PHYSICAL REVIEW B 69, 054107 (2004

Lattice dynamics and the high-pressure equation of state of Au
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Elastic constants and zone-boundary phonon frequencies of gold are calculated by total energy electronic
structure methods to twofold compression. A generalized force constant model is used to interpolate throughout
the Brillouin zone and evaluate moments of the phonon distribution. The moments are used to calculate the
volume dependence of the Grisen parameter in the fcc solid. Using these results with ultrasonic and shock
data, we formulate the complete free energy for solid Au. This free energy is given as a set of closed-form
expressions, which are valid to compressions of at [¢agy=0.65 and temperatures up to melting. Beyond
this density, the Hugoniot enters the solid-liquid mixed phase region. Effects of shock melting on the Hugoniot
are discussed within an approximate model. We compare with proposed standards for the equation of state to
pressures of~200 GPa. Our result for the room-temperature isotherm is in very good agreement with an
earlier standard of Heinz and Jeanloz.
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[. INTRODUCTION qualitatively incorrect at high compression, and extrapolation
on this basis is inherently limited.

The elastic constants, phonon frequencies, and equation In principle, the various components of the EOS—the
of state(EOS are fundamental properties of matter. The val-static lattice energy, the vibrational free energy, and the elec-
ues of these parameters under compression find applicatiaronic excitation free energy—can be evaluated from elec-
in geophysics and in the prediction and interpretation of tronic structure theory. Practical calculations based on ap-
processes of dynamic compressfohFor many materials, proximate density-functional theories typically have errors of
especially elemental metals, the principal Hugoniot curvesseveral percent in the density at zero pressure and 10% or
the set of states accessible via a single shock from ambientore in the bulk modulu® These are unacceptably large
conditions, have been measurfeti® Since the pressure, den- errors for the purpose of high accuracy equations of state.
sity, and internal energy are known along the Hugoniot fromThese properties can be measured accurately, and are mainly
the jump conditiond these data are an important baseline fordetermined by the cold energy curve, which is the largest
high-pressure equations of state. The off-Hugoniot EOS igontribution to the EOS in the regime considered here. On
needed for the prediction of processes involving more comthe other hand, we find thatb initio electronic structure
plicated loading paths, such as multiple shocks or shock ancalculations are capable of obtaining phonon frequencies of
releas€. Extrapolation from the Hugoniot has also been usedsufficient accuracy to strongly constrain the volume depen-
to establish pressure standards for static high-pressure edence of the Gieisen parametey. We therefore propose
periments, whose room-temperature isotherms are regardeleat the most accurate EOS in the solid is obtained by com-
as knowr?®° Au has been used as a standard in this waybining an empirical cold energy withb initio lattice vibra-
and has been used to calibrate the rifyline as a second- tion and electronic excitation free energies. This is analogous
ary standard-** Recent studies have called into question theto procedures that have been used to reduce shock Hugoniot
accuracy of the gold pressure standard. Akahanal!?>  data and derive room-temperature standards, but the present
compressed Au and Pt in the same cell and found two Awanalysis gives a strong physical foundation for the volume
standard$™ to give pressures lower than Pt by 20 and 15dependence of, allowing confidence in the results at higher
GPA, respectively, at 150 GPa. Shiet al,'* on the other compression. We are not aware of any evidence of solid-
hand, propose a new EOS for Au that gives pressures stilolid phase transitions in Au, and we consider only the fcc
lower than either of these earlier standards. solid. Recent calculatioh%indicate a transition to the hcp

To relate the Hugoniot to the room-temperature isothernstructure forv/Vy=<0.6, and we do not attempt to extend our
requires information on the Gneisen parametery  solid EOS beyond this density.
=V(JP/JE)y and the specific heat, .? These are domi- This paper is arranged as follows. First we discuss lattice
nated by lattice vibrations in the regimes under consideratiolynamics and its connection to the EOS. We emphasize the
here. With increasing compression, the separation betwedmportance of the classical limit for defining the ion motion
the Hugoniot pressure and the room-temperature pressure ipentribution toy. We describe our procedures for calculating
creases, resulting in greater dependence of the inferred roorphonon frequencies and interpolating to the whole Brillouin
temperature isotherm on Becausey is not easily measured zone. Next we present our results for elastic and phonon
at high pressure, this introduces a non-negligible source groperties of Au, and our analysis to obtaifi"(V). We then
uncertainty in the pressure standards. In most cases, a moggkesent the complete EOS for solid Au by giving a set of
assumption of the formy(V)=y(V,)(V/V)? has been closed-form expressions for the Helmholtz free energy with
used. The specific valug=1 has been used often in shock parameters. The resulting room-temperature isotherm is
work>® However, a power-law dependence pfon V is  compared with various proposed standards. Next we discuss
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shock melting and its effect on the Hugoniot within an ap- % ' T ' ' -
proximate model, and finally give our conclusions. Au
V/V,=038

Il. LATTICE DYNAMICS AND THE EQUATION OF STATE — Full EOS

sl T Classical Ion Motion

We write the Helmholtz free energy as .
Hugoniot

F(V,T)=go(V)+FC(V, T)+Fe(V,T), ) @
[a )

where ¢, is the static lattice energ§®" is the ion motion
free energy, andF® is the electronic excitation free energy.
In our applicationsg, gives the largest contribution to the
pressure. The ion motion free energy gives the dominant
temperature dependence Bt — (JF/dV)t. The electronic
excitation termF® is generally a small correction to the solid ' o ' o ' 1300 ' 2000
EOS, becoming important for the liquid Hugoniot at several T (K)

hundred gigapascals.

It is. therefore. imperative to have an accur&ié" for FIG. 1. Role of quantum ion motion in the EOS. Graph shows
’ » IMPp P(T) along an isochor®/V,=0.8. Solid curve is the full EOS and

Calcglatlng th.e temperature dependencé>olThe quasinar- .dashed curve uses the classical limit of the ion free energy. Hugo-
monic approximation has been found to have small errors iNiot temperature at the given density is 1340 K

many case$’ We have carried out Monte Carlo simulations
using an embedded atom motfebf Cu to investigate the
importance of anharmonic corrections to the ion free energy. _
Here we define the anharmonic free energy to be the differ- @n=
ence between the true ion free energy and the quasiharmonic
approximation, noting that the term has been use
differently!® by other authoré® We intend to publish details
of our Cu simulations elsewhere. In summary, we find tha
up to 300 GPa on the melting curd®?"<0.85 GPa, and

1/n
, n#¥0, n>-3, (5

3+n (=
—f dog(w)o"
3 Jo

QNhere the normalizations in Eq&4) and (5) are chosen so
{[hat for a Debye spectrum, described by

is never more than 3% of théhermal pressureP(V,T) 3
—P(V,0), a very small correction to the total pressure. J(w)=— 0*0(wp—w), (6)
Given the similarity of the bonding in Cu and Au, we expect ®p

these results to be relevant for Au also. Thus, in what follows
we neglect anharmonicity and use the quasiharmonic apll w, are equal towp, the Debye frequency. We subse-
proximation forF™°", quently give results fow,= w,/(27) corresponding to the
experimental convention of giving frequenciesn Hertz, as
ion, _ - 1 —holkaT opposed to angular frequencies
F (V’T)_3NJO dog(w)lzhetksTIn(1-e ®)1, In the classical limit, the ion pressure is linearTirwith
(2 (aP°"aT)y=(3Nkg/V)yy, Where yy=—dInwy/dinV,

. . and the specific heat is consta@,=3Nkg. The role of
where we have introduceg(w) = (1/3N) i d(w = wy), the  o0h0,m jon motion in the EOS s illustrated in Fig. 1, which
normalized phonon density of states. The phonon frequenci ows the pressure along an isochuf&/,=0.8. The solid
wy are functions of volume only, and the sum is over the 3 curve is our full EOS, described below, and the dashed curve
normal modes of the crystal.

Applicati fEQ.(2) ires the full oh density of uses the classical limit &F°" at all T. The arrows mark room
pplication oT £¢.(<) requires Ine ufl phonon density o temperature and the Hugoniot temperature, which is 1340 K
statesg(w) at all volumes. While in principle this informa-

ton i lable f lculati . tice the classi at the given density. The melting temperature at this density
lon IS available from our calcuialions, In practice th€ classSlyq o qimated to be 4900 K, beyond the range of the plot. It is

cﬂ.hn}lt dolmltnhatesl, our EﬂS _?IIO\r/]v_lnk?.fotrha bej.tantt'al SIM-"clear that the classical limit dominates even at room tempera-
pitication. in th€ classical imit, which IS the 'eading term n .o - pe Hugoniot is well into the classical regime. At

the high-temperature expansion of &), the free energy is higher densities, the Hugoniot is still further above the quan-

given by tum regime. The largest quantum effect on the pressure is at
e Phaw, T=0, where the zero-point vibrations contribute a pressure
—) , (3) of 0.8 GPa at this density. The classical limit is clearly domi-
keT nant for interpolating between the Hugoniot and room tem-
where we have introduced the moment peratures.
We have found that an interpolation based on the Debye
model gives a very accurate approximation to the full quasi-
: (4) harmonic free energy. The Debye free energy is a special
case of the quasiharmonic free energy, &j. Inserting the
Other moments are conventionally defined as Debye density of states, E¢F), gives

FC'(V,T)=3NkBTIn(

w0=e1/3ex;{ f dog(w)ne
0
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FO(V,T)=N[§#iwp+3KkgT In(1—e "“p/keT)

where
3J’X 2
D(x)=—|[ dz . 8
0 x3Jo  e*-1 ®

In light of the above remarks, it is important to capture the

correct classical limit. This requires that we set
wp(V)=wy(V). )

To emphasize the distinction between E®). and the stan-

dard definition ofwp in terms of acoustic velocities, we refer
to the Debye free energy together with Ef) as the high-
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FIG. 2. (Color onling Phonon dispersion for Au at room tem-

temperature Debye model. The high-temperature Debyperature and ambient pressure. Open circles are experimental data
model gives the same results as the full quasiharmonic freef Lynn et al. (Ref. 27. Filled diamonds are LDA calculations of
energy in the classical regime, and in addition obeys theone-boundary phonons at teandL points. Solid curve is inter-

Nernst theorem at low. We have checked that at loWy the

polation based on fit of 2NN force constant model to the LDA

error in the pressure compared to the full quasiharmonic apzone-boundary phonons and elastic moduli.

proximation is entirely negligible.

Thus, we can simplify the specification of the lattice vi-
bration free energy from giving(w) at all V to giving the
single momentv, at all V. This is advantageous for numeri-

cal applications. It also allows us to express our full EOS in

points were used. Thep 5d, and & shells were treated as

valence states, and local orbital extensfSmeere used in the

p andd channels.
We used a generalized Born-von ig@n force model for

a few compact formulas so that it is generally accessibleour lattice-dynamical calculations, from which we were able

These formulas are given below.

Calculating the moments,, requires the phonon frequen-
cies for allk in the Brillouir?'?2 zone. Directab initio cal-
culations on a dense meshknvould be quite expensive. As
a result of another studywe found that the low-order mo-

to compute the phonon dispersions in the entire Brillouin

zone. Since gold has a very simple phonon dispersion, we
employed only a model with INN and 2NN interatomic
shells of atoms. In fcc lattice the INN and 2NN forces are
determined by three and two independent parameters, respec-

ments can often be accurately obtained from short-rangetively (for more details see, e.g., Ref.)2These five force

force-constant models. In particular, for Au, the momegt

constants were extracted by fitting simultaneously the pho-

is converged to less than 1% with a second nearest neighboen frequencies of gold at tiéandL points of the Brillouin

(2NN) model. Therefore, our method is to calculate four

zone and the elastic constariig;, C;,, and Cy4 near the

zone-boundary phonon frequencies corresponding to thzone centerI( point). Thus we fit a total of seven indepen-

transverse and longitudinal modes at tkeand L points.
These are calculated with standard frozen-phonon method

dent data points. We gave equal weight to the zone-boundary
phonons and elastic constants in o fit of the phonon

In addition the three elastic moduli are calculated using thelispersions. Although the 2NN Born-von Kaan force

method described by Serlind et al?* We fit these results to

model is too simple to reproduce all phonon frequencies

a 2NN force-constant model, which then allows the evaluawithin less than approximately 10%, see Fig. 2, it is suffi-

tion of wy for arbitrary k for integration over the Brillouin
zone.

The electronic structure calculations used the full-
potential linearized augmented plane-wave codengz.?®
We used the local-density approximatidrDA) rather than
the generalized gradient approximati¢@GA), based on
Boettger’s finding® that the LDA gives a better static lattice

ciently accurate to compute integrated quantities such as the
phonon moments within less than approximately 3%. More
accurate phonon dispersions can be obtained if needed, by
computingab initio frequencies at half and quarter distances
in the Brillouin zone and fitting those to a 3NN or higher-
order Born-von Kaman force model, or to phonon models
with interatomic pseudopotentials.

energy than the GGA for Au. Some numerical parameters

used in the calculations were, in atomic units, the following:
muffin tin radius ry;=2.0, plane wave cutoffr yrkmax
=9.0, cutoff for expansion of density and potent@}

IIl. ELASTIC AND PHONON PROPERTIES

Figure 2 shows the calculated phonon dispersion curves

=14. For elastic modulus calculations, Brillouin-zone inte-for Au at the density corresponding to ambient pressure and
grals used special points corresponding té fi8ints in the  room-temperature. The filled diamonds at }handL points

full zone, with Gaussian smearing of the energies by 20 mRyare the LDA frozen phonon results. These together with the
The zone-boundary phonons were found to be comparativelgalculated elastic moduli are used to obtain the force con-
insensitive to thek-point mesh, and smaller meshes of 10 stants. The solid curves are the interpolation to general wave
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TABLE |. Calculated phonon and elastic properties of Ag.is the volume at 298 K and atmospheric pressure and is 10.232vwh
for Au. Frequencies given in terahertz and elastic moduli given in gigapascal.

VIV Vxt xi Vit VL c’ Cus B Yo V1 V2

1.1 1.76 3.17 1.33 3.37 9.2 11.1 91.0 2.53 2.60 2.68
1.0 2.54 4.43 1.77 471 13.8 274 172.0 3.53 3.64 3.75
1.0/expt. 2.75 4.61 1.86 4.70 14.6 41.5 167. 3.65 3.75 3.86
0.9 3.45 591 2.30 6.32 20.3 55.0 304.4 4.71 4.86 5.00
0.8 4.55 7.71 2.95 8.40 26.8 112.3 527.3 6.16 6.35 6.54
0.7 5.94 10.05 3.76 11.19 37.4 221.7 928.3 8.03 8.30 8.57
0.6 7.76 13.18 4.78 15.23 67.0 443.5 1663.8 10.55 10.93 11.30
0.5 10.27 17.63 6.10 21.62 1354 871.0 3097.4 13.99 14.58 15.13

vectors using the force-constant model. The open circles aidewing functional form fory,(V), which has been used in

the experimental data of Lynet al?’ The force-constant creating many wide ranging equations of stite:

model is overconstrained, so it neither goes precisely through

the calculated zone-boundary frequencies nor has it exactly

the calculated elastic moduli. The shapes of the dispersion

curves are simple enough for Au that they are generally well . o o

captured by the 2NN model. wherey” is the |nf|n|t-e density limit ofy, andA, an.dBn are
Table | summarizes our results for the zone-boundarparameters. Alternatively, we can exprégsandB,, in terms

phonons, elastic moduli, and moments= w /2, as func-  Of dn=d In(¥,)/dIn(V) and y,(V,) as

tions of volume. The reference volumé&, corresponds to

v
—|+B,

Ya(V)=7y"+A, Vo

\Vj 2
W o

T=208K and P=1ba=100kPa. For Au, Vg An=1n(Vo)[2=0An(Vo)] =277,

=10.212 cm/mol or 114.433/atom. Also shown are the w

experimental data at room ?emperat@fré? No attempt is Bn=7n(Vo)ldn(Vo) 1]+ 7" (1)
made to account for the temperature dependence beyongtegratingy,=—dInv,/dInV, we have

comparing at the correct volume. There is generally good

agreement between the calculated and experimental quanti- V)Y Vv

ties. The main exception 8,4, which is calculated substan- va(V)= Vn(Vo)(V—) exp{ —An (V_) - 1}

tially lower than measured. Our calculation is in better agree- 0 0

ment with an earlier LDA calculatioff: The main result of Bnl[ V\?

the present calculation is the valueigf, which is within 3% T (V_o) -1 ] (12)

of the measurement. The ratiq/v, is 1 for a Debye spec-
trum. Our calculations giver, /v,=1.03 at ambient density By fitting this functional form to the calculatedy(V), we
and 1.04 at twofold compression, so, by this measure, thextract the parameters giving(V). In our fits, we keepy™
departure from a Debye spectrum is small and nearly con-

stant with volume. 1000 ' T ' - =
Measurements of elastic moduli were reported by Duffy - B—E'PDreant
29 — . age . . Y u y
et al~ to P=37 GPa, andb initio calculations by Tsuchiya SO0 4", Touchiya, LDA . i

and Kawamur¥® to 100 GPa. Figure 3 shows these results
along with our calculations. Our volumes are converted to
room-temperature pressures using the EOS described beloys 60
The highest density in Table | correspondshte-780 GPa, ©
and the graph is restricted to lower pressures to highlight the =
comparison with these other works. Our calculation€ef

and C,, are in good agreement with Tsuchiya and Kawa-
mura, while ourC,, is systematically lower, in somewhat
better agreement with the experiments. @yy is in good
agreement with the experiments whig, is slightly high. It : ; ‘ .
should be noted that the experimerttal depend on a model 0 50 100 150
parameter used in the analysfS. The plotted points corre- P (GPa)

spond toa=1. It is encouraging that our calculations give  FiG. 3. Pressure dependence of the elastic moduli of Au. Open
the correct trends for the pressure dependend@;of squares are present LDA calculations with pressures from our EOS.

Having determined the moments, as functions of vol-  Solid circles are experimental data from Dufét al. (Ref. 29.
ume, we need to interpolate and differentiate them to obtaipen triangles are previous LDA calculations by Tsuchiya and
thermodynamic functions. To do this, we assumed the folKawamura.

400
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FIG. 4. Volume dependence af,, the log
moment of the phonon frequencies, ang
=—dInwyy/dInV for Au. Lower graph isvy(V).

. Open symbols are calculated moments. Upper

graph is resultingyy(V). Solid curves are present

results fitting Eq(10) to the calculated moments
with the constraint y,(V,)=2.97. Dash-dot
curve shows the commonly used approximation
y(V)=y(Vo)(VIVy)? for q=1.7 (Ref. 13.
Dashed curve corresponds to tleof Jamieson
etal. (Ref. 8, who usedg=1 and y(Vy)
=3.215.

4 T [ . | | | |
- Au - phonon moments and y —
! s
>. 2 m e
l = e Pt :
0 . | | | I I
T 0.6 L 1
20 \ | I | I T | T
- \ o] V0 ]
— Present - y(V,)=2.97
~ 15~ resent - 4,(V)=297 _|
N T 3 q=1.7 _
o[ el - ---- Jamieson
b L e ¢ Experiment
>o c T
T
0 . I . I | I I
0.4 L , 1
VIV,

fixed. The valuey”=2/3 has been widely uséd,although
arguments have been made fgf=1/2.2% For our applica-

harmonic approximation, and further specialize to the high-
temperature Debye model. Thus we take the ion free energy

tion and density range, we have found that the quality of théo be given by Eqs(7) and(8), where we identifywp with

fit and the resultingyy(V) are insensitive to this choice, and
we usey” = 2/3. The fitting procedure is illustrated in Fig. 4,
where we show the fit fowy(V), the log moment and the
resulting yo(V). We did the fits withvg(Vg), yo(Vy), and
0o(Vo) as free parameters, and with(V,) constrained to
the experimental value of 2.9{This experimental value was

the log momentw, of the phonon frequencies. As discussed
in Sec. I, this gives the correct classical limit, and leads to
extremely small errors at low compared to the full phonon
spectrum. This way we are able to give a closed-form ex-
pression for="°", which is very convenient in numerical ap-
plications. The volume dependencea is that given in Eq.

determined so that the thermal expansion for the subseque(it2) with parameters given above. For the final EOS we have

EOS overlies the recommended curve of Touloukdrom
100 to 1200 K) The unconstrained fit givegy(Vy) =2.88.
Constrainingyq(V,) increases the rms error of the fit from
4.9x10 2 to 5.7x 10" ? THz, which is not a significant in-
crease. Also, we note that constraining(V,) does not
changeyy(V) at smallerV. For this reason, we believe that

the constrained fit is the best overall approximation for

Y°(V) up to twofold compression. This is shown as the

replaced the fitted value aby(Vy) with the experimental
one. This is essentially a small shift in the absolute entropy,
which has negligible effect on the results.

Electronic excitations give a small contribution to the
thermodynamics, which we approximate by

FE(V, T)=—3NI(V)TZ (13)

The Sommerfeld coefficienf is proportional to the elec-

solid curve in Fig. 4. The corresponding parameters argonic density of states at the Fermi energy;

do not show the unconstrained fit in Fig. 4 because it is toqy |, g(e)/dIn V=

= (w2/3)k§g(ef) . Our calculations show  that
0.76 over the range of densities considered,

close to the constrained fit. The dot-dashed curves COITEsH we take

spond toq=const, y(V)=y(Vo)(VIVy)Y. The valueq=1
gives avy that is too high over this density range, whie
=1.7"is too low. Jamiesoet al® usedq=1 and an ambi-
ent valuey(V,y)=3.215, which results in the dashed curve.
We believe that theily is too high at all volumes considered
here. Any constant value af will lead to a y that is too
small at very high compression.

IV. EQUATION OF STATE

LF(V)=T(Vo)(VIVq)* (14)

with  «=0.76. The calculations give I'(Vy)=6.7

X 10" % J/mol K?, while the measured value from the
low-temperature  specific  heat s T'(Vy)=7.28

X 10" % J/mol K?. The measured low-temperature specific-
heat coefficient’q, is expected to be enhanced with respect
to the bare valud' as a result of electron-phonon interac-
tions by a factor (¥ \), where \ is the dimensionless

The complete EOS is determined when the Helmholtzelectron-phonon mass enhancement parameter. The value for

free energyF is given as a function of volume and tempera-
ture. In this section we describe our form ferand give the

gold is A~0.05-0.15%° which agrees with our calculated
I'/T gxp=1.09. At high temperatureBg T>% w(, the phonon

numerical parameters for fcc Au. First we write the free en-mass enhancement becomes ineffective. Hence we use our

ergy as in Eq(1) as the sum of the static lattice energy,
an ion motion free energf'", and an electronic excitation

calculated density of states in the remainder of this paper.
The static lattice energy is needed to complete the free

term F®. For the ion motion free energy we use the quasi-energy. We adopt the functional form due to Vimgtal 3’
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4Vv*B* is
poV)=——> [1-(1+X)e X, Au - Room T and Hugoniot
(B1—1) oo AT — Present Solid EOS .
\ o Heinz and Jeanloz |
3 v 1/3 o Bell
400 U =312+1521U0 -
X= —(B?Lr - | — -1, (15 \, Onset of Melting s P
2 v 5 o LASL
Ay = Al’tshuler
. . . - Q 300 4 Jones 7]
which is parametrized by the volume at the minimwyh, N

the bulk modulusB*, and its pressure derivati&} . These
parameters have been determined empirically by requiring
that the EOS reproduce the ambient volume and ultrasonic
data forBg at ambient condition& For the latter, we adopt
the valueBs=173 GPa. Ultrasonic data give values for
(6Bg/9P) from 5.2 to 6.4. Therefore, to complete the EOS,
we require that it reproduce the measured slope of the Hugo

600

100
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<— Hugoniot

Room T

0.6

0.7 0.8 09

ViV,

niot, which we take from the fitU,=3.12 km/s+ 1.52U,
relating the shock velocityJ to the particle velocityU,.
The resulting parameters givéRs/JP)+=5.49, consistent
with the ultrasonic data.

FIG. 5. Hugoniot and room-temperature isotherm of Au. Solid
curves are present solid EOS. Solid symbols are Hugoniot data
(Refs. 5,6, and 38 Note that there are five overlapping Hugoniot

The complete set of parameters for the free energy of fc@0Ints atV/Vy~0.7. Open symbols are room-temperature data

Au is summarized here. The static lattice energy is given b
Eq. (15 with

V* =10.0834 cri/mol,
B*=180.0 GPa,

B¥ =5.55. (16)

The ion motion free energy is given by E¢%) and(8) with
the volume dependence afy given by Eq.(12) (with vq
—wp, Yo— 7, etc). The parameteré and B are given in
terms ofy(Vy) andq(V,) by Eq.(11). The numerical values
are

Vy=10.212 cmi/mol,
wp(Vg)=22.9<10% s71,
¥(Vo)=2.97,
q(Ve) =1.3677,

Y =2/3. (17)

Finally, the electronic excitation free energy is given by Eqgs
(13) and (14) with

I'(Vg)=6.7x10"% J/mol K2,

xk=0.76. (18

Refs. 11 and 1B For the Bellet al. data(Ref. 11, pressures are
rom the extrapolated ruby standard. The onset of shock melting is
estimated aP~280 GPa, as marked.

therm for the present EOS. The solid symbols are the Hugo-
niot data>®38 The dashed line corresponds to the linear fit
for Ug(Up). Also shown as the open circles are the room-
temperature data from Heinz and Jeahtdaken to 70 GPa
with the ruby pressure scale. The open squares are the room-
temperature data of Bebt all! to 188 GPa. The pressure
shown in the graph is taken from the ruby scale, which is
extrapolated from a lower-pressure calibratid@ur calcula-
tions agree with these data to 3% at the highest pressure,
indicating support for the extrapolation of the ruby scale.

For V>0.656/,, the Hugoniot lies in the solid. By
matching the measured Hugoniot with our theoretically
based Groeisen parameter, we confirm the accuracy of our
room-temperature isotherm, and we have high confidence in
our EOS to this density. Combining our calculated Hugoniot
temperatures with a Lindemann melting curve, we estimate
that the Hugoniot enters a solid-liquid coexistence region at
V/IV,=0.656, P=280 GPa. A more extensive discussion of
shock melting is given in the following section. There we
find that explicitly accounting for melting leads to good
‘agreement with the high-pressure Hugoniot data, indicating
that our solid EOS is valid to densities 9fV,~0.6.

Figure 6 shows our room-temperature isotherm along
with data from Heinz and JeanldZ,and Bell et al!! Also
shown are some of the proposed EOS standards. Jamieson
et al® used the Hugoniot as a reference, and calculated the

The following calculations use these parameters for the freeoom-temperature isotherm using a Mie-@Geisen EOS.
energy of fcc Au. Once the free energy is known, the presThey assumed/V=const, and useg(Vy) =3.215, so their
sure, internal energy, etc., can be evaluated. We calculate the is always larger than ours. This results in lower room-

Hugoniot by fixing a value of the volume and solving for the
temperature such that the jump conditioB—E,=3(P
+Pg)(Vo—V), is solved. Hereéey, V,, and Py correspond
to the initial state, taken to be ambient temperature and pre
sure.

temperature pressures than ours, but by restricting their
analysis toV/Vy>0.775, the impact of the assumedis

minimized. The Heinz and Jeanloz EOS is based on extrapo-
$ating their room-temperature data, with some consideration
of the shock data. Our room-temperature isotherm is in good

Figure 5 shows the Hugoniot and room-temperature isoagreement with Heinz and Jeanloz to 200 GPa. The recently
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200 ' ' | ' the range of densities td/V,=0.6 and the temperatures to
: Au - Room T Isotherm | 5000 K, except where such temperatures are thought to lie in
the liquid phase. Boettg¥rhas proposed an extension of the
ol N "y Present EOS o Au 300 K standard to 500 GPa based on LDA calculations.
N einz and Jeanloz Data )
. = Bell He givesP=344 GPa atv/Vy,=0.6 compared to 329 GPa
- & Jamieson EOS 1 from our semiempirical EOS. Given the scatter in the high-
< o Heinz and Jeanloz EOS i X
& 100l ---- Shim EOS a pressure Hugoniot data, and our approximate treatment of
: melting, this 4.6% difference is probably within the uncer-
. tainties of the present analysis at this high density.
or T 7 V. MELTING AND THE HUGONIOT
i In order to investigate the effects of melting on the Hugo-
0 ! . I s I . niot, we have constructed a two-phase model free energy.
07 08 Vv 09 The ion free energy in the liquid is based on the assumptions
0

that C"=3NKkg, which is reasonable for temperatures near
FIG. 6. Room-temperature isotherm of Au. Solid curve is melting, and that S?", the entropy difference between solid
present EOS. Solid symbols are déRefs. 11 and 18 Open tri-  and liquid at fixed volume, is ONkg . These are empirically
angles are the EOS of Jamiesenal. (Ref. 8. Open squares are based model assumptiofisA statistical mechanical basis for
EOS of Heinz and JeanldRef. 13. Dashed curve is EOS of Shim these observations is discussed by Walfagho argues for
et al. (Ref. 14. the universality ofAS?". Beyond these assumptions, we re-
quire the energy of the liquid with respect to the solid to fully
proposed EOS of Shirat al.” is significantly lower than all  determine the liquid free energy. We do this by imposing that
the other standards. It is lower than the present analysis biie melting curve, obtained by equating the pressures and
10 GPa aWV/V,=0.7, corresponding t® =156 GPa. Gibbs free energies of liquid and solid, follows the Linde-
Figure 7 showd(T) along two isochores in comparison mann rule in the form
with various equations of state. A¥/V,=0.8, Jamieson
et al. give somewhat loweP at 300 K with a larged P/d T, Tm
in keeping with their higheyy. Heinz and JeanldZare in the w2(V V23
best overall agreement with the present pressures, with wo(Ve)Vs
somewhat lowerdP/dT. Shim et al!* give a somewhat whereV; is the volume on the solidus. The electron excita-
higherdP/dT with P generally low due to their large offset tion free energy is assumed to be the same in the liquid as in
at room-temperature. Andersaet all® adopted the room- the solid. Application of this method to Cu leads to a shock
temperature isotherm from Heinz and JeartfbZheir EOS  melting threshold of 228 GPa, which compares well with
givesdP/dT substantially too low at compressed volumes. 232 GPa obtained by Hayest al*! by analyzing sound
We have tabulate®(V,T) in Table Il in the same format speed data. The Au Hugoniot has been calculated for the
adopted by other authors. As discussed, we have extendédo-phase model allowing for coexistence in the shocked

|14

= const, (19

90 T T T T T T T T T
I Au V/VO=0.8
— Present
---- Jamieson

80— o-a Heinz and Jeanloz
+-+ Anderson

FIG. 7. Isochores of Au. Solid curves are the
present EOS. Dashed curve is Jamiesdral.
(Ref. 8. Open squares are Heinz and Jeanloz
(Ref. 13. Filled diamonds are Andersoet al.
(Ref. 19. Open triangles are Shimt al. (Ref.
14).

0 500 1000 1500 2000 2500 3000
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TABLE II. Tabulated pressures for Au. Compressigr-1—V/V3qq Where V5 is the volume aff=300 K andP=0. Pressures in
gigapascal. Values in parenthesis are the first liquid states for gatttluded for interpolation. Remaining liquid states left blank.

7 300 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K 3500 K 4000 K 4500 K 5000 K
0.00 0.00 1.44 5.08 8.73 (12.40

0.02 3.57 5.00 8.61 12.24 (15.88

0.04 7.65 9.07 12.65 16.25 19.87 (23.50

0.06 12.31 13.71 17.27 20.85 24.44 (28.09

0.08 17.61 19.01 22.53 26.09 29.66 33.24 (36.83

0.10 23.65 25.03 28.54 32.07 35.61 39.17 42.74 (46.33

0.12 30.53 31.90 35.38 38.88 42.41 45.94 49.50 (53.06

0.14 38.36 39.71 43.17 46.65 50.16 53.67 57.20 60.74(64.30

0.16 47.27 48.61 52.04 55.51 58.99 62.48 65.99 69.51 73.0576.60

0.18 57.41 58.74 62.15 65.60 69.06 72.53 76.02 79.53 83.04(86.57

0.20 68.96 70.28 73.67 77.09 80.54 83.99 87.47 90.95 94.45 97.96101.49

0.22 82.12 83.43 86.80 90.21 93.63 97.07 100.53 104.00 107.48 110.98 114.49
0.24 97.13 98.43 101.78 105.17 108.58 112.00 115.44 118.90 122.37 125.85 129.34
0.26 114.27 115.55 118.89 122.26 125.65 129.07 132.49 135.93 139.39 142.85 146.34
0.28 133.85 135.12 138.44 141.80 145.18 148.58 151.99 155.42 158.86 162.32 165.79
0.30 156.25 157.51 160.81 164.16 167.53 170.92 174.32 177.74 181.17 184.62 188.08
0.32 181.92 183.17 186.46 189.79 193.16 196.53 199.93 203.34 206.76 210.20 213.65
0.34 211.38 212.63 215.90 219.22 222.58 225.95 229.34 232.74 236.16 239.59 243.04
0.36 245.26 246.49 249.75 253.07 256.42 259.79 263.17 266.57 269.99 273.41 276.86
0.38 284.30 285.52 288.76 292.08 295.43 298.79 302.17 305.57 308.98 312.41 315.85
0.40 329.37 330.58 333.82 337.14 340.48 343.85 347.23 350.63 354.04 357.47 360.91

state®? Figure 8 shows the resulting Hugoniot in the much lower shock melting threshold than we do. Just above
pressure-volume plane. Also shown in the figure are the dateomplete melting, the liquid Hugoniot lies above the solid by
points and the linead (U ) fit. The dot-dashed curve is the 30 GPa. The linead (U ) curve goes smoothly through the
Hugoniot for the solid only. The boundaries of the coexist-melting region to intersect the liquid data.

ence region are visible as kinks on the solid curve at 280 and Our two-phase EOS gives good agreement with the high-
350 GPa. Above 350 GPa, the Hugoniot is in pure liquidpressure data, which suggests that our cold energy is valid to
phase. A similar anomaly is shown for Al in a two-phasecompressions ofV/Vy~0.6. Electronic excitations have
calculation by Chisolnet al*® A significant enhancement of practically no effect on theP?(V) Hugoniot in the solid
the Hugoniot pressure of Au due to melting was also showmphase, although they significantly affect the temperature. At
in calculations by Godwakt al,** however they predict a higher temperatures in the liquid, they act to soften the

600

400 —

P (GPa)

300 —

100

Au - Shock Melting and Hugoniot 1

¢ LASL
= Al’tshuler B
4+ Jones
— Present 2-Phase —
N ~~ Present Solid
RN — U =312+15210 4

0.55

FIG. 8. Hugoniot of Au, including the effects of melting. Solid
curve is present two-phasgolid and liquid EOS. Dot-dashed

0.6

L
0.65 0.7 0.75

ViV,

curve is solid EOS only. Dashed curve is linear fitig(U,) data
(Ref. 4. Solid symbols are measured poitiRef. 5,6, and 3B

Hugoniot by absorbing energy. Coincidentally, neglecting
both electronic excitations and melting gives a Hugoniot that
agrees with the linedd ((U,) curve quite well to 650 GPa.
This is an accidental cancellation of errors. Ignoring melting
and electronic excitations gives a temperature that is too high
by ~10* K at this pressure. This offsets the neglect of the
pressure enhancement due to melting. It is not recommended
to ignore either melting or electronic excitations in this high-
temperature regime.

VI. CONCLUSIONS

By combiningab initio calculations of elastic moduli and
zone-boundary phonons with interpolations based on a force-
constant model, we have calculated moments of the phonon
frequencies of fcc Au to twofold compression. This allows us
to calculate the associated @risen parameters. In particu-
lar, we have focused of, which corresponds to the classi-
cal limit. We emphasize that the classical limit dominates the
thermal pressure in the EOS. We find that the frequently used
form y(V)=y(Vo)(V/Vy)9 does not represent the volume
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dependence of well. We have used an expansion to secondally somewhat larger than theirs, and we believe that in this
order inV with a physical asymptotic limit, which fits the regard our EOS is preferred. The EOS of Jamiesoal 8 is
calculated moments well and is consistent with the measureldased on reduction of shock data, and was originally given to
value of y at ambient pressure and temperature. Using th80 GPa. It gives somewhat lower pressures than ours, which
theoreticaly(V) and electron excitation free energy, we haveis due to their use of a Gneisen parameter that is too large
constructed a semiempirical free energy for the solid, whichat all volumes. Extrapolation of their room-temperature iso-
we believe to be as accurate as possible. This free energy ilserm to higher pressurEsis not recommended. Anderson
given as a parametrized closed-form expression and the ret al'® adopted the room-temperature isotherm of Heinz and
sulting P(V,T) is given in tabular form to//V,=0.6. JeanloZ?® while giving a different thermal pressure. Their
Our static lattice energy is empirical, and is verified by EOS gives ¢P/JT),, which is substantially too low under
comparison with the measured Hugoniot, so that our EO$ompression, and is not recommended for high temperatures.
can be regarded as a generalization from the Hugoniot with &multaneous compression of Au and Pt shotfélaat the Pt
physically basedy. In the solid phase, electronic excitations standard of Holmest al:*> gave a pressure higher by 15 and
have a small effect. This, together with the dominance of th0 GPa than the Au standards of Heinz and Jednlaad
classical limit in the vibrational free energy, means that theJamiesor, respectively, at a pressure of 150 GPa. While the
widely used Mie-Graeisen approximation, tha#P/JE), is  extrapolated Jamieson isotherm is expected to be somewhat
independent ofT, is accurate. At the highest compressionslow, our analysis agrees with the room-temperature isotherm
the physics affecting the Hugoniot becomes more compliof Heinz and Jeanloz, suggesting that the discrepancy be-
cated. Melting is predicted to begin at 280 GPa afi¥Y, tween the Au and Pt pressures is due to errors in the Pt
=0.656. Complete melting is estimated to lead to a 30 GP&tandard. Given the importance of accurate pressure stan-
increase in the Hugoniot pressure over the solid. At thesdards, the status of the Pt EOS seems to warrant further
densities and higher, the Hugoniot temperature is rising rapvestigation.
idly and electronic excitations are playing an increasing role. Note added in proofRecently, another pagérapplying
The highest Hugoniot data are at 580 GPa, where the tensimilar methods was published. Tsuchiya makes no reference
perature is calculated to be abovex20* K. The Mie- to the Hugoniot data, and obtains significantly higher room-
Gruneisen approximation is not expected to be valid for in-temperature pressures than we do.
terpolating between the Hugoniot and room temperatures at
this high compression, because of the strong effects of melt-
ing and electronic excitations. These effects need to be taken
explicitly into account, as has been done here. We thank J. C. Boettger, J. D. Johnson, E. D. Chisolm,
Regarding EOS standards, our analysis gives a roomand S. Crockett for helpful discussions. This work was sup-
temperatureé?(V) curve that agrees well with that of Heinz ported by the U.S. Department of Energy under Contract No.
and JeanldZ to 200 GPa. Our EOS gives®/dT), gener-  W-7405-ENG-36.
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