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Lattice dynamics and the high-pressure equation of state of Au

Carl W. Greeff and Matthias J. Graf
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

~Received 26 August 2003; published 19 February 2004!

Elastic constants and zone-boundary phonon frequencies of gold are calculated by total energy electronic
structure methods to twofold compression. A generalized force constant model is used to interpolate throughout
the Brillouin zone and evaluate moments of the phonon distribution. The moments are used to calculate the
volume dependence of the Gru¨neisen parameter in the fcc solid. Using these results with ultrasonic and shock
data, we formulate the complete free energy for solid Au. This free energy is given as a set of closed-form
expressions, which are valid to compressions of at leastV/V050.65 and temperatures up to melting. Beyond
this density, the Hugoniot enters the solid-liquid mixed phase region. Effects of shock melting on the Hugoniot
are discussed within an approximate model. We compare with proposed standards for the equation of state to
pressures of;200 GPa. Our result for the room-temperature isotherm is in very good agreement with an
earlier standard of Heinz and Jeanloz.
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I. INTRODUCTION

The elastic constants, phonon frequencies, and equa
of state~EOS! are fundamental properties of matter. The v
ues of these parameters under compression find applica
in geophysics1 and in the prediction and interpretation
processes of dynamic compression.2,3 For many materials,
especially elemental metals, the principal Hugoniot curv
the set of states accessible via a single shock from amb
conditions, have been measured.2,4–6Since the pressure, den
sity, and internal energy are known along the Hugoniot fr
the jump conditions,2 these data are an important baseline
high-pressure equations of state. The off-Hugoniot EOS
needed for the prediction of processes involving more co
plicated loading paths, such as multiple shocks or shock
release.7 Extrapolation from the Hugoniot has also been us
to establish pressure standards for static high-pressure
periments, whose room-temperature isotherms are rega
as known.2,8,9 Au has been used as a standard in this w
and has been used to calibrate the rubyR1 line as a second
ary standard.9–11 Recent studies have called into question
accuracy of the gold pressure standard. Akahamaet al.12

compressed Au and Pt in the same cell and found two
standards8,13 to give pressures lower than Pt by 20 and
GPA, respectively, at 150 GPa. Shimet al.,14 on the other
hand, propose a new EOS for Au that gives pressures
lower than either of these earlier standards.

To relate the Hugoniot to the room-temperature isothe
requires information on the Gru¨neisen parameterg
5V(]P/]E)V and the specific heatCV .2 These are domi-
nated by lattice vibrations in the regimes under considera
here. With increasing compression, the separation betw
the Hugoniot pressure and the room-temperature pressur
creases, resulting in greater dependence of the inferred ro
temperature isotherm ong. Becauseg is not easily measured
at high pressure, this introduces a non-negligible source
uncertainty in the pressure standards. In most cases, a m
assumption of the formg(V)5g(V0)(V/V0)q has been
used. The specific valueq51 has been used often in shoc
work.2,8 However, a power-law dependence ofg on V is
0163-1829/2004/69~5!/054107~10!/$22.50 69 0541
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qualitatively incorrect at high compression, and extrapolat
on this basis is inherently limited.

In principle, the various components of the EOS—t
static lattice energy, the vibrational free energy, and the e
tronic excitation free energy—can be evaluated from el
tronic structure theory. Practical calculations based on
proximate density-functional theories typically have errors
several percent in the density at zero pressure and 10%
more in the bulk modulus.15 These are unacceptably larg
errors for the purpose of high accuracy equations of st
These properties can be measured accurately, and are m
determined by the cold energy curve, which is the larg
contribution to the EOS in the regime considered here.
the other hand, we find thatab initio electronic structure
calculations are capable of obtaining phonon frequencie
sufficient accuracy to strongly constrain the volume dep
dence of the Gru¨neisen parameterg. We therefore propose
that the most accurate EOS in the solid is obtained by co
bining an empirical cold energy withab initio lattice vibra-
tion and electronic excitation free energies. This is analog
to procedures that have been used to reduce shock Hug
data and derive room-temperature standards, but the pre
analysis gives a strong physical foundation for the volu
dependence ofg, allowing confidence in the results at high
compression. We are not aware of any evidence of so
solid phase transitions in Au, and we consider only the
solid. Recent calculations16 indicate a transition to the hcp
structure forV/V0&0.6, and we do not attempt to extend o
solid EOS beyond this density.

This paper is arranged as follows. First we discuss lat
dynamics and its connection to the EOS. We emphasize
importance of the classical limit for defining the ion motio
contribution tog. We describe our procedures for calculatin
phonon frequencies and interpolating to the whole Brillou
zone. Next we present our results for elastic and pho
properties of Au, and our analysis to obtaing ion(V). We then
present the complete EOS for solid Au by giving a set
closed-form expressions for the Helmholtz free energy w
parameters. The resulting room-temperature isotherm
compared with various proposed standards. Next we disc
©2004 The American Physical Society07-1
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CARL W. GREEFF AND MATTHIAS J. GRAF PHYSICAL REVIEW B69, 054107 ~2004!
shock melting and its effect on the Hugoniot within an a
proximate model, and finally give our conclusions.

II. LATTICE DYNAMICS AND THE EQUATION OF STATE

We write the Helmholtz free energy as

F~V,T!5f0~V!1F ion~V,T!1Fel~V,T!, ~1!

wheref0 is the static lattice energy,F ion is the ion motion
free energy, andFel is the electronic excitation free energ
In our applications,f0 gives the largest contribution to th
pressure. The ion motion free energy gives the domin
temperature dependence ofP52(]F/]V)T . The electronic
excitation termFel is generally a small correction to the sol
EOS, becoming important for the liquid Hugoniot at seve
hundred gigapascals.

It is, therefore, imperative to have an accurateF ion for
calculating the temperature dependence ofP. The quasihar-
monic approximation has been found to have small error
many cases.17 We have carried out Monte Carlo simulation
using an embedded atom model18 of Cu to investigate the
importance of anharmonic corrections to the ion free ene
Here we define the anharmonic free energy to be the dif
ence between the true ion free energy and the quasiharm
approximation, noting that the term has been us
differently19 by other authors.20 We intend to publish details
of our Cu simulations elsewhere. In summary, we find t
up to 300 GPa on the melting curve,uPanhu,0.85 GPa, and
is never more than 3% of thethermal pressureP(V,T)
2P(V,0), a very small correction to the total pressu
Given the similarity of the bonding in Cu and Au, we expe
these results to be relevant for Au also. Thus, in what follo
we neglect anharmonicity and use the quasiharmonic
proximation forF ion,

F ion~V,T!53NE
0

`

dvg~v!@ 1
2 \v1kBT ln~12e2\v/kBT!#,

~2!

where we have introducedg(v)5(1/3N)(kd(v2vk), the
normalized phonon density of states. The phonon frequen
vk are functions of volume only, and the sum is over the 3N
normal modes of the crystal.

Application of Eq.~2! requires the full phonon density o
statesg(v) at all volumes. While in principle this informa
tion is available from our calculations, in practice the clas
cal limit dominates our EOS, allowing for a substantial si
plification. In the classical limit, which is the leading term
the high-temperature expansion of Eq.~2!, the free energy is
given by

Fcl~V,T!53NkBT lnS e21/3\v0

kBT D , ~3!

where we have introduced the moment

v05e1/3expF E
0

`

dv g~v!ln vG . ~4!

Other moments are conventionally defined as
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3 E
0

`

dv g~v!vnG1/n

, nÞ0, n.23, ~5!

where the normalizations in Eqs.~4! and ~5! are chosen so
that for a Debye spectrum, described by

g~v!5
3

vD
3

v2Q~vD2v!, ~6!

all vn are equal tovD , the Debye frequency. We subs
quently give results fornn5vn /(2p) corresponding to the
experimental convention of giving frequenciesn in Hertz, as
opposed to angular frequenciesv.

In the classical limit, the ion pressure is linear inT with
(]Pion/]T)V5(3NkB /V)g0, where g052d ln v0 /d ln V,
and the specific heat is constant,CV53NkB . The role of
quantum ion motion in the EOS is illustrated in Fig. 1, whi
shows the pressure along an isochoreV/V050.8. The solid
curve is our full EOS, described below, and the dashed cu
uses the classical limit ofF ion at allT. The arrows mark room
temperature and the Hugoniot temperature, which is 134
at the given density. The melting temperature at this den
is estimated to be 4900 K, beyond the range of the plot. I
clear that the classical limit dominates even at room temp
ture. The Hugoniot is well into the classical regime.
higher densities, the Hugoniot is still further above the qu
tum regime. The largest quantum effect on the pressure
T50, where the zero-point vibrations contribute a press
of 0.8 GPa at this density. The classical limit is clearly dom
nant for interpolating between the Hugoniot and room te
peratures.

We have found that an interpolation based on the De
model gives a very accurate approximation to the full qua
harmonic free energy. The Debye free energy is a spe
case of the quasiharmonic free energy, Eq.~2!. Inserting the
Debye density of states, Eq.~6!, gives

FIG. 1. Role of quantum ion motion in the EOS. Graph sho
P(T) along an isochoreV/V050.8. Solid curve is the full EOS and
dashed curve uses the classical limit of the ion free energy. Hu
niot temperature at the given density is 1340 K.
7-2
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LATTICE DYNAMICS AND THE HIGH-PRESSURE . . . PHYSICAL REVIEW B 69, 054107 ~2004!
FD~V,T!5N@ 9
8 \vD13kBT ln~12e2\vD /kBT!

2kBTD~\vD /kBT!#, ~7!

where

D~x!5
3

x3E0

x

dz
z3

ez21
. ~8!

In light of the above remarks, it is important to capture t
correct classical limit. This requires that we set

vD~V!5v0~V!. ~9!

To emphasize the distinction between Eq.~9! and the stan-
dard definition ofvD in terms of acoustic velocities, we refe
to the Debye free energy together with Eq.~9! as the high-
temperature Debye model. The high-temperature De
model gives the same results as the full quasiharmonic
energy in the classical regime, and in addition obeys
Nernst theorem at lowT. We have checked that at lowT, the
error in the pressure compared to the full quasiharmonic
proximation is entirely negligible.

Thus, we can simplify the specification of the lattice v
bration free energy from givingg(v) at all V to giving the
single momentv0 at all V. This is advantageous for numer
cal applications. It also allows us to express our full EOS
a few compact formulas so that it is generally accessi
These formulas are given below.

Calculating the momentsvn requires the phonon frequen
cies for allk in the Brillouin21,22 zone. Directab initio cal-
culations on a dense mesh ink would be quite expensive. A
a result of another study23 we found that the low-order mo
ments can often be accurately obtained from short-ran
force-constant models. In particular, for Au, the momentv0
is converged to less than 1% with a second nearest neig
~2NN! model. Therefore, our method is to calculate fo
zone-boundary phonon frequencies corresponding to
transverse and longitudinal modes at theX and L points.
These are calculated with standard frozen-phonon meth
In addition the three elastic moduli are calculated using
method described by So¨derlindet al.24 We fit these results to
a 2NN force-constant model, which then allows the eval
tion of vk for arbitrary k for integration over the Brillouin
zone.

The electronic structure calculations used the fu
potential linearized augmented plane-wave codeWIEN97.25

We used the local-density approximation~LDA ! rather than
the generalized gradient approximation~GGA!, based on
Boettger’s finding16 that the LDA gives a better static lattic
energy than the GGA for Au. Some numerical paramet
used in the calculations were, in atomic units, the followin
muffin tin radius r MT52.0, plane wave cutoffr MTkmax
59.0, cutoff for expansion of density and potentialgmax
514. For elastic modulus calculations, Brillouin-zone in
grals used special points corresponding to 183 points in the
full zone, with Gaussian smearing of the energies by 20 m
The zone-boundary phonons were found to be comparati
insensitive to thek-point mesh, and smaller meshes of 13
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points were used. The 5p, 5d, and 6s shells were treated a
valence states, and local orbital extensions26 were used in the
p andd channels.

We used a generalized Born-von Ka´rmán force model for
our lattice-dynamical calculations, from which we were ab
to compute the phonon dispersions in the entire Brillou
zone. Since gold has a very simple phonon dispersion,
employed only a model with 1NN and 2NN interatom
shells of atoms. In fcc lattice the 1NN and 2NN forces a
determined by three and two independent parameters, res
tively ~for more details see, e.g., Ref. 23!. These five force
constants were extracted by fitting simultaneously the p
non frequencies of gold at theX andL points of the Brillouin
zone and the elastic constantsC11, C12, and C44 near the
zone center (G point!. Thus we fit a total of seven indepen
dent data points. We gave equal weight to the zone-bound
phonons and elastic constants in ourx2 fit of the phonon
dispersions. Although the 2NN Born-von Ka´rmán force
model is too simple to reproduce all phonon frequenc
within less than approximately 10%, see Fig. 2, it is su
ciently accurate to compute integrated quantities such as
phonon moments within less than approximately 3%. Mo
accurate phonon dispersions can be obtained if needed
computingab initio frequencies at half and quarter distanc
in the Brillouin zone and fitting those to a 3NN or highe
order Born-von Ka´rmán force model, or to phonon model
with interatomic pseudopotentials.

III. ELASTIC AND PHONON PROPERTIES

Figure 2 shows the calculated phonon dispersion cur
for Au at the density corresponding to ambient pressure
room-temperature. The filled diamonds at theX andL points
are the LDA frozen phonon results. These together with
calculated elastic moduli are used to obtain the force c
stants. The solid curves are the interpolation to general w

FIG. 2. ~Color online! Phonon dispersion for Au at room tem
perature and ambient pressure. Open circles are experimental
of Lynn et al. ~Ref. 27!. Filled diamonds are LDA calculations o
zone-boundary phonons at theX andL points. Solid curve is inter-
polation based on fit of 2NN force constant model to the LD
zone-boundary phonons and elastic moduli.
7-3
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TABLE I. Calculated phonon and elastic properties of Au.V0 is the volume at 298 K and atmospheric pressure and is 10.212 cm3/mol
for Au. Frequenciesn given in terahertz and elastic moduli given in gigapascal.

V/V0 nXt nXl nLt nLl C8 C44 B n0 n1 n2

1.1 1.76 3.17 1.33 3.37 9.2 11.1 91.0 2.53 2.60 2.68
1.0 2.54 4.43 1.77 4.71 13.8 27.4 172.0 3.53 3.64 3.75
1.0/expt. 2.75 4.61 1.86 4.70 14.6 41.5 167. 3.65 3.75 3.86
0.9 3.45 5.91 2.30 6.32 20.3 55.0 304.4 4.71 4.86 5.00
0.8 4.55 7.71 2.95 8.40 26.8 112.3 527.3 6.16 6.35 6.54
0.7 5.94 10.05 3.76 11.19 37.4 221.7 928.3 8.03 8.30 8.57
0.6 7.76 13.18 4.78 15.23 67.0 443.5 1663.8 10.55 10.93 11.3
0.5 10.27 17.63 6.10 21.62 135.4 871.0 3097.4 13.99 14.58 15.1
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vectors using the force-constant model. The open circles
the experimental data of Lynnet al.27 The force-constan
model is overconstrained, so it neither goes precisely thro
the calculated zone-boundary frequencies nor has it exa
the calculated elastic moduli. The shapes of the disper
curves are simple enough for Au that they are generally w
captured by the 2NN model.

Table I summarizes our results for the zone-bound
phonons, elastic moduli, and momentsnn5vn/2p, as func-
tions of volume. The reference volumeV0 corresponds to
T5298 K and P51 bar5100 kPa. For Au, V0

510.212 cm3/mol or 114.43a0
3/atom. Also shown are the

experimental data at room temperature.27,28 No attempt is
made to account for the temperature dependence be
comparing at the correct volume. There is generally go
agreement between the calculated and experimental qu
ties. The main exception isC44, which is calculated substan
tially lower than measured. Our calculation is in better agr
ment with an earlier LDA calculation.24 The main result of
the present calculation is the value ofn0, which is within 3%
of the measurement. The ration1 /n0 is 1 for a Debye spec
trum. Our calculations given1 /n051.03 at ambient density
and 1.04 at twofold compression, so, by this measure,
departure from a Debye spectrum is small and nearly c
stant with volume.

Measurements of elastic moduli were reported by Du
et al.29 to P537 GPa, andab initio calculations by Tsuchiya
and Kawamura30 to 100 GPa. Figure 3 shows these resu
along with our calculations. Our volumes are converted
room-temperature pressures using the EOS described b
The highest density in Table I corresponds toP'780 GPa,
and the graph is restricted to lower pressures to highlight
comparison with these other works. Our calculations ofC11
and C12 are in good agreement with Tsuchiya and Kaw
mura, while ourC44 is systematically lower, in somewha
better agreement with the experiments. OurC11 is in good
agreement with the experiments whileC12 is slightly high. It
should be noted that the experimentalCi j depend on a mode
parametera used in the analysis.29 The plotted points corre
spond toa51. It is encouraging that our calculations giv
the correct trends for the pressure dependence ofCi j .

Having determined the momentsnn as functions of vol-
ume, we need to interpolate and differentiate them to ob
thermodynamic functions. To do this, we assumed the
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lowing functional form forgn(V), which has been used in
creating many wide ranging equations of state:31

gn~V!5g`1AnS V

V0
D1BnS V

V0
D 2

, ~10!

whereg` is the infinite density limit ofg, andAn andBn are
parameters. Alternatively, we can expressAn andBn in terms
of qn5d ln(gn)/d ln(V) andgn(V0) as

An5gn~V0!@22qn~V0!#22g`,

Bn5gn~V0!@qn~V0!21#1g`. ~11!

Integratinggn52d ln nn /d ln V, we have

nn~V!5nn~V0!S V

V0
D 2g`

expH 2AnF S V

V0
D21G

2
Bn

2 F S V

V0
D 2

21G J . ~12!

By fitting this functional form to the calculatedn0(V), we
extract the parameters givingg0(V). In our fits, we keepg`

FIG. 3. Pressure dependence of the elastic moduli of Au. O
squares are present LDA calculations with pressures from our E
Solid circles are experimental data from Duffyet al. ~Ref. 29!.
Open triangles are previous LDA calculations by Tsuchiya a
Kawamura.
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FIG. 4. Volume dependence ofn0, the log
moment of the phonon frequencies, andg0

52d ln n0 /d ln V for Au. Lower graph isn0(V).
Open symbols are calculated moments. Upp
graph is resultingg0(V). Solid curves are presen
results fitting Eq.~10! to the calculated moment
with the constraint g0(V0)52.97. Dash-dot
curve shows the commonly used approximati
g(V)5g(V0)(V/V0)q for q51.7 ~Ref. 13!.
Dashed curve corresponds to theg of Jamieson
et al. ~Ref. 8!, who used q51 and g(V0)
53.215.
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fixed. The valueg`52/3 has been widely used,32 although
arguments have been made forg`51/2.33 For our applica-
tion and density range, we have found that the quality of
fit and the resultingg0(V) are insensitive to this choice, an
we useg`52/3. The fitting procedure is illustrated in Fig. 4
where we show the fit forn0(V), the log moment and the
resultingg0(V). We did the fits withn0(V0), g0(V0), and
q0(V0) as free parameters, and withg0(V0) constrained to
the experimental value of 2.97.~This experimental value wa
determined so that the thermal expansion for the subseq
EOS overlies the recommended curve of Touloukian34 from
100 to 1200 K.! The unconstrained fit givesg0(V0)52.88.
Constrainingg0(V0) increases the rms error of the fit from
4.931022 to 5.731022 THz, which is not a significant in-
crease. Also, we note that constrainingg0(V0) does not
changeg0(V) at smallerV. For this reason, we believe tha
the constrained fit is the best overall approximation
g ion(V) up to twofold compression. This is shown as t
solid curve in Fig. 4. The corresponding parameters
n0(V0)53.46 THz, g0(V0)52.97, andq0(V0)51.37. We
do not show the unconstrained fit in Fig. 4 because it is
close to the constrained fit. The dot-dashed curves co
spond toq5const, g(V)5g(V0)(V/V0)q. The valueq51
gives ag that is too high over this density range, whileq
51.713 is too low. Jamiesonet al.8 usedq51 and an ambi-
ent valueg(V0)53.215, which results in the dashed curv
We believe that theirg is too high at all volumes considere
here. Any constant value ofq will lead to a g that is too
small at very high compression.

IV. EQUATION OF STATE

The complete EOS is determined when the Helmho
free energyF is given as a function of volume and temper
ture. In this section we describe our form forF and give the
numerical parameters for fcc Au. First we write the free e
ergy as in Eq.~1! as the sum of the static lattice energyf0,
an ion motion free energyF ion, and an electronic excitation
term Fel. For the ion motion free energy we use the qua
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harmonic approximation, and further specialize to the hig
temperature Debye model. Thus we take the ion free ene
to be given by Eqs.~7! and ~8!, where we identifyvD with
the log momentv0 of the phonon frequencies. As discuss
in Sec. II, this gives the correct classical limit, and leads
extremely small errors at lowT compared to the full phonon
spectrum. This way we are able to give a closed-form
pression forF ion, which is very convenient in numerical ap
plications. The volume dependence ofv0 is that given in Eq.
~12! with parameters given above. For the final EOS we ha
replaced the fitted value ofv0(V0) with the experimental
one. This is essentially a small shift in the absolute entro
which has negligible effect on the results.

Electronic excitations give a small contribution to th
thermodynamics, which we approximate by

Fel~V,T!52 1
2 NG~V!T2. ~13!

The Sommerfeld coefficientG is proportional to the elec-
tronic density of states at the Fermi energy,G
5(p2/3)kB

2g(e f). Our calculations show tha
d ln g(ef)/d ln V'0.76 over the range of densities considere
so we take

G~V!5G~V0!~V/V0!k ~14!

with k50.76. The calculations give G(V0)56.7
31024 J/mol K2, while the measured value from th
low-temperature specific heat is35 G(V0)57.28
31024 J/mol K2. The measured low-temperature specifi
heat coefficientGexpt is expected to be enhanced with respe
to the bare valueG as a result of electron-phonon intera
tions by a factor (11l), where l is the dimensionless
electron-phonon mass enhancement parameter. The valu
gold is l'0.05–0.15,36 which agrees with our calculate
G/Gexpt51.09. At high temperatures,kBT.\v0, the phonon
mass enhancement becomes ineffective. Hence we use
calculated density of states in the remainder of this pape

The static lattice energy is needed to complete the f
energy. We adopt the functional form due to Vinetet al.37
7-5
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CARL W. GREEFF AND MATTHIAS J. GRAF PHYSICAL REVIEW B69, 054107 ~2004!
f0~V!5
4V* B*

~B1* 21!2
@12~11X!e2X#,

X5
3

2
~B1* 21!F S V

V*
D 1/3

21G , ~15!

which is parametrized by the volume at the minimumV* ,
the bulk modulusB* , and its pressure derivativeB1* . These
parameters have been determined empirically by requi
that the EOS reproduce the ambient volume and ultras
data forBS at ambient conditions.28 For the latter, we adop
the value BS5173 GPa. Ultrasonic data give values f
(]BS /]P)T from 5.2 to 6.4. Therefore, to complete the EO
we require that it reproduce the measured slope of the Hu
niot, which we take from the fit4 Us53.12 km/s11.521Up
relating the shock velocityUs to the particle velocityUp .
The resulting parameters give (]BS /]P)T55.49, consistent
with the ultrasonic data.

The complete set of parameters for the free energy of
Au is summarized here. The static lattice energy is given
Eq. ~15! with

V* 510.0834 cm3/mol,

B* 5180.0 GPa,

B1* 55.55. ~16!

The ion motion free energy is given by Eqs.~7! and~8! with
the volume dependence ofvD given by Eq.~12! ~with n0
→vD , g0→g, etc.!. The parametersA and B are given in
terms ofg(V0) andq(V0) by Eq.~11!. The numerical values
are

V0510.212 cm3/mol,

vD~V0!522.931012 s21,

g~V0!52.97,

q~V0!51.3677,

g`52/3. ~17!

Finally, the electronic excitation free energy is given by E
~13! and ~14! with

G~V0!56.731024 J/mol K2,

k50.76. ~18!

The following calculations use these parameters for the
energy of fcc Au. Once the free energy is known, the pr
sure, internal energy, etc., can be evaluated. We calculate
Hugoniot by fixing a value of the volume and solving for th
temperature such that the jump condition,E2E05 1

2 (P
1P0)(V02V), is solved. HereE0 , V0, andP0 correspond
to the initial state, taken to be ambient temperature and p
sure.

Figure 5 shows the Hugoniot and room-temperature
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therm for the present EOS. The solid symbols are the Hu
niot data.5,6,38 The dashed line corresponds to the linear
for Us(Up). Also shown as the open circles are the roo
temperature data from Heinz and Jeanloz13 taken to 70 GPa
with the ruby pressure scale. The open squares are the ro
temperature data of Bellet al.11 to 188 GPa. The pressur
shown in the graph is taken from the ruby scale, which
extrapolated from a lower-pressure calibration.9 Our calcula-
tions agree with these data to 3% at the highest press
indicating support for the extrapolation of the ruby scale.

For V.0.656V0, the Hugoniot lies in the solid. By
matching the measured Hugoniot with our theoretica
based Gru¨neisen parameter, we confirm the accuracy of o
room-temperature isotherm, and we have high confidenc
our EOS to this density. Combining our calculated Hugon
temperatures with a Lindemann melting curve, we estim
that the Hugoniot enters a solid-liquid coexistence region
V/V050.656, P5280 GPa. A more extensive discussion
shock melting is given in the following section. There w
find that explicitly accounting for melting leads to goo
agreement with the high-pressure Hugoniot data, indica
that our solid EOS is valid to densities ofV/V0'0.6.

Figure 6 shows our room-temperature isotherm alo
with data from Heinz and Jeanloz,13 and Bell et al.11 Also
shown are some of the proposed EOS standards. Jami
et al.8 used the Hugoniot as a reference, and calculated
room-temperature isotherm using a Mie-Gru¨neisen EOS.
They assumedg/V5const, and usedg(V0)53.215, so their
g is always larger than ours. This results in lower roo
temperature pressures than ours, but by restricting t
analysis toV/V0.0.775, the impact of the assumedg is
minimized. The Heinz and Jeanloz EOS is based on extra
lating their room-temperature data, with some considera
of the shock data. Our room-temperature isotherm is in g
agreement with Heinz and Jeanloz to 200 GPa. The rece

FIG. 5. Hugoniot and room-temperature isotherm of Au. So
curves are present solid EOS. Solid symbols are Hugoniot d
~Refs. 5,6, and 38!. Note that there are five overlapping Hugoni
points at V/V0'0.7. Open symbols are room-temperature d
~Refs. 11 and 13!. For the Bellet al. data~Ref. 11!, pressures are
from the extrapolated ruby standard. The onset of shock meltin
estimated atP'280 GPa, as marked.
7-6



s

n

w

t

s.
t
nd

o
e in
e

ns.
a
h-
t of
r-

o-
rgy.
ons
ar

id

r

e-
lly
hat
and
e-

ta-
s in
ck
ith

the
ed

is

LATTICE DYNAMICS AND THE HIGH-PRESSURE . . . PHYSICAL REVIEW B 69, 054107 ~2004!
proposed EOS of Shimet al.14 is significantly lower than all
the other standards. It is lower than the present analysi
10 GPa atV/V050.7, corresponding toP5156 GPa.

Figure 7 showsP(T) along two isochores in compariso
with various equations of state. AtV/V050.8, Jamieson
et al. give somewhat lowerP at 300 K with a largerdP/dT,
in keeping with their higherg. Heinz and Jeanloz13 are in the
best overall agreement with the present pressures,
somewhat lowerdP/dT. Shim et al.14 give a somewhat
higherdP/dT with P generally low due to their large offse
at room-temperature. Andersonet al.19 adopted the room-
temperature isotherm from Heinz and Jeanloz.13 Their EOS
givesdP/dT substantially too low at compressed volume

We have tabulatedP(V,T) in Table II in the same forma
adopted by other authors. As discussed, we have exte

FIG. 6. Room-temperature isotherm of Au. Solid curve
present EOS. Solid symbols are data~Refs. 11 and 13!. Open tri-
angles are the EOS of Jamiesonet al. ~Ref. 8!. Open squares are
EOS of Heinz and Jeanloz~Ref. 13!. Dashed curve is EOS of Shim
et al. ~Ref. 14!.
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the range of densities toV/V050.6 and the temperatures t
5000 K, except where such temperatures are thought to li
the liquid phase. Boettger16 has proposed an extension of th
Au 300 K standard to 500 GPa based on LDA calculatio
He givesP5344 GPa atV/V050.6 compared to 329 GP
from our semiempirical EOS. Given the scatter in the hig
pressure Hugoniot data, and our approximate treatmen
melting, this 4.6% difference is probably within the unce
tainties of the present analysis at this high density.

V. MELTING AND THE HUGONIOT

In order to investigate the effects of melting on the Hug
niot, we have constructed a two-phase model free ene
The ion free energy in the liquid is based on the assumpti
that CV

ion53NkB , which is reasonable for temperatures ne
melting, and thatDSV

ion , the entropy difference between sol
and liquid at fixed volume, is 0.8NkB . These are empirically
based model assumptions.39 A statistical mechanical basis fo
these observations is discussed by Wallace,40 who argues for
the universality ofDSV

ion . Beyond these assumptions, we r
quire the energy of the liquid with respect to the solid to fu
determine the liquid free energy. We do this by imposing t
the melting curve, obtained by equating the pressures
Gibbs free energies of liquid and solid, follows the Lind
mann rule in the form

Tm

v0
2~Vs!Vs

2/3
5const, ~19!

whereVs is the volume on the solidus. The electron exci
tion free energy is assumed to be the same in the liquid a
the solid. Application of this method to Cu leads to a sho
melting threshold of 228 GPa, which compares well w
232 GPa obtained by Hayeset al.41 by analyzing sound
speed data. The Au Hugoniot has been calculated for
two-phase model allowing for coexistence in the shock
e

loz
FIG. 7. Isochores of Au. Solid curves are th
present EOS. Dashed curve is Jamiesonet al.
~Ref. 8!. Open squares are Heinz and Jean
~Ref. 13!. Filled diamonds are Andersonet al.
~Ref. 19!. Open triangles are Shimet al. ~Ref.
14!.
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6.34
5.79
8.08
3.65
3.04
6.86
5.85
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TABLE II. Tabulated pressures for Au. Compressionh512V/V300 whereV300 is the volume atT5300 K andP50. Pressures in
gigapascal. Values in parenthesis are the first liquid states for eachh, included for interpolation. Remaining liquid states left blank.

h 300 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K 3500 K 4000 K 4500 K 5000 K

0.00 0.00 1.44 5.08 8.73 ~12.40!
0.02 3.57 5.00 8.61 12.24 ~15.88!
0.04 7.65 9.07 12.65 16.25 19.87 ~23.50!
0.06 12.31 13.71 17.27 20.85 24.44 ~28.04!
0.08 17.61 19.01 22.53 26.09 29.66 33.24 ~36.83!
0.10 23.65 25.03 28.54 32.07 35.61 39.17 42.74 ~46.33!
0.12 30.53 31.90 35.38 38.88 42.41 45.94 49.50 ~53.06!
0.14 38.36 39.71 43.17 46.65 50.16 53.67 57.20 60.74 ~64.30!
0.16 47.27 48.61 52.04 55.51 58.99 62.48 65.99 69.51 73.05~76.60!
0.18 57.41 58.74 62.15 65.60 69.06 72.53 76.02 79.53 83.04~86.57!
0.20 68.96 70.28 73.67 77.09 80.54 83.99 87.47 90.95 94.45 97.96~101.49!
0.22 82.12 83.43 86.80 90.21 93.63 97.07 100.53 104.00 107.48 110.98 114
0.24 97.13 98.43 101.78 105.17 108.58 112.00 115.44 118.90 122.37 125.85 129
0.26 114.27 115.55 118.89 122.26 125.65 129.07 132.49 135.93 139.39 142.85 14
0.28 133.85 135.12 138.44 141.80 145.18 148.58 151.99 155.42 158.86 162.32 16
0.30 156.25 157.51 160.81 164.16 167.53 170.92 174.32 177.74 181.17 184.62 18
0.32 181.92 183.17 186.46 189.79 193.16 196.53 199.93 203.34 206.76 210.20 21
0.34 211.38 212.63 215.90 219.22 222.58 225.95 229.34 232.74 236.16 239.59 24
0.36 245.26 246.49 249.75 253.07 256.42 259.79 263.17 266.57 269.99 273.41 27
0.38 284.30 285.52 288.76 292.08 295.43 298.79 302.17 305.57 308.98 312.41 31
0.40 329.37 330.58 333.82 337.14 340.48 343.85 347.23 350.63 354.04 357.47 36
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state.42 Figure 8 shows the resulting Hugoniot in th
pressure-volume plane. Also shown in the figure are the d
points and the linearUs(Up) fit. The dot-dashed curve is th
Hugoniot for the solid only. The boundaries of the coexi
ence region are visible as kinks on the solid curve at 280
350 GPa. Above 350 GPa, the Hugoniot is in pure liqu
phase. A similar anomaly is shown for Al in a two-pha
calculation by Chisolmet al.43 A significant enhancement o
the Hugoniot pressure of Au due to melting was also sho
in calculations by Godwalet al.,44 however they predict a

FIG. 8. Hugoniot of Au, including the effects of melting. Sol
curve is present two-phase~solid and liquid! EOS. Dot-dashed
curve is solid EOS only. Dashed curve is linear fit toUs(Up) data
~Ref. 4!. Solid symbols are measured points~Ref. 5,6, and 38!.
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much lower shock melting threshold than we do. Just ab
complete melting, the liquid Hugoniot lies above the solid
30 GPa. The linearUs(Up) curve goes smoothly through th
melting region to intersect the liquid data.

Our two-phase EOS gives good agreement with the hi
pressure data, which suggests that our cold energy is val
compressions ofV/V0'0.6. Electronic excitations hav
practically no effect on theP(V) Hugoniot in the solid
phase, although they significantly affect the temperature
higher temperatures in the liquid, they act to soften
Hugoniot by absorbing energy. Coincidentally, neglecti
both electronic excitations and melting gives a Hugoniot t
agrees with the linearUs(Up) curve quite well to 650 GPa
This is an accidental cancellation of errors. Ignoring melti
and electronic excitations gives a temperature that is too h
by ;104 K at this pressure. This offsets the neglect of t
pressure enhancement due to melting. It is not recommen
to ignore either melting or electronic excitations in this hig
temperature regime.

VI. CONCLUSIONS

By combiningab initio calculations of elastic moduli and
zone-boundary phonons with interpolations based on a fo
constant model, we have calculated moments of the pho
frequencies of fcc Au to twofold compression. This allows
to calculate the associated Gru¨neisen parameters. In particu
lar, we have focused ong0 which corresponds to the class
cal limit. We emphasize that the classical limit dominates
thermal pressure in the EOS. We find that the frequently u
form g(V)5g(V0)(V/V0)q does not represent the volum
7-8
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LATTICE DYNAMICS AND THE HIGH-PRESSURE . . . PHYSICAL REVIEW B 69, 054107 ~2004!
dependence ofg well. We have used an expansion to seco
order in V with a physical asymptotic limit, which fits the
calculated moments well and is consistent with the measu
value of g at ambient pressure and temperature. Using
theoreticalg(V) and electron excitation free energy, we ha
constructed a semiempirical free energy for the solid, wh
we believe to be as accurate as possible. This free ener
given as a parametrized closed-form expression and the
sulting P(V,T) is given in tabular form toV/V050.6.

Our static lattice energy is empirical, and is verified
comparison with the measured Hugoniot, so that our E
can be regarded as a generalization from the Hugoniot wi
physically basedg. In the solid phase, electronic excitation
have a small effect. This, together with the dominance of
classical limit in the vibrational free energy, means that
widely used Mie-Gru¨neisen approximation, that (]P/]E)V is
independent ofT, is accurate. At the highest compressio
the physics affecting the Hugoniot becomes more com
cated. Melting is predicted to begin at 280 GPa andV/V0
50.656. Complete melting is estimated to lead to a 30 G
increase in the Hugoniot pressure over the solid. At th
densities and higher, the Hugoniot temperature is rising r
idly and electronic excitations are playing an increasing ro
The highest Hugoniot data are at 580 GPa, where the t
perature is calculated to be above 23104 K. The Mie-
Grüneisen approximation is not expected to be valid for
terpolating between the Hugoniot and room temperature
this high compression, because of the strong effects of m
ing and electronic excitations. These effects need to be ta
explicitly into account, as has been done here.

Regarding EOS standards, our analysis gives a ro
temperatureP(V) curve that agrees well with that of Hein
and Jeanloz13 to 200 GPa. Our EOS gives (]P/]T)V gener-
.J
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ally somewhat larger than theirs, and we believe that in t
regard our EOS is preferred. The EOS of Jamiesonet al.8 is
based on reduction of shock data, and was originally give
80 GPa. It gives somewhat lower pressures than ours, w
is due to their use of a Gru¨neisen parameter that is too larg
at all volumes. Extrapolation of their room-temperature is
therm to higher pressures12 is not recommended. Anderso
et al.19 adopted the room-temperature isotherm of Heinz a
Jeanloz,13 while giving a different thermal pressure. The
EOS gives (]P/]T)V which is substantially too low unde
compression, and is not recommended for high temperatu
Simultaneous compression of Au and Pt showed12 that the Pt
standard of Holmeset al.45 gave a pressure higher by 15 an
20 GPa than the Au standards of Heinz and Jeanloz13 and
Jamieson,8 respectively, at a pressure of 150 GPa. While
extrapolated Jamieson isotherm is expected to be some
low, our analysis agrees with the room-temperature isoth
of Heinz and Jeanloz, suggesting that the discrepancy
tween the Au and Pt pressures is due to errors in the
standard. Given the importance of accurate pressure s
dards, the status of the Pt EOS seems to warrant fur
investigation.

Note added in proof. Recently, another paper46 applying
similar methods was published. Tsuchiya makes no refere
to the Hugoniot data, and obtains significantly higher roo
temperature pressures than we do.
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