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Surface plasmon polariton scattering by a small particle placed near a metal surface:
An analytical study
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Scattering of light by a small particle placed near a metal surface is studied via analytical calculations of the
particle extinction cross section. Considering a small spherical particle, we express the extinction cross section
via the total electric-field Green’s tensor of a metal-dielectric interface structure. Analytic expressions are
derived for the parts of Green’s tensor that govern the excitatign ahds-polarized waves propagating away
from the interface, and waves propagating along and being localized at the interface, viz., surface plasmon
polaritons (SPP’3. This allows us in turn to divide the extinction cross section into parts associated with
scattering of light into different types of electromagnetic waves. The scattering cross sections related to
SPP-to-SPP scattering, and scattering of SPP’s into waves propagating away from the interface, are studied
with respect to the dielectric constant of the metal and the height of the scatterer above the interface. In the case
where the light wavelength is close to the SPP resonance, the SPP-to-SPP scattering cross section can be orders
of magnitude larger compared to the extinction cross section of a particle in free space, whereas in the case of
a nearly perfect conductor, the SPP-to-SPP cross section tends to 0. The efficiency of SPP-to-SPP scattering is
calculated and, e.g., for the metal dielectric constarl00 (order of magnitude for gold at the light wave-
length 1500 nmit is found to be above 60% for the optimum scatterer-surface distance.
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[. INTRODUCTION ciency of SPP-to-SPP scattering, it would be convenient to
divide the total scattered field into propagating SPP field
Surface plasmon polariton$SPP’'9 represent a type of components, components related to waves propagating away
electromagnetic excitation which is bound to and propagatfrom the metal-dielectric interface, and a remaining quasi-
ing along metal-dielectric interfacésScattering of SPP’s by static near-field term, and thereby to evaluate how large a
Surface random roughness has been extensively Studied o\;éaction of the pOWer of the scattered field is related to SPP’s.
the last 30 years with main emphasis on the far-field distri-The total field scattered by a small particle can be related to
bution of light scattered out of the surface plane. In recenf3r€en’s tensor for a metal-dielectric interface structise,

years there has been a rapidly growing interest in the possf:9- Ref. 11 The existing formulations of the Green’s ten-
bility of SPP control and manipulation in the surface planesor are suitable for calculating the total scattered field but not

by artificially created surface structures. Theoreticalfor extracting the part of the scattered field which is related

modelé~* considering two-dimensional SPP scattering con—to SPP's and the parts related to other types of fields. An-

. . . . . ) X other possibility for calculating the total field is to make a
flgqratlons and corr_espon.dmg gxpgnmé h SPP’s being numerical calculation based on expanding the field in vector
incident on one-dimensionaflinelike) surface structures

- . > spherical harmonics around the center of the particle, see,
have been reported. SPP guiding along thin metal strip P P

es . . ;
. . A . .g., Refs. 21,22. Although this method is also not suitable
(including those embedded in dieleciriRefs. 6-10 has for extracting the part of the field related to SPP’s, it is nev-

been investigated. Local SPP excitation and scattering byriheless possible to evaluate the power scattered into SPP’s
nanoparticles placed randomiyor intentionally (to form from the total field by integrating the Poynting vector flux
micro-optical elemeni$® as well as SPP scattering by artifi- gyer an infinite plané?
cial surface scatterers!* has also revealed interesting av- In this paper we Study ana|ytica||y the Scattering of a SPP
enues worth further exploration. Quite recently, metallic mi-py a small particle placed near a metal surface and evaluate
crostructures consisting of periodically arranged surfacehe efficiency of the SPP-to-SPP scattering. The approach is
particles have been shown to exhibit a band gap for SPPthat we first provide a relation between the extinction cross
and to allow SPP guidingat wavelengths in the band gap section of the particle and the total electric-field Green'’s ten-
along narrow channels free from particl8s!” In general, sor for the metal-dielectric interface structure. We then
the SPP band gap phenomettiiis similar to the photonic present a new formulation of Green's tensor for a metal-
band gap effect, i.e., the inhibition of light propagation in dielectric interface structure, where the Green'’s tensor is di-
(quasi-two-dimensionalphotonic crystal$° vided into parts that govern the excitation of SPR'sand
Scattering of SPP’s by surface features constitutes a congpolarized waves propagating away from the interface, and
of the aforementioned scattering configurations. Low-loss quasistatiqneay field, respectively. Analytic expressions
SPP manipulation requires that the radiation is kept in there derived for the parts of the Green’s tensor related to
surface plane, i.e., that the SPP-to-SPP scattering is consigropagating waves. The extinction cross section is thereafter
erably stronger than the SPP scattering into waves propagativided into terms related to scattering into SPP’s and scat-
ing away from the metal surface. When considering the effitering into other types of waves. The analytic method is re-
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stricted to the case of a small scattering particle which is notion is proportional to the product of the extinction cross
located directly at the metal surface, and material absorptiosection and the amplitude of the electric field squared at the
is not considered. A method based on field expansion intgite of the particle.
vector spherical harmonics would have less restrictions, but The total field can, e.g., be obtained by solving the
then we would not have the advantages of being able thippmann-Schwinger integral equation
extract the part of the scattered field related to excitation of
SPP’s, and being able to obtajrelatively simplg analytic -~ IN1,2 , , I 43
expressions for the particle scattering cross section. E(r)_EO(r)_f G(r,r")kg-[&(r') —erer(r)JE(r")dr’,
It should be noted that the component of Green’s tensor (2
:jhearfs\ilrjoa;r:taT:lsmgolr?;[:r;rswzﬁgrilt?elssei?se'[nbg?\tveé;dtrgz glspého here G is the retarded G_reen’s tensor for the refere_nce
. : . . . tructure. Green’s tensor is the solution to the following
calculations presented in this paper and calculations for thg uation:
emission of light by a dipole source, and spontaneous emis-q '
sion from a tv_vo-level atom treated in a semiclassical - X VXG(rr)+ ke (NG, r)=18(r—1"), (3)
proach as a dipole source, see, e.g., Refs. 23—-37 The simi-
larities reflect the fact that the electromagnetic field related tavherel is the unit tensor and is the Dirac delta function.
scattering by a small particle is equivalénithin the frame-  The reference structure that we consider here consists of a
work of the electric dipole approximatipio the radiation by  half space £>0) of dielectric with dielectric constang;
a dipole source driven by the incident field. >0, and a half spacez&0) of metal with dielectric con-
The paper is organized as follows. In Sec. |l we provide astante,<0. Because we are interested in metal-dielectric
relation between the scattering cross section for a small painterfaces that support SPP’s we furthermore have to require
ticle and the retarded Green'’s tensor of the structure in whiclz,<<—¢;. We consider a spherical particle located in the
the particle is placed. In Sec. Il Green’s tensor for a metal-upper half space with dielectric consta#)f, and radiusa,
dielectric interface structure is constructed through an eigenand with the position of the center of the partize 0.
mode expansion which allows decomposition of Green’s ten- For the case of a spherical particle which is small with
sor into parts that govern the excitation of SPRs,and  respect to the wavelength, which is not located directly on
p-polarized waves propagating away from the interface, anthe metal surface z{a>1), and when the incident field
a quasistatic field. In Sec. IV we apply the results of theg(r) is approximately constant across the particle, we can
preceding sections and study scattering of a SPP by a smalksume that the fiell(r) is constant inside the particle. The
particle placed near a metal surface. We study SPP-to-SRsumption can be justified by considering E2). In the
scattering as well as scattering from SPP’s to waves propaase wherd,(r) can be considered constant over the region
gating away from the metal-dielectric interface, and finallyof the particle the assumption thB(r) is also constant re-
we evaluate_ the SPP scattering efficiency. The conclusior@uires thath(r,r’)kS[s(r’)—s,ef(r’)]d3r’ is independent
are offered in Sec. V. of r for r being a position inside the particle. In the electro-
static limit this requirement is satisfied to a good approxima-
tion whenz/a>1. The requirement would be perfectly sat-
isfied for a particle in a homogeneous medium, but the

A measure of how much light is scattered out of a beam ofresence of the metal surface adds a contributioB(tor”)

light incident upon a particle is the extinction cross secflon relative to the homogeneous medium case which, for par-
of the particle given by ticles close to the interface, decays ast¢’') 3, and for

particles located directly on the surface the result will be the
excitation of higher-order multipole components in the scat-

Il. SCATTERING THEORY

Ko , tered field®-4
Cext=Im ﬁf [Eo(N]*-[&(r) —&rer(N]E(r)dr |, For zla>1 the real part of [G(r,r')k3[e(r")
0 ) —&e(r')]d% " will be dominated by the integral over the

singularity of G(r,r") for r~r’. The singularity is similar to
the singularity of Green'’s tensor for a homogeneous medium

whereE, is the electric field of the incident beafthe field  in the long-wavelength or electrostatic limit, in which case
that we would have if the scattering particle was not thete  we havé?

is the total field being the incident beam plus the scattered

field, ko=2#/\, with N\ being the free-space wavelength, 2 ) U lep—e;
is the position coordinate;(r) is the dielectric constant of R VG(” Jkole(r') —eres(r’)]dr" | ~— 3 &, '
the structure under consideration including the scattering (4)

particle, whereas,¢¢(r) represents the dielectric constant of

the reference structure without the scattering particle. In gerfor all r inside the small particle. For the imaginary partf
eral the extinction is the power removed from the incidentno electrostatic approximation appli¢sm(G)=0 in the
beam due to scattering and absorption. However, for ouelectrostatic limit. In this case, however, we may note that
choice of materials there is no absorption and in the followdm[G(r,r")] is nonsingular and can be considered constant
ing the extinction is equivalent to scattered light. The extinc-for r, r’ inside the small particle if<\/(2m\ey), ie.,
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G(r,r")=Gg1(r,r")+G.(r,r")
En(NER(r")

|mU G(r,r")K3[e(r') —ere(r')]d3r’
\

~Im[G(r,r) ]k5(ep—e1)V. (5) n Nn\n
As it has been justified that both real and imaginary parts of +E Vén(DLV #n(r) 1 9)
the integral are approximately independentroinside the n Mnkg '

particle when certain restrictions are imposed za and

a/\, the field inside the particle is given by where the generalized transverse part of Green’s teBger

is constructed from the complete set of transverse eigen-
modesE,(r) given by

-1
E= I+fG(r,r’)kg[s(r’)—sref(r’)]d3r’) -Ep. — VXV XEq(1)+K3e(NEqn(r) =Npe(NEq(r),  (10)
\%

(6) V-[e(rn)EL(r)]=0, (11)

. . with the orthogonality relation
The extinction cross section thereby reduces to

2 | cnBO B =N (2
_.3 &p” %1 2
Cext=Kp e +28147733 egp” {—Im[G(r,)]}- 1, The longitudinal or quasistatic pa@, is constructed from
P 7) longitudinal eigenmodes that can be found from a complete
set of scalar eigenmodef,(r) satisfying
where u=Ey/|Ey|. It is known that the radiation from a V. [e(n)V,]=0ndn(1), (13)

dipole antenna with dipole momept is proportional tou*

-[=Im(G(r,r))]- m, and thus Eq(7) can be interpreted in with the orthogonality relation

the way that the light scattered out of the incident beam .3

corresponds to the light emitted from a dipole antenna f e(NVen(r)-[Von(n]*dr=86,,M,. (14
(driven by the incident beaymocated at the position of the _ L

particle. The termG_ does not contribute to the extinction cross sec-

In this paper we will, on the basis of E¢7) and an tion Eq. (7) sinceGy(r,r) does not have an imaginary part

eigenmode expansion @8, make a further interpretation, fo_r our choice of dielectric constants. In the following we
L . will therefore concentrate on derivifgg.
whereC,,; is divided into three parts,

A. SURFACE PLASMON POLARITON CONTRIBUTION

Cox=CS, P+ Ch, PO+ CSPP (8 The excitation of surface plasmon polaritons by a dipole
source near the metal surface is governed by the part of

where the three terms correspond to scattering int¢>réen’s dyadic which is related to surface plasmon polariton
s-polarized andp-polarized waves propagating away from elgen_modes. The surface plasmon polariton eigenmodes may
the interface and surface plasmon polaritons, respectivelf?® Written as
By dividing C,,; in this way it will become possible to ad- R £, ~ |
dress the question of how large a fraction of the scattered ES" (r)=| z—i \/—Kp>e"‘p“’e‘v51 TRz 7>,
light is scattered into surface plasmon polariton waves. ! I

(15
ll. CONSTRUCTION OF GREEN'S TENSOR THROUGH Eipp(l’)z(ﬂi—i A )emﬂ-pe\,ﬁ_ez k2 70,
AN EIGENMODE EXPANSION , €2 e’ 16

In this section we will construct Green’s tenger A de- A : .

tailed description of the method for constructing Green'’s ten-Wherez IS @ unit vector normal to the surface, _'S an
sor through an eigenmode expansion is given in Ref. 36 Ifn-plane wave vectork, =,/ «, (x,=|r,|), andp is the
this paper we will use the method of Ref. 36 to construct thdn-Plane position. ) _

Green’s tensor for our case of a metal-dielectric interface that 1he eigenvalue, , orthogonality relation, and normal-
supports SPP's. The eigenmode expansion method allows dgation factorN,. are given by

composition of the metal-dielectric interface Green’s tensor

into parts that govern scattering of light ints- and N 2 2811T€2 (17)

p-polarized modes propagating away from the interface, sur- K 0 TP gie, !

face plasmon polaritons, and a part related to a quasistatic

near-field. - s(r)EiPP(r)-[ES,PP(r)]*dsl’Z5(KP—KP’)NK ’
Green'’s tensor can be constructed through an eigenmode P o »

expansion of the form (18
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1 Jei(—e,) 8% By inserting in Eq.(9) we find the surface plasmon polariton
s P
14

> (19 contribution to Green’s tensor
p

. . (2_| 8;_ lA{p 2+| 8_:;-;([)) eixp-(pfp’)e— e1/(—e) K, (z+2")
— &, AV 5
Gspp(r,r’):f KﬁdeJ do, 5 , (20
K,=0 x, =0 s ,1 h , €182 5 . | &1TeE2
(2) EVSl(_SZ) 1-— k081+82_Kp+|€ o1ts
€2

WhereqSKp is an angle that defines the directionfoj and the infinitesimal positive numberis necessary for obtaining the
retarded Green'’s tensor. If we g#t=0 the integration overﬁkp may be carried out analytically by using the formulas given

in Appendix, which leads to the simplified expression
43552\ “ag)
(zp—pz ey o(Kpp

1 g2 g€ gqte '
2#5\/81(_82)(1——;)(k2 12 —K2+i€) ! 2

Ogi+e, ° €187

ppIt(Kk,p)+ b

I €1 Jo(k,p
223o(k,p) + —
€2 P

K

GSPF(U")ZJ Kﬁdxpe*\817(*825kp(2+z’)
Kp=0

(21)

where p and ¢ (p=plp, p=|p|) are cylindrical in-plane (21). The expres;ionﬁZl) may ther_efore g‘;\lso be used for the
coordinate unit vectorsl, is the Bessel function of the first Case of r_netals V_\/Ith a complex dielectric constant.

kind of order 0, and the prime refers to the derivative with ~ BY using the identity

respect to the argument. Although in this paper we have re- 1
stricted ourselves to the case of real dielectric constants, a -
procedure similar to that in Ref. 36 based on constructing xtle
Green'’s tensor using a biorthogonal set of eigenmodes fowhereP refers to the principal value, it is possible to split
the case of complex dielectric constants also leads to Eqzsppinto two parts,

=P;—i7r5(x), (22)

Kkepp @ Vel ealksprlzt2) an €1 ~n_, ~ ~Jo(Ksppp)
Glpelrir')=—i—, ; | 223o(kspro) + | ppJ5(Kspep) + =y
€1 81+82 2 SPRP
Veu(—ex)| 1-—
5] €182
An An €1 ,
+(zp—p2) _—SzJo(ksnDPP), (23
~n 1 nn_y, AAJ(,)(K p) AnAn €1 _,
. 223o(K,p) + | ppIo(rpp) + SS— ——|+(2p=p2) \| =_Jo(x,p)
Ggpp(r,r’)=Pf K2d i e VFrTT ey (24 2) 2 . oP 2 ,
Kp:0 1 €1 2 €1&H 2 81+82
2775\/81( 82)(1 :%)(k081+82 K5 o1ty

(29)

wherekspp=Kove1e5/(e1+€5) is the surface plasmon po- reflection coefficient fop-polarized waves incident on the
lariton wave number. The ter®3,, can in principle be metal interfacé® For the case of real dielectric constants we
obtained from the total Green’s tensor by extracting the conhave a simple exact analytic expression for the imaginary
tribution to a Sommerfeld integral related to the pole of thepart of Gspp. However, for the real part 0Bgpp it is in
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general necessary to carry out a principal value integral. In the case wheilarge, andz+2z' is small, in both cases on a
wavelength scale, it is possible to give an analytic approximatioﬁ‘{tpP which is asymptotically correct as increases

towards infinity, resulting in

An Elan  an an. e
HE(ksppo)| 22— —lpp+(Zp—pZ)l\/_—l>, (25
€2 €2

kspp € Ve1l(—egkspr(z+2")
Goprr, 1)~ ; H
2 €1 81+82
Vei(—er)| 1——
g5/ €182

WhEYEH((-)l) is the Hankel function of first kind and order 0. Where(’z\sk is an in-plane unit vector perpendicmarkp, K1

The approximation25) can be very useful for evaluating s the out-of-plane wave-vector component, and
scattering between particles located close to a metal surface,

when the scatterers are separated by a few wavelehgths.
For the case of real dielectric constants it is relatively

simple to evaluate scattering into SPP’s, since the principal

value integral does not contribute to the imaginary part of

Green'’s tensor, i.e.,

Kspp ~n
_Im[GspF(r,r)]: 82 N \ZZ
11817 €2
2\/81|82|(1——2 .
g5 €182

1 .. ..
+i—<pp+¢¢>)ev81“2 sPiZ,
|82| 2
(26)

B. sPOLARIZED WAVE CONTRIBUTION
The s-polarized eigenmodes may be written as

Ep foy (=, [€7 41k, k) €8] P, 2>0,

Ky Kz
(27)
Bl oy (1= ¢ [147%(k, k1) Je” 2% P, 2<0,
(29)

K

Nie, iy = ko —(k2+ K2)leq, (29)

&
2 2

K _\/K -~ 1
z2 p(sl

The Fresnel reflection coefficient farpolarized waves is
given by

&
+242 (30)
€1

Kz1— Kz2
Kt Kz
Taking advantage of the fact that the magnitude of the
Fresnel reflection coefficient equals 1 in our case of using

real dielectric constants the orthogonality relation and nor-
malization factor are given by

rS(Kk,,Kkz1)= (31)

J S(T)EKP ,Kzl(r) : [EK;] ,K;l(r)]* d3r

=08(Kk,— K, ) 6(kn— Kél)NKp oy

+non-singular terms, (32
NKI),K21:(27T)381' (33)

Construction of thes-polarized wave contribution to Green’s
dyadic by inserting in Eq(9) leads to

*© * 2 A ) ,
Gs- pm(r,r,) B J’ dKZlf =0Kdep£b =od¢Kp¢Kp¢er'Kﬂ'(pfp )

k;1=0
z1 P K,

X

e*ikzl(Z*Z’)_’_ ei Kzl(Z*Z,)_’_ ei Kzl(ZJrZ')rS( Ky lKZl) + e*ikzl(ZJrZ')[rS( Ky lel)]*

(277)3(k§81—f<2— K§l+i6)

It is convenient to make the substitution,;=k cos6, «

(34)
p

=k sin#, and make use of the formulas in Appendip’(

(p'=0) to cast the integral into a form suitable for evaluation of the scattering, i.e.,

/2 s ,\,\_J,(K )
Gsfpol.(r:r/):J daJ k2sinadk<pp°—”p
6=0 =0 Kp

+ 2R€[eikc050(z+z’)r5( 0)]}’

+ Pl —Ig(r,p)]

2co$kcosf(z—z'
(2w)2(k§al—k2+ie){ cogkeosé(z=2)]

(39
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where where in this expression K21=\/k0281—;<p2 and

2_ 1,2
cosf—isiO—e,le, Ki=koea.
rs(o)= —= : (36)

cosf+isirtd—e,le,
In Eq. (35 the angled may be interpreted as an angle of
propagation with respect to the surface normal vector. BY The p-polarized eigenmodes may be written
using Eq.(22) the scattering of light ints-polarized modes
can be written as an integral over an angular emission spec-
trum Is_,0(0) for waves propagating away from the inter-
face, i.e.,

C. P-POLARIZED WAVE CONTRIBUTION

ZKk,t K, Kz
2, 2
VK, t K7

2 ERPe, (1=

) K, Kz e_iKZlZ+rp(Kp1Kzl)
lspoi(@)sSinede, (37)
0

- |m[Gs—poI(rar)]: f

6=

ZK,— K _ _
where ><%e*”‘ZlZ e P z>0 (40
k\/— \/KP+K21
over 1 . an A n
lspoi(0)= =5 — 5 {1+ Re € 01223 9) [} (pp+ ).

(38) : . .
o _where the Fresnel reflection coefficient fepolarized waves
The Green's tensor contributioBs.,, may also be cast in g given by

the form of a Sommerfeld integral by applying the residue
theorem to Eq(34), whereby

f‘” E2K71~ €1K7 1)

B -
dr [ e <alz=? Pk, Kz1)=

Ggpol(F,r")= .
P K,=0 €K1t E1K

4'n'ki
2

. ~~ Kk
+alx 1(z+z’)rs 1o . . L
€ (kp 121)]| b, KZ]_JO(Kpp) The expressions for eigenvalue,,, and normalization fac-

, 5 tor, are similar to the case afpolarized waves, and the
+;);)30(Kpp) ﬁ) (39) contribution to Green'’s tensor frompolarized waves can be
P Kzl constructed in a similar way, i.e.,

. . 2 ERPS (DIERPY (1)
Gp.pol(T,) = dk f KdKf dep, —" e T (42)
P-pol a=0 =0 g <0 (2m) (ke — k2 — kG i)

Following the scheme used ferpolarized waves we can make the substitutign=k cosé, «,=k sin6, make use of the
formulas in Appendix, and use E(R2) to evaluate the imaginary part of Green’s tensorrfer’, resulting in

w2
—IM[Gp (1,1 ]= Lzolp_pm(a)sin 0do, (43
where

lppoi( 0)= % (zzsir? 0{1+ Re eK0\e1006@DrP( )V + L(hh+ pp)cos {1 — Re ekovercosé@rp o)1) (44)

£,C0S0—&4i \/SIPO—¢,/e
P(g)= °2 Vsl 2/e1
£,C080+ &40 \SifO—g,/e,

(45

The contribution forp-polarized waves can also be cast in the form of a Sommerfeld integral by use of the residue theorem.
As a preparation to this we will transform the integral fey into an integral over the interval from « to +o, i.e.,
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0 © 2 eikp'(P_P/) n K’2) . ( ,)
G,. |(r,r’)=f dx J K, dk J do 7z [e'knlz72
ppo ka=e k=0 T gm0 T (2m)3 (KB — k2 kD i) | kP4 KG
K2
H ’ A A z1 : ) f ’
+e'Kzl(Z+Z )rp(Kp szl)]+ KoK, 2+ 5 [e'Kzl(Z z )_elel(Z+Z )rp(Kp !Kzl)]
p z1
An PN K K . ’ An ~A~ ~ Kz1K . ’
+(ZKp+ sz) 2zl ,o2 (_eIKzl(Z*Z ))_(ZKP_ sz)%[_euql(uz )I’p(Kp szl)]J . (46)
+ Kk K T K
p z1 p z1
|
The integration overx,; can be carried out by means of ool 13| Ep—E1 5 2 5
residue calculus. Here one should observe the poles for CE™” =ko m*ﬁ's\ eTM*
1/(k5+«3), 1P, and for 1/k§e,— k2, — k5+i€). The resi- o
due related to the poles,; = +i«, actually results in a term A= IM[Gypoi(r,N 1} a1, (50

that except for opposite sign is equal®(r,r'). The resi- ) . . _
due related to the pole of results in a term that except for Which govern scattering into SPP's asdand p-polarized
opposite sign is equal Gspe(r,r'). modes propagating away from the metal-dielectric interface,

By calculating the residue related to the poles offespectively. It is convenient to normalize these cross sec-
| tions with respect to the scattering cross section of a particle

1/(K3e,— k2, — k*+i€), and further calculating the integra : ; oSS SR .
(koo =iy = K Fi€) g g located in a homogeneous dielectric with dielectric constant

over ¢>Kp by using the formulas in Appendixp(=0), we

, e,
obtain 1
2
’ ’ ’ hom__,3 €p— %1 3 2 ko\/S_]_ 2
Gp-pol(r,r") +Ggpgr,r") + G (r,r') Cegtm—ko(m4ﬂa ) e\ 2, 3/ (51
3
| * An K H ! . ope .
= 5 f de( zz\]o(fcpp)—”(e"‘zﬂz*Z | In the following, we shall specifically consider the case of
4mkge 1) x,=0 Kzt the incident wave being a SPP with a plane phase ficit
“3(k.p) Eqg. (15)]. The part of the extinction cross section, which is
+rPeika(zt2)) 4 gba)(o—f"o) related to SPP-to-SPP scattering, is shown in Fig. 1 as a
Kpp function of the dielectric constant of the metal,} for dif-

ferent heights of the scatterembove the air-metal interface
KpKzl(ei rnlz=2'| _ppgira(z+2')) (e1=1). Here refers to the free-space wavelength of light.
Note that in the case of the light wavelength being close to
the SPP resonance, in which casgis close to—¢,, the
SPP-to-SPP scattering cross section may become orders of

+ppl—I(x,p)]

+i(zp+pz) k23) (K p)€ <2z 7|

magnitudes larger than the free-space scattering cross sec-
—i(zp—p2)K534(K,p)IPE Kzl(”Z'))_ (47)  tion. This enhancement can be understood from(E6).as a
10°
The total Green’s tensor is obtained as the sum of Egs. — z=0.05)
(47) and(39). ===+ z=0.075)
10/ N\ |- z=0.10%
E A A B APEO\ N z=0.20A
IV. MODAL DISTRIBUTION OF SCATTERED LIGHT O —— z=0.500
. _ ) ) £ = —e— z=1.00A
The results of the preceding section, in particular Egs. L —— 7=2.00A
(43), (37), and(26), now give us the possibility to divide the oy s T > ]

extinction cross section into three terms, namely,

10

spp_3[ Ep” %1 3 2 *

Cext :ko e+ 2¢ 4ma 1M '{_Im[GSPF(rrr)]}'”‘i 10~ P . .
pretl 107 10° _(g_4e ) 10° 10*
(48) 2t
2 FIG. 1. Normalized extinction cross section related to scattering

CSPol— 3 €p— %1 Amrad Szﬂ* A= IM[Ga (1,1} 2 from a surface plasmon polaritdPP to SPP’s for a particle lo-

ext =0\ gyt 28 ! Spoi T ' cated in air ¢;=1) at the heigh above a metal surface with metal

(49 dielectric constant,. \ is the free-space wavelength of light.
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result of the denominator approaching zero for=—¢;.

The cross section will, however, not become infinitely large
for z>0, since the terne™ Ve1/(=¢2kspRZ jn Eq. (26) also

goes to zero at the SPP resonance, and exactly at resonance
there is no scattering into SPP’s. Note that as the height of
the scatterer above the surface increases, the maximum in the
SPP-to-SPP extinction cross section dependence moves away

b—pol.

— z=0.05\

. ---- z=0.251
from the SPP resonance. For a scatterer-to-surface distance % | | .. §:0.50x
z=\, the optimization of SPP-to-SPP scattering requires the > ,
dielectric constant to be close t6100. In the perfect con- 10
ductor limit (e ,= — =), the SPP-to-SPP extinction cross sec-
tion tends to zero, which is quite natural because of the ab- 107 10° (e e 10? 10*

sence of SPP’s in this limit. However, the magnitudesgf
h_as to be very large before scattering into SPP's can be con- FIG. 2. Normalized extinction cross section related to scattering
sidered negligibly sr_nall. ) . from a surface plasmon polariton ®polarized andp-polarized

Note that especially in the vicinity of the SPP reso-\yayes that propagate away from an air-metal interface by a particle
nance the requirement for the incident SPP to not varyocated in air ¢,=1) at the height above the metal surface with
appreciably across the particle leads to a restriction on thgetal dielectric constant,. \ is the free-space wavelength of
sphere radii for which our theory is valid, namelg, light.
<\(e1t+e&y)le185N27. For the case of, e.gg1=1, e,=
—1.1 the requirement would kee<0.05\. requires progressively larger magnitudesef Thus, for ex-

The calculations in this paper have been restricted to thample, for a height~0.7\, the optimum dielectric constant
case of real dielectric constants for two reasons. The firssf the metal is found at,~—100. Note though that this
reason is that the evaluation of the various parts of the exheight is not optimum for this particular dielectric constant.
tinction cross section becomes particularly simple. When weindeed, for scatterers very close to the surface, the SPP-to-
e.g., calculate IfiGgpe(r,r)] we do not have to be con- SPP scattering efficiency is below 40%, whereas if the height
cerned with the principal value integral EQ4). The second s increased to 0M the efficiency can be increased above
reason is that for the case of metals with absorption th&0%. If the height is further increased to B, he efficiency
amount of light scattered into SPP’s can only be evaluated ifs again close to 40% and becomes negligible when the scat-
an approximate sense, which fundamentally is related to thgerer moves further away from the surface.
fact that for lossy materials a complete set of orthogonal
modes no longer exists. However, our expression for the part
of Green'’s tensor related to excitation of SPP’s 1) and
the approximation Eq(25) are also valid for metals with
absorption. From Eq25) we observe that the SPP excitation
is relatively unaffected by the presence of a small metal los
[Im(e,)<Re(e,)] as long as Imf;+e,)<Re(e;+ey),
which requires the loss to be very small as we approach th
SPP resonance.

The scattering from SPP’s int® and p-polarized waves
propagating away from the air-metal interface is presented i
Fig. 2. Here we note that for large magnitudeseof the

V. CONCLUSION

In conclusion, we have presented an analytical study of
gcattering of light by a small spherical particle located near a
metal-dielectric interface, focusing on the SPP-to-SPP scat-

ring. The extinction cross section for a small spherical par-
icle has been expressed in terms of the electric-field Green'’s
tensor for the structure in which the particle is placed. A
ﬁormulation has been developed for Green’s tensor of a

SPP-tos-polarization extinction cross section rapidly de- ol — 2=0.054
creases, because the in-plane field component of the incident - :8:;82
SPP field tends to zero in this ca&@nd s-polarized waves 0.8t S 220.400,
can only be excited by an in-plane field component at the site - S| —— z=0.70%
of the scattergr For the SPP-tg-polarization scattering, the o%.e s L —*= z=2.001
extinction cross section on the other hand increases for large e 5
magnitudes ot,, becoming eventually larger than the total “’o"(’)4

free-space extinction cross section. Optimum SPP-to-SPP '

scattering efficiency does not necessarily imply that the scat- 0.2l

terer height must be very small, because the different parts of '

the extinction cross section do not have the same dependence 0 - SIS

on the height of the scatterer. The fraction of scattered light 107 10° (e +¢,) 10° 10*
that goes into SPP’s relative to the total scattered light is 2

shown in Fig. 3. It is seen that for small heightof the FIG. 3. Fraction of scattered light which is scattered into surface

scatterer, the efficiency of SPP-to-SPP scattering can bglasmon polaritons by a particle located in aif € 1) at the height
close to 100% in the vicinity of the SPP resonance. As the& above a metal surface with metal dielectric constant\ is the
heightz increases, the optimum efficiency of this scatteringfree-space wavelength of light.
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metal-dielectric interface structure, in which Green'’s tensoithe SPP resonance. For a specific metal dielectric constant, it
is divided into parts that govern SPP excitation, excitation ofis in turn possible to optimize the height of the particle with
s and p-polarized waves propagating away from the metal-respect to the efficiency of the SPP-to-SPP scattering. We
dielectric interface, and a part responsible for a quasistatibelieve that the results obtained can be used as practical
(neay field. This formulation of Green’s tensor allowed us to guidelines in experimental investigations of SPP scattering
divide the extinction cross section into parts accounting fophenomena, e.g., when dealing with SPP micro-optical ele-
scattering into SPP’s and waves propagating away from theents.

interface, respectively. The approach developed has been ap-

plied to the case of SPP scattering by a particle placed in air APPENDIX: FOMULAS INVOLVING BESSEL

above a metal surface. It has been shown that for the dielec- FUNCTIONS

tric constant of metal being close to, but not exactly at, the

SPP resonance, the extinction cross section for the SPP-to- 1 (2= i, p_

SPP scattering can be orders of magnitude larger compared o 4 :0d¢kpe »'P=Jo(Kpp), (A1)

to the free-space particle extinction cross section. We have “

further found that as the height of the scatterer above the 1 (2n

surface increases, the metal dielectric constant maximizing — do, ¢, b, P

the SPP-to-SPP extinction cross section moves away from 2m) g, =0 T

that corresponding to the SPP resonance. It was also seen 3k p)

that as the metal dielectric constant approaches the perfect _~~ Yot PO TIEL]

conductor limit the SPP-to-SPP extinction cross section tends —pp Kop Todl=Jolxpp)],  (A2)

to zero. Finally, we have evaluated the efficiency of the SPP-

to-SPP scattering, i.e., the fraction of the scattered power 1 (2n
which is related to scattering into SPP’s. For the case of 2m b =0
particles placed close to the metal surface and metal dielec- g

do, Kk, k€% P
¢Kp pp

tric constants corresponding to being close to the SPP reso- o —J(’)(Kpp) .

nance, the efficiency of the SPP-to-SPP scattering was found = ¢¢(K— +pp[—Jo(k,p)],  (A3)
to be very close to 100%. As the height of the scatterer oP

increases, the optimum efficiency of SPP-to-SPP scattering 1 (on

requires progressively larger magnitudes of the metal dielec- dqs,cpikpei 5 P=zp[—iJy(k,0)].  (Ad)
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