidrgr)) for the
effect obtained earlier with the use of the dipole-dipoletransform limited narrow-band pul$panel(a)] is completely
approximationt® A similar spontaneous concentration, but atdifferent.
two sites is also seen in panéb) for the wide-band In sharp contrast to the average linear local intengify
transform-limited pulse. In panét), the negatively chirped Eq. (20) and Fig. 12, there is no principle that forbids the
pulse excites a different distribution than that of pafisl coherent(i.e., by means of phase-modulatjasontrol of the

2

—f Z’V'2G"(r,r’,w)d3r’
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FIG. 12. Time-averaged spatial distributiofigr)) of the local
fields. Panelga)—(d) correspond to those for the excitation pulses
in Fig. 3.

p:4
z

FIG. 13. Time-averaged spatial distributions of the local-field
two-photon absorption enhanceméfit(r)1?). Panels(@—(d) cor-
respond to those for the excitation pulses in Fig. 3.

average intensity afionlinearprocesses. In Fig. 13, we show lation (at a constant spectral shap# the excitation pulse

the average enhancement factor of the two-photon absorptiallows one to concentrate the excitation at the tip of the
calculated as V-shaped nanosystem at a certain time interval, in particular,
achieve the duration of the local-field pulse close to that of
the excitation pulse, without any long-time “ringing” tails.
However, for the linear photoprocesses, the time-average
i ) . local-field intensity are not phase controllable. In contrast,
From this we can clearly see that the negatively chirpedqy noniinear photoprocesses, the average yield can also be
pulse[panel(c)] produces the best concentration of the two-¢qhyolied by the phase modulation of the excitation pulse,

photon excitation at the tip of the V shape: it yields the, nich is demonstrated on the example of two-photon excita-
highest intensity at the tip and the relatively small excitation;,

at the opening. Note that this maximum enhancement is very T.he effects of coherently controlling the spatial concen-

significant, ~4.5x 107, exceeding that for the narrow-band yation on the nanoscale and temporal course on the femto-
pulse by an order of magnitude. This supports the possibilitgecong scale of the ultrafast excitation energy in nanosys-
to concentrate the integral nonlinear excitation at the desiregh g may find applications in a wide range of optical probing
site of a nanostructure. Importantly, the time-averaged local 4 nanomodification of nanosystems. Some perspective ar-
enhancement of SERSurface-enhanced Raman scattering eas of application comprise metal-nanostructure enhanced
is given approximately by same factof) (r)]%), as the WO~ probing and spectroscopy, in particular, surface-enhanced
photon excitation and is also very significant4.5x10°,  Raman spectroscopy, of single molecules or chemical groups
and sharply localized at the tip of the V shape for thesf |arger molecules or biological objects. These applications
negative-chirp pulse. include the temporal resolution due to the short duration of
the local-field pulses. Nanomodification of the nanosystem,
such as the local photochemical modification of large mol-

Without repeating the specific discussion presented in thSCUIeS’ blo-(_)bje_cts, or surfaces may be another perspective
area of applications.

preceding sections, here we very briefly summarize the ma-
jor results. We have demonstrated a possibility to control the

spatotemporal dynamics of a nanosystem on the nanometer-
femtosecond scale. The degrees of freedom for such a con- This work was supported by the Chemical Sciences, Bio-
trol are provided by the spectral composition and spectralsciences, and Geosciences Division of the Office of Basic
phase modulation of the excitation pulse. The broadening oEnergy Sciences, Office of Science, U.S. Department of En-
the spectrum of the excitation pulses to nearly one octavergy. Partial support for the work of D.J.B. was provided by

leads to a significant enhancement of the local fields at thgrants from the US-Israel Binational Science Foundation and
tip of the V-shaped nanostructure. The spectral-phase modthe Israel Science Foundation.

<[|(r)]2>=fl|E(r,t)|4dt. (2D

V. CONCLUDING REMARKS
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