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Transversely isotropic elastic properties of single-walled carbon nanotubes
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While it is known that the elastic properties of a single-walled carbon nand&BWENT) are transversely
isotropic, the closed-form solutions for all five independent elastic moduli have not been solved completely. In
this paper, an energy approach in the framework of molecular mechanics is used to evaluate the local and
global deformations of a SWNT in a unified manner. This is carried out under four loading conditions: axial
tension, torsional moment, in-plane biaxial tension, and in-plane pure shear, respectively, from which the
closed-form expressions for the longitudinal Young’s modulus, major Poisson’s ratio, longitudinal shear, plane
strain bulk, and in-plane shear moduli are obtained. It is shown that as the tube diameter increases, the major
Poisson’s ratio approaches a constant, the longitudinal Young's and shear moduli and the plane strain bulk
modulus are inversely proportional to the tube diameter, and the in-plane shear modulus is inversely propor-
tional to the third power of the tube diameter. The dependence of the elastic moduli of a SWNT on the tube
diameter and helicity is displayed and discussed.
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. INTRODUCTION tight-binding-based approach&s3? and the first principles
of quantum mechanics-®Itis noticed that a large variation
The single-walled carbon nanotub€WNT’s) or multi-  of Young’s modulus was obtained in these calculations—say,

walled carbon nanotube®WNT’s) are single or multiple 0.76 TPaRef. 39, 0.97 TPaRef. 21), 1 TPa(Ref. 24, 1.26
layers of cylinder rolled up from graphene shéetdt has  TPa(Ref. 13, and 1.5 TPdRef. 18. A few continuum me-
been found that carbon nanotubes can possess exceptiomalanics models were also proposed, in which a carbon nano-
mechanical properties® For example, their axial Young's tube is modeled as a thin shell of cyling&i®~3%or a beant®
modulus could be as high as 1 TPa, their tensile strength magssentially, these continuum models are based on the effec-
approach 100 GPa, and the deformation of an SWNT is comtive concept, which can be very successful for some specific
pletely reversible subjected to very large strains. The pospurposes if the effective elastic properties are properly deter-
sible industrial applications of the nanotubes have stimulatedhined. Another model that is located between the continuum
experimental measurements and theoretical evaluations afiechanics and molecular mechanics is the structure mechan-
the mechanical properties of SWNT’s, MWNT’s, and crys-ics model, in which a carbon nanotube is modeled as many
talline ropes of SWNT’s. truss membef§ or many beam membefs. The sectional
The axial Young’s modulus of SWNT’s and MWNT's was property parameters of the truss or beam members are ob-
experimentally measured using transmission electron microgained by correlating the structure mechanics and molecular
copy (TEM) to observe the amplitude of the thermal vibra- mechanics. For these structure mechanics models, the in-
tions of the anchored MWNT’s or SWNT$:*t is reported  volved number of nodes is the same as that of atoms. So
that Young’'s modulus of MWNT’s varies from 0.40 to 4.15 different from the continuum mechanics models, the struc-
TPa with an average of 1.8 TP@&ef. 1) and that of ture mechanics models cannot effectively save the effort of
SWNT's is in the range from 0.90 to 1.70 TPa with an aver-computational simulation compared with the direct molecu-
age value of 1.25 TP@Ref. 19. The axial Young’s modulus lar mechanics approach. Besides, a homogenization method
of MWNT’s, nanoropes of SWNT’s, and SWNT’s was also for the atomic or molecular system was propo$edhich
probed using the tip of an atomic force microscépEM) to  incorporates interatomic potentials into a continuum analy-
bend the anchored MWNT’s and simultaneously record thesis.
force displacement relationshig®=1* The reported values It is noticed that most of the existing theoretical models
are 0.69 to 1.87 TPa with an average of 1.28 TPa foifor the elastic moduli of SWNT’s or MWNT's are numerical
MWNT’s,®> 0.81 TPa for nanoropes of SWNT3,and 1.2 ones, and these numerical calculations are mainly focused on
TPa for SWNT's™* Some other experimental results of the the axial Young's and shear moduli and the major Poisson’s
axial Young’s modulus are 1 TPa for MWNTS,2.8—-3.6  ratio. To our knowledge, the plane strain bulk and in-plane
TPa for SWNT's, 1.7—2.4 TPa for MWNT%and 0.22—-0.68 shear moduli associated with the in-plane biaxial tensile and
for MWNT'’s.2® The technical difficulty makes the experi- pure shear loading conditions have not been reported. Fur-
mental determination of other elastic moduli, such as Poisthermore, the only closed-form expressions, which were re-
son’s ratio and bulk and shear moduli, a rather challengingently derived using force equilibrium analysis in the frame-
task. work of molecular mechanics, are for the axial Young's
The elastic moduli of SWNT’s and MWNT'’s were theo- modulus and major Poisson’s rati.
retically studied using atomistic models, including the mo- In this study, an energy approach in the framework of
lecular dynamics based on empirical potentldi€’ the  molecular mechanics is proposed. Compared with the force
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mediately extracted according to the corresponding defini-
e . tions.
IARRRERANI HTHHH

» A. Longitudinal Young’s modulus and major Poisson’s ratio

o o

Ty = =, =
a = tS 1Za T T According to the molecular mechanics that is based on the
SR G o S8 Gouee o concept of molecular force fieftf,the total molecular poten-
T e I — e tial energyU of a molecular system can be expressed as a
”'”JK”“ ”HT””l sum of several individual energy terms,

U=U,+Uy+U,+U_+U, g4+ Ugs, (oN]

(@) (b) © ©

whereU,, Uy, U,, andU  are the energies associated with
bond stretching, angle variation, inversion, and torsion, and
U,qw @and U, denote the energies associated with van der
Waals and electrostatic interactions. Various functional forms
may be used to describe these energy terms.

FIG. 1. The four types of loading condition&) for axial ten-
sion, (b) for torsional moment(c) for in-plane bi-axial tension, and
(d) for in-plane pure shear.

equilibrium analysig® the energy approach avoids the effort : ) ) .
toqvisualize the r¥10lecular syst?r/n (I)DfpaOSa\(I:VNa'll' ?oq[?]e eefchgve Fora SWNT SUbJeCFEd to an axial loading at small strain,
stick-spiral system and can give instant insight into the locaf'S S1OWn in Fig. @), itis assumed that only the two energy
and global deformations of a SWNT. So the relatively com-L€rms assoc_latgq W'th. bond stretching and angle_varlatlon n
plicated cases of the deformations of a SWNT subjected t6-9- (1) are significant in the tOt"’.‘l molecglar potential energy,
the loading conditions of the torsional moment and in-plané"md other terms such as inversion, torsion, and van der Waals

pure shear stresses can be similarly solved. As a result, a d electrostatic interactions may be negligible. Further-

of closed-form expressions for the deformations and five in/ore: due to the small deformations and the atomic interac-

dependent elastic moduli of a SWNT are obtained. tions near the equilibrium structure, the total molecular po-
tential energyU of a SWNT is expressed as a sum of simple

harmonic potentials as follows:
Il. ELASTIC MODULI OF A SWNT P

The Young’s modulus, Poisson’s ratio, and shear modulus U= EE C, i(dby)2+ Ez C,(d6)?, @)
of a SWNT have been theoretically studied mainly in a nu- 29 F 249 T

merical manner. The three moduli are here denoteH,as where ; and d are the elongation of boricand the varia-

V12, and Gy, by taking direction 1 as the axial direction Jion of bond anglg, andC,,; andC, are the force constants

along the tube. It is known that the three moduli are define hssociated with théth bond stretching angth angle varia-
by imaging the SWNT as a thin shell of cylinder. When the . 9 9 S
tion. The parameters for the force constants and equilibrium

global deformations of the SWNT are concerned or when itstructure may be obtained by fitting a set of experimental
is effectively thought as a solid cylinder, the effective elasticd t 3{ hani y | Igt' In th P tudv. th
properties of a SWNT are transversely isotropic. Therefore ata or quantum mechanics caiculations. In the study, the
five independent moduli are needed to completely describEropertles of graphite are taken as reference point to get the
the transversely isotropic elastic behavior. In this paper, th oree constants. .

five independent effective elastic moduli are taken as the. Since the local deformations around all the atoms are

onidnal Youngs modulus, mejo Possons rato ong TR 008 0 e Symmety of sonic stuctie and e
tudinal shear modulus, and plane-strain bulk and in-plané 9, P P 9

) _ — of SWNT with lengthl can be used for the energy analysis.
shear moduli, which are denoted®g;, v12, Giz, Kas, and  gq the total system potential energy of the segment of SWNT
G,3, respectively. The overbar indicates the effective propcan be expressed as
erties of a SWNT. To our knowledge, these five moduli have
not been completely solved. To extract the five moduli, four [M=U-W=NUy—FdI, (3

loading conditions, i.e., axial tension f@;; and vip, tor-  \whereW s the virtual work of the axial loading forde N is
sional moment foG,, in-plane biaxial tension fak,3, and  the atom number of the segment of SWNT, aridadd U,
in-plane pure shear faB,;, are applied to the SWNT, re- are the global elongation of the segment of SWNT and the
spectively. Schematic figures for these four loading condi{otential energy of the representative atom. The principle of
tions are shown in Figs.(4—1(d). For the cases oft) and  Minimum potential energy is written as

(d) in Fig. 1, two ends of the SWNT are constrained so that

the length of the tube stays unchanged which satisfies the oll=46(U—-W)=0. )
plane-strain condition. An energy approach in the frameworksg if U, and d are expressed through some independent
of molecular mechanics is developed to derive a set Ofariables characterizing the local deformations around the
closed-form expressions of the local and global deformationgtom, the principle can give a set of linear equations for these
of the SWNT under these four loading conditions. Once the nknown independent variables.

deformations are obtained, the elastic moduli including, For a(n,n) armchair SWNT subjected to an axial tensile
V1o, andGy, andEqq, v, Gy, Koz, andG,; can be im-  forceF, Fig. 2a) shows the three chemical bonalsh, andb,
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1 2, 1 2, 1 2
a
Iy «a % with
- b
1 ,a .
7 =1+ Esm2§ cos ¢/sir? B. (12
@ ®)

Therefore, the total system potential eneddyin Eq. (3)
FIG. 2. Bonds and bond angles around a representative atomecomes
and a representative segment of a SWNT with the lehd##) for a
(n,n) nanotube andb) for a (n,0) nanotube.

1 2 1 2 1 2
II=2n Zdea +§deb +§C9771da

three bond anglega, B, and 8 associated with the represen-

tative atom, and the lengthof a representative segment of L« 1 @
SWNT. The atom number in the representative segment of —F<Sln§db+ Ebcos§ da|. (13
SWNT is 2n. The geometrical relationship @f,n) nanotube
can be obtained as Based on Eq(4), the independent variablesrdda, and &
can be solved as

cospB+cos¢ cosg =0, (5 da=0, (14)
where the angle between the boadnd the pland-bis ¢ F |«
with ¢=m/(2n), which is the rotation angle of the borad db= 2nc, "2 19
around the symmetry axis of the SWNT with the pldné P
being reference. As the relationshp always holds and the a
angle ¢ keeps unchanged for the axial loading condition, da= 4I,]C(ﬂ]lbcos? (16)

differentiating Eq.(5) leads to
Therefore, the axial strain,;=dl/l and the circumferential

sins straine,,=dS/S can be obtained as
2
dB=— 5 -5 Ccos¢da. (6) = 1
2sing e L, o
e11 anCpsm2 1+ 47]1b 00122> (17)

Thus, the independent variables may be chosencagial,
and & in the possible variablesad d@, da, and & charac- and
terizing the local deformations. The segment ledgtind the

perimeter of the tub& can be expressed as F sina
€227

1 b*C, 18
a B ACym1 )’ (18
a+b cosE

.« 4nC,
I=b smz (7)

As the relative change of the tube radRiss the same as that
and of the perimeter, i.e., &/R=dS/S, &,, also represents the
radial strain of the tube.
a+b cosz) . ®) By imagining the nanotube as a thin shell of cylinder with

2 radiusR and thickness$ or a solid cylinder with radiu®, the

longitudinal Young's modulus of the SWNE,; or Eu can
g)e defined as

S=2n

Similarly, differentiating both sides of Eqé7) and(8) leads
to the relationships of the global and local deformations a

follows:
5% 1 1% Ell_ 2m7Rte 11 or Ell— 7TR2811 (19)
dl =sin=db+ = b cosz da (9
2 2 2 The modulus based on the definition associated with a solid
and cylinder is also called the effective modulus of the SWNT,
which is indicated by an overbar. And the definition of the
a 1 o major Poisson’s ratio of the SWNT does not require a thick-
dS=2n| da+db cos; — Ebsina da|. (10 ness, which can be defined as
The bonda andb are shared by two atoms. So the potential V= — g2z (20)
energyU, can be given as €11
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So it is seen from the definition based on a thin shell of
cylinder that the Young’s modulus is dependent of the thick- IT=n
nesst. In fact, different values of the thickness have been
suggested to define the Young’s moduttd® Another defi- 1 _
nition that is independent of the thickness has been proposed - F[E(db—comda+asmada)
by the second derivative of the strain energy with respect to
the axial strain per unit area of the nanotttbehich is also  with
referred to as the surface Young’s modulfisthe surface 1 si(2a)
Young’s modulus, denoted here, is actually the ratio of _ Sl a 2
the axial force per length fé(lar the perimeter and the axial 72=1% 2 si?ﬁ (1+cosé)”. (3Y)
strain, i.e.,E3;=(F/(27R))/e11. The relationships between
the Young’s moduli based on various definitions can be writ
ten as follows:

1 2 1 2 2
Zdea +§deb +C07]2da

: (30

The similar derivations to the case @f,n) SWNT lead to

s (1—cosa)C,
_Es = _ps Ell:sina[ZJrcos2 a+(C,a%/C,)sirt al(27,)]’
Ell_ Ell/t and Ell_ E]_l/(R/Z) . (21) P 0 72 (32)
Using Egs.(17)—(21), the surface Young’s modulls]; and 5
major Poisson’s ratio can be obtained as _ cosa(1l—cosa)[1—(C,a’/Cy/(27,)] 33

c V12T TS T o2 a+(C,a%/Cy)sir? al(27,)

s _ P .

En—gmmau+anamﬂncﬁﬁcgmﬂamwmng+n’ Using a=b, a~2w/3, and f~arcco$l/4—(3/4)cosfr/n)]
(22 (Ref. 42, Egs.(32) and(33) can be further reduced as

__ codal)[(C,a%Cy)l(4ny) ~1] Es _ 4v3C, (34
Vlz_[1+COS{a/Z)][(CpaZ/Cg)COtZ(a/2)/(47;1)+ 1] 1173(C,a%Cy)l(27m) +9’
(23
2 —
The parameters of the equilibrium structure of the unde- Vlz:(CpaZ/CO)/(an) 1. (35
formed SWNT are taken as=b=0.142 nm,a~2=/3, and (C,a’lCy)l(272) +3

B~ m—arcco$(1/2)cos/2n)] (Ref. 43. So Egs.(22) and

(23) can be further reduced as It is noticed that Chang and GZohave derived the

closed-form expressions using force equilibrium approach to
4v3c, analyzfe a SWNII s%ubjelctedI to an ?]xial tensilt(aj Ioadinkg]] in the
= , (24)  same framework of molecular mechanics. To derive the equi-
' 3(Cpa2/Cg)/(4771)+9 librium equations, they visualized a SWNT as an effective
(C.a2IC /(41— 1 “stick-spiral” system, in which an elastic stick and a spiral
Doy P 0 71) _ (25) spring are used to model the force and twisting moment re-
127(C,a%Cy)l(4m1) +3 sulting from the G—C bond stretching and angle variations.
Also, the stick is assumed to have an infinite bending stiff-
For a (n,0) zigzag SWNT, Fig. @) shows the three npess because the chemical bond always remains straight. It is
chemical bonds, b, andb and three bond angles 3, and  expected that the present results should be agreeable with
B, associated with a representative atom, and the length  those of Chang and G&b.However, for the case ofn(0)
a representative segment of SWNT. The atom number in thgwNT, the results from the two approaches do not coincide.
representative segment of SWNTnisThe angle between the The parameters 1/(4) and 1/(27,) in Egs.(24) and (25)
bonda and the plané-b is ¢ with ¢=m/n. Similar geo-  for the (n,n) armchair tube and in Eq$34) and(35) for the
metrical relationships to Eq$5)—(8) can be derived as fol- (n,0) zigzag tube can be simplified to
lows:

EY

i € a= Udy) = 203 36
COosB+sin” @ cos¢—cos a=0, (26) (4ny)= m, (36)
sin(2
dg= ;(n;) (1+cose)da, 27) U2y = 5+ 2 cog w/n)— 3 cog(w/n) 37
72)= 14+ 12 cogmIn)— 2 co@(min)
1 The corresponding parameters in the similar expressions by
|=5(b-acosa), (28) Chang and G&8 are
S=2nasina. (29 7—cog m/n)

:m for the (n,n) tube (38)

By taking the independent variables ag, dla, and d, the
total system potential enerdy becomes and
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038 0.30
026 | O (mtbe
0.36 o —®—  (n,0) tube
z 2
g . 022 |
M - =
& 0.34 5.0) —O0—  (nn) tube 8
A @,0) T (a0)tbe 8 0.18 [
m |y e Graphite A
S
032 [ (3,0) tube 'g‘
S o014
0.30 : : ‘ ‘ ‘ , , ) ) .
0.0 04 0.8 12 1.6 20 0.10
Tube Di ter (nm) 0.0 04 0.8 12 1.6 20
ube Diameter (nm ]
Tube Diameter (nm)
(@) FIG. 4. Variation of the major Poisson’s ratio with the tube
diameter.
4
Young’s modulus with other numerical resifts! has been
given and discusseéd,which is not repeated here.
3t
B. Longitudinal shear modulus
The longitudinal shear modulus of a hollow or solid cyl-
;«? 2 f inder is the only property which is relevant to the torsion
= angle per unit length of the cylinder subjected to a torque. So
qu based on the analysis of a SWNT subjected to a tofiques
ol shown in Fig. 1b), the longitudinal shear modulus of the
SWNT can be extracted. The geometrical analysis for the
local deformation of a SWNT subjected to a torque is much
more complicated than that associated with axial loading. So

0 y ' * ' ! * some details are depicted.
00 05 10 15 20 25 30 35 For a(n,n) armchair SWNT, it is assumed that the atoms

Tube Diameter (nm) always keep on the cylindrical surface of the SWNT when
they deform under the torque. Based on the symmetrical
(b) analysis, the local deformation can be determined using two

generalized displacements, i.es @nd dp as shown in Fig.
FIG. 3. Variation of the longitudinal Young’s modulus with the 5(a). So the three bond stretching, i.ea,ddb;, and d,,

tube diameter(a) for the surface longitudinal Young's modulus and and the three angle variationsv,ddg,, and ¢3, around a
(b) for the effective longitudinal Young’s modulus. typical atom can be solved as

- 5—3 cog 7/n) o o wh . da=0, do,=—db;=B,de+B,ds, (40)
—m or the (n,0) tube. (39

Equations(37) and (39) do not coincide even though their
difference is small.

Let the values predicted by Eq&4) and (25) equal to
those of graphite, i.e., 0.36 TPanm and 0.16 for the limiting
case ofn—x; the force constants can be obtained, i&,,
=742 nN/nm andC,=1.42nNnm. Then, based on EQs. «_
(24), (25), (34), and(35), Figs. 3a) and 3b) plot the results
of the surface Young’s modulus and the effective Young’s
modulus, and Fig. 4 is for the major Poisson’s ratio. It is seen
from Figs. 3a) and 4 that the surface Young’s modulus and  FIG. 5. Two generalized displacementsahd dp characterizing
Poisson’s ratio are close to those of graphite when the tubge bond stretching and angle variations around a representative
diameter is larger than 1 nm. The comparison of the surfacatom:(a) for a (n,n) nanotube andb) for a (n,0) nanotube.

(2) ()
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with stretching, i.e., d, db;, and d,, and the three angle varia-
. _ . tions dB, day, and dv, around the representative atom can
B,=asin(a/2) and Bs=(R/a)sind, (41 be solved as follows:
da=0, dB,=—dB1=A,de+Ads, (42) da=0, dby=—db,=B,de+B,ds, (50)
with with
A, =sin(a/2)(1—cosp)/sinp (43 1 R
and B(P=§Rsm( ¢12), Bg=— gsm( ¢12), (51
As=R[sin6(1+ cog a/2)cos¢)—sin(2¢)]/(a? sin,B)(,M) dB=0, da;=—da,=A,de+Ads, (52)
where the angl# is shown in Fig. 1c), and the higher-order with
quantities of ¢ and dp have been ignored in the above deri- R sin( ¢/2) 1 R
vations. The virtual work of the torqué is W=TdS/R. So A¢:5 Sna (1— ECOSa), Ag=— gcota sin( ¢/2).

the total system potential enerdl can be written as

(53
1 . .
H=2n(§deb2+C9d,82 _TdS/R. (45) The system potential enerd¥y can be written as
1
Based on the principleSII=&(U—-W)=0, the unknown 1= n( 3 deb2+ ngaZ) —T(ds/2+ade/4)/R. (54)

generalized displacements @nd dp can be solved. Then,
the torsional angle per unit length of the SWNT, i&, with Based on the principle, i.e$ll=6(U—-W)=0, the un-
0o=ds/(RI), can be obtained as known generalized displacements and dp can be solved.
Then, the torsional angle per unit length of the SWNT, i.e.,
_ 2 2 _ 2 0y with 69=(ds/2+ade/4)/(RI), can be obtained as
0o 2nsin(a/2)aR2[A¢/CP+B¢/(2C")]/(A‘PBS AB,)".

(46) T a \?
- . . 0= —roenam2| | AeT 5As C,
Similarly, by imagining the nanotube as a thin shell of cyl- n(l1-—cosa)aR 2
inder with radiusR and thickness or a solid cylinder with a \2
radiusR, the two I_ongitudinal shear moduli of the SWNT, +|B,— EBS / (ch)}/ (A(pBS_ASqu)Z-
denoted as5,, or G4,, respectively, can be defined as fol-
lows: (55)
T _ And the surface longitudinal shear modulus can be obtained
G omreg, O Cv TRl 0 W0 8
where the torsional angle formula of the thin shell of cylin- 3= 4V3(A,Bs—AB,)U[(AL-a?Ad)iC,

der or a solid cylinder subjected to a torque has actually been Y
used. The surface longitudinal shear modulus with the rela- +(By—aBg)/(2Cy)]. (56)

tionshipG$,=tG, or G$,= (R/2)G, can be extracted from Using R/a=v3n/27, a=2m/3, and$=m/n, the above ex-
Eq. (46) as follows: pression can be further reduced as
. 8v3n?sirf(7/2n)Cp
Gio=—= 3 . (57)
m(6+C,a“/Cy)

Using R/a=3n/2m, a=2m/3, cosB=—3;cos¢p, and ¢  The variation of the surface longitudinal shear moduBjs
= m/2n, the above expression can be further reduced as  jth the diameter is plotted in Fig.(&, and Fig. €b) is for

s V3 2 2 2
1= 5 (A;Bs—AB,)?I[ALIC,+B(/(2C))].  (48)

6v3n2 the effective longitudinal shear modulus,, with Gy,
Gl=—— =G3J(R/2).
y sinz(w/n) C. Plane-strain bulk modulus
2[2+ cod ml2n)]*+[4—cos(m/2n)](C,a%/Cy) A SWNT subjected to the two-dimensional plane-strain

(49) condition of hydrostatic stresses with magnitugle is con-
sidered, as shown in Fig.(d. Compared with the case of
For a (n,0) zigzag SWNT, the local deformation can also axial tensile loading, the present deformations need to obey
be determined using two generalized displacements, se., dhe extra plane-strain condition; i.e., the lengtbf the rep-
and dp as shown in Fig. &). Similarly, the three bond resentative segment of SWNT stays constant.
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O 009 ™)
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(a)
FIG. 7. Variation of the effective plane strain bulk modulus with
the tube diameter.
—O— (n,n) tube s V3 C,(C,a’ICy+127y) (60
5T —*— (mOube ? 4R 3C,a%Cy+ 127,
12t It is seen that the definition of the plane-strain bulk modulus
actually does not involve a thickness like the case of Young's
E 09 modulus.
= For a (n,0) armchair SWNT, the circumferential straip,
|Og 06 and plane-strain bulk modulué,; can be similarly obtained
’ as
03 _ 2V30yR(C,a%/Cyt27,) (61)
N S , °22777C,(C,a%Cy+ 6)
00 05 10 15 20 25 30 35 and
Tube Diameter (nm) )
— V3 C,(C,a%/Cy+61,)
(b) Koz 2 (62
4R 3C,a°/Cy+ 67,

FIG. 6. Variation of the longitudinal shear modulus with the I . — .
tube diameter(a) for the surface longitudinal shear modulus and T_he varlaFlon of the_ pla_ne—straln bulk modulkis; with the
diameter is plotted in Fig. 7.

(b) for the effective longitudinal shear modulus.

For a(n,n) armchair SWNT, the plane-strain condition, D. In-plane shear modulus

i.e., d=0, leads to For a SWNT subjected to in-plane pure shear at small
strain, its circular cross-sectional perimeter is assumed to
db= — Ebcotgd (59) bend into an elliptic one like the situation of a thin shell of
T2 2 cylinder as shown in Fig. 8, which is described as
The virtual work of the hydrostatic stresses M/ r=R(1l+eg)cosbi+R(1—eg)cosh), 6He[0,27],
=0« SIdR, where (R is the change of the radius of the nano- (63
tube. Then, following similar steps to the case of axial tens”%here the unknowr, characterizes the deformation from
loading can lead to the circle with radiusR to the ellipse with longer and shorter
half-axisR(1+¢&y) andR(1—¢g), andi andj are the unit
2 0 0
2V30kR(C,a%/Cyt 47y) (59  Vectors along the longer and shorter axes. As the deformation

e22 C,(C,a’ICy+127,) is mainly due to the bending, it is assumed that the inversion
_ term is only significant for the total molecular potential en-
Using the traditional definition, i.eK,3= o /(2¢,), forthe  ergy. The inversion angle variation can be characterized by
plane-strain bulk modulus of a cylindef,,; of the SWNT  the rotation angle variationdgifor the present case, whedge

can be obtained as is the rotation angle of the bona around the axis of the
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T Equations(64)—(68) give the potential energy of the atom at
the location characterized by angleas follows:

_9 2 02 2
: I UO—ECKsoco (20)IR". (69
- —
— —_— As the angled may vary from O to Z, the average of the
— —_— potential energyJ, is only significant, that is,
T «— — 7 1 ron 9

— — T _2 212

_ Ug 5 JO Uodé 4CK80/R . (70)
— - So the system potential energy of the representative segment
-— —

of a SWNT can be given as

J— 2
H=U—W=2nU0—f F-du. (72)
0

. . Using the external forc& = oy(cosbi—sindj) with og=17
FIG. 8. The assumed deformation mode from a circle o an, 4 0 ¢orresponding displacement vectore o(cosél
ellipse of the cross-sectional perimeter of a SWNT subjected to an’ sinfj), the total system potential energy becomes
in-plane pure shear loading condition. %), y P 9y

R 97C e
SWNT with the initial valuesp= 7/2n or @/n fgr (n,n) or 1= PR[a+bcos al2)]
(n,0) nanotube. So the total molecular potential energy, due o o _
to inversion can be expressed in terms of the rotation angl&éhen the principle of the minimum potential energy leads to
variation dp as follows:

_27T|0'080R2. (72)

40'0

SOZQ—CK

The traditional definition of the in-plane shear modulus, i.e.,

1 [a+bcog a/2)]IR®. (73
U=§Ei Cy(dg)?, (64)

whereC, is a modified force constant, which is determined G23= 00/(2z,), leads to
using computational chemistry d&&° The tight-binding

. . — 9C —
calculationé®3°show that the potential energy per atom of a Goae « of Gya=—aek. (74
carbon nanotube rolled up from a graphite sheet is propor- ?* 8a(1+cog al2))IR® # a’R®
tional to the squared curvature of the SWNT, which can b&ynere o =27/3 andl —asin(@/?2) have been used to get the
rewritten as reduced form of the formula.

For a (h,0) SWNT, a similar formula can be obtained as
1. > follows:
UOZECKK y (65) )

_ _ _ _ 9C, _ v3c,

wherex is the curvature of the tube with=1/R, andC, is Gos= 8asina)R or 623:E2E§, (75

a modified force constant wit,=0.0608 nN nm, which is
derived by fitting the computational data® For (n,n) and  wherea=2/3 andl = $a(1— cosa) have been used for the
(n,0) nanotubesC , can be obtained by correlating E(484) reduced form of the formula.

and(65) as follows: As the difference of the potential energies per atom of a
carbon nanotube rolled up from a graphite sheetrign and
4C C (n,0) SWNT’s with the same diameter is very snfdlf°the

(66) force constant€, for (n,n) and (0,0) SWNT's are approxi-

mately identical. Thus, the in-plane shear moduli fom)
For a(n,n) armchair SWNT, the angle variationpccan be ~ and (0,0) tubes with the same diameter are approximately
related to the unknown deformatier as follows: identical. The variation of the in-plane shear modulGs;
with the diameter is plotted in Fig. 9.

Co= 1t cosai? 2" Co= aZsina)?

o
a+bcos-

5 cog20)eqdk, (67)

3
dg= 2 [l. DISCUSSION AND REMARKS
where d is the curvature variation when the circular cross- The closed-form expressions for the local and global de-
sectional perimeter bends into the elliptic one, which isformations of a SWNT, respectively, subjected to axial ten-
solved as sion, torsional moment, in-plane biaxial tension, and in-plane
pure shear at small strain have been derived using an energy
dk=3eycog20)/R. (68 approach in the framework of molecular mechanics. It is
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12 TABLE |. The variation of the five effective moduli of @,n)
armchair SWNT with some typical diameters.
! —0— tub = ~ va ~
09 E’“;; " 2R = G, Ky Gos
e n (m (TP@a v, (TPa (TPa  (TPa
06 | 5 0.682 2.08 0.172 0.791 0.536 0.132
0.
n“: 10 1.36 1.06 0.162 0.442 0.271 0.017
= 15 2.06 0.707 0.161 0.301 0.181 0.005
I(_:f 03} 20 271 0531 0160 0227 0.136  0.002
50 6.78 0.213 0.159 0.092 0.055 0.0001
00T 39 Gra 5GPa
So the Poisson’s ratio may also be the effective Poisson’s

ratio when the SWNT is taken as a solid cylinder. And for
the plane strain bulk and in-plane shear moduli, their defini-
Tube Diameter (nm) tions are just corresponding to the global concepts. So the
effective values are only obtained.

The present results for the properties of the thin shell of a
SWNT, i.e.,Eq4, v12, andG;,, are basically agreeable with
noted that the three force constants corresponding to borl€ €xisting results. And when carbon nanotubes are used as
stretching, angle variation, and inversion are involved in the€inforcements of nanocomposites, their global properties,
present framework of molecular mechanics. The force conke., Eiy, v1n, G, Kusz, and Gy, are of concern. The
stants may be obtained by fitting a set of experimental datalosed-from expressions of the five independent moduli
or the results from a higher level of theories, such as quanshow that the longitudinal Young’s and shear moduli, plane-
tum mechanics calculations. In the present calculations, thetrain bulk modulus, i-eEu, 512, and?zg, explicitly in-
properties of graphite have been taken as a reference point gude the factor R, while the Poisson’s rati@;, does not
get the force constan@, andC,, and the force constaf,  explicitly include the factorR, and the effective in-plane
associated with inversion is obtained by fitting the computagpegr modulusS,; includes the factor B8, So as the tube

tional chemistry data”>” diameter increases, the effective in-plane shear modalys
The closed-form expressions of the deformations of a ' P b

SWNT under four loading conditions are independent of theaerptIy decreases, and th? effective PO.'SSO.nS ratio ap-
roaches the value of graphite, as shown in Figs. 9 and 4.

thickness of the SWNT. And the corresponding moduli ca able | lists the variation of the five effective moduli of the

be extracted based on various definitions. . . . : .
For the cases of the axial force and torsional moment, thén,n)_armchalr SWNT with some typ'@l diameters. Itis seen

three definitions for the corresponding longitudinal Young'sthatEi is approximately the double @, and four times of
and shear moduli lead to the three types of Young's and shed&,;. The effective Poi_sson’s ratio,, is approximately a
moduli, i.e.,E}; and G},, E;; andGy,, andE;, and Gy,  constant, i.e., 0.16, an@,; is relatively small.

W|th the relationshipSEM: Ei]_/t, GlzzGizlt and Ell
=E$/(R/2), G1,=G}/(R/2). The last types of moduli are
also called the effective longitudinal Young’s and shear
moduli. For the definition of Poisson’s ratio, it is seen that This work was supported by NSF, Surface Engineering
the major Poisson’s ratio is valid not only for the propertiesand Materials Design program, under Grant No. CMS-
of the thin shell of the SWNT but also for the global SWNT. 0305594.

00 0.5 1.0 1.5 20 25 30 35

FIG. 9. Variation of the effective in-plane shear modulus with
the tube diameter.
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