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Modeling the dynamic fracture of polymer blends processed under shear

Gavin A. Buxton and Anna C. Balazs
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~Received 8 September 2003; revised manuscript received 3 November 2003; published 9 February 2004!

Using computational models, we examine how shearing a binary polymer melt affects the dynamic fracture
mechanics of the final solid material. The phase separation of the immiscible blend under an imposed shear is
simulated through the Cahn-Hilliard method, where an advection term is added to introduce the flow field.
Using this model, we simulate the structural evolution of the blend and obtain the late-stage morphology of the
sheared mixture. As expected, the domains are elongated in the direction of the imposed shear. We couple these
morphological results with micromechanical studies. The dynamic Lattice spring model~LSM! is utilized to
simulate crack propagation through the solid blend structure. The dynamic LSM consists of a network of
springs that connect regularly spaced mass points; the behavior of these points is dictated by Newtonian
dynamics. The model allows us to simulate crack propagation through these heterogeneous structures and
determine the strength, toughness, fracture toughness, and criticalJ integral of the material. Consequently, we
can correlate the relative orientation of the interfacial regions to the overall mechanical behavior of the system.
We also contrast these results with findings from simulations on the unsheared samples and thereby probe the
effect of processing on the performance of polymer blends.

DOI: 10.1103/PhysRevB.69.054101 PACS number~s!: 61.20.Ja, 82.35.Lr, 61.25.Hq, 62.20.Mk
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I. INTRODUCTION

By mixing different polymers, researchers can tailor t
blend to possess the desirable properties of the individ
components. For example, the toughness and processa
of a brittle polymer can be improved by adding rubbery
elastomeric polymers.1,2 Another reason for blending poly
mers is economic; the dilution of a relatively expensive po
mer with an inexpensive one can yield a low-cost mate
that retains the desired properties of the high-cost com
nent. Most polymer pairs, however, are immiscible and c
sequently, the blends phase separate into heterogen
structures, with relatively narrow interfacial regions separ
ing the different polymeric domains. To potentially improv
the intermixing of the components, an imposed flow, such
a shear, is typically applied to the mixture.1 The imposed
shear also affects the morphology of the system. Specific
shear causes the polymer domains and interfacial region
become elongated along the direction of the flow, yield
highly anisotropic morphologies.3,4 There is often little inter-
facial adhesion between the different polymers, and the
fore, the interface is typically weaker than either of the bu
materials.2 This causes polymer blends to fail through inte
face decohesion~debonding! and cracks propagate along th
interfaces, rather than through the polymer phases.

In this paper, we integrate two distinct computational a
proaches to examine how shear-induced morpholog
changes affect the mechanical properties of the blend.
carry out these studies, we first simulate the dynamic beh
ior of an immiscible AB blend in both the presence a
absence of an imposed shear and obtain the late-stage s
tures of the mixtures. The novel aspect of this study is t
we then use this morphological information to simulate
dynamic crack propagation through these heterogeneous
terials. By comparing the behavior of the sheared and
sheared systems, we can obtain insight into the effect
processing on the mechanical performance of the mater
0163-1829/2004/69~5!/054101~11!/$22.50 69 0541
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To simulate the structural evolution of the blends, we u
the Cahn-Hilliard~CH! model,5,6 a coarse-grained theory fo
describing spinodal decomposition in binary mixtures. T
simple model captures the diffusive nature of spinodal
composition, but neglects hydrodynamics. For high-viscos
fluids, such as polymers, hydrodynamics plays a neglig
role in the evolution of the system. Thus, the CH theo
provides an appropriate model for investigating structure f
mation in polymeric mixtures. To introduce an externally im
posed velocity, an advection term is added to the basic
model.3,7 While the CH approach neglects details of t
polymer chain architecture, the method enables large syst
to be considered and is, therefore, ideal for modeling me
scopic phenomena, such as the shear-induced orientatio
the polymer domains.

In the studies described below, we carry out the CH sim
lations in three dimensions. These three-dimensional ca
lations provide us with the elongated morphologies of po
mer blends processed under shear. We then use the o
from our CH simulations as the input to a micromechani
model to determine the resultant mechanical properties.

To simulate the deformation and fracture of solid polym
blends, we employ a dynamic lattice spring model~LSM!.
LSM’s consist of a network of harmonic interactions,
springs, and allow the continuum elastic behavior of mate
als to be captured. The stiffness of the springs can be va
localy to model the heterogeneous nature of the mate
Quasistatic LSM’s, where the simulation progresses thro
a sequence of equilibrium states, have been used to m
the micromechanics of various heterogeneous systems.8–18In
particular, three-dimensional LSM’s have allowed the def
mation of particulate systems15–17 and polymer blend
structures18 to be simulated in a computationally efficien
manner.

The dynamic LSM extends the quasistatic simulations
including the dynamics of mass points situated at the in
sections of the springs.19–31 Each site, or node, correspond
©2004 The American Physical Society01-1
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to the mass of a mesoscopic unit of the material. These no
interact in a manner that mimics the elastic response o
material. In particular, we employ a Born LSM, which h
been shown to recover the governing equations for an iso
pic elastic medium.15 The dynamics of the lattice are calcu
lated using a discrete form of Newton’s equations of moti
including a linear viscous term.

The discrete nature of the LSM and the mesoscopic len
scale of the model results in a micromechanical model wh
microscopic phenomena are neglected. In particular,
model does not account for craze formation and crazing.32–34

However, dynamic26,28 and quasistatic38 LSM’s have been
shown to qualitatively reproduce experimental results
polymer fracture where the mesoscopic lengthscale of in
est is larger than that of the microscopic fracture mechani

As noted above, we take the results from our morpholo
cal investigations and directly map the phase-separated s
ture onto our LSM simulations. In this manner, we simula
the evolution of the phase-separating polymer blend and
termine the consequences of imposed shear on the fra
mechanics of the solid material.

In the following section, we detail the CH model and t
dynamic Born LSM used in this study. The results are p
sented in Sec. III, along with relevant discussions. In
final section, we summarize our work and draw conclusio

II. MODEL

A. Morphology model

We describe the AB polymer blend through the coar
grained CH approach. A coarse-grained description is ap
priate because the phase separation occurs on mesos
length scales and over time scales where details of molec
motions can be neglected. The order parameter that cha
terizes this system isC(r ), which is the difference in con
centration between the two components,C(r )5FA(r )
2FB(r ), whereFA(r ) andFB(r ) are the local volume frac
tions of componentsA andB, respectively. The equilibrium
order parameter for theA-rich (B-rich! phase corresponds t
C5Ceq(2Ceq) and here we takeCeq51.

The evolution of this order parameter is described by
CH equation.5,6 In the presence of an imposed flow, the a
vection term,v•(,C), is added to the equation,3,7 so that
the expression now reads

]C

]t
1v•~,C!5M,2

dF

dC
1j, ~1!

where M is the kinetic coefficient~mobility! of the order
parameter field, andj is the noise field~which is set to zero
in this study!. In the case of simple shear, the velocity fieldv
in the advection term is described in the following way:3,7

vx~r !5ġ~ t !y, vy~r !5vz~r !50, ~2!

whereġ(t) is the shear rate.
The local energy term adopted in the current study

given by
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F5E 2A ln@cosh~C!#1
1

2
C21

D

2
~,C!2dr , ~3!

whereA and D are material specific parameters and the
tegration is over the volume of the system.

The above CH equation is discretized and numerica
solved through a cell dynamics systems~CDS! method.39,40

The employment of CDS@rather than a conventional dis
cretization of Eq.~1!# significantly reduces the computa
tional expense of the simulations and thus provides a c
putationally efficient model of interface dynamics in phas
separating systems. The discrete equations are of the fo

C~r ,t11!5G@C~r ,t !#2^^G@C~r ,t !#2C~r ,t !&&

1 1
2 vx~r !@C~r x11,t !2C~r x21,t !#, ~4!

where a hyperbolic tangent model is included in the funct
G ~although the results are insensitive to this choice
map39!

G@C~r ,t !#5A tanh~C!1D@^^C~r ,t !&&2C~r ,t !#. ~5!

In the current simulation, the parameters are assigned
following values:A51.3 andD50.5. The operator̂ ^!&&
indicates the isotropic spatial average over the neighbo
nodes, and (̂̂ !&&2!) can be considered as a discrete ge
eralization of the Laplacian. In three dimensions, the spa
average on a cubic lattice is given by

^^!&&5
6

80 (
NN

!1
3

80 (
NNN

!1
1

80 (
NNNN

!, ~6!

whereNN, NNN, and NNNN represent the nearest, nex
nearest, and next-next-nearest neighbors respectively.41

In the absence of imposed shear flow, periodic bound
conditions are imposed and the system satisfies

C~r x ,r y ,r z ,t !5C~r x1nxL,r y1nyL,r z1nzL,t !, ~7!

where nx , ny , and nz are arbitrary integers andL is the
system size. However, in the presence of an applied sh
we adopt sheared boundary conditions.42,43

C~r x ,r y ,r z ,t !

5C~r x1nxL1g~ t !nyL,r y1nyL,r z1nzL,t !, ~8!

whereg(t) is the shear strain experienced by the system
time t. This takes into consideration that the imposed vel
ity at the lower boundary (y50) is zero, while at the uppe
boundary (y5L) the velocity isġ(t)L. The sheared periodic
boundary conditions keep track of this disparity in impos
shear strain.

In order to quantify the structural evolution of the pha
separating morphologies, we compare the domain sizes.
domain size is defined by the ‘‘broken bond’’ method.44 The
domain sizeR is approximatelyLd/L(t), whereLd is the
volume of the system andL(t) is the total interfacial area a
time t. In three dimensions (d53) this becomes
1-2
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R5
L3

Nx1Ny1Nz
~9!

for an isotropic system, whereNx , Ny , andNz are the num-
ber of broken bonds~pairs of nearest-neighbor sites wi
opposite signs ofC) in the x, y, and z directions,
respectively.44 However, in the anisotropic systems cons
ered here we separate the dimensions so that, for exam
Rx5L3/3Nx . This enables the domain growth in differe
directions in the sheared systems to be compared to the
tropic domain growth in unsheared systems.

The above equations enable us to simulate the evolu
of a polymer blend under imposed simple shear flow.
now detail the micromechanical model used to probe
anisotropic mechanical properties of the resultant solid po
mer composite.

B. Micromechanical model

We employ a dynamic lattice spring model~LSM!. The
LSM is a numerical technique for discretizing linear elast
ity theory and consists of a network of springs connect
regularly spaced sites, or nodes. The energy associated
the mth node is given by15

Em5
1

2 (
n

~um2un!•Mmn•~um2un!, ~10!

where the summation is over all nearest- and next-nea
neighboring nodes. Here,um is the displacement of themth
node from its original position andMmn is a matrix contain-
ing the force constants~stiffness! for the spring between
nodesm andn. The springs have two different types of forc
constants, central and noncentral. The central force cons
energetically penalizes spring extension, while the nonc
tral force constant penalizes the rotation of springs from th
original orientation. The Young’s modulusE and Poisson’s
ratio n are related to the force constants by the followi
equations:15

E5
5k~2k13c!

4k1c
, n52

k2c

c14k
, ~11!

wherek andc are the central and noncentral force constan
respectively.

The harmonic form of the energy in Eq.~10! results in a
force term that is linearly related to the displacements. T
force acting on themth node, due to the local displacemen
of its neighboring nodes, is given by

Fm5(
n

Mmn•~um2un! ~12!

To capture the dynamics of this system, we must integ
Newton’s equation of motion

Mm

]2um

]t2
5Fm2Q

]um

]t
, ~13!
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where Mm is the mass associated with themth node. The
Stokes drag term, with coefficientQ, accounts for dissipa-
tion through viscous damping. The most commonly us
time integration algorithm is the Verlet algorithm.45 Here, we
use the velocity Verlet algorithm46 in order to capture the
velocities ~necessary for including viscous damping!. The
velocity Verlet scheme takes the positions, velocities and
celerations at timet to obtain the same quantities at timet
1Dt in the following way:

um~ t1Dt !5um~ t !1vm~ t !Dt1 1
2 am~ t !Dt2,

vmS t1
Dt

2 D5vm~ t !1
1

2
am~ t !Dt,

am~ t1Dt !52
Fm~ t !

Mm
2QvmS t1

Dt

2 D ,

vm~ t1Dt !5vmS t1
Dt

2 D1
1

2
am~ t1Dt !Dt, ~14!

wherevm and am are the velocity and acceleration, respe
tively, of themth node. The force acting on themth node at
time t, Fm(t), is taken from Eq.~12!, where the local dis-
placements are also taken at timet. The mass and centra
force constants are taken to be unity, the noncentral fo
constant is set to zero~resulting in a Poisson’s ratio of1

4 ) and
the viscous damping constantQ is set to 1

4 , resulting in a
material where elastic waves are under-damped. The ab
equations allow us to capture the elastic deformation
dynamic behavior of the material.

In order to introduce material degradation, we selectiv
remove springs from the system. A surface is randomly c
ated, and hence a cluster of springs that cross this surfac
broken, depending upon the strain field across the surf
An example of the springs that would be removed if a s
face perpendicular to the@100# direction was chosen for fail-
ure is depicted in Fig. 1. The surface is normal to the spr
connecting nodesm andn and colored dark gray, while the
springs that would be removed to create this surface are
ored black. Neighboring springs that are not removed wh
creating this surface are colored light gray. We only consi
fracture surfaces that are normal to springs in the system
strain across a surface is given by the deformation of
spring relative to its undeformed length. Creating fractu
surfaces~through the removal of several springs! is neces-
sary because of the interconnectivity of the springs, as
plained below.

If a load were to be applied in thex direction ~the linear
elastic system would therefore be strained in thex direction!,
springs that possess a component in thex direction would be
more extended than springs that are oriented normal to tx
direction. Of the springs that possess a component in thx
direction, the springs in the@100# direction would be more
strained than springs in the$110% directions because of thei
direct orientation alongx. If we were to adopt a fracture
criteria that simply removed individual springs, then t
springs in the@100# direction would preferentially be re
moved first ~due to their higher strain! and the material
1-3
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GAVIN A. BUXTON AND ANNA C. BALAZS PHYSICAL REVIEW B 69, 054101 ~2004!
would remain load-bearing due to the presence of spring
the $110% directions. To avoid the creation of damaged
gions that can still bear an applied load, a criteria that cre
fracture surfaces through the removal of springs in both
@100# direction and the$110% directions is essential. There
fore, by creating a fracture surface through the removal o
cluster of springs, which cross a given surface, we cre
fracture surfaces in a more definitive and isotropic mann

In order to determine which fracture surface is to be c
ated a rate of failurepi(t) of a surfacei at time t is intro-
duced

pi~ t !}F ~ui~ t !2B!

S Gb

, ~15!

whereui(t) is the local strain field across thei th potential
fracture surface at timet. The minimum value of strain a
which fracture can occur isB, referred to as the lower boun
parameter. The constantS is an arbitrary scaling paramete
and the modulusb allows for a nonlinear relationship be
tween damage rate and strain field. Assuming that the d
age is to occur somewhere in the system, the probability
failure Pi(t) occurring at a given surfacei is the rate asso
ciated with surfacei relative to the total rate of damage o
curring throughout the material, i.e.,Pi(t)5pi(t)/( j pj (t),
where the sum is over all surfaces.47 A surface is chosen to
fracture from the cumulative probability and, therefore,
lection takes into consideration the correct probabi
weightings. The cumulative probability is defined as

ci~ t !5(
j < i

Pj~ t ! ~16!

and spans the range@0,1#. The average time interval for thi
failure event to occur is47

FIG. 1. The springs that would be removed upon the creatio
a fracture surface normal to the@100# direction. The surface norma
to the spring connecting nodesm andn is depicted as a transpare
dark gray plane. The springs that would be removed upon crea
the surface are colored black. Neighboring springs that are no
moved upon creating the surface are colored light gray.
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pj~ t !

~17!

This time step is used to update the expressions in Eq.~14!.
In order to initiate fracture, we introduce a notch, or se

crack, at the edge of the system, midway between the sys
boundaries and in the plane perpendicular to the app
strain. We then apply a strain field~constant displacements a
the system boundaries! equivalent to 5% global strain an
equilibriate the system~the nodes are moved to positions
zero force!. A constant strain rate is then applied to th
sample. An initial time step is introducedDt0 and the strain

is initially increased at each iteration byu̇Dt0, whereu̇ is the
constant strain rate. If the average time interval for fract
to occur @Eq. ~17!# is smaller thanDt0, then a surface is
created. In particular, thei th surface chosen to fail is th
surface for whichci(t),RND @0,1# ,ci 11(t), whereRND
@0,1# is a random number between 0 and 1. If the value
Dt from Eq.~17! is greater thanDt0, thenDt5Dt0, and this
value is used to update the strain field and the dynamic eq
tions with no fracture occurring. Therefore, the creation
fracture surfaces depend upon the correct probability weig
ings @Eq. ~15!# and the relaxation of material surrounding th
propagating crack tip takes into consideration the aver
time interval over which the crack grows. The material d
forms and fractures in this manner until the crack has pro
gated the length of the system and two separate pieces o
material remain.

We determine the strength and toughness of the speci
from the stress-strain curve. The strength is defined as
maximum sustained stress, while the toughness is define
the energy absorbed up to a point in the simulation where
load bearing capacity of the material is severely undermi
~the stress sustained by the sample has dropped to 75% o
strength of the material!.

We take the morphologies from the CH simulations a
incorporate them directly into the LSM simulations. In th
manner we can investigate the effects of anisotropic she
morphologies on the ultimate strength and toughness of
material.

III. RESULTS AND DISCUSSION

We consider an incompatible AB polymer blend as it u
dergoes phase separation into a highly heterogeneous sy
The structural evolution of this system is significantly diffe
ent in the presence of shear than in the absence of this
posed flow. The blend processed under shear is show
exhibit anisotropic morphologies. For these morphologi
we consider the mechanical properties of the resultant s
material. In particular, we simulate the propagation of
crack through the material and ascertain the strength
toughness of the sample. The mechanical properties of
sheared polymer blends are shown to exhibit significant
isotropy with respect to the direction of crack propagatio

f
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A. Polymer blend morphologies

We contrast the structural evolution of two AB polym
blend systems; namely, one processed in the absence
imposed flow and one processed under simple shear fl
The system size considered here isL35643, whereL is the
length of the cubic simulation box. In the case of an impos
shear, we setġ50.0015 in Eq.~2!; this value is large enough
to induce significant morphological variations, yet sm
enough to ensure numerical stability. Figures 2~a! and 2~b!
show typical morphologies for the unsheared and shea
systems, respectively, at timet510 000, which correspond
to a relatively late-stage morphology. Isosurfaces separa
A-rich regions~possessing a positive order parameter! and
B-rich regions~possessing a negative order parameter! are
colored gray. The black ‘‘isocaps’’ mark regions where theA
phase intersects the boundaries of the simulation box.

FIG. 2. Typical late-stage (t510 000) morphologies for both~a!
unsheared and~b! sheared systems. Isosurfaces which sepa
A-rich regions from B-rich regions are colored gray.‘‘Isocaps
which depict where theA-rich regions intersect the boundaries
the simulation box are colored black.
05410
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Both sets of simulations represented in Fig. 2 begin w
similar initial conditions; the order parameter is assigned v
ues from a Gaussian distribution with a variance of 0.
Small domains ofA andB phases are formed and coarsen
form larger domains. In the absence of shear flow, these
mains grow isotropically and the bicontinuous morpholo
shown in Fig. 2~a! emerges. However, in the presence
shear flow, the resultant morphology is no longer bicontin
ous in all directions and as expected,3,4 appears highly aniso
tropic @see Fig. 2~b!#.

In order to quantify this anisotropy, we plot the doma
size as a function of time in Fig. 3. The domain sizes
averaged over 20 independent runs and the error bars
cate the standard deviation. The domains in the unshe
system undergo an isotropic growth obeying the Lifshi
Slyozov law,48 whereR(t), the domain size, scales ast1/3.
However, the sheared domain growth is notably anisotro
The domain growth both in the direction of shear@x direc-
tion in Fig. 2~b!# and in the direction of the shear gradie
@y-direction in Fig. 2~b!# are presented in Fig. 3.

The simple shear flow considered here consists of b
pure rotational and pure elongational parts. Initially, wh
the growth rate is more significant than the imposed sh
rate, the local coalescence of domains occurs as the dom
are rotated about each other. This ‘‘tumbling’’ regime caus
the domain size in the direction of the shear gradient to
larger than the direction of imposed shear flow. As t
growth rate decreases, the velocity difference across dom
~in the direction of the shear gradient! becomes increasingly
significant and the domains elongate in the direction of i
posed shear. The domain size in the direction of shear
comes larger than that of the isotropic unsheared syste
while the domain size in the direction of shear gradient
comes lower. This results in highly anisotropic morpho
gies, such as that presented in Fig. 2~b!. Similar anisotropic
morphologies have been observed through comparable s
lations on binary blends.3,4,49

The question now becomes: what are the consequenc
such structural anisotropy on the mechanical properties
the solid polymeric material? We answer this question
directly mapping the morphologies from our CH simulatio
onto the lattice of our LSM simulations.

te

FIG. 3. Evolution of the average domain size in the direction
shear and direction of shear gradient, for the sheared systems
compared with the average domain size for the unsheared syst
1-5
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B. Micromechanical studies

In order to investigate the deformation and fracture of
morphologies obtained in the preceding section, we utiliz
dynamic LSM. Assuming the morphologies remain u
changed as the samples are quenched to a temperature
the glass transition temperature, we can directly map a p
mer melt structure from a CH lattice directly onto an unp
turbed solid LSM lattice. We introduce a seed crack into
edge of the samples. As noted in the model section, we
equilibrate the system at a global deformation that co
sponds to a strain of 5%. We then initiate fracture by app

ing an increasing strain at a constant rate~strain rate,u̇
51.5631024). Four fracture geometries are investigate
three corresponding to different orthogonal planes within
sheared simulations and one from the unsheared simulat
In particular, these correspond to the fracture plane be
either of the following:~i! perpendicular to the direction o
shear,~ii ! perpendicular to the direction of the shear gradie
~iii ! neutral@i.e., thex-y plane in Fig. 2~b!#, or ~iv! an arbi-
trary plane in the isotropic unsheared systems.

We are interested in the effects of anisotropy on the fr
ture behavior of polymer blends, and in particular, the c
sequence of weak interfacial regions on the strength
toughness of the material. Therefore, we keep the ela
moduli the same throughout the sample and change only
fracture criteria, making the strain-based fracture criteria
the interfacial regions 75% that of theA andB polymer do-
mains. In this manner, we can isolate the effects of interfa
weakness on the strength and toughness of the anisot
polymer blends. The fracture criteria is chosen so that
crack propagates continuously from the seed crack~albeit
through the tortuous creation of fracture surfaces that pr
to propagate along the weak interfacial regions!. We find that
further reduction in interfacial fracture criteria would like
result in the decohesion of interfacial regions away from
crack tip and the subsequent growth of these cavities u
final coalescence produces material failure.

The modulus of Eq.~15!, determines the nonlinearity o
the fracture probability. We set this equal to 4 so that regi
of high strain~i.e., the crack tip! are significantly more likely
to fail than regions of low strain. The lower bound consta
of the interfaceBI is set to 0.15, which is 75% of the lowe
bound constant for theA andB phases (BA5BB50.2). The
scaling parameters are set equal to the lower bound
stants. Therefore, the onset of fracture occurs at lower str
along interfacial regions than in the polymer domains. Ess
tially, if a region within either an A or B domain is straine
by an amountu then the probability of fracture occurring i
this region would be the same as the probability of fract
occurring in an interfacial region that is strained by
amount, 0.753u.

For a case where the fracture plane is perpendicular to
direction of shear, Fig. 4 shows a typical crack propagat
through the system. The fracture surface is depicted as a
surface and can be seen to propagate in thez-x plane from
the upper (y5L) boundary. A contour slice depicting th
normal strain field (uxx , whereui j is the strain tensor andx
is the tensile direction! is included through the middle of th
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aysample~in the x-y plane, atz532). Figures 4~b! and 4~c!
depict the propagation of the crack as it traverses the sam
The material catastrophically fails and the crack is shown
propagate through the entire material. The local norm
strain field@see, for example, the strain contour in Fig. 4~b!#

FIG. 4. A typical crack surface propagating through a syste
the fracture plane is perpendicular to the direction of shear.
fracture surface is depicted as a gray surface. A contour slice
picting the normal strain field (uxx , whereui j is the strain tensor
andx is the tensile direction! is included through the middle of the
sample~in the xy plane, atz532). Different stages of crack growth
are shown corresponding to~a! 2000 simulation iterations,~b! 4000
simulation iterations, and~c! 6000 simulation iterations.
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depicts a maximum at the crack tip and ripples of str
intensity in the wake of the propagating crack. These ripp
depict elastic waves that dissipate~due to viscous damping!
as they emanate from the crack tip. Fig. 4~c! depicts the
fracture surface as the crack reaches the opposite boun
from the fracture-initiating seed crack. As the crack prop
gates across the system there is increasing strain relax
observed in the wake of the crack. The ability of the mate
to sustain stress is significantly reduced as the crack pr
gates across the system and this can be observed in
stress-strain relationships.

Figure 5 shows the stress-strain relations for cracks pro
gating in all the orthogonal directions of the sheared syste
and in a given direction of the unsheared systems. The da
averaged over 20 independent runs~there is significantly
high scatter in fracture results!. All stress-strain relations ex
hibit a similar trend; as the strain is increased the gradien
the stress-strain curve reduces until it reaches zero~at the
apex of the stress-strain curve! and then the stress reduc
significantly in evidence of catastrophic failure. The stre
strain curves for the systems where the fracture plane is
pendicular to the shear direction ‘‘turn over’’~the stresses
sustained by the samples begin to decrease! at higher
stresses, while the stress-strain curves for the systems
the fracture plane is perpendicular to the direction of
shear gradient turn over at lower stresses. Fracture thro
the neutral plane of the sheared samples and the arbi
plane of the unsheared samples yield similar stress-s
curves but at intermediate values.

The strength of a sample is defined as the maximum st
that the sample can sustain. In our system, this value is ta
to be the apex of the stress-strain curves. We plot the stre
for all the systems considered here~twenty runs for each of
the four fracture geometries considered! as cumulative dis-
tributions. The empirical cumulative distribution functio
~CDF! is defined asci(smax,i)5 i /n11, wherei is the rank
of the specimen in order of increasing measured value
strengthsmax,i and n is the number of samples considere
@Therefore, forn520 the empirical CDF for the lowest valu
of strength (smax,1) is 1/21, and for the highest value o
strength (smax,20) is 20/21.# The cumulative distributions fo
the strengths are presented in Fig. 6. The strength of

FIG. 5. Stress-strain relations for simulations where the cr
propagates in all the orthogonal directions of the sheared sys
and in a given direction of the unsheared systems. The data is
eraged over 20 independent runs.
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samples fractured in the plane perpendicular to the shea
rection is generally highest~to the right of the plot!, while
the strength of the samples fractured in the plane perpend
lar to the shear gradient direction is lowest.

Similar trends are observed in the toughness data.
define the toughness to be the energy absorbed up to a
where the load bearing capacity has reduced significantly,
the stress sustained by the sample is 75% of the strength.
cumulative distributions for the toughnesses are presente
Fig. 7. Similar to the strengths depicted in Fig. 6, we fi
that the samples fractured in the plane perpendicular to
shear direction are toughest, while the samples fracture
the plane perpendicular to the shear gradient direction
weakest.

The results presented in this paper are dimensionless,
as such, are not material specific. However, experime
fracture data is commonly presented in a manner that is
terial specific and not subject to the test procedure and
ometry. Here, we present results from our computer simu
tions in an analogous, albeit dimensionless, manner.
particular, we calculate the fracture toughness andJ-integral
for both the sheared and the unsheared systems.

The stress fields at a stress concentrator~such as a pre-
crack or notch! are dependent upon the geometry of the s
tem and the loading stresses. However, near a blunted c
tip ~due to the discrete nature of the LSM the crack tip

k
ms
v-

FIG. 6. Cumulative distributions of the simulation strengt
where the crack propagates in all the orthogonal directions of
sheared systems and in a given direction of the unsheared sys

FIG. 7. Cumulative distributions of the simulation toughness
where the crack propagates in all the orthogonal directions of
sheared systems and in a given direction of the unsheared sys
1-7
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GAVIN A. BUXTON AND ANNA C. BALAZS PHYSICAL REVIEW B 69, 054101 ~2004!
inherently blunted!, the stress fields for mode I loading~in
which the crack surfaces move directly apart! can universally
be obtained analytically.50 Assuming that the load is applie
in the x direction, the crack is propagating in they direction
and omitting higher-order terms, the relevant component
the stress tensor are of the form50

sxx5
KI

A2pr
S 11

r

2r D ,

syy5
KI

A2pr
S 12

r

2r D , ~18!

wherer is the distance from the crack tip in the direction
crack propagation,r is the radius of the notch andKI is the
stress intensity factor for mode I loading and represents
strength of the stress fields surrounding the crack tip. T
stress fields near the crack tip are only dependent upon
geometry of the system and loading conditions through
stress intensity factor. The stress intensity factor reach
maximum value at the onset of unstable crack propagat
termed the fracture toughness,KIc . The fracture toughness i
a material specific quantity and characterizes the mate
resistance to failure. Given the stress fields at the onse
catastrophic failure, the fracture toughness can be obta
as

KIc5
sxxA2pr

11
r

2r

5
syyA2pr

12
r

2r

. ~19!

Therefore, we can directly compare the stress fields from
computer simulations at the onset of unstable crack prop
tion with the result of the general analytic solution of t
crack problem, thereby obtaining a value of the fractu
toughness. We taker to be half the lattice spacing and inte
polate the values ofKIc from nodes away from the crack ti
to the crack tip. The estimate ofKIc from both thesxx and
syy components of the stress field are in excellent agr
ment; we present an estimate ofKIc interpolated from the
average of both thesxx andsyy dependentKIc’s.

The cumulative distributions of the fracture toughne
data are presented in Fig. 8. In all systems considered h
40 simulations were conducted so that the data may be fi
to a Weibull distribution~see the Appendix!, allowing an
estimate of the lower bound fracture toughness to be gai
Similar to the previously presented strength and toughn
data, the fracture toughness of the sheared polymer sys
when fractured perpendicular to the direction of shear
generally greater than that of other systems. The frac
toughness of systems where the crack propagates pe
dicular to the gradient of applied shear are for the most p
found to be significantly lower than in other systems. T
fracture toughness data from the systems broken in the
tral direction of the sheared systems appears to be gre
than that of the unsheared system.

The J integral is a path-independent line integral that c
be used to obtain an averaged measure of the near tip fi
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The path independence of theJ integral allows data far from
the crack tip to be used in calculating the fracture resista
of the system~and the fracture toughness ifs i j nj→0, mak-
ing J synonymous with the energy release rate!. The J inte-
gral is of the form51

J5E
G
~Wny2s i j njui ,y!dC, ~20!

whereW is the strain energy density,n is the outward normal
along G, the path of the integral, andui ,y represents the
differentiation of the displacement field with respect to they
direction. We numerically evaluate this term using two se
rate paths, one that encircles the notch close to the crac
and one that encircles the notch far from the crack tip. T
critical J integral is defined as theJ integral evaluated at the
onset of unstable crack propagation. The difference in crit
J integralJc obtained between the two paths is always fou
to be less than 2%.

The cumulative distributions of the criticalJ integral data
are presented in Fig. 9 along with Weibull fits. TheJ integral
results are qualitatively similar to the fracture toughne
data. The systems where the crack propagates perpendi

FIG. 8. Cumulative distributions of the simulation fractu
toughnesses where the crack propagates in all the orthogonal d
tions of the sheared systems and in a given direction of the
sheared systems. Fitted Weibull curves are also depicted.

FIG. 9. Cumulative distributions of the simulation critica
J-integral where the crack propagates in all the orthogonal dir
tions of the sheared systems and in a given direction of the
sheared systems. Fitted Weibull curves are also depicted.
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MODELING THE DYNAMIC FRACTURE OF POLYMER . . . PHYSICAL REVIEW B 69, 054101 ~2004!
to the applied shear have on average a higher value oJc
than other systems considered here. On average, the lo
values ofJc were found for the system were the crack prop
gates perpendicular to the direction of the shear gradi
Similar to the fracture toughness data, the systems broke
the neutral direction of the sheared systems are distingu
able from that of the unsheared systems, and are typic
found to possess greater values ofJc .

The lower bound fracture toughness andJ integral can be
obtained from the location parameter of the Weibull distrib
tions ~see the Appendix!. The lower bound fracture tough
ness is a safety criteria for engineering materials, indica
the minimum stress intensity factor a material can be s
jected to while still ensuring material integrity. The low
bound fracture toughnesses andJ integrals in the system
considered here are presented in the following table

System KIc Jc

' to shear 0.589 0.189

' to gradient 0.545 0.166

neutral 0.562 0.172
unsheared 0.552 0.170

The general trends of the lower bound data are similar to
general responses given in Figs. 8 and 9~perpendicular to
shear is greatest and perpendicular to gradient is lowest!. In
Figs. 8 and 9, the systems that were fractured perpendic
to the shear gradient were found to be significantly wea
than the other systems considered~which gave marginally
different distributions!. However, the lower bound fractur
toughnesses andJ integrals reveal that systems fractured p
pendicular to the applied shear possess significantly gre
values than the other systems, all of which possess lo
bound values that are close.

In the sheared morphologies, larger domain sizes w
found in the direction of applied shear than in the unshea
system. A large domain size indicates few broken bonds
this direction@see Eq.~9!# and, hence, fewer interfacial re
gions that would have to be fractured to create a fract
surface perpendicular to this direction. As interfacial regio
are weaker in our investigations, fewer interfacial regio
oriented parallel to the fracture plane correspond to a st
ger and tougher material. In contrast, smaller domain s
were found in the direction of shear gradient, and therefor
greater number of broken bonds were in this direction. T
results in a greater concentration of interfacial regions t
would decohere as a crack propagates perpendicular to
direction and, hence, ultimately a weaker material.

IV. SUMMARY AND CONCLUSIONS

We investigate the three-dimensional phase separatio
an AB polymer blend processed in the presence and abs
of an imposed, simple shear. The effects of the impo
shear become more pronounced as the domain growth s
down. As expected, we find that the sheared morpholo
become highly anisotropic. Relative to the unsheared sys
the imposed flow elongates the domains in the direction
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the shear. With this morphological data as input, we th
investigate the fracture mechanics of the sheared and
sheared polymer blends.

In particular, we investigate the propagation of crac
through the heterogeneous blend. To encourage crack pr
gation along the interface between theA andB domains, the
fracture probability of interfacial regions is greater than t
fracture probability in either theA or B domains. We observe
that crack propagation in the sheared system exhibits an
tropic mechanical properties. The strength and toughnes
samples fractured in a plane perpendicular to the directio
applied shear flow are superior to other samples consid
here. In contrast, samples fractured in a plane perpendic
to the direction of the shear gradient are found to be wea

These findings indicate that the orientation of the int
faces in polymer blends has a significant impact on the m
chanical properties of the material. Interfaces oriented pa
lel to the fracture plane~perpendicular to the tensile
direction! provide an easy path for the crack to follow, an
hence, result in macroscopically weaker materials. Furth
more, we found that sheared systems can provide better
chanical stability than unsheared systems.

Through the integration of a morphological model and
micromechanical model we have related the processing c
ditions of a polymer melt to the ultimate strength and toug
ness of the solid material. The predictive capabilities of su
an integrated approach can aid in the design of new ma
als, and facilitate the use of polymer blends in engineer
structures.

APPENDIX

Here we describe how the Weibull distribution52 ~common
in fracture mechanics! can be ‘‘fitted’’ to statistical data. The
cumulative distribution function is of the form

c~x!512expF2S x2a

b D mG , ~A1!

which upon differentiation results in the following probab
ity density function

p~x!5
m

b S x2a

b D m21

expF2S x2a

b D mG , ~A2!

whereb is the scale parameter,m is the Weibull modulus,
and a is the location parameter. The method of maximu
likelihood estimation is adopted in order to provide an un
ased and uncorrelated fit.53

The maximum-likelihood method consists of taking as t
estimators those values of the parameters that maximize
likelihood of the observations.54 The likelihood of a single
observation is given byp(xi),wherexi is thei th observation.
The likelihood of a series of observations is given byL
5)^ i &p(xi). Computationally, however, it is more conve
nient for the logarithm of the likelihood to be considere
The maximum likelihood is obtained through the different
tion of lnL with respect to the parameters.

The two-parameter Weibull distribution is obtaine
through the substitution oft i5xi2a, therefore removing the
functional dependence upon the location parameter; the
1-9
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sequent solution is consequently a function of the ini
value ofa. The logarithm of the likelihood is of the form

lnL5NlnS m

b D1(̂
i &

@~m21!~ ln t i2 ln b!#1(̂
i &

F2S t i

bD mG ,
~A3!

whereN is the number of data points.
The differentiations, with respect to the parametersm and

b, are given as

] ln L

] m
5

N

m
1(̂

i &
~ ln t i2 ln b!2(̂

i &
F S t i

bD m

lnS t i

bD G ,
~A4!

] ln L

]b
52

Nm

b
1

m

b (̂
i &

F S t i

bD mG . ~A5!

Maximization is obtained by setting the above equations
zero, giving the following relations53

F~m!5
N

m
1(̂

i &
ln t i2N

(̂
i &

~ t i
mln t i !

(̂
i &

t i
m

50, ~A6!
les

c

J

ac

ki

er
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d F~m!

d m
52

N

m2
2N

F (̂
i &

t i
mGF (̂

i &
t i
m~ ln t i !

2G
F (̂

i &
t i
mG2

1N
F (̂

i &
~ t i

mln t i !G2

F (̂
i &

t i
mG2 . ~A7!

The Newton-Raphson method is used to obtain the optim
estimator ofm ~for which both the function and its derivativ
are required55!, which upon substitution into Eq.~A5!, gives
the estimate forb. The constantsm and b are therefore ob-
tainable, as a function ofa, and the estimation ofa is now
obtained using the bisection method.

In order to estimate the location parameter, the followi
derivative is considered

] ln L

]a
52~m21!(̂

i &

1

xi2a
1(̂

i &

m

b
. ~A8!

Upon setting this equation to zero, it can be solved throu
the bisection method.55 The location parameter represents t
lower bound of the distribution.
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