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Modeling the dynamic fracture of polymer blends processed under shear
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Using computational models, we examine how shearing a binary polymer melt affects the dynamic fracture
mechanics of the final solid material. The phase separation of the immiscible blend under an imposed shear is
simulated through the Cahn-Hilliard method, where an advection term is added to introduce the flow field.
Using this model, we simulate the structural evolution of the blend and obtain the late-stage morphology of the
sheared mixture. As expected, the domains are elongated in the direction of the imposed shear. We couple these
morphological results with micromechanical studies. The dynamic Lattice spring rtidslel) is utilized to
simulate crack propagation through the solid blend structure. The dynamic LSM consists of a network of
springs that connect regularly spaced mass points; the behavior of these points is dictated by Newtonian
dynamics. The model allows us to simulate crack propagation through these heterogeneous structures and
determine the strength, toughness, fracture toughness, and clititagral of the material. Consequently, we
can correlate the relative orientation of the interfacial regions to the overall mechanical behavior of the system.
We also contrast these results with findings from simulations on the unsheared samples and thereby probe the
effect of processing on the performance of polymer blends.
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[. INTRODUCTION To simulate the structural evolution of the blends, we use
the Cahn-Hilliard(CH) model®>® a coarse-grained theory for

By mixing different polymers, researchers can tailor thedescribing spinodal decomposition in binary mixtures. This
blend to possess the desirable properties of the individuaimple model captures the diffusive nature of spinodal de-
components. For example, the toughness and processabilitpmposition, but neglects hydrodynamics. For high-viscosity
of a brittle polymer can be improved by adding rubbery orfluids, such as polymers, hydrodynamics plays a negligible
elastomeric polymers? Another reason for blending poly- role in the evolution of the system. Thus, the CH theory
mers is economic; the dilution of a relatively expensive poly-provides an appropriate model for investigating structure for-
mer with an inexpensive one can yield a low-cost materiaimation in polymeric mixtures. To introduce an externally im-
that retains the desired properties of the high-cost compoposed velocity, an advection term is added to the basic CH
nent. Most polymer pairs, however, are immiscible and conmodel®’” While the CH approach neglects details of the
sequently, the blends phase separate into heterogenegoslymer chain architecture, the method enables large systems
structures, with relatively narrow interfacial regions separatto be considered and is, therefore, ideal for modeling meso-
ing the different polymeric domains. To potentially improve scopic phenomena, such as the shear-induced orientation of
the intermixing of the components, an imposed flow, such athe polymer domains.
a shear, is typically applied to the mixtutélhe imposed In the studies described below, we carry out the CH simu-
shear also affects the morphology of the system. Specificallyations in three dimensions. These three-dimensional calcu-
shear causes the polymer domains and interfacial regions tations provide us with the elongated morphologies of poly-
become elongated along the direction of the flow, yieldingmer blends processed under shear. We then use the output
highly anisotropic morphologiet® There is often little inter-  from our CH simulations as the input to a micromechanical
facial adhesion between the different polymers, and theremodel to determine the resultant mechanical properties.
fore, the interface is typically weaker than either of the bulk  To simulate the deformation and fracture of solid polymer
materials? This causes polymer blends to fail through inter- blends, we employ a dynamic lattice spring mo¢deSM).
face decohesiofdebonding and cracks propagate along the LSM’s consist of a network of harmonic interactions, or
interfaces, rather than through the polymer phases. springs, and allow the continuum elastic behavior of materi-

In this paper, we integrate two distinct computational ap-als to be captured. The stiffness of the springs can be varied
proaches to examine how shear-induced morphologicdbcaly to model the heterogeneous nature of the material.
changes affect the mechanical properties of the blend. TQuasistatic LSM's, where the simulation progresses through
carry out these studies, we first simulate the dynamic behawa sequence of equilibrium states, have been used to model
ior of an immiscible AB blend in both the presence andthe micromechanics of various heterogeneous systetin
absence of an imposed shear and obtain the late-stage strymarticular, three-dimensional LSM'’s have allowed the defor-
tures of the mixtures. The novel aspect of this study is thamation of particulate systerts'’ and polymer blend
we then use this morphological information to simulate thestructure® to be simulated in a computationally efficient
dynamic crack propagation through these heterogeneous maranner.
terials. By comparing the behavior of the sheared and un- The dynamic LSM extends the quasistatic simulations by
sheared systems, we can obtain insight into the effects ahcluding the dynamics of mass points situated at the inter-
processing on the mechanical performance of the materialssections of the springS:- 3! Each site, or node, corresponds
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to the mass of a mesoscopic unit of the material. These nodes 1 D

interact in a manner that mimics the elastic response of a F=f —Aln[cosiV)]+ E‘I’ZJF E(V‘I’)zﬁf, 3

material. In particular, we employ a Born LSM, which has

been shown to recover the governing equations for an isotrayhere A and D are material specific parameters and the in-

piC elastic medlunJr5 The dynamics of the lattice are calcu- tegration is over the volume of the system.

lated using a discrete form of Newton’s equations of motion, The above CH equation is discretized and numerically

including a linear viscous term. solved through a cell dynamics systef@DS) method®4°
The discrete nature of the LSM and the mesoscopic lengtfthe employment of CDSrather than a conventional dis-

scale of the model results in a micromechanical model Wher@retizaﬂon of Eq(l)] Significant|y reduces the Computa-

microscopic phenomena are neglected. In particular, th@onal expense of the simulations and thus provides a com-

model does not account for craze formation and craAiny.  putationally efficient model of interface dynamics in phase-

However, dynamit>?® and quasistatif LSM's have been separating systems. The discrete equations are of the form
shown to qualitatively reproduce experimental results of
polymer fracture where the mesoscopic lengthscale of inter-  (r,t+1)=G[W(r,t)]— ((G[W(r,t)]—¥(r,)})
est is larger than that of the microscopic fracture mechanism.

As noted above, we take the results from our morphologi- +30(ND[V(r e+ 1) = W(r,—1H], (4
cal investigations and directly map the phase-separated struc- _ . . .
ture onto our LSM simulations. In this manner, we simulate'Vn€re & hyperbolic tangent model is included in the function
the evolution of the phase-separating polymer blend and dés (although the results are insensitive to this choice of
termine the consequences of imposed shear on the fractuféd
mechanics of the solid material.

In the following section, we detail the CH model and the
dynam|e Born LSM used |n_th|s study. Th_e resqlts ar€ Préyy the current simulation, the parameters are assigned the
B e e, 1 "ollowing Values:A~ 1.3 andD -0.5. The operat(+)

’ indicates the isotropic spatial average over the neighboring
nodes, and{(*))—x) can be considered as a discrete gen-
Il. MODEL eralization of the Laplacian. In three dimensions, the spatial
average on a cubic lattice is given by

GIV(r,H)]=Atani (W) + D[ T (r,H)))—¥(r,1)]. (5

A. Morphology model

We describe the AB polymer blend through the coarse- 6 3 1
grained CH approach. A coarse-grained description is appro- ()= 80 % *+ 80 r\%m *+ 80 N%N *, (6)
priate because the phase separation occurs on mesoscopic
length scales and over time scales where details of moleculgjhere NN, NNN, and NNNN represent the nearest, next-
motions can be neglected. The order parameter that charagearest, and next-next-nearest neighbors respectively.
terizes this system i¥(r), which is the difference in con- | the absence of imposed shear flow, periodic boundary

centration between the two component¥,(r)=®(r)  conditions are imposed and the system satisfies
—®g(r), where® ,(r) anddg(r) are the local volume frac-

tions of component# anq B, respectively. The equilibrium W(ry,ry,r,)="(r+nlL,r,+nL,r+nLt), (7)
order parameter for thA-rich (B-rich) phase corresponds to
V=".(—V.,) and here we tak&.,=1. wheren,, n,, andn, are arbitrary integers an is the

The evolution of this order parameter is described by thesystem size. However, in the presence of an applied shear,
CH equatiorr® In the presence of an imposed flow, the ad-we adopt sheared boundary conditiGAé
vection term,v- (V¥), is added to the equatidt, so that

the expression now reads W(ry,ry,rz,t)

o SE =¥(ry+nlL+ynlL,ry+nl,r,+nlL,t), (8
— 4V (V) =MV +¢, (1) _ . ,
at o where y(t) is the shear strain experienced by the system at
] o o - time t. This takes into consideration that the imposed veloc-
where M is the kinetic coefficientmobility) of the order ity at the lower boundaryy(=0) is zero, while at the upper

parameter field, and is the noise fieldwhich is set to zero boundary g=L) the velocity is%y(t)L. The sheared periodic

in this study. In the case of simple shear, the velocity figld - L AR
in the advection term is described in the following wHly: ts)ﬁgg:jz;{?/aﬁ]ondltlons keep track of this disparity in imposed

In order to quantify the structural evolution of the phase

vx(N=7y()y, vy(r)=v,(r)=0, (2)  separating morphologies, we compare the domain sizes. The
) domain size is defined by the “broken bond” metffdrhe
where y(t) is the shear rate. domain sizeR is approximatelyL%A(t), whereL is the
The local energy term adopted in the current study isvolume of the system andi(t) is the total interfacial area at
given by time t. In three dimensionsd=3) this becomes
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L3 where M, is the mass associated with theth node. The

T NANTFN. 9 Stokes drag term, with coefficie®, accounts for dissipa-

oy tion through viscous damping. The most commonly used
for an isotropic system, whete,, N, , andN, are the num- time integration algorithm is the Verlet algoritifhHere, we
ber of broken bondgpairs of nearest-neighbor sites with use the velocity Verlet algorithffi in order to capture the
opposite signs of¥) in the x, y, and z directions, Velocities (necessary for including viscous dampinghe
respectivehﬁ4 However' in the anisotropic Systems consid- VE|OCity Verlet scheme takes the pOSitionS, velocities and ac-
ered here we separate the dimensions so that, for examp|@-,:‘|erati0ns at timé to obtain the same quantities at tirhe
R,=L%/3N,. This enables the domain growth in different +At in the following way:
directions in the sheared systems to be compared to the iso-
tropic domain growth in unsheared systems.

The above equations enable us to simulate the evolution

R

Un(t+ At =um(t) + v (t) At+ 2a,(t)At?,

of a polymer blend under imposed simple shear flow. We v H_E =v () + Eam(t)At
now detail the micromechanical model used to probe the me2) M2 ’
anisotropic mechanical properties of the resultant solid poly-
i Fy(t At
mer composite. a(t+ A= — m(t) —@vm(t+ _)
M 2
B. Micromechanical model
. . . At) 1
We employ a dynamic lattice spring modglSM). The Vi(t+HAY) =V | t+ = | + za,(t+ At)At, (14
LSM is a numerical technique for discretizing linear elastic- 2 2

ity theory and consists of a network of springs connecting,vherevm anda,, are the velocity and acceleration, respec-
regularly spaqed §ites, or nodes. The energy associated Wim,ew’ of themth node. The force acting on tmath node at
the mth node is given by’ time t, F(t), is taken from Eq(12), where the local dis-
1 placements are also taken at timeThe mass and central
_= TN S force constants are taken to be unity, the noncentral force
En=3 zn: (U™ Un)-Mma (U™ Un), (10 constant is set to zer@esulting in a Poisson’s ratio gf) and
the viscous damping constaf is set to, resulting in a
where the summation is over all nearest- and next-nearesfnaterial where elastic waves are under-damped. The above
neighboring nodes. Herel, is the displacement of theth  equations allow us to capture the elastic deformation and
node from its original position anM ,,, is a matrix contain-  dynamic behavior of the material.
ing the force constantsstiffness for the spring between In order to introduce material degradation, we selectively
nodesmandn. The springs have two different types of force remove springs from the system. A surface is randomly cre-
constants, central and noncentral. The central force constagted, and hence a cluster of springs that cross this surface are
energetically penalizes spring extension, while the noncenproken, depending upon the strain field across the surface.
tral force constant penalizes the rotation of springs from theipn example of the springs that would be removed if a sur-
original orientation. The Young's modulus and Poisson’s  face perpendicular to tHa00] direction was chosen for fail-
ratio v are related to the force constants by the followingure is depicted in Fig. 1. The surface is normal to the spring

equations? connecting nodem andn and colored dark gray, while the
springs that would be removed to create this surface are col-
Sk(2k+3c) k—c ored black. Neighboring springs that are not removed when
7 4k+c ' YT T c+ak’ (1D) creating this surface are colored light gray. We only consider

fracture surfaces that are normal to springs in the system; the
wherek andc are the central and noncentral force constantsstrain across a surface is given by the deformation of the
respectively. spring relative to its undeformed length. Creating fracture
The harmonic form of the energy in EQLO) results in a  surfaces(through the removal of several springs neces-
force term that is linearly related to the displacements. Th&ary because of the interconnectivity of the springs, as ex-
force acting on thenth node, due to the local displacements plained below.
of its neighboring nodes, is given by If a load were to be applied in thedirection (the linear
elastic system would therefore be strained inxfuérection,
E :2 M. (U U (12 springs that possess a component inxmection would be
m™ 4 Tmn i Em - o more extended than springs that are oriented normal ta the
direction. Of the springs that possess a component irkthe
To capture the dynamics of this system, we must integratgirection, the springs in thgL00] direction would be more
Newton’s equation of motion s;ramed .than springs in tHd 10 directions because of their
direct orientation along. If we were to adopt a fracture
Y au critgria t.hat simply rgmoyed individual springs, then the
" _@®—2 (13) springs in the[100] direction would preferentially be re-

Mgz " at moved first (due to their higher strajnand the material
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At= ——— 17
;mm

This time step is used to update the expressions in( .

In order to initiate fracture, we introduce a notch, or seed
crack, at the edge of the system, midway between the system
boundaries and in the plane perpendicular to the applied
strain. We then apply a strain fie{donstant displacements at
the system boundariegquivalent to 5% global strain and
equilibriate the systenthe nodes are moved to positions of
zero forcg. A constant strain rate is then applied to the
sample. An initial time step is introduce¥t, and the strain

is initially increased at each iteration mAt,, whereu is the

constant strain rate. If the average time interval for fracture
FIG. 1. The springs that would be removed upon the creation oto occur[Eq. (17)] is smaller thanAt,, then a surface is

a fracture surface normal to th&00] direction. The surface normal  created. In particular, theth surface chosen to fail is the

to the spring connecting nodesandn is depicted as a transparent surface for whichc;(t) <RND[0,1] <c;(t), whereRND

dark gray plane. The springs that would be removed upon creatine?O 1] is a random number between 0 and 1. If the value of

the surface are colored black. Neighboring springs that are not r At’ from Eq.(17) is greater thart,, th nAt—A.t nd thi

moved upon creating the surface are colored light gray. om Eq. s greater thamllo, thenat=2At,, and tnis

value is used to update the strain field and the dynamic equa-

wout remain oc-beatin du ot prsence of sprngs 2= 4 o Tecre ocutng, Therelore he iaton o
the {110} directions. To avoid the creation of damaged re-. P P p y Welg

gions that can still bear an applied load, a criteria that create'QgS[Eq' (15)] and thg relaxat|pn of ma‘?“a' s.urroundlng the
ropagating crack tip takes into consideration the average

fracturg sur.faces through the'rem.oval .Of spring; in both th‘%i)me interval over which the crack grows. The material de-
[100] dlrect|or_1 and the(11¢ directions is essential. There- forms and fractures in this manner until the crack has propa-
fore, by creating a frac_ture surface through the removal of Yated the length of the system and two separate pieces of the
cluster of springs, which cross a given surface, we creatd

; > T . ' material remain.
fracture surfaces in a more definitive and isotropic manner. . .
. . ; We determine the strength and toughness of the specimen
In order to determine which fracture surface is to be cre-

: ) . o from the stress-strain curve. The strength is defined as the
ated a rate of failurg;(t) of a surface at timet is intro- : . . . ,
duced maximum sustained stress, Whl_le Fhe toughnes_s is defined as
the energy absorbed up to a point in the simulation where the
B load bearing capacity of the material is severely undermined
, (15) (the stress sustained by the sample has dropped to 75% of the
strength of the material
We take the morphologies from the CH simulations and
incorporate them directly into the LSM simulations. In this
manner we can investigate the effects of anisotropic sheared
morphologies on the ultimate strength and toughness of the
material.

(u(H)-B)
pi(0)| ——5—

whereu;(t) is the local strain field across théh potential
fracture surface at timé The minimum value of strain at
which fracture can occur B, referred to as the lower bound
parameter. The constaBtis an arbitrary scaling parameter
and the modulug3 allows for a nonlinear relationship be-
tween damage rate and strain field. Assuming that the dam-
age is to occur somewhere in the system, the probability of
failure P;(t) occurring at a given surfadeis the rate asso-

ciated with surface relative to the total rate of damage ocC- We consider an incompatib|e AB p0|ymer blend as it un-
curring throughout the material, i.eR;(t) =p;(t)/Z;p;(t),  dergoes phase separation into a highly heterogeneous system.
where the sum is over all surfacsA surface is chosen to The structural evolution of this system is significantly differ-
fracture from the cumulative probability and, therefore, se-ent in the presence of shear than in the absence of this im-
lection takes into consideration the correct probabilityposed flow. The blend processed under shear is shown to
weightings. The cumulative probability is defined as exhibit anisotropic morphologies. For these morphologies,
we consider the mechanical properties of the resultant solid
material. In particular, we simulate the propagation of a
crack through the material and ascertain the strength and
toughness of the sample. The mechanical properties of the
and spans the rand®,1]. The average time interval for this sheared polymer blends are shown to exhibit significant an-
failure event to occur f§ isotropy with respect to the direction of crack propagation.

III. RESULTS AND DISCUSSION

qm=gpm> (16)

054101-4



MODELING THE DYNAMIC FRACTURE OF POLYMER. .. PHYSICAL REVIEW B 69, 054101 (2004

16 | Direction of shear
Direction of shear gradient - g
Unsheared -

© 8 r
N
(D]
£
g 4
(o)
(]
2 L
1x10° 2x10° 4x10° 8x10°

Time

FIG. 3. Evolution of the average domain size in the direction of
shear and direction of shear gradient, for the sheared systems, are
compared with the average domain size for the unsheared systems.

Both sets of simulations represented in Fig. 2 begin with
similar initial conditions; the order parameter is assigned val-
ues from a Gaussian distribution with a variance of 0.05.
Small domains oA andB phases are formed and coarsen to
form larger domains. In the absence of shear flow, these do-
mains grow isotropically and the bicontinuous morphology
shown in Fig. 2a) emerges. However, in the presence of
shear flow, the resultant morphology is no longer bicontinu-
ous in all directions and as expectetappears highly aniso-
tropic [see Fig. 2b)].

In order to quantify this anisotropy, we plot the domain
size as a function of time in Fig. 3. The domain sizes are
averaged over 20 independent runs and the error bars indi-
cate the standard deviation. The domains in the unsheared
system undergo an isotropic growth obeying the Lifshitz-
Slyozov law/® whereR(t), the domain size, scales &$°.
However, the sheared domain growth is notably anisotropic.
The domain growth both in the direction of shgardirec-
tion in Fig. 2b)] and in the direction of the shear gradient
[y-direction in Fig. Zb)] are presented in Fig. 3.

FIG. 2. Typical late-staget & 10 000) morphologies for botfa) The simple shear flow considered here consists of both
unsheared andb) sheared systems. Isosurfaces which separatgure rotational and pure elongational parts. Initially, when
A-rich regions fromB-rich regions are colored gray.“lsocaps” the growth rate is more significant than the imposed shear
which depict where thé\-rich regions intersect the boundaries of rate, the local coalescence of domains occurs as the domains
the simulation box are colored black. are rotated about each other. This “tumbling” regime causes
the domain size in the direction of the shear gradient to be
. larger than the direction of imposed shear flow. As the

We contrast the structural evolution of two AB polymer growth rate decreases, the velocity difference across domains
blend systems; namely, one processed in the absence of @ the direction of the shear gradigmtecomes increasingly
imposed flow and one processed under simple shear flowjgnificant and the domains elongate in the direction of im-
The system size considered here.i5=64°, whereL is the  posed shear. The domain size in the direction of shear be-
|ength of the-CUbiC simulation box. In the case of an impose omes |arger than that of the isotropic unsheared SystemS,
shear, we sey=0.0015 in Eq(2); this value is large enough while the domain size in the direction of shear gradient be-
to induce significant morphological variations, yet smallcomes lower. This results in highly anisotropic morpholo-
enough to ensure numerical stability. Figuréa) 2and 2b) gies, such as that presented in Fi¢h)2 Similar anisotropic
show typical morphologies for the unsheared and sheareshorphologies have been observed through comparable simu-
systems, respectively, at tinte= 10 000, which corresponds lations on binary blend$*4°
to a relatively late-stage morphology. Isosurfaces separating The question now becomes: what are the consequences of
A-rich regions(possessing a positive order parametend  such structural anisotropy on the mechanical properties of
B-rich regions(possessing a negative order parametee the solid polymeric material? We answer this question by
colored gray. The black “isocaps” mark regions where e directly mapping the morphologies from our CH simulations
phase intersects the boundaries of the simulation box. onto the lattice of our LSM simulations.

A. Polymer blend morphologies
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B. Micromechanical studies 0.15

In order to investigate the deformation and fracture of the
morphologies obtained in the preceding section, we utilize a 50
dynamic LSM. Assuming the morphologies remain un- 50
changed as the samples are quenched to a temperature below
the glass transition temperature, we can directly map a poly-
mer melt structure from a CH lattice directly onto an unper-
turbed solid LSM lattice. We introduce a seed crack into the
edge of the samples. As noted in the model section, we then
equilibrate the system at a global deformation that corre- 60
sponds to a strain of 5%. We then initiate fracture by apply-

ing an increasing strain at a constant résérain rate,u

=1.56x10 4). Four fracture geometries are investigated:

three corresponding to different orthogonal planes within the @
sheared simulations and one from the unsheared simulations. . —0.15
In particular, these correspond to the fracture plane being
either of the following:(i) perpendicular to the direction of

0.1

N30
20

10 0.05

shear(ii) perpendicular to the direction of the shear gradient, 60
(iii) neutralli.e., thex-y plane in Fig. 2b)], or (iv) an arbi- 50- 101
trary plane in the isotropic unsheared systems. 40
We are interested in the effects of anisotropy on the frac-  ~Nso.
ture behavior of polymer blends, and in particular, the con- 20
sequence of weak interfacial regions on the strength and 10. G5
toughness of the material. Therefore, we keep the elastic
moduli the same throughout the sample and change only the 60

fracture criteria, making the strain-based fracture criteria for
the interfacial regions 75% that of theeand B polymer do-
mains. In this manner, we can isolate the effects of interfacial
weakness on the strength and toughness of the anisotropic
polymer blends. The fracture criteria is chosen so that the 045
crack propagates continuously from the seed cratkeit ]
through the tortuous creation of fracture surfaces that prefer

to propagate along the weak interfacial regijoige find that 60
further reduction in interfacial fracture criteria would likely 50 1o 1
result in the decohesion of interfacial regions away from the 20 '

crack tip and the subsequent growth of these cavities until
final coalescence produces material failure.

The modulus of Eq(15), determines the nonlinearity of
the fracture probability. We set this equal to 4 so that regions
of high strain(i.e., the crack tipare significantly more likely eo/\
to fail than regions of low strain. The lower bound constant
of the interfaceB, is set to 0.15, which is 75% of the lower
bound constant for th& andB phases B,=Bg=0.2). The
scaling parameters are set equal to the lower bound con- )
stants. Therefore, the onset of fracture occurs at lower strains
along interfacial regions than in the polymer domains. Essent-he
tially, if a region within either an .A or B domain is Str.am?d fracture surface is depicted as a gray surface. A contour slice de-
bY an amounU then the probability of fracture.c_)ccurrlng In picting the normal strain fieldu,,, whereu;; is the strain tensor
this re_gloniwould.be the same as the prc_)bablllt_y of fraCtur%mdx is the tensile directionis included through the middle of the
occurring in an interfacial region that is strained by angampie(in the xy plane, ar=232). Different stages of crack growth
amount, 0.7%u. are shown corresponding te) 2000 simulation iterationgp) 4000

For a case where the fracture plane is perpendicular to th@mulation iterations, anét) 6000 simulation iterations.
direction of shear, Fig. 4 shows a typical crack propagating
through the system. The fracture surface is depicted as a graample(in the x-y plane, atz=32). Figures &) and 4c)
surface and can be seen to propagate inzteplane from  depict the propagation of the crack as it traverses the sample.
the upper y=L) boundary. A contour slice depicting the The material catastrophically fails and the crack is shown to
normal strain field @, whereu;; is the strain tensor anxl  propagate through the entire material. The local normal
is the tensile directionis included through the middle of the strain field[see, for example, the strain contour in Figh)¥

0.05

FIG. 4. A typical crack surface propagating through a system;
fracture plane is perpendicular to the direction of shear. The
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FIG. 5. Stress-strain relations for simulations where the crack FIG. 6. Cumulative distributions of the simulation strengths
propagates in all the orthogonal directions of the sheared systemghere the crack propagates in all the orthogonal directions of the
and in a given direction of the unsheared systems. The data is agheared systems and in a given direction of the unsheared systems.
eraged over 20 independent runs.

) , , . . samples fractured in the plane perpendicular to the shear di-
depicts a maximum at the crack tip and ripples of straingction is generally highesto the right of the plot while

intensity in the wake of the propagating crack. These ripplegne strength of the samples fractured in the plane perpendicu-
depict elastic waves that dissipdtiue to viscous damping |ar to the shear gradient direction is lowest.

as they emanate from the crack tip. Figcjdepicts the Similar trends are observed in the toughness data. We
fracture surface as _t'he' crack reaches the opposite bounda§gfine the toughness to be the energy absorbed up to a point
from the fracture-initiating seed crack. As the crack propayyhere the load bearing capacity has reduced significantly, i.e,
gates across the system there is increasing strain relaxatigRe stress sustained by the sample is 75% of the strength. The
observed in the wake of the crack. The ability of the material,my|ative distributions for the toughnesses are presented in
to sustain stress is significantly rgduced as the crack Propgsig. 7. Similar to the strengths depicted in Fig. 6, we find

gates across the system and this can be observed in the;; the samples fractured in the plane perpendicular to the

stress-strain relationships. shear direction are toughest, while the samples fractured in

Figure 5 shows the stress-strain refations for cracks propgne plane perpendicular to the shear gradient direction are
gating in all the orthogonal directions of the sheared systemgagkest.

and in a given direction of the unsheared systems. The data is The results presented in this paper are dimensionless, and
averaged over 20 independent rufisere is significantly 55 such, are not material specific. However, experimental
high scatter in fracture resultsAll stress-strain relations €x- fracture data is commonly presented in a manner that is ma-
hibit a similar trend; as the strain is increased the gradient ofgi4 specific and not subject to the test procedure and ge-
the stress-strain curve reduces until it reaches tatdhe ometry. Here, we present results from our computer simula-
apex of the stress-strain cujvand then the stress reduces tions in an analogous, albeit dimensionless, manner. In
significantly in evidence of catastrophic failure. The stresSyarticular, we calculate the fracture toughness &itegral
strain curves for the systems where the fracture plane is pefg, poth the sheared and the unsheared systems.

pendicular to the shear direction “turn ovefthe stresses The stress fields at a stress concentrésoch as a pre-
sustained by the samples begin to decreaae higher crack or notchare dependent upon the geometry of the sys-
stresses, while the stress-strain curves for the systems Wey&y and the loading stresses. However, near a blunted crack

the fracturg plane is perpendicular to the direction of thedp (due to the discrete nature of the LSM the crack tip is
shear gradient turn over at lower stresses. Fracture through

the neutral plane of the sheared samples and the arbitrary 1
plane of the unsheared samples yield similar stress-strain 0.9 |
curves but at intermediate values. 5 o8/}

The strength of a sample is defined as the maximum stress E 07t
that the sample can sustain. In our system, this value is taken % 06}
to be the apex of the stress-strain curves. We plot the strength o 05
for all the systems considered hdteenty runs for each of £ 04}
the four fracture geometries consideresd cumulative dis- 2 03y 1 to shear
tributions. The empirical cumulative distribution function 3 02 1 to gradient
(CDF) is defined ag;(omax)=i/n+1, wherei is the rank ot 4 Unsﬂg;:’;‘,‘
of the specimen in Qrder of increasing measured yalue of 0.007 0.008 0.009 0.01
strengtho,,; andn is the number of samples considered. Toughness

[Therefore, fom= 20 the empirical CDF for the lowest value
of strength ¢rmax1) is 1/21, and for the highest value of FIG. 7. Cumulative distributions of the simulation toughnesses
strength Gmayx 20 iS 20/21] The cumulative distributions for where the crack propagates in all the orthogonal directions of the
the strengths are presented in Fig. 6. The strength of thsheared systems and in a given direction of the unsheared systems.
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inherently bluntey] the stress fields for mode | loadir@ 1 =
which the crack surfaces move directly apadn universally < 097
be obtained analyticalR? Assuming that the load is applied S 087
in the x direction, the crack is propagating in thedirection x:g 07 r
and omitting higher-order terms, the relevant components of g 067
the stress tensor are of the foftn o 05
= 047
K E 03 r
Oyx= L1+ L , 3 02y e
20 2r 04 & Neutral --
) 0 . Unsheared -
K, ( p ) 0.55 0.6 0.65
oyv=—7-r"70o|1——/|, (18 Fracture toughness
W2 2r

) . L o FIG. 8. Cumulative distributions of the simulation fracture
wherer is the distance from the crack tip in the direction of oyghnesses where the crack propagates in all the orthogonal direc-
crack propagatiory is the radius of the notch ari¢, is the  tions of the sheared systems and in a given direction of the un-
stress intensity factor for mode | loading and represents theheared systems. Fitted Weibull curves are also depicted.
strength of the stress fields surrounding the crack tip. The
stress fields near the crack tip are only dependent upon thEehe path independence of théntegral allows data far from
geometry of the system and loading conditions through thehe crack tip to be used in calculating the fracture resistance
stress intensity factor. The stress intensity factor reaches @f the systenand the fracture toughnessdf;n;—0, mak-
maximum value at the onset of unstable crack propagationing J synonymous with the energy release yaféhe J inte-
termed the fracture toughnes§, . The fracture toughness is gral is of the form?*

a material specific quantity and characterizes the materials

resistance to failure. Given the stress fields at the onset of
catastrophic failure, the fracture toughness can be obtained J= fr(wny_o'ijnjui,y)dca (20)
as

whereW is the strain energy density,is the outward normal
along I', the path of the integral, and; , represents the

_oxxN2mr oy 2mr (19

p p differentiation of the displacement field with respect to yhe

1+ or 1- o direction. We numerically evaluate this term using two sepa-
rate paths, one that encircles the notch close to the crack tip

Therefore, we can directly compare the stress fields from ouand one that encircles the notch far from the crack tip. The

computer simulations at the onset of unstable crack propagatitical J integral is defined as th&integral evaluated at the

tion with the result of the general analytic solution of the onset of unstable crack propagation. The difference in critical

crack problem, thereby obtaining a value of the fracturel integralJ. obtained between the two paths is always found

toughness. We take to be half the lattice spacing and inter- to be less than 2%.

polate the values df,. from nodes away from the crack tip The cumulative distributions of the criticdlintegral data

to the crack tip. The estimate &f,. from both theo,, and  are presented in Fig. 9 along with Weibull fits. Thitegral

ayy components of the stress field are in excellent agreeresults are qualitatively similar to the fracture toughness

ment; we present an estimate Kf, interpolated from the data. The systems where the crack propagates perpendicular

average of both the,, and o, dependenk.'s.

Ic

The cumulative distributions of the fracture toughness 1 - - -
data are presented in Fig. 8. In all systems considered here, c 097 -
40 simulations were conducted so that the data may be fitted £ 08¢
to a Weibull distribution(see the Appendix allowing an a2 07
estimate of the lower bound fracture toughness to be gained. 2 06 ¢ r
Similar to the previously presented strength and toughness @ 057 f
data, the fracture toughness of the sheared polymer system, & 04 f
when fractured perpendicular to the direction of shear, is g 03¢ £ 1 to shear
generally greater than that of other systems. The fracture 3 02 % L to gradient -4
toughness of systems where the crack propagates perpen- 011 ;gm . Uns’ﬁg;‘ﬁg‘i} o ]
dicular to the gradient of applied shear are for the most part 00 16” 0.19 0'22 0'25
found to be significantly lower than in other systems. The ' ' J-Integra;l '

fracture toughness data from the systems broken in the neu-
tral direction of the sheared systems appears to be greater FIG. 9. Cumulative distributions of the simulation critical
than that of the unsheared system. o J-integral where the crack propagates in all the orthogonal direc-

TheJ integral is a path-independent line integral that cantions of the sheared systems and in a given direction of the un-
be used to obtain an averaged measure of the near tip fieldsheared systems. Fitted Weibull curves are also depicted.
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to the applied shear have on average a higher valug. of the shear. With this morphological data as input, we then
than other systems considered here. On average, the lowasvestigate the fracture mechanics of the sheared and un-
values of]; were found for the system were the crack propa-sheared polymer blends.
gates perpendicular to the direction of the shear gradient. In particular, we investigate the propagation of cracks
Similar to the fracture toughness data, the systems broken ithrough the heterogeneous blend. To encourage crack propa-
the neutral direction of the sheared systems are distinguistgration along the interface between theandB domains, the
able from that of the unsheared systems, and are typicallfracture probability of interfacial regions is greater than the
found to possess greater valueslpf fracture probability in either thé& or B domains. We observe
The lower bound fracture toughness ahititegral can be that crack propagation in the sheared system exhibits aniso-
obtained from the location parameter of the Weibull distribu-tropic mechanical properties. The strength and toughness of
tions (see the Appendix The lower bound fracture tough- samples fractured in a plane perpendicular to the direction of
ness is a safety criteria for engineering materials, indicatingipplied shear flow are superior to other samples considered
the minimum stress intensity factor a material can be subhere. In contrast, samples fractured in a plane perpendicular
jected to while still ensuring material integrity. The lower to the direction of the shear gradient are found to be weaker.
bound fracture toughnesses addntegrals in the systems These findings indicate that the orientation of the inter-

considered here are presented in the following table faces in polymer blends has a significant impact on the me-
chanical properties of the material. Interfaces oriented paral-
System Kic Je lel to the fracture plane(perpendicular to the tensile

direction provide an easy path for the crack to follow, and

1L to shear 0.589 0.189 hence, result in macroscopically weaker materials. Further-
L to gradient 0.545 0.166 more, we found that sheared systems can provide better me-
neutral 0.562 0.172 chanical stability than unsheared systems.

unsheared 0.552 0.170 Through the integration of a morphological model and a

e micromechanical model we have related the processing con-
The general trends of the lower bound data are similar to thEitions of a polymer melt to the ultimate strength and tough-

general responses given in Figs. 8 andp@rpendicular 0 hagg of the solid material. The predictive capabilities of such
shear is greatest and perpendicular to gradient is Iowest 5 jntegrated approach can aid in the design of new materi-

Figs. 8 and 9, the systems that were fractured perpendiculafis ang facilitate the use of polymer blends in engineering
to the shear gradient were found to be significantly weakegrctures.

than the other systems consider@ehich gave marginally

different distributions However, the lower bound fracture APPENDIX

toughnesses antlintegrals reveal that systems fractured per-

pendicular to the applied shear possess significantly greater Here we describe how the Weibull distribut®iicommon
values than the other systems, all of which possess lowdh fracture mechanigscan be “fitted” to statistical data. The

bound values that are close. cumulative distribution function is of the form

In the sheared morphologies, larger domain sizes were m
found in the direction of applied shear than in the unsheared c(x)= 1—ex;{ _[x=2 , (A1)
system. A large domain size indicates few broken bonds in b

: (A2)

surface perpendicular to this direction. As interfacial regions

were found in the direction of shear gradient, and therefore, yhereb is the scale parametem is the Weibull modulus,

direction and, hence, ultimately a weaker material, The maximum-likelihood method consists of taking as the
V. SUMMARY AND CONCLUSIONS The likelihood of a series of observations is given Ay

shear become more pronounced as the domain growth slowi®n of InA with respect to the parameters.

this direction[see Eq.(9)] and, hence, fewer interfacial re- \yhich upon differentiation resuits in the following probabil-
gions that would have to be fractured to create a fracturgy gensity function
are weaker in our investigations, fewer interfacial regions _mix—a m-1 x—a|m
oriented parallel to the fracture plane correspond to a stron- p(X)= b\ b exp—1
ger and tougher material. In contrast, smaller domain sizes
greater number of broken bonds were in this direction. Thi I?dl?] is (;he I_ocat_ion _pargmetedr._Thedmethod ofdmaximu[)n_-
results in a greater concentration of interfacial regions tha e('j ood est|mat||on '3 % opted in order to provide an unbi-
would decohere as a crack propagates perpendicular to thfp€d and uncorrelated Tit.
estimators those values of the parameters that maximize the
likelihood of the observation¥. The likelihood of a single
observation is given bp(x;),wherey; is theith observation.

We investigate the three-dimensional phase separation 6fIl;,p(x;). Computationally, however, it is more conve-
an AB polymer blend processed in the presence and abseno&nt for the logarithm of the likelihood to be considered.
of an imposed, simple shear. The effects of the imposedhe maximum likelihood is obtained through the differentia-
down. As expected, we find that the sheared morphologies The two-parameter Weibull distribution is obtained
become highly anisotropic. Relative to the unsheared systenthrough the substitution df=x;—a, therefore removing the
the imposed flow elongates the domains in the direction ofunctional dependence upon the location parameter; the sub-
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sequent solution is consequently a function of the initial
value ofa. The logarithm of the likelihood is of the form

{3/

(A3)

m

INA=NIn b

+3 [(m=1(nt,—inb)}+ 3

whereN is the number of data points.
The differentiations, with respect to the parametarand

b, are given as {(%) mm( ”

_)m_

b

JnA N

ti
om 54—% (Inti—Inb)—

b

>

0

[

(A4)

aInA_
b

Nm m

b

>

()

(A5)

Maximization is obtained by setting the above equations Qe

zero, giving the following relatior’d
> (t]int)
N {0
F(m)=—+>, Int;—N
m 0 D

Ty

0, (A6)

t"
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th tM(Int;)?
drm N % }% M(Int;)
am e 2
T
o)
2
> (tMInt;)
+NI>—2 (A7)
bl

()

The Newton-Raphson method is used to obtain the optimum
estimator ofm (for which both the function and its derivative
are requiretP), which upon substitution into EGA5), gives

the estimate fob. The constantsn andb are therefore ob-
tainable, as a function dd, and the estimation acd is now
obtained using the bisection method.

In order to estimate the location parameter, the following
rivative is considered

Jin A
da

m
+2, .

2
Upon setting this equation to zero, it can be solved through
the bisection methotf. The location parameter represents the
lower bound of the distribution.

1
=—(m-1)>

g (A8)
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