
PHYSICAL REVIEW B 69, 045403 ~2004!
Temperature dependence of the force sensitivity of silicon cantilevers
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The resonance frequencyv and internal frictionQ21 of the first eigenmode of microfabricated silicon
cantilevers are measured in the temperature range of 15–300 K. The analysis shows that variation of Young’s
modulus is responsible for the temperature dependence of the resonance frequency, whereas the dependence of
the geometrical dimensions can be neglected. Accordingly, the data can be fitted by the Wachtman equation,
yielding a Debye temperatureQD5634 K. The temperature variation of internal frictionQ21 is analyzed in
terms of Zener’s theory of thermoelastic damping. Due to the temperature dependence of the thermal expan-
sion coefficienta, thermoelastic damping is expected to vanish at 20 K and 125 K. A minimum of internal
friction is observed at 20 K, whereas the minimum at 125 K appears to be hidden by other dissipation effects.
A maximum of internal friction at 160 K is observed, which is an activation peak due to phonon scattering by
atomic-scale defects. The best force sensitivity is achieved at 20 K, where a factor of 10 is gained compared
to room temperature.
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I. INTRODUCTION

Ever since force microscopy1 was invented, cantilever
became important tools to measure small forces of
order of nanonewtons, like those which occur in chemi
bonds. Microfabricated silicon cantilevers became the n
standard in force microscopy, because probing tips wit
small radius of curvature can be integrated on the cantile
in a batch process.2 Measurements in the dynamic mod
where the cantilever is oscillated at its resonance freque
showed that the force sensitivity can be further improv
into the range of femtonewtons. Additional improv
ment could be made by cooling the cantilevers to cryoge
temperatures. Stoweet al.3 achieved a force sensitivity
of 5.6310218 N/AHz at 4.8 K. Mamin and Rugar4 could
demonstrate subattonewton force sensitivity (0.8
310218 N/AHz) in the millikelvin regime. This work is mo-
tivated by the challenge to measure single spins by magn
resonance force microscopy5 ~MRFM!, with which forces in
the attonewton regime will have to be detected.6 Therefore,
there is a need to achieve a fundamental understanding o
mechanisms which determine the force sensitivity of mic
fabricated cantilevers as a function of temperature.

In this paper, it is shown that the temperature depende
of the minimum detectable force is determined byAT, the
Young’s modulusE5E(T), and the internal frictionQ21

5Q21(T). The temperature dependence of the geometr
dimensions can be neglected. The resonance frequencv
and the internal frictionQ21 of the first eigenmode of silicon
cantilevers are presented as functions of temperature.
resonance frequency versus temperature data are ana
with the Wachtman equation, which yields a value ofQD
5634 K for the Debye temperature in agreement with ca
rimeter measurements. The internal friction versus temp
ture data show a rather complex behavior, which is in
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preted by Zener’s theory of thermoelastic dampin
Accordingly, the minimum of internal friction at 20 K is
related to the temperature dependence of the thermal ex
sion coefficienta. A maximum at 160 K is interpreted as a
activation peak due to phonon scattering by atomic-scale
fects.

The highest force sensitivity is found atT520 K, where a
minimum of internal friction is predicted by Zener’s theo
of thermoelasticity. An increase in sensitivity by a factor of
is expected from the explicitAT dependence of the sensitiv
ity when the temperature is reduced from 300 K to 20 K. T
measured data provide an increase of sensitivity of a fa
of 8 and 11 for two selected examples.

II. THEORY

A. Temperature dependence of minimum detectable forces

The force sensitivity of cantilevers is limited by therm
noise. When operated in the dynamic mode, where the c
tilever is oscillated at one of its eigenfrequencies, the highQ
factors of crystalline silicon sensors yield optimum perfo
mance. The minimum detectable forceFn

min of a rectangular
cantilever of lengthL, width w, and thicknesst operated at its
nth transversal eigenmode is:7

Fn
min5A2kBTDnDv

Qnpvn
, ~1!

where kB is the Boltzmann constant andDv is the band-
width of the measurement. In order to achieve the high
possible sensitivity, the cantilever should have a low spr
constantDn , and a high eigenfrequencyvn , and a high
quality factorQn and has to be operated at low temperatu
Experimentally, it has been shown that operation at hig
modes of silicon cantilevers does not improve the fo
sensitivity.8 Therefore, we will restrict our discussion to th
©2004 The American Physical Society03-1
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first eigenmode. The frequency of the first eigenmode of
transversal deflection of a homogeneous beam with unif
cross sectionA5wt is given by8,9

v15~1.875!2
t

L2
A E

12r
~2!

and the spring constant is

D15
Et3w

4L3
,

wherer is the density of the cantilever.
Thus, both the eigenfrequencyv1 and the spring constan

D1 depend on the Young’s modulusE and the geometrica
dimensions of the rectangular cantilever. The temperature
pendence of the geometrical dimensions is weak. The dif
ence between 0 K and room temperature is less than 0.5
which can be neglected in comparison to the tempera
dependence of the Young’s modulus.

B. Temperature dependence of the Young’s modulus

The temperature dependence of the Young’s modulusE is
due to anharmonic effects of the lattice vibrations. An a
lytical solution of this challenging problem does not exi
Wachtmanet al.10 suggested a semiempirical formula, whic
is valid for silicon in the high-temperature limit:11

E~T!5E02BT expS 2
T0

T D , ~3!

whereE0 is the Young’s modulus at 0 K. The constantsB
.0 and T0.0 are temperature independent. Wachtm
et al. expected a correlation betweenT0 and the Debye tem
peratureQD and betweenB and the Grueneisen parameterg.
A complete theory for this problem could not be provided
that time. Later, Anderson12 derived a similar expression@Eq.
~3!# for the adiabatic bulk modulusBS :

BS~T!5B02
gd

V0
3RTHS QD

T D , ~4!

where

H~x!ª
3

x3E0

x j3

ej21
dj,

R is the ideal gas constant,d is the Anderson-Grueneise
parameter,B0 is the bulk modulus, andV0 is the volume at 0
K. Note that the productgd is assumed to be temperatu
independent. Equation~4! can be derived from the equatio

BS~T!5B02
gd

V0
E

0

T

CvdT ~5!

by the use of the Debye approximation. Equation~5! shows
the close relationship between the mechanical propertyBS
and the specific heatCV . In this approximation Eq.~5! sat-
isfies Nernst’s theorem, where the temperature derivative
the elastic constants must vanish at 0 K.
04540
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The bulk modulus and Young’s modulus differ b
ES /BS53(122s), wheres denotes the Poisson constan
For small and constantds/dT!1 the bulk modulus can be
replaced by the Young’s modulusES53BS . Comparison of
Eqs.~3! and ~4! in the limit of high temperatures results in

B5
Rgd

V0
and T0'

QD

2
. ~6!

These relations can also be used for the isothermal const
as they differ from the adiabatic elastic constants
O(aV

2),13 whereaV is the volume expansion coefficient.

C. Internal friction

An elastic wave dissipates energy due to intrinsic a
extrinsic mechanisms. Some of the extrinsic mechanis
such as air damping can be minimized under ultrahi
vacuum~UHV! conditions. The intrinsic dissipation mecha
nisms can be regarded as phonon-phonon interactions.
oscillation of the cantilever corresponds to a time-depend
local stress field. The energy landscape of defects, suc
interstitials or vacancies, is changed by this stress field.
stabilities of these defects may occur, where atoms ju
from one equilibrium position to another. Part of the stra
energy is converted into fast atomic oscillations, which th
equilibrate with the phonon bath. This jump from one occ
pation site to another is related to a characteristic activa
energy, which is the energy to overcome from one equi
rium position to the next one. Correspondingly, activati
peaks, also called Debye peaks, are observed in dam
versus temperature plots. In silicon, previous studies h
shown that an activation peak exists around 160 K, where
corresponding activation energy is 0.25 eV. The nature of
defects is not completely clear, but there are indications
it consists of hydrogen interstitials.

Another phonon-phonon interaction is the scattering
acoustic phonons with thermal phonons. Zener14–16 devel-
oped a classical theory for this so-called thermoelastic da
ing, which is summarized below.

D. Thermoelastic damping

A complex frequency is introduced to describe the dis
pation of a classical harmonic oscillator. In close analogy,
energy dissipation of a cantilever can be described by a c
plex Young’s modulusẼ5E(11 iQ21).

In the case of an ideal material, stresss and straine are
related by Hooke’s law and are always in phase. No inter
friction occurs as long as the Young’s modulus is a real nu
ber. Zener14–16 extends Hooke’s law with the time deriva
tives of stress and strain:

s1teṡ5MR~e1tsė!,

where MR is the relaxed modulus andte and ts are the
relaxation times for the stress and strain.

The extension of Hooke’s law leads to inhomogeneities
stress and strain, which can cause temperature gradien
3-2
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TEMPERATURE DEPENDENCE OF THE FORCE . . . PHYSICAL REVIEW B 69, 045403 ~2004!
the force sensor. The temperature gradients generate
heat currents which increase the entropy of the cantilever
lead to energy dissipation.

In the following calculation of the energy loss, thex axis
is assumed to be perpendicular to the cross sectionA. Only
the stresssxx due to the vibrations along the cantilever ax
is of importance. For small deformationsexx , the increase of
the energy per volume is then given by13

dE5TdS1sxxdexx ,

wheresxxdexx is the work performed by the vibrations.
To obtain the internal frictionQ21, Zener15 calculates the

time average of stresssxx , strain exx and temperatureT.
With the temperature distribution given by the law of diff
sion and the boundary condition that no heat flow perp
dicular to the surfaces of the cantilever, the internal fricti
is

Q215
a2TE

Cp

vt

11~vt!2
. ~7!

The temperature dependence of internal friction is given
an explicit linear dependence and by a implicit depende
of the linear thermal expansion coefficienta, the Young’s
modulusE, and the specific heat capacityCp .

The frequency dependence is characterized by the re
ation timet5Atste. For a rectangular cantilever with th
thicknesst the relaxation time is

t5
t2

p2D
,

where D is the thermal diffusion coefficient. For low fre
quenciesv!t21, the vibrations are isothermal and a sm
amount of energy is dissipated. In the high-frequency ra
v@t21, the cantilever behaves like an adiabatic system w
low-energy dissipation similar to the low-frequency rang
At frequenciesv;t21 stress and strain are out of phase a
a maximum of internal friction occurs.

Another expression for the thermoelastic damping
given by Lifshitz and Roukes:17

Q215
a2TE

Cp
S 6

j2
2

6

j3

sinhj1sinj

coshj1cosj D , ~8!

where

j5bA v

2D
.

The temperature dependences of Eqs.~7! and ~8! are identi-
cal. The frequency dependences in the isothermal range
also identical for both expressions and differ only slightly
the adiabatical range.
04540
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III. RESULTS AND DISCUSSIONS

A. Experimental setup

The microscope is cooled with a flow cryostat~JANIS
Research Company ST-400! and can be operated under UH
conditions. The temperature of the cantilever can be varie
the range ofT515–300 K. The deflections of the force se
sor are measured with the beam deflection technique.

The resonance frequencyf 5v/(2p) of the cantilever is
measured with a spectrum analyzer~HP 3589A!. The canti-
lever is excited with a periodic force at the resonance f
quency. The amplitude of the cantilever is obtained by filt
ing the signal with a lock-in amplifier~STANFORD
Research Systems SR830!. The exponential decay of the sig
nal is used to determine the decay timet̃ . The internal fric-
tion of the cantilever is then given byQ2152/(v t̃ ).

Figure 1 shows scanning electron microscope~SEM! pic-
tures of two cantilevers which were investigated. Picture~a!
shows the cantilever fabricated by IBM-Rueschlikon with
length L5454 mm, a width w54 mm, a thickness t
50.44mm, and a spring constantD50.131023 N/m, and
picture ~b! shows the commercially available NANOSEN
SOR cantilever18 with dimensions L5450 mm, w
545 mm, t52 mm, and spring constantD50.176 N/m.

B. Frequency shift

Figure 2 illustrates the temperature dependence of
eigenfrequencyf of cantilever~b!. The squares are the mea

FIG. 1. SEM pictures of the cantilevers. Picture~a! shows the
ultrahigh-sensitive cantilever (L5454 mm, w54 mm, t
50.44mm, and spring constant 0.131023 N/m) made by IBM-
Rueschlikon and picture ~b! the commercially available
NANOSENSORS cantilever~Ref. 18!, (L5450 mm, w545 mm,
t52 mm, and spring constantD50.176 N/m).
3-3
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sured values. The line is the fitting curve for the eigenf
quency using Eq.~2!. The Young’s modulus in Eq.~2! is
derived from expression~3!. The fitting parametersT0
5317 K, B515.8 MPa/K, and E05167.5 GPa are ob
tained. The value for the Young’s modulusE0 at 0 K corre-
sponds to the literature value for the@110# direction of
silicon.19 This is the direction parallel to the cantilever
length axis.9 The measured value for the Debye temperat
QD is 634 K. The deviation from the literature value20 645 K
is less then 2%. The good agreement justifies the approx
tion QD'2T0 to be valid in the low-temperature range als
Subsequent experiments with other cantilevers of the t
~b! give consistent results with deviations of 10% compa
to the above results. Cantilever~a! gives similar values for
the elastic modulus, but a reduced value for the Debye t
perature of 430 K. Since cantilever~a! is rather thin, the
influence of the oxide film is a possible source for the
deviations.

A comparison of the specific heat capacityCv and the
negative temperature derivative of the Young’s consta
2dE/dT is shown in Fig. 3. As predicted by Eq.~5! the
graphs should be identical if all simplifying assumptions a
legitimate. The good agreement of the curves demonstr
the temperature independence of the productgd, although
the Gruenseisen parameterg and the Anderson-Grueneise
parameterd for silicon vary strongly in the low-temperatur
range.21,22

C. Dissipation

Figure 4 shows the measured temperature dependen
the internal friction of cantilever~b!.18 The first eigenmode
has a frequency in the isothermal region (v!t21) of ther-
moelastic damping. Two extrema at 20 K and 160 K a
found. The maximum at 160 K is an activation peak and w
observed in previous experiments23,24 for silicon resonators
in the kHz and MHz range in the temperature rangeT
5120–200 K. The minimum at 20 K is in agreement wi

FIG. 2. Measured frequency shift of the cantilever~b! ~Ref. 18!.
The frequency shift is given by the temperature dependence o
Young modulus, as the relative changes of the geometrical dim
sions are less the 0.5%. The fitting parameters for the Young m
lus give a Debye temperatureQD5634 K.
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Zener’s model. The temperature dependence of thermoel
internal friction in Zener’s model is dominated by the the
mal expansion coefficienta, asa2 appears in Eqs.~7! and
~8!. The value ofa for silicon varies by two orders of mag
nitude from 1 K to 300 K and iseven negative between 2
and 125 K. This peculiar behavior of the thermal expans
is experimentally verified25 and theoretically explained.22,26

The thermoelastic damping model predicts extrema of in
nal friction at 20 K and 125 K, which are related to th
minima ofa2. Our data~cf. Fig. 4! show the minimum at 20
K. The second minimum at 125 K is not observed, whi
may be related to additional channels of dissipation. T
activation peak at 160 K is relatively strong and broa
which may explain the nonobservation of the minimum

he
n-
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FIG. 3. Comparison of the specific heat capacityCv and the
negative temperature derivative of Young’s modulus2dE/dT. As
required by Nernst’s theorem, the temperature deviation of the e
tic constants vanishes at 0 K. Both curves are identical if the pr
uct of the Grueneisen parameterg and the Anderson-Grueneise
parameterd is temperature independent and the volume expans
can be neglected.

FIG. 4. Measured internal friction of cantilever~b! ~Ref. 18!.
The minimum at 20 K is observed, as predicted by Zener’s the
of thermoelastic damping. The peak atT5160 K is an activation
peak and has been observed in other experiments~Refs. 23 and 24!.
3-4
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125 K. Other possible explanations may be the dissipatio
the thin oxide layer or surface effects.

The resulting minimum detectable force from the me
sured eigenfrequencyf and the internal frictionQ21 of both
cantilevers is shown in Fig. 5. The squares and circles
respond to the sensitivity with temperature-depend
Young’s modulus E5E(T) and internal friction Q21

5Q21(T), where the lines correspond to the explicit tem
perature dependenceFmin}AT with constant Young’s modu
lus and internal friction. The discontinuity of the measur
sensitivity of the cantilever~a! at T560–70 K is unex-
plained.

IV. CONCLUSIONS

The temperature dependence of the eigenfrequency o
cantilever is dominated by the variation of the Young
modulus, whereas the temperature dependence of geom
cal dimensions due to thermal expansion, especially
thickness, can be neglected. The temperature dependen
the Young’s modulus is described by Wachtman’s equa
~3!. A close relationship between Young’s modulus and
specific heat is found. The resulting value of the fitting p
rameters of the Debye temperature is in good agreement
calorimeter measurements.
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The understanding of the internal friction properties
silicon is more complex. The observed internal friction is
sum of several damping mechanisms, which are difficult
separate. Generally, internal friction is described as phon
phonon interaction. Defects in the bulk or on the surface
lead to dissipation. The acoustic wave leads to local chan
in the energy landscape of the defects, which may lead
instabilities and energy losses. This part of the internal fr
tion is characterized by activation energy of the defect a
leads to activation peaks in theQ21-vs-T plots. The maxi-
mum at 160 K is attributed to such an activation peak, wh
is in agreement with previous experiments.23,24 Another
phonon-phonon interaction is the thermoelastic relaxati
described by Zener’s model. The elastic phonons couple
the linear thermal expansion coefficienta to a bath of ther-
mal phonons. The damping induced by thermoelastic da
ing of silicon is expected to show two minima at 20 K an
125 K. At these values the linear thermal expansion coe
cient a of silicon is zero and no thermoelastic relaxatio
occurs. The measured data reveal the minimum at 20 K.
second minimum at 125 K appears to be hidden due to o
dissipation channels. It is possible that the rather strong
broad activation peak at 160 K dominates, leading to
nonobservation of the 125 K minimum.

Both cantilevers show the highest sensitivity atT
520 K, where a minimum of internal friction is predicted b
Zener’s theory of thermoelasticity. An increase in sensitiv
by a factor of 4 is expected from the explicitAT dependence
of the sensitivity when the temperature is reduced from 3
K to 20 K. The measured data provide an increase of se
tivity by a factor of 8 for the rectangular cantilever~b! ~Ref.
18! and by a factor 11 for the custom paddle cantilever~a!.
Below 10 K, interesting effects of the temperature dep
dence of the internal friction are expected, because trans
phenomena play an essential role in Zener’s theory of th
moelastic damping. For most materials the thermal cond
tivity vanishes at 0 K and no thermoelastic damping is e
pected.
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