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Transversely isotropic elastic properties of single-walled carbon nanotubes
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Mechanical Engineering Department, City College of New York, CUNY, 140th and Convent Avenue, New York,
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While it is known that the elastic properties of a single-walled carbon nanotube~SWNT! are transversely
isotropic, the closed-form solutions for all five independent elastic moduli have not been solved completely. In
this paper, an energy approach in the framework of molecular mechanics is used to evaluate the local and
global deformations of a SWNT in a unified manner. This is carried out under four loading conditions: axial
tension, torsional moment, in-plane biaxial tension, and in-plane pure shear, respectively, from which the
closed-form expressions for the longitudinal Young’s modulus, major Poisson’s ratio, longitudinal shear, plane
strain bulk, and in-plane shear moduli are obtained. It is shown that as the tube diameter increases, the major
Poisson’s ratio approaches a constant, the longitudinal Young’s and shear moduli and the plane strain bulk
modulus are inversely proportional to the tube diameter, and the in-plane shear modulus is inversely propor-
tional to the third power of the tube diameter. The dependence of the elastic moduli of a SWNT on the tube
diameter and helicity is displayed and discussed.
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I. INTRODUCTION

The single-walled carbon nanotubes~SWNT’s! or multi-
walled carbon nanotubes~MWNT’s! are single or multiple
layers of cylinder rolled up from graphene sheets.1,2 It has
been found that carbon nanotubes can possess excep
mechanical properties.3–10 For example, their axial Young’s
modulus could be as high as 1 TPa, their tensile strength
approach 100 GPa, and the deformation of an SWNT is c
pletely reversible subjected to very large strains. The p
sible industrial applications of the nanotubes have stimula
experimental measurements and theoretical evaluation
the mechanical properties of SWNT’s, MWNT’s, and cry
talline ropes of SWNT’s.

The axial Young’s modulus of SWNT’s and MWNT’s wa
experimentally measured using transmission electron mic
copy ~TEM! to observe the amplitude of the thermal vibr
tions of the anchored MWNT’s or SWNT’s.11,12It is reported
that Young’s modulus of MWNT’s varies from 0.40 to 4.1
TPa with an average of 1.8 TPa~Ref. 11! and that of
SWNT’s is in the range from 0.90 to 1.70 TPa with an av
age value of 1.25 TPa~Ref. 12!. The axial Young’s modulus
of MWNT’s, nanoropes of SWNT’s, and SWNT’s was als
probed using the tip of an atomic force microscope~AFM! to
bend the anchored MWNT’s and simultaneously record
force displacement relationship.5,13–14 The reported values
are 0.69 to 1.87 TPa with an average of 1.28 TPa
MWNT’s,5 0.81 TPa for nanoropes of SWNT’s,13 and 1.2
TPa for SWNT’s.14 Some other experimental results of th
axial Young’s modulus are 1 TPa for MWNT’s,15 2.8–3.6
TPa for SWNT’s, 1.7–2.4 TPa for MWNT’s,6 and 0.22–0.68
for MWNT’s.16 The technical difficulty makes the exper
mental determination of other elastic moduli, such as P
son’s ratio and bulk and shear moduli, a rather challeng
task.

The elastic moduli of SWNT’s and MWNT’s were theo
retically studied using atomistic models, including the m
lecular dynamics based on empirical potentials,17–27 the
0163-1829/2004/69~4!/045414~10!/$22.50 69 0454
nal

ay
-

s-
d
of

s-

-

e

r

s-
g

-

tight-binding-based approaches,28–32 and the first principles
of quantum mechanics.33–35It is noticed that a large variation
of Young’s modulus was obtained in these calculations—s
0.76 TPa~Ref. 35!, 0.97 TPa~Ref. 21!, 1 TPa~Ref. 24!, 1.26
TPa~Ref. 13!, and 1.5 TPa~Ref. 18!. A few continuum me-
chanics models were also proposed, in which a carbon na
tube is modeled as a thin shell of cylinder19,36–38or a beam.39

Essentially, these continuum models are based on the e
tive concept, which can be very successful for some spec
purposes if the effective elastic properties are properly de
mined. Another model that is located between the continu
mechanics and molecular mechanics is the structure mec
ics model, in which a carbon nanotube is modeled as m
truss members40 or many beam members.41 The sectional
property parameters of the truss or beam members are
tained by correlating the structure mechanics and molec
mechanics. For these structure mechanics models, the
volved number of nodes is the same as that of atoms.
different from the continuum mechanics models, the str
ture mechanics models cannot effectively save the effor
computational simulation compared with the direct molec
lar mechanics approach. Besides, a homogenization me
for the atomic or molecular system was proposed,25 which
incorporates interatomic potentials into a continuum ana
sis.

It is noticed that most of the existing theoretical mode
for the elastic moduli of SWNT’s or MWNT’s are numerica
ones, and these numerical calculations are mainly focuse
the axial Young’s and shear moduli and the major Poisso
ratio. To our knowledge, the plane strain bulk and in-pla
shear moduli associated with the in-plane biaxial tensile
pure shear loading conditions have not been reported.
thermore, the only closed-form expressions, which were
cently derived using force equilibrium analysis in the fram
work of molecular mechanics, are for the axial Young
modulus and major Poisson’s ratio.26

In this study, an energy approach in the framework
molecular mechanics is proposed. Compared with the fo
©2004 The American Physical Society14-1
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equilibrium analysis,26 the energy approach avoids the effo
to visualize the molecular system of a SWNT to the effect
stick-spiral system and can give instant insight into the lo
and global deformations of a SWNT. So the relatively co
plicated cases of the deformations of a SWNT subjected
the loading conditions of the torsional moment and in-pla
pure shear stresses can be similarly solved. As a result,
of closed-form expressions for the deformations and five
dependent elastic moduli of a SWNT are obtained.

II. ELASTIC MODULI OF A SWNT

The Young’s modulus, Poisson’s ratio, and shear modu
of a SWNT have been theoretically studied mainly in a n
merical manner. The three moduli are here denoted asE11,
n12, and G12 by taking direction 1 as the axial directio
along the tube. It is known that the three moduli are defin
by imaging the SWNT as a thin shell of cylinder. When t
global deformations of the SWNT are concerned or whe
is effectively thought as a solid cylinder, the effective elas
properties of a SWNT are transversely isotropic. Therefo
five independent moduli are needed to completely desc
the transversely isotropic elastic behavior. In this paper,
five independent effective elastic moduli are taken as
longitudinal Young’s modulus, major Poisson’s ratio, long
tudinal shear modulus, and plane-strain bulk and in-pl
shear moduli, which are denoted asĒ11, n̄12, Ḡ12, K̄23, and
Ḡ23, respectively. The overbar indicates the effective pr
erties of a SWNT. To our knowledge, these five moduli ha
not been completely solved. To extract the five moduli, fo
loading conditions, i.e., axial tension forĒ11 and n̄12, tor-
sional moment forḠ12, in-plane biaxial tension forK̄23, and
in-plane pure shear forḠ23, are applied to the SWNT, re
spectively. Schematic figures for these four loading con
tions are shown in Figs. 1~a!–1~d!. For the cases of~c! and
~d! in Fig. 1, two ends of the SWNT are constrained so t
the length of the tube stays unchanged which satisfies
plane-strain condition. An energy approach in the framew
of molecular mechanics is developed to derive a set
closed-form expressions of the local and global deformati
of the SWNT under these four loading conditions. Once
deformations are obtained, the elastic moduli includingE11,
n12, andG12 and Ē11, n̄12, Ḡ12, K̄23, andḠ23 can be im-

FIG. 1. The four types of loading conditions:~a! for axial ten-
sion,~b! for torsional moment,~c! for in-plane bi-axial tension, and
~d! for in-plane pure shear.
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mediately extracted according to the corresponding defi
tions.

A. Longitudinal Young’s modulus and major Poisson’s ratio

According to the molecular mechanics that is based on
concept of molecular force field,42 the total molecular poten
tial energyU of a molecular system can be expressed a
sum of several individual energy terms,

U5Ur1Uu1Uv1Ut1Uvdw1Ues, ~1!

whereUr , Uu , Uv , andUt are the energies associated wi
bond stretching, angle variation, inversion, and torsion, a
Uvdw and Ues denote the energies associated with van
Waals and electrostatic interactions. Various functional for
may be used to describe these energy terms.

For a SWNT subjected to an axial loading at small stra
as shown in Fig. 1~a!, it is assumed that only the two energ
terms associated with bond stretching and angle variatio
Eq. ~1! are significant in the total molecular potential energ
and other terms such as inversion, torsion, and van der W
and electrostatic interactions may be negligible. Furth
more, due to the small deformations and the atomic inter
tions near the equilibrium structure, the total molecular p
tential energyU of a SWNT is expressed as a sum of simp
harmonic potentials as follows:

U5
1

2 (
i

Cr,i~dbi !
21

1

2 (
j

Cu, j~du j !
2, ~2!

where dbi and du j are the elongation of bondi and the varia-
tion of bond anglej, andCr,i andCu, j are the force constant
associated with thei th bond stretching andj th angle varia-
tion. The parameters for the force constants and equilibr
structure may be obtained by fitting a set of experimen
data or quantum mechanics calculations. In the study,
properties of graphite are taken as reference point to get
force constants.

Since the local deformations around all the atoms
similar due to the symmetry of atomic structure and ax
loading, a representative atom and a representative seg
of SWNT with lengthl can be used for the energy analys
So the total system potential energy of the segment of SW
can be expressed as

P5U2W5NU02Fdl , ~3!

whereW is the virtual work of the axial loading forceF, N is
the atom number of the segment of SWNT, and dl and U0
are the global elongation of the segment of SWNT and
potential energy of the representative atom. The principle
minimum potential energy is written as

dP5d~U2W!50. ~4!

So if U0 and dl are expressed through some independ
variables characterizing the local deformations around
atom, the principle can give a set of linear equations for th
unknown independent variables.

For a ~n,n! armchair SWNT subjected to an axial tens
forceF, Fig. 2~a! shows the three chemical bondsa, b, andb,
4-2
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three bond anglesa, b, andb associated with the represe
tative atom, and the lengthl of a representative segment
SWNT. The atom number in the representative segmen
SWNT is 2n. The geometrical relationship of~n,n! nanotube
can be obtained as

cosb1cosf cos
a

2
50, ~5!

where the angle between the bonda and the planeb-b is f
with f5p/(2n), which is the rotation angle of the bonda
around the symmetry axis of the SWNT with the planeb-b
being reference. As the relationship~5! always holds and the
angle f keeps unchanged for the axial loading conditio
differentiating Eq.~5! leads to

db52

sin
a

2

2 sinb
cosfda. ~6!

Thus, the independent variables may be chosen as da, da,
and db in the possible variables da, db, da, and db charac-
terizing the local deformations. The segment lengthl and the
perimeter of the tubeS can be expressed as

l 5b sin
a

2
~7!

and

S52nS a1b cos
a

2 D . ~8!

Similarly, differentiating both sides of Eqs.~7! and~8! leads
to the relationships of the global and local deformations
follows:

dl 5sin
a

2
db1

1

2
b cos

a

2
da ~9!

and

dS52nS da1db cos
a

2
2

1

2
b sin

a

2
da D . ~10!

The bonda andb are shared by two atoms. So the potent
energyU0 can be given as

FIG. 2. Bonds and bond angles around a representative a
and a representative segment of a SWNT with the lengthl: ~a! for a
~n,n! nanotube and~b! for a (n,0) nanotube.
04541
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U05
1

4
Crda21

1

2
Crdb21

1

2
Cuh1da2 ~11!

with

h1511
1

2
sin2

a

2
cos2 f/sin2 b. ~12!

Therefore, the total system potential energyP in Eq. ~3!
becomes

P52nF1

4
Crda21

1

2
Crdb21

1

2
Cuh1da2G

2FS sin
a

2
db1

1

2
b cos

a

2
da D . ~13!

Based on Eq.~4!, the independent variables da, da, and db
can be solved as

da50, ~14!

db5
F

2nCr
sin

a

2
, ~15!

da5
F

4nCuh1
b cos

a

2
. ~16!

Therefore, the axial strain«115dl / l and the circumferentia
strain«225dS/S can be obtained as

«115
F

2nbCr
sin

a

2 S 11
1

4h1
b2 cot2

a

2 D ~17!

and

«225
F sina

4nCrS a1b cos
a

2 D S 12
b2Cr

4Cuh1
D . ~18!

As the relative change of the tube radiusR is the same as tha
of the perimeter, i.e., dR/R5dS/S, «22 also represents the
radial strain of the tube.

By imagining the nanotube as a thin shell of cylinder w
radiusR and thicknesst or a solid cylinder with radiusR, the
longitudinal Young’s modulus of the SWNTE11 or Ē11 can
be defined as

E115
F

2pRt«11
or Ē115

F

pR2«11
. ~19!

The modulus based on the definition associated with a s
cylinder is also called the effective modulus of the SWN
which is indicated by an overbar. And the definition of th
major Poisson’s ratio of the SWNT does not require a thi
ness, which can be defined as

n1252
«22

«11
. ~20!

m

4-3
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So it is seen from the definition based on a thin shell
cylinder that the Young’s modulus is dependent of the thi
nesst. In fact, different values of the thickness have be
suggested to define the Young’s modulus.19,39 Another defi-
nition that is independent of the thickness has been propo
by the second derivative of the strain energy with respec
the axial strain per unit area of the nanotube29 which is also
referred to as the surface Young’s modulus.26 The surface
Young’s modulus, denoted asE11

s here, is actually the ratio o
the axial force per length over the perimeter and the a
strain, i.e.,E11

s 5(F/(2pR))/«11. The relationships betwee
the Young’s moduli based on various definitions can be w
ten as follows:

E115E11
s /t and Ē115E11

s /~R/2!. ~21!

Using Eqs.~17!–~21!, the surface Young’s modulusE11
s and

major Poisson’s ratio can be obtained as

E11
s 5

Cr

sin~a/2!@11cos~a/2!#@~Cra2/Cu!cot2~a/2!/~4h1!11#
,

~22!

n125
cos~a/2!@~Cra2/Cu!/~4h1!21#

@11cos~a/2!#@~Cra2/Cu!cot2~a/2!/~4h1!11#
.

~23!

The parameters of the equilibrium structure of the un
formed SWNT are taken asa5b50.142 nm,a'2p/3, and
b'p2arccos@(1/2)cos(p/2n)# ~Ref. 43!. So Eqs.~22! and
~23! can be further reduced as

E11
s 5

4)Cr

3~Cra2/Cu!/~4h1!19
, ~24!

n125
~Cra2/Cu!/~4h1!21

~Cra2/Cu!/~4h1!13
. ~25!

For a (n,0) zigzag SWNT, Fig. 2~b! shows the three
chemical bondsa, b, andb and three bond anglesa, b, and
b, associated with a representative atom, and the lengthl of
a representative segment of SWNT. The atom number in
representative segment of SWNT isn. The angle between th
bond a and the planeb-b is f with f5p/n. Similar geo-
metrical relationships to Eqs.~5!–~8! can be derived as fol
lows:

cosb1sin2 a cosf2cos2 a50, ~26!

db5
sin~2a!

sinb
~11cosf!da, ~27!

l 5
1

2
~b2a cosa!, ~28!

S52na sina. ~29!

By taking the independent variables as da, da, and db, the
total system potential energyP becomes
04541
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P5nF1

4
Crda21

1

2
Crdb21Cuh2da2G

2FF1

2
~db2cosada1a sinada!G , ~30!

with

h2511
1

2

sin2~2a!

sin2 b
~11cosf!2. ~31!

The similar derivations to the case of~n,n! SWNT lead to

E11
s 5

~12cosa!Cr

sina@21cos2 a1~Cra2/Cu!sin2 a/~2h2!#
,

~32!

n125
cosa~12cosa!@12~Cra2/Cu!/~2h2!#

21cos2 a1~Cra2/Cu!sin2 a/~2h2!
. ~33!

Using a5b, a'2p/3, and b'arccos@1/42(3/4)cos(p/n)#
~Ref. 42!, Eqs.~32! and ~33! can be further reduced as

E11
s 5

4)Cr

3~Cra2/Cu!/~2h2!19
, ~34!

n125
~Cra2/Cu!/~2h2!21

~Cra2/Cu!/~2h2!13
. ~35!

It is noticed that Chang and Gao26 have derived the
closed-form expressions using force equilibrium approach
analyze a SWNT subjected to an axial tensile loading in
same framework of molecular mechanics. To derive the eq
librium equations, they visualized a SWNT as an effect
‘‘stick-spiral’’ system, in which an elastic stick and a spir
spring are used to model the force and twisting moment
sulting from the CuC bond stretching and angle variation
Also, the stick is assumed to have an infinite bending st
ness because the chemical bond always remains straight
expected that the present results should be agreeable
those of Chang and Gao.26 However, for the case of (n,0)
SWNT, the results from the two approaches do not coinc
The parameters 1/(4h1) and 1/(2h2) in Eqs. ~24! and ~25!
for the ~n,n! armchair tube and in Eqs.~34! and~35! for the
(n,0) zigzag tube can be simplified to

1/~4h1!5
72cos~p/n!

3212 cos~p/n!
, ~36!

1/~2h2!5
512 cos~p/n!23 cos2~p/n!

14112 cos~p/n!22 cos2~p/n!
. ~37!

The corresponding parameters in the similar expressions
Chang and Gao26 are

l5
72cos~p/n!

3212 cos~p/n!
for the ~n,n! tube ~38!

and
4-4
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l5
523 cos~p/n!

1422 cos~p/n!
for the ~n,0! tube. ~39!

Equations~37! and ~39! do not coincide even though the
difference is small.

Let the values predicted by Eqs.~24! and ~25! equal to
those of graphite, i.e., 0.36 TPa nm and 0.16 for the limit
case ofn→`; the force constants can be obtained, i.e.,Cr

5742 nN/nm andCu51.42 nN nm. Then, based on Eq
~24!, ~25!, ~34!, and~35!, Figs. 3~a! and 3~b! plot the results
of the surface Young’s modulus and the effective Youn
modulus, and Fig. 4 is for the major Poisson’s ratio. It is se
from Figs. 3~a! and 4 that the surface Young’s modulus a
Poisson’s ratio are close to those of graphite when the t
diameter is larger than 1 nm. The comparison of the surf

FIG. 3. Variation of the longitudinal Young’s modulus with th
tube diameter:~a! for the surface longitudinal Young’s modulus an
~b! for the effective longitudinal Young’s modulus.
04541
g
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Young’s modulus with other numerical results24,31 has been
given and discussed,26 which is not repeated here.

B. Longitudinal shear modulus

The longitudinal shear modulus of a hollow or solid cy
inder is the only property which is relevant to the torsi
angle per unit length of the cylinder subjected to a torque.
based on the analysis of a SWNT subjected to a torqueT, as
shown in Fig. 1~b!, the longitudinal shear modulus of th
SWNT can be extracted. The geometrical analysis for
local deformation of a SWNT subjected to a torque is mu
more complicated than that associated with axial loading.
some details are depicted.

For a ~n,n! armchair SWNT, it is assumed that the atom
always keep on the cylindrical surface of the SWNT wh
they deform under the torque. Based on the symmetr
analysis, the local deformation can be determined using
generalized displacements, i.e., ds and dw as shown in Fig.
5~a!. So the three bond stretching, i.e., da, db1 , and db2 ,
and the three angle variations da, db1 , and db2 around a
typical atom can be solved as

da50, db252db15Bwdw1Bads, ~40!

FIG. 4. Variation of the major Poisson’s ratio with the tub
diameter.

FIG. 5. Two generalized displacements ds and dw characterizing
the bond stretching and angle variations around a represent
atom: ~a! for a ~n,n! nanotube and~b! for a (n,0) nanotube.
4-5
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with

Bw5a sin~a/2! and Bs5~R/a!sinu, ~41!

da50, db252db15Awdw1Asds, ~42!

with

Aw5sin~a/2!~12cosb!/sinb ~43!

and

As5R@sinu~11cos~a/2!cosf!2sin~2f!#/~a2 sinb!,
~44!

where the angleu is shown in Fig. 1~c!, and the higher-orde
quantities of ds and dw have been ignored in the above de
vations. The virtual work of the torqueT is W5TdS/R. So
the total system potential energyP can be written as

P52nS 1

2
Crdb21Cudb2D2TdS/R. ~45!

Based on the principledP5d(U2W)50, the unknown
generalized displacements ds and dw can be solved. Then
the torsional angle per unit length of the SWNT, i.e.,u0 with
u05ds/(Rl), can be obtained as

u05
T

2n sin~a/2!aR2 @Aw
2/Cr1Bw

2/~2Cu!#/~AwBs2AsBw!2.

~46!

Similarly, by imagining the nanotube as a thin shell of c
inder with radiusR and thicknesst or a solid cylinder with
radiusR, the two longitudinal shear moduli of the SWNT
denoted asG12 or Ḡ12, respectively, can be defined as fo
lows:

G125
T

2ptR3u0
or Ḡ125

T

pR4u0
, ~47!

where the torsional angle formula of the thin shell of cyli
der or a solid cylinder subjected to a torque has actually b
used. The surface longitudinal shear modulus with the r
tionshipG12

s 5tG12 or G12
s 5(R/2)Ḡ12 can be extracted from

Eq. ~46! as follows:

G12
s 5
)

3
~AwBs2AsBw!2/@Aw

2/Cr1Bw
2/~2Cu!#. ~48!

Using R/a53n/2p, a52p/3, cosb521
2 cosf, and f

5p/2n, the above expression can be further reduced as

G12
s 5

6)n2

p2

3
sin2~p/n!

2@21cos~p/2n!#21@42cos2~p/2n!#~Cra2/Cu!
.

~49!

For a (n,0) zigzag SWNT, the local deformation can al
be determined using two generalized displacements, i.es
and dw as shown in Fig. 5~b!. Similarly, the three bond
04541
n
a-

d

stretching, i.e., da, db1 , and db2 , and the three angle varia
tions db, da1 , and da2 around the representative atom c
be solved as follows:

da50, db152db25Bwdw1Bads, ~50!

with

Bw5
1

2
R sin~f/2!, Bs52

R

a
sin~f/2!, ~51!

db50, da152da25Awdw1Asds, ~52!

with

Aw5
R

a

sin~f/2!

sina S 12
1

2
cosa D , As52

R

a2 cota sin~f/2!.

~53!

The system potential energyP can be written as

P5nS 1

2
Crdb21Cuda2D2T~ds/21adw/4!/R. ~54!

Based on the principle, i.e.,dP5d(U2W)50, the un-
known generalized displacements ds and dw can be solved.
Then, the torsional angle per unit length of the SWNT, i.
u0 with u05(ds/21adw/4)/(Rl), can be obtained as

u05
T

n~12cosa!aR2 F S Aw2
a

2
AsD 2Y Cr

1S Bw2
a

2
BsD 2Y ~2Cu!G Y ~AwBs2AsBw!2.

~55!

And the surface longitudinal shear modulus can be obtai
as

G12
s 54)~AwBs2AsBw!2/@~Aw

22a2As
2!/Cr

1~Bw
22a2Bs

2!/~2Cu!#. ~56!

Using R/a5)n/2p, a52p/3, andf5p/n, the above ex-
pression can be further reduced as

G12
s 5

8)n2 sin2~p/2n!Cr

p2~61Cra2/Cu!
. ~57!

The variation of the surface longitudinal shear modulusG12
s

with the diameter is plotted in Fig. 6~a!, and Fig. 6~b! is for
the effective longitudinal shear modulusḠ12 with Ḡ12

5G12
s /(R/2).

C. Plane-strain bulk modulus

A SWNT subjected to the two-dimensional plane-stra
condition of hydrostatic stresses with magnitudesK is con-
sidered, as shown in Fig. 1~c!. Compared with the case o
axial tensile loading, the present deformations need to o
the extra plane-strain condition; i.e., the lengthl of the rep-
resentative segment of SWNT stays constant.
4-6
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For a ~n,n! armchair SWNT, the plane-strain conditio
i.e., dl 50, leads to

db52
1

2
b cot

a

2
da. ~58!

The virtual work of the hydrostatic stresses isW
5sKSldR, where dR is the change of the radius of the nan
tube. Then, following similar steps to the case of axial ten
loading can lead to

«225
2)sKR~Cra2/Cu14h1!

Cr~Cra2/Cu112h1!
. ~59!

Using the traditional definition, i.e.,K̄235sK /(2«22), for the
plane-strain bulk modulus of a cylinder,K̄23 of the SWNT
can be obtained as

FIG. 6. Variation of the longitudinal shear modulus with th
tube diameter:~a! for the surface longitudinal shear modulus a
~b! for the effective longitudinal shear modulus.
04541
e

K̄235
)

4R

Cr~Cra2/Cu112h1!

3Cra2/Cu112h1
. ~60!

It is seen that the definition of the plane-strain bulk modu
actually does not involve a thickness like the case of Youn
modulus.

For a (n,0) armchair SWNT, the circumferential strain«22

and plane-strain bulk modulusK̄23 can be similarly obtained
as

«225
2)sKR~Cra2/Cu12h2!

Cr~Cra2/Cu16h2!
~61!

and

K̄23

)

4R

Cr~Cra2/Cu16h2!

3Cra2/Cu16h2
. ~62!

The variation of the plane-strain bulk modulusK̄23 with the
diameter is plotted in Fig. 7.

D. In-plane shear modulus

For a SWNT subjected to in-plane pure shear at sm
strain, its circular cross-sectional perimeter is assumed
bend into an elliptic one like the situation of a thin shell
cylinder as shown in Fig. 8, which is described as

r5R~11«0!cosu i1R~12«0!cosu j, uP@0,2p#,
~63!

where the unknown«0 characterizes the deformation from
the circle with radiusR to the ellipse with longer and shorte
half-axis R(11«0) and R(12«0), and i and j are the unit
vectors along the longer and shorter axes. As the deforma
is mainly due to the bending, it is assumed that the invers
term is only significant for the total molecular potential e
ergy. The inversion angle variation can be characterized
the rotation angle variation df for the present case, wheref
is the rotation angle of the bonda around the axis of the

FIG. 7. Variation of the effective plane strain bulk modulus wi
the tube diameter.
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SWNT with the initial valuesf5p/2n or p/n for ~n,n! or
(n,0) nanotube. So the total molecular potential energy,
to inversion can be expressed in terms of the rotation an
variation df as follows:

U5
1

2 (
i

Cf~df!2, ~64!

whereCf is a modified force constant, which is determin
using computational chemistry data.29,30 The tight-binding
calculations29,30 show that the potential energy per atom o
carbon nanotube rolled up from a graphite sheet is prop
tional to the squared curvature of the SWNT, which can
rewritten as

U05
1

2
Ckk2, ~65!

wherek is the curvature of the tube withk51/R, andCk is
a modified force constant withCk50.0608 nN nm3, which is
derived by fitting the computational data.29,30 For ~n,n! and
(n,0) nanotubes,Cf can be obtained by correlating Eqs.~64!
and ~65! as follows:

Cf5
4Ck

a2@11cos~a/2!#2 and Cf5
Ck

a2 sin~a!2 . ~66!

For a~n,n! armchair SWNT, the angle variation df can be
related to the unknown deformation«0 as follows:

df5
3

2 S a1b cos
a

2 D cos~2u!«0dk, ~67!

where dk is the curvature variation when the circular cros
sectional perimeter bends into the elliptic one, which
solved as

dk53«0 cos~2u!/R. ~68!

FIG. 8. The assumed deformation mode from a circle to
ellipse of the cross-sectional perimeter of a SWNT subjected to
in-plane pure shear loading condition.
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Equations~64!–~68! give the potential energy of the atom
the location characterized by angleu as follows:

U05
9

2
Ck«0

2 cos2~2u!/R2. ~69!

As the angleu may vary from 0 to 2p, the average of the
potential energyU0 is only significant, that is,

Ū05
1

2p E
0

2p

U0du5
9

4
Ck«0

2/R2. ~70!

So the system potential energy of the representative segm
of a SWNT can be given as

P5U2W52nŪ02E
0

2p

F•du. ~71!

Using the external forceF5s0(cosui2sinuj) with s05t
and the corresponding displacement vector du5R«0(cosui
2sinuj), the total system potential energy becomes

P5
9pCk«0

2

2R@a1b cos~a/2!#
22p ls0«0R2. ~72!

Then the principle of the minimum potential energy leads

«05
4s0

9Ck
@a1b cos~a/2!# lR3. ~73!

The traditional definition of the in-plane shear modulus, i.
Ḡ235s0 /(2«0), leads to

Ḡ235
9Ck

8a~11cos~a/2!!lR3 or Ḡ235
)Ck

a2R3 , ~74!

wherea52p/3 andl 5a sin(a/2) have been used to get th
reduced form of the formula.

For a (n,0) SWNT, a similar formula can be obtained
follows:

Ḡ235
9Ck

8a sin~a!lR3 or Ḡ235
)Ck

a2R3 , ~75!

wherea52p/3 andl 5 1
2 a(12cosa) have been used for th

reduced form of the formula.
As the difference of the potential energies per atom o

carbon nanotube rolled up from a graphite sheet for~n,n! and
(n,0) SWNT’s with the same diameter is very small,29,30 the
force constantsCk for ~n,n! and (n,0) SWNT’s are approxi-
mately identical. Thus, the in-plane shear moduli for~n,n!
and (n,0) tubes with the same diameter are approximat
identical. The variation of the in-plane shear modulus,Ḡ23
with the diameter is plotted in Fig. 9.

III. DISCUSSION AND REMARKS

The closed-form expressions for the local and global
formations of a SWNT, respectively, subjected to axial te
sion, torsional moment, in-plane biaxial tension, and in-pla
pure shear at small strain have been derived using an en
approach in the framework of molecular mechanics. It

n
n

4-8
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noted that the three force constants corresponding to b
stretching, angle variation, and inversion are involved in
present framework of molecular mechanics. The force c
stants may be obtained by fitting a set of experimental d
or the results from a higher level of theories, such as qu
tum mechanics calculations. In the present calculations,
properties of graphite have been taken as a reference po
get the force constantsCr andCu , and the force constantCk
associated with inversion is obtained by fitting the compu
tional chemistry data.29,30

The closed-form expressions of the deformations o
SWNT under four loading conditions are independent of
thickness of the SWNT. And the corresponding moduli c
be extracted based on various definitions.

For the cases of the axial force and torsional moment,
three definitions for the corresponding longitudinal Youn
and shear moduli lead to the three types of Young’s and s
moduli, i.e., E11

s and G12
s , E11 and G12, and Ē11 and Ḡ12

with the relationshipsE115E11
s /t, G125G12

s /t and Ē11

5E11
s /(R/2), Ḡ125G12

s /(R/2). The last types of moduli are
also called the effective longitudinal Young’s and she
moduli. For the definition of Poisson’s ratio, it is seen th
the major Poisson’s ratio is valid not only for the propert
of the thin shell of the SWNT but also for the global SWN
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Ḡ12

~TPa!
K̄23

~TPa!
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