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Surface plasmon polariton scattering by a small particle placed near a metal surface:
An analytical study

T. So”ndergaard* and S. I. Bozhevolnyi
Micro Managed Photons A/S, Institute of Physics, Aalborg University, Pontoppidanstræde 103, DK-9220 Aalborg O” , Denmark

~Received 12 May 2003; revised manuscript received 29 August 2003; published 30 January 2004!

Scattering of light by a small particle placed near a metal surface is studied via analytical calculations of the
particle extinction cross section. Considering a small spherical particle, we express the extinction cross section
via the total electric-field Green’s tensor of a metal-dielectric interface structure. Analytic expressions are
derived for the parts of Green’s tensor that govern the excitation ofp- ands-polarized waves propagating away
from the interface, and waves propagating along and being localized at the interface, viz., surface plasmon
polaritons ~SPP’s!. This allows us in turn to divide the extinction cross section into parts associated with
scattering of light into different types of electromagnetic waves. The scattering cross sections related to
SPP-to-SPP scattering, and scattering of SPP’s into waves propagating away from the interface, are studied
with respect to the dielectric constant of the metal and the height of the scatterer above the interface. In the case
where the light wavelength is close to the SPP resonance, the SPP-to-SPP scattering cross section can be orders
of magnitude larger compared to the extinction cross section of a particle in free space, whereas in the case of
a nearly perfect conductor, the SPP-to-SPP cross section tends to 0. The efficiency of SPP-to-SPP scattering is
calculated and, e.g., for the metal dielectric constant2100 ~order of magnitude for gold at the light wave-
length 1500 nm! it is found to be above 60% for the optimum scatterer-surface distance.

DOI: 10.1103/PhysRevB.69.045422 PACS number~s!: 78.68.1m, 71.36.1c, 02.70.2c, 03.65.Nk
f
a

o
tr
en
s
ne
ca
n

ip

b

-
v-

i
ac
P

in

co
s

th
ns
g
ffi

t to
eld
way
si-
e a
’s.
to

-
not
ted
An-
a
tor

see,
ble
v-
PP’s
x

PP
uate
h is
ss

en-
en
tal-
di-

nd
s

to
fter

cat-
re-
I. INTRODUCTION

Surface plasmon polaritons~SPP’s! represent a type o
electromagnetic excitation which is bound to and propag
ing along metal-dielectric interfaces.1 Scattering of SPP’s by
surface random roughness has been extensively studied
the last 30 years with main emphasis on the far-field dis
bution of light scattered out of the surface plane. In rec
years there has been a rapidly growing interest in the po
bility of SPP control and manipulation in the surface pla
by artificially created surface structures. Theoreti
models2–4 considering two-dimensional SPP scattering co
figurations and corresponding experiments5 with SPP’s being
incident on one-dimensional~linelike! surface structures
have been reported. SPP guiding along thin metal str
~including those embedded in dielectric! ~Refs. 6–10! has
been investigated. Local SPP excitation and scattering
nanoparticles placed randomly11 or intentionally ~to form
micro-optical elements!12 as well as SPP scattering by artifi
cial surface scatterers13,14 has also revealed interesting a
enues worth further exploration. Quite recently, metallic m
crostructures consisting of periodically arranged surf
particles have been shown to exhibit a band gap for SP
and to allow SPP guiding~at wavelengths in the band gap!
along narrow channels free from particles.15–17 In general,
the SPP band gap phenomenon18,19 is similar to the photonic
band gap effect, i.e., the inhibition of light propagation
~quasi-two-dimensional! photonic crystals.20

Scattering of SPP’s by surface features constitutes a
of the aforementioned scattering configurations. Low-lo
SPP manipulation requires that the radiation is kept in
surface plane, i.e., that the SPP-to-SPP scattering is co
erably stronger than the SPP scattering into waves propa
ing away from the metal surface. When considering the e
0163-1829/2004/69~4!/045422~10!/$22.50 69 0454
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ciency of SPP-to-SPP scattering, it would be convenien
divide the total scattered field into propagating SPP fi
components, components related to waves propagating a
from the metal-dielectric interface, and a remaining qua
static near-field term, and thereby to evaluate how larg
fraction of the power of the scattered field is related to SPP
The total field scattered by a small particle can be related
Green’s tensor for a metal-dielectric interface structure~see,
e.g., Ref. 11!. The existing formulations of the Green’s ten
sor are suitable for calculating the total scattered field but
for extracting the part of the scattered field which is rela
to SPP’s and the parts related to other types of fields.
other possibility for calculating the total field is to make
numerical calculation based on expanding the field in vec
spherical harmonics around the center of the particle,
e.g., Refs. 21,22. Although this method is also not suita
for extracting the part of the field related to SPP’s, it is ne
ertheless possible to evaluate the power scattered into S
from the total field by integrating the Poynting vector flu
over an infinite plane.21

In this paper we study analytically the scattering of a S
by a small particle placed near a metal surface and eval
the efficiency of the SPP-to-SPP scattering. The approac
that we first provide a relation between the extinction cro
section of the particle and the total electric-field Green’s t
sor for the metal-dielectric interface structure. We th
present a new formulation of Green’s tensor for a me
dielectric interface structure, where the Green’s tensor is
vided into parts that govern the excitation of SPP’s,s- and
p-polarized waves propagating away from the interface, a
a quasistatic~near! field, respectively. Analytic expression
are derived for the parts of the Green’s tensor related
propagating waves. The extinction cross section is therea
divided into terms related to scattering into SPP’s and s
tering into other types of waves. The analytic method is
©2004 The American Physical Society22-1
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stricted to the case of a small scattering particle which is
located directly at the metal surface, and material absorp
is not considered. A method based on field expansion
vector spherical harmonics would have less restrictions,
then we would not have the advantages of being able
extract the part of the scattered field related to excitation
SPP’s, and being able to obtain~relatively simple! analytic
expressions for the particle scattering cross section.

It should be noted that the component of Green’s ten
that we are mainly interested in is often referred to as
density of states. Some similarities exist between the typ
calculations presented in this paper and calculations for
emission of light by a dipole source, and spontaneous em
sion from a two-level atom treated in a semiclassical
proach as a dipole source, see, e.g., Refs. 23–37 The
larities reflect the fact that the electromagnetic field related
scattering by a small particle is equivalent~within the frame-
work of the electric dipole approximation! to the radiation by
a dipole source driven by the incident field.

The paper is organized as follows. In Sec. II we provid
relation between the scattering cross section for a small
ticle and the retarded Green’s tensor of the structure in wh
the particle is placed. In Sec. III Green’s tensor for a me
dielectric interface structure is constructed through an eig
mode expansion which allows decomposition of Green’s t
sor into parts that govern the excitation of SPP’s,s- and
p-polarized waves propagating away from the interface,
a quasistatic field. In Sec. IV we apply the results of t
preceding sections and study scattering of a SPP by a s
particle placed near a metal surface. We study SPP-to-
scattering as well as scattering from SPP’s to waves pro
gating away from the metal-dielectric interface, and fina
we evaluate the SPP scattering efficiency. The conclus
are offered in Sec. V.

II. SCATTERING THEORY

A measure of how much light is scattered out of a beam
light incident upon a particle is the extinction cross sectio38

of the particle given by

Cext5ImS k0

uE0u2
E @E0~r!#* •@«~r!2« re f~r!#E~r!d3r D ,

~1!

whereE0 is the electric field of the incident beam~the field
that we would have if the scattering particle was not there!, E
is the total field being the incident beam plus the scatte
field, k052p/l, with l being the free-space wavelength,r
is the position coordinate,«(r) is the dielectric constant o
the structure under consideration including the scatte
particle, whereas« re f(r) represents the dielectric constant
the reference structure without the scattering particle. In g
eral the extinction is the power removed from the incide
beam due to scattering and absorption. However, for
choice of materials there is no absorption and in the follo
ing the extinction is equivalent to scattered light. The extin
04542
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tion is proportional to the product of the extinction cro
section and the amplitude of the electric field squared at
site of the particle.

The total field can, e.g., be obtained by solving t
Lippmann-Schwinger integral equation

E~r!5E0~r!2E G~r,r8!k0
2
•@«~r8!2« re f~r8!#E~r8!d3r 8,

~2!

where G is the retarded Green’s tensor for the referen
structure. Green’s tensor is the solution to the followi
equation:

2“3“3G~r,r8!1k0
2« re f~r!G~r,r8!5Id~r2r8!, ~3!

whereI is the unit tensor andd is the Dirac delta function.
The reference structure that we consider here consists
half space (z.0) of dielectric with dielectric constant«1
.0, and a half space (z,0) of metal with dielectric con-
stant «2,0. Because we are interested in metal-dielec
interfaces that support SPP’s we furthermore have to req
«2,2«1. We consider a spherical particle located in t
upper half space with dielectric constant«p , and radiusa,
and with the position of the center of the particlez.0.

For the case of a spherical particle which is small w
respect to the wavelength, which is not located directly
the metal surface (z/a@1), and when the incident field
E0(r) is approximately constant across the particle, we c
assume that the fieldE(r) is constant inside the particle. Th
assumption can be justified by considering Eq.~2!. In the
case whereE0(r) can be considered constant over the reg
of the particle the assumption thatE(r) is also constant re-
quires that*G(r,r8)k0

2@«(r8)2« re f(r8)#d3r 8 is independent
of r for r being a position inside the particle. In the electr
static limit this requirement is satisfied to a good approxim
tion whenz/a@1. The requirement would be perfectly sa
isfied for a particle in a homogeneous medium, but
presence of the metal surface adds a contribution toG(r,r8)
relative to the homogeneous medium case which, for p
ticles close to the interface, decays as (z1z8)23, and for
particles located directly on the surface the result will be
excitation of higher-order multipole components in the sc
tered field.39–41

For z/a@1 the real part of *G(r,r8)k0
2@«(r8)

2« re f(r8)#d3r 8 will be dominated by the integral over th
singularity ofG(r,r8) for r'r8. The singularity is similar to
the singularity of Green’s tensor for a homogeneous med
in the long-wavelength or electrostatic limit, in which ca
we have42

ReS E
V
G~r,r8!k0

2@«~r8!2« re f~r8!#d3r 8D'2
1

3

«p2«1

«1
I

~4!

for all r inside the small particle. For the imaginary part ofG
no electrostatic approximation applies@ Im(G)50 in the
electrostatic limit#. In this case, however, we may note th
Im@G(r,r8)# is nonsingular and can be considered const
for r, r8 inside the small particle ifa!l/(2pA«1), i.e.,
2-2
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ImS E
V
G~r,r8!k0

2@«~r8!2« re f~r8!#d3r 8D
'Im@G~r,r!#k0

2~«p2«1!V. ~5!

As it has been justified that both real and imaginary parts
the integral are approximately independent ofr inside the
particle when certain restrictions are imposed onz/a and
a/l, the field inside the particle is given by

E5S I1E
V
G~r,r8!k0

2@«~r8!2« re f~r8!#d3r 8D 21

•E0 .

~6!

The extinction cross section thereby reduces to

Cext5k0
3S «p2«1

«p12«1
4pa3D 2

«1
2m* •$2Im@G~r,r!#%•m,

~7!

where m5E0 /uE0u. It is known that the radiation from a
dipole antenna with dipole momentm is proportional tom*
•@2Im(G(r,r))#•m, and thus Eq.~7! can be interpreted in
the way that the light scattered out of the incident be
corresponds to the light emitted from a dipole anten
~driven by the incident beam! located at the position of the
particle.

In this paper we will, on the basis of Eq.~7! and an
eigenmode expansion ofG, make a further interpretation
whereCext is divided into three parts,

Cext5Cext
s2pol.1Cext

p2pol.1Cext
SPP, ~8!

where the three terms correspond to scattering
s-polarized andp-polarized waves propagating away fro
the interface and surface plasmon polaritons, respectiv
By dividing Cext in this way it will become possible to ad
dress the question of how large a fraction of the scatte
light is scattered into surface plasmon polariton waves.

III. CONSTRUCTION OF GREEN’S TENSOR THROUGH
AN EIGENMODE EXPANSION

In this section we will construct Green’s tensorG. A de-
tailed description of the method for constructing Green’s t
sor through an eigenmode expansion is given in Ref. 36
this paper we will use the method of Ref. 36 to construct
Green’s tensor for our case of a metal-dielectric interface
supports SPP’s. The eigenmode expansion method allow
composition of the metal-dielectric interface Green’s ten
into parts that govern scattering of light intos- and
p-polarized modes propagating away from the interface,
face plasmon polaritons, and a part related to a quasis
near-field.

Green’s tensor can be constructed through an eigenm
expansion of the form
04542
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G~r,r8!5GGT~r,r8!1GL~r,r8!

5(
n

En~r!En* ~r8!

Nnln

1(
n

“fn~r!@“fn~r8!#*

Mnk0
2

, ~9!

where the generalized transverse part of Green’s tensorGGT
is constructed from the complete set of transverse eig
modesEn(r) given by

2“3“3En~r!1k0
2«~r!En~r!5ln«~r!En~r!, ~10!

“•@«~r!En~r!#50, ~11!

with the orthogonality relation

E «~r!En~r!•@Em~r!#* d3r 5dnmNn . ~12!

The longitudinal or quasistatic partGL is constructed from
longitudinal eigenmodes that can be found from a comp
set of scalar eigenmodesfn(r) satisfying

“•@«~r!“fn#5snfn~r!, ~13!

with the orthogonality relation

E «~r!“fn~r!•@“fm~r!#* d3r 5dnmMn . ~14!

The termGL does not contribute to the extinction cross se
tion Eq. ~7! sinceGL(r,r) does not have an imaginary pa
for our choice of dielectric constants. In the following w
will therefore concentrate on derivingGGT .

A. SURFACE PLASMON POLARITON CONTRIBUTION

The excitation of surface plasmon polaritons by a dip
source near the metal surface is governed by the par
Green’s dyadic which is related to surface plasmon polari
eigenmodes. The surface plasmon polariton eigenmodes
be written as

Ekr

SPP~r!5S ẑ2 iA «1

2«2
k̂rD ei kr•re2A«1 /(2«2)krz, z.0,

~15!

Ekr

SPP~r!5S «1

«2
ẑ2 iA «1

2«2
k̂rD ei kr•reA2«2 /«1krz, z,0,

~16!

where ẑ is a unit vector normal to the surface,kr is an
in-plane wave vector,k̂r5kr /kr (kr5ukru), and r is the
in-plane position.

The eigenvaluelkr
, orthogonality relation, and normal

ization factorNkr
are given by

lkr
5k0

22kr
2«11«2

«1«2
, ~17!

E «~r!Ekr

SPP~r!•@E
k

r8
SPP

~r!#* d3r 5d~kr2kr8!Nkr
,

~18!
2-3
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Nkr
5~2p!2

1

2

A«1~2«2!

kr
S 12

«1
2

«2
2D . ~19!
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By inserting in Eq.~9! we find the surface plasmon polarito
contribution to Green’s tensor
e

en
GSPP~r,r8!5E
kr50

`

kr
2dkrE

fkr
50

2p

dfkr

S ẑ2 iA «1

2«2
k̂rD S ẑ1 iA «1

2«2
k̂rD ei kr•(r2r8)e2A«1 /(2«2)kr(z1z8)

~2p!2
1

2
A«1~2«2!S 12

«1
2

«2
2D S k0

2 «1«2

«11«2
2kr

21 i e D «11«2

«1«2

, ~20!

wherefkr
is an angle that defines the direction ofk̂r and the infinitesimal positive numbere is necessary for obtaining th

retarded Green’s tensor. If we setr850 the integration overfkr
may be carried out analytically by using the formulas giv

in Appendix, which leads to the simplified expression

GSPP~r,r8!5E
kr50

`

kr
2dkre2A«1 /(2«2)kr(z1z8)

F ẑẑJ0~krr!1
«1

«2
S r̂ r̂J09~krr!1f̂f̂

J08~krr!

krr D 1~ ẑr̂2 r̂ ẑ!A «1

2«2
J08~krr!G

2p
1

2
A«1~2«2!S 12

«1
2

«2
2D S k0

2 «1«2

«11«2
2kr

21 i e D «11«2

«1«2

,

~21!
e

lit
where r̂ and f̂ ( r̂5r/r, r5uru) are cylindrical in-plane
coordinate unit vectors,J0 is the Bessel function of the firs
kind of order 0, and the prime refers to the derivative w
respect to the argument. Although in this paper we have
stricted ourselves to the case of real dielectric constant
procedure similar to that in Ref. 36 based on construct
Green’s tensor using a biorthogonal set of eigenmodes
the case of complex dielectric constants also leads to
e-
a

g
or
q.

~21!. The expression~21! may therefore also be used for th
case of metals with a complex dielectric constant.

By using the identity

1

x1 i e
5P

1

x
2 ipd~x!, ~22!

whereP refers to the principal value, it is possible to sp
GSPP into two parts,
GSPP
d ~r,r8!52 i

kSPP

2

e2A«1 /(2«2)kSPP(z1z8)

A«1~2«2!S 12
«1

2

«2
2D «11«2

«1«2

F ẑẑJ0~kSPPr!1
«1

«2
S r̂ r̂J09~kSPPr!1f̂f̂

J08~kSPPr!

kSPPr
D

1~ ẑr̂2 r̂ ẑ!A «1

2«2
J08~kSPPr!G , ~23!

GSPP
P ~r,r8!5PE

kr50

`

kr
2dkre2A«1 /(2«2)kr(z1z8)

F ẑẑJ0~krr!1
«1

«2
S r̂ r̂J09~krr!1f̂f̂

J08~krr!

krr D 1~ ẑr̂2 r̂ ẑ!A «1

2«2
J08~krr!G

2p
1

2
A«1~2«2!S 12

«1
2

«2
2D S k0

2 «1«2

«11«2
2kr

2D «11«2

«1«2

,

~24!
e
e

ary
wherekSPP5k0A«1«2 /(«11«2) is the surface plasmon po
lariton wave number. The termGSPP

d can in principle be
obtained from the total Green’s tensor by extracting the c
tribution to a Sommerfeld integral related to the pole of t
-

reflection coefficient forp-polarized waves incident on th
metal interface.43 For the case of real dielectric constants w
have a simple exact analytic expression for the imagin
part of GSPP. However, for the real part ofGSPP it is in
2-4
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general necessary to carry out a principal value integral. In the case wherer is large, andz1z8 is small, in both cases on
wavelength scale, it is possible to give an analytic approximation toGSPP

P which is asymptotically correct asr increases
towards infinity, resulting in

GSPP~r,r8!'2 i
kSPP

2

e2A«1 /(2«2)kSPP(z1z8)

A«1~2«2!S 12
«1

2

«2
2D «11«2

«1«2

H0
(1)~kSPPr!S ẑẑ2

«1

«2
r̂ r̂1~ ẑr̂2 r̂ ẑ!iA «1

2«2
D , ~25!
.
g
a
.

ely
ip
o

the
ing
or-

’s
whereH0
(1) is the Hankel function of first kind and order 0

The approximation~25! can be very useful for evaluatin
scattering between particles located close to a metal surf
when the scatterers are separated by a few wavelengths17

For the case of real dielectric constants it is relativ
simple to evaluate scattering into SPP’s, since the princ
value integral does not contribute to the imaginary part
Green’s tensor, i.e.,

2Im@GSPP~r,r!#5
kSPP

2A«1u«2uS 12
«1

2

«2
2D «11«2

«1«2

S ẑẑ

1
«1

u«2u
1

2
~ r̂r̂1f̂f̂ ! De2A«1 /u«2ukSPP2z.

~26!

B. s-POLARIZED WAVE CONTRIBUTION

The s-polarized eigenmodes may be written as

Ekr ,kz1

s2pol.~r!5f̂kr
@e2 ikz1z1r s~kr ,kz1!eikz1z#ei kr•r, z.0,

~27!

Ekr ,kz1

s2pol.~r!5f̂kr
@11r s~kr ,kz1!#e2 ikz2zei kr•r, z,0,

~28!
04542
ce,

al
f

wheref̂kr
is an in-plane unit vector perpendicular tokr , kz1

is the out-of-plane wave-vector component, and

lkr ,kz1
5k0

22~kr
21kz1

2 !/«1 , ~29!

kz25Akr
2S «2

«1
21D1

«2

«1
kz1

2 . ~30!

The Fresnel reflection coefficient fors-polarized waves is
given by

r s~kr ,kz1!5
kz12kz2

kz11kz2
. ~31!

Taking advantage of the fact that the magnitude of
Fresnel reflection coefficient equals 1 in our case of us
real dielectric constants the orthogonality relation and n
malization factor are given by

E «~r!Ekr ,kz1
~r!•@Ek

r8 ,k
z18

~r!#* d3r

5d~kr2kr8!d~kz12kz18 !Nkr ,kz1

1non2singular terms, ~32!

Nkr ,kz1
5~2p!3«1 . ~33!

Construction of thes-polarized wave contribution to Green
dyadic by inserting in Eq.~9! leads to
Gs2pol~r,r8!5E
kz150

`

dkz1E
kr50

`

krdkrE
fkr

50

2p

dfkr
f̂kr

f̂kr
ei kr•(r2r8)

3
e2 ikz1(z2z8)1eikz1(z2z8)1eikz1(z1z8)r s~kr ,kz1!1e2 ikz1(z1z8)@r s~kr ,kz1!#*

~2p!3~k0
2«12kr

22kz1
2 1 i e!

. ~34!

It is convenient to make the substitutionkz15k cosu, kr5k sinu, and make use of the formulas in Appendix (r8
(r850) to cast the integral into a form suitable for evaluation of the scattering, i.e.,

Gs2pol.~r,r8!5E
u50

p/2

duE
k50

`

k2sinudkS r̂ r̂
2J08~krr!

krr
1f̂f̂@2J09~krr!# D 1

~2p!2~k0
2«12k21 i e!

$2cos@kcosu~z2z8!#

12Re@eikcosu(z1z8)r s~u!#%, ~35!
2-5
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where

r s~u!5
cosu2 iAsin2u2«2 /«1

cosu1 iAsin2u2«2 /«1

. ~36!

In Eq. ~35! the angleu may be interpreted as an angle
propagation with respect to the surface normal vector.
using Eq.~22! the scattering of light intos-polarized modes
can be written as an integral over an angular emission s
trum I s2pol(u) for waves propagating away from the inte
face, i.e.,

2Im@Gs2pol~r,r!#5E
u50

p/2

I s-pol~u!sinudu, ~37!

where

I s-pol~u!5
k0A«1

4p

1

2
$11Re@eik0A«1cosu2zr s~u!#%~ r̂r̂1f̂f̂ !.

~38!

The Green’s tensor contributionGs-pol may also be cast in
the form of a Sommerfeld integral by applying the resid
theorem to Eq.~34!, whereby

Gs-pol~r,r8!5
i

4pk1
2Ekr50

`

dkr@eikz1uz2z8u

1eikz1(z1z8)r s~kr ,kz1!#S f̂f̂kr

k1
2

kz1
J09~krr!

1 r̂ r̂
J08~krr!

r

k1
2

kz1
D , ~39!
04542
y

c-

where in this expression kz15Ak0
2«12kr

2 and
k1

25k0
2«1.

C. P-POLARIZED WAVE CONTRIBUTION

The p-polarized eigenmodes may be written

Ekr ,kz1

p-pol ~r!5S ẑkr1k̂rkz1

Akr
21kz1

2
e2 ikz1z1r p~kr ,kz1!

3
ẑkr2k̂rkz1

Akr
21kz1

2
e1 ikz1zD ei kr•r, z.0 ~40!

where the Fresnel reflection coefficient forp-polarized waves
is given by

r p~kr ,kz1!5
«2kz12«1kz2

«2kz11«1kz2
. ~41!

The expressions for eigenvalue,kz2, and normalization fac-
tor, are similar to the case ofs-polarized waves, and the
contribution to Green’s tensor fromp-polarized waves can be
constructed in a similar way, i.e.,
eorem.
Gp-pol~r,r8!5E
kz150

`

dkz1E
kr50

`

krdkrE
fkr

50

2p

dfkr

Ekr ,kz1

p-pol ~r!@Ekr ,kz1

p-pol ~r8!#*

~2p!3~k0
2«12kr

22kz1
2 1 i e!

. ~42!

Following the scheme used fors-polarized waves we can make the substitutionkz15k cosu, kr5k sinu, make use of the
formulas in Appendix, and use Eq.~22! to evaluate the imaginary part of Green’s tensor forr5r8, resulting in

2Im@Gp-pol~r,r!#5E
u50

p/2

I p-pol~u!sinudu, ~43!

where

I p-pol~u!5
k0A«1

4p
„ẑẑsin2u$11Re@eik0A«1cosu(2z)r p~u!#%1 1

2 ~f̂f̂1 r̂ r̂ !cos2u$12Re@eik0A«1cosu(2z)r p~u!#%…, ~44!

r p~u!5
«2cosu2«1iAsin2u2«2 /«1

«2cosu1«1iAsin2u2«2 /«1

. ~45!

The contribution forp-polarized waves can also be cast in the form of a Sommerfeld integral by use of the residue th
As a preparation to this we will transform the integral forkz1 into an integral over the interval from2` to 1`, i.e.,
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Gp-pol~r,r8!5E
kz152`

`

dkz1E
kr50

`

krdkrE
fkr

50

2p

dfkr

ei kr•(r2r8)

~2p!3~k0
2«12kr

22kz1
2 1 i e!

H ẑẑ
kr

2

kr
21kz1

2 @eikz1(z2z8)

1eikz1(z1z8)r p~kr ,kz1!#1k̂rk̂r

kz1
2

kr
21kz1

2 @eikz1(z2z8)2eikz1(z1z8)r p~kr ,kz1!#

1~ ẑk̂r1k̂rẑ!
kz1kr

kr
21kz1

2 ~2eikz1(z2z8)!2~ ẑk̂r2k̂rẑ!
kz1kr

kr
21kz1

2 @2eikz1(z1z8)r p~kr ,kz1!#J . ~46!
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The integration overkz1 can be carried out by means o
residue calculus. Here one should observe the poles
1/(kz1

2 1kr
2), r p, and for 1/(k0

2«12kz1
2 2kr

21 i e). The resi-
due related to the poleskz156 ikr actually results in a term
that except for opposite sign is equal toGL(r,r8). The resi-
due related to the pole ofr p results in a term that except fo
opposite sign is equal toGSPP(r,r8).

By calculating the residue related to the poles
1/(k0

2«12kz1
2 2kr

21 i e), and further calculating the integra
over fkr

by using the formulas in Appendix (r850), we
obtain

Gp-pol~r,r8!1GSPP~r,r8!1GL~r,r8!

5
2 i

4pk0
2«1

E
kr50

`

dkrS ẑẑJ0~krr!
kr

3

kz1
~eikz1uz2z8u

1r peikz1(z1z8)!1F f̂f̂S 2J08~krr!

krr D
1 r̂ r̂@2J09~krr!#Gkrkz1~eikz1uz2z8u2r peikz1(z1z8)!

1 i ~ ẑr̂1 r̂ ẑ!kr
2J08~krr!eikz1uz2z8u

2 i ~ ẑr̂2 r̂ ẑ!kr
2J08~krr!r peikz1(z1z8)D . ~47!

The total Green’s tensor is obtained as the sum of E
~47! and ~39!.

IV. MODAL DISTRIBUTION OF SCATTERED LIGHT

The results of the preceding section, in particular E
~43!, ~37!, and~26!, now give us the possibility to divide th
extinction cross section into three terms, namely,

Cext
SPP5k0

3S «p2«1

«p12«1
4pa3D 2

«1
2m* •$2Im@GSPP~r,r!#%•m,

~48!

Cext
s-pol5k0

3S «p2«1

«p12«1
4pa3D 2

«1
2m* •$2Im@Gs-pol~r,r!#%•m,

~49!
04542
or

f

s.

.

Cext
p2pol.5k0

3S «p2«1

«p12«1
4pa3D 2

«1
2m*

•$2Im@Gp-pol~r,r!#%•m, ~50!

which govern scattering into SPP’s ands- and p-polarized
modes propagating away from the metal-dielectric interfa
respectively. It is convenient to normalize these cross s
tions with respect to the scattering cross section of a part
located in a homogeneous dielectric with dielectric const
«1, i.e.,

Cext
hom5k0

3S «p2«1

«p12«1
4pa3D 2

«1
2S k0A«1

4p

2

3D . ~51!

In the following, we shall specifically consider the case
the incident wave being a SPP with a plane phase front@cf.
Eq. ~15!#. The part of the extinction cross section, which
related to SPP-to-SPP scattering, is shown in Fig. 1 a
function of the dielectric constant of the metal («2) for dif-
ferent heights of the scattererz above the air-metal interfac
(«151). Herel refers to the free-space wavelength of ligh
Note that in the case of the light wavelength being close
the SPP resonance, in which case«2 is close to2«1, the
SPP-to-SPP scattering cross section may become orde
magnitudes larger than the free-space scattering cross
tion. This enhancement can be understood from Eq.~26! as a

FIG. 1. Normalized extinction cross section related to scatter
from a surface plasmon polariton~SPP! to SPP’s for a particle lo-
cated in air («151) at the heightz above a metal surface with meta
dielectric constant«2 . l is the free-space wavelength of light.
2-7
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result of the denominator approaching zero for«252«1.
The cross section will, however, not become infinitely lar
for z.0, since the terme2A«1 /(2«2)kSPP2z in Eq. ~26! also
goes to zero at the SPP resonance, and exactly at reson
there is no scattering into SPP’s. Note that as the heigh
the scatterer above the surface increases, the maximum i
SPP-to-SPP extinction cross section dependence moves
from the SPP resonance. For a scatterer-to-surface dist
z5l, the optimization of SPP-to-SPP scattering requires
dielectric constant to be close to2100. In the perfect con-
ductor limit («252`), the SPP-to-SPP extinction cross se
tion tends to zero, which is quite natural because of the
sence of SPP’s in this limit. However, the magnitude of«2
has to be very large before scattering into SPP’s can be
sidered negligibly small.

Note that especially in the vicinity of the SPP res
nance the requirement for the incident SPP to not v
appreciably across the particle leads to a restriction on
sphere radii for which our theory is valid, namely,a
!A(«11«2)/«1«2l/2p. For the case of, e.g.,«151, «25
21.1 the requirement would bea!0.05l.

The calculations in this paper have been restricted to
case of real dielectric constants for two reasons. The
reason is that the evaluation of the various parts of the
tinction cross section becomes particularly simple. When
e.g., calculate Im@GSPP(r,r)# we do not have to be con
cerned with the principal value integral Eq.~24!. The second
reason is that for the case of metals with absorption
amount of light scattered into SPP’s can only be evaluate
an approximate sense, which fundamentally is related to
fact that for lossy materials a complete set of orthogo
modes no longer exists. However, our expression for the
of Green’s tensor related to excitation of SPP’s Eq.~21! and
the approximation Eq.~25! are also valid for metals with
absorption. From Eq.~25! we observe that the SPP excitatio
is relatively unaffected by the presence of a small metal l
@ Im(«2)!Re(«2)# as long as Im(«11«2)!Re(«11«2),
which requires the loss to be very small as we approach
SPP resonance.

The scattering from SPP’s intos- andp-polarized waves
propagating away from the air-metal interface is presente
Fig. 2. Here we note that for large magnitudes of«2, the
SPP-to-s-polarization extinction cross section rapidly d
creases, because the in-plane field component of the inci
SPP field tends to zero in this case~and s-polarized waves
can only be excited by an in-plane field component at the
of the scatterer!. For the SPP-to-p-polarization scattering, the
extinction cross section on the other hand increases for l
magnitudes of«2, becoming eventually larger than the tot
free-space extinction cross section. Optimum SPP-to-
scattering efficiency does not necessarily imply that the s
terer height must be very small, because the different par
the extinction cross section do not have the same depend
on the height of the scatterer. The fraction of scattered li
that goes into SPP’s relative to the total scattered ligh
shown in Fig. 3. It is seen that for small heightsz of the
scatterer, the efficiency of SPP-to-SPP scattering can
close to 100% in the vicinity of the SPP resonance. As
heightz increases, the optimum efficiency of this scatteri
04542
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requires progressively larger magnitudes of«2. Thus, for ex-
ample, for a heightz'0.7l, the optimum dielectric constan
of the metal is found at«2'2100. Note though that this
height is not optimum for this particular dielectric consta
Indeed, for scatterers very close to the surface, the SPP
SPP scattering efficiency is below 40%, whereas if the he
is increased to 0.4l the efficiency can be increased abo
60%. If the height is further increased to 0.7l, the efficiency
is again close to 40% and becomes negligible when the s
terer moves further away from the surface.

V. CONCLUSION

In conclusion, we have presented an analytical study
scattering of light by a small spherical particle located nea
metal-dielectric interface, focusing on the SPP-to-SPP s
tering. The extinction cross section for a small spherical p
ticle has been expressed in terms of the electric-field Gre
tensor for the structure in which the particle is placed.
formulation has been developed for Green’s tensor o

FIG. 2. Normalized extinction cross section related to scatter
from a surface plasmon polariton tos-polarized andp-polarized
waves that propagate away from an air-metal interface by a par
located in air («151) at the heightz above the metal surface with
metal dielectric constant«2 . l is the free-space wavelength o
light.

FIG. 3. Fraction of scattered light which is scattered into surfa
plasmon polaritons by a particle located in air («151) at the height
z above a metal surface with metal dielectric constant«2 . l is the
free-space wavelength of light.
2-8
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SURFACE PLASMON POLARITON SCATTERING BY A . . . PHYSICAL REVIEW B69, 045422 ~2004!
metal-dielectric interface structure, in which Green’s ten
is divided into parts that govern SPP excitation, excitation
s- andp-polarized waves propagating away from the met
dielectric interface, and a part responsible for a quasist
~near! field. This formulation of Green’s tensor allowed us
divide the extinction cross section into parts accounting
scattering into SPP’s and waves propagating away from
interface, respectively. The approach developed has bee
plied to the case of SPP scattering by a particle placed in
above a metal surface. It has been shown that for the die
tric constant of metal being close to, but not exactly at,
SPP resonance, the extinction cross section for the SPP
SPP scattering can be orders of magnitude larger comp
to the free-space particle extinction cross section. We h
further found that as the height of the scatterer above
surface increases, the metal dielectric constant maximiz
the SPP-to-SPP extinction cross section moves away f
that corresponding to the SPP resonance. It was also
that as the metal dielectric constant approaches the pe
conductor limit the SPP-to-SPP extinction cross section te
to zero. Finally, we have evaluated the efficiency of the S
to-SPP scattering, i.e., the fraction of the scattered po
which is related to scattering into SPP’s. For the case
particles placed close to the metal surface and metal die
tric constants corresponding to being close to the SPP r
nance, the efficiency of the SPP-to-SPP scattering was fo
to be very close to 100%. As the height of the scatte
increases, the optimum efficiency of SPP-to-SPP scatte
requires progressively larger magnitudes of the metal die
tric constant, i.e., that we are further and further away fr
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