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Temperature dependence of the force sensitivity of silicon cantilevers
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The resonance frequenay and internal frictionQ ! of the first eigenmode of microfabricated silicon
cantilevers are measured in the temperature range of 15-300 K. The analysis shows that variation of Young’s
modulus is responsible for the temperature dependence of the resonance frequency, whereas the dependence of
the geometrical dimensions can be neglected. Accordingly, the data can be fitted by the Wachtman equation,
yielding a Debye temperatui®p =634 K. The temperature variation of internal frictiqy ! is analyzed in
terms of Zener's theory of thermoelastic damping. Due to the temperature dependence of the thermal expan-
sion coefficienta, thermoelastic damping is expected to vanish at 20 K and 125 K. A minimum of internal
friction is observed at 20 K, whereas the minimum at 125 K appears to be hidden by other dissipation effects.
A maximum of internal friction at 160 K is observed, which is an activation peak due to phonon scattering by
atomic-scale defects. The best force sensitivity is achieved at 20 K, where a factor of 10 is gained compared
to room temperature.
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[. INTRODUCTION preted by Zener's theory of thermoelastic damping.
Accordingly, the minimum of internal friction at 20 K is
Ever since force microscopywas invented, cantilevers related to the temperature dependence of the thermal expan-
became important tools to measure small forces of th&ion coefficiente. A maximum at 160 K is interpreted as an
order of nanonewtons, like those which occur in chemicaRctivation peak due to phonon scattering by atomic-scale de-
bonds. Microfabricated silicon cantilevers became the nev€cts.
standard in force microscopy, because probing tips with a The highest force sensitivity is found &t 20 K, where a

small radius of curvature can be integrated on the cantileveéinimum of internal friction is predicted by Zener's theory
in a batch processMeasurements in the dynamic mode of thermoelasticity. An increase in sensitivity by a factor of 4

where the cantilever is oscillated at its resonance frequencis €xpected from the expliciﬁ dependence of the sensitiv-
showed that the force sensitivity can be further improvedt When the temperature is reduced from 300 K to 20 K. The
into the range of femtonewtons. Additional improve- measured data provide an increase of sensitivity of a factor
ment could be made by cooling the cantilevers to cryogenié)f 8 and 11 for two selected examples.

temperatures. Stowet al® achieved a force sensitivity

of 5.6x10 '8 N/\/Hz at 4.8 K. Mamin and Rugércould IIl. THEORY

demonstrate  subattonewton force sensitivity (0.820 A. Temperature dependence of minimum detectable forces

X 10" N/Hz) in the millikelvin regime. Thls_work ISMO=  The force sensitivity of cantilevers is limited by thermal
tivated by the challenge to measure single spins by magnetiGyise \when operated in the dynamic mode, where the can-
resonance force m_croscc_beRFM), with which forces in - jjever is oscillated at one of its eigenfrequencies, the Kgh
the attonewton regime will have to be detectetherefore, factors of crystalline silicon sensors yield optimum perfor-
there is a need to achieve a fundamental understanding of thgance. The minimum detectable forE@™ of a rectangular
mechanisms which determine the force sensitivity of micro-anijlever of lengtit, width w, and thicknessoperated at its

fabricated cantilevers as a function of temperature. nth transversal eigenmode is:
In this paper, it is shown that the temperature dependence
of the minimum detectable force is determined ¥y, the . 2kgTD,Aw
Young’s modulusE=E(T), and the internal frictionQ * Fo= “Ourwn (1)

=Q XT). The temperature dependence of the geometrical

dimensions can be neglected. The resonance frequency wherekg is the Boltzmann constant anllw is the band-
and the internal frictio ~* of the first eigenmode of silicon width of the measurement. In order to achieve the highest
cantilevers are presented as functions of temperature. Thmossible sensitivity, the cantilever should have a low spring
resonance frequency versus temperature data are analyzeshstantD,, and a high eigenfrequency,, and a high
with the Wachtman equation, which yields a value @f quality factorQ,, and has to be operated at low temperature.
=634 K for the Debye temperature in agreement with calo-Experimentally, it has been shown that operation at higher
rimeter measurements. The internal friction versus temperanodes of silicon cantilevers does not improve the force
ture data show a rather complex behavior, which is intersensitivity? Therefore, we will restrict our discussion to the
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first eigenmode. The frequency of the first eigenmode of the The bulk modulus and Young’s modulus differ by
transversal deflection of a homogeneous beam with unifornEg/Bs=3(1—-20), whereo denotes the Poisson constant.

cross sectiolA=wt is given by*° For small and constarito/dT<1 the bulk modulus can be
replaced by the Young's moduligs=3Bg. Comparison of
t E Egs.(3) and(4) in the limit of high temperatures results in
01=(1.8752— 1/ (p FI@and® gh temp
L2 V12
. . Ryo Op
and the spring constant is B= Vo and Ty~ > (6)
0
Et3w

_ These relations can also be used for the isothermal constants,
413"’ as they differ from the adiabatic elastic constants by
O(a?),*® whereay, is the volume expansion coefficient.

1

wherep is the density of the cantilever.

Thus, both the eigenfrequenay and the spring constant
D, depend on the Young’s modulls and the geometrical C. Internal friction
dimensions of the rectangular cantilever. The temperature de- aAn elastic wave dissipates energy due to intrinsic and
pendence of the geometrical dimensions is weak. The differextrinsic mechanisms. Some of the extrinsic mechanisms
ence betwee 0 K and room temperature is less than O.5%,Such as air damp|ng can be minimized under u|trahigh_

which can be neglected in comparison to the temperaturgacuum(UHV) conditions. The intrinsic dissipation mecha-

dependence of the Young’s modulus. nisms can be regarded as phonon-phonon interactions. The
oscillation of the cantilever corresponds to a time-dependent
B. Temperature dependence of the Young’s modulus local stress field. The energy landscape of defects, such as

The temperature dependence of the Young’s modliss interstitials or vacancies, is changed by this stress field. In-
due to anharmonic effects of the lattice vibrations. An anaStabilities of these defects may occur, where atoms jump
lytical solution of this challenging problem does not exist. from one equilibrium position to another. Part of the strain
Wachtmaret al° suggested a semiempirical formula, which energy is converted into fast atomic .os_C|IIat|ons, which then
is valid for silicon in the high-temperature lin: equilibrate with the phonon bath. This jump from one occu-

pation site to another is related to a characteristic activation

To energy, which is the energy to overcome from one equilib-

E(T):EO—BTGXF{ - 7) (3 rium position to the next one. Correspondingly, activation
peaks, also called Debye peaks, are observed in damping
whereE, is the Young’'s modulus at 0 K. The constals versus temperature plots. In silicon, previous studies have
>0 and To>0 are temperature independent. Wachtmarshown that an activation peak exists around 160 K, where the
et al. expected a correlation betwe&g and the Debye tem- corresponding activation energy is 0.25 eV. The nature of the
perature®, and betwee and the Grueneisen paramejer  defects is not completely clear, but there are indications that

A complete theory for this problem could not be provided atit consists of hydrogen interstitials.

that time. Later, AndersdAderived a similar expressiqiEq. Another phonon-phonon interaction is the scattering of
(3)] for the adiabatic bulk moduluBs: acoustic phonons with thermal phonons. Zéfief devel-
5 o oped a classical theory for this so-called thermoelastic damp-
Bg(T)=Bo— y—SRTH( _D)' @ ng. which is summarized below.
Vo T
where D. Thermoelastic damping

3 (x £ A complex frequency is introduced to describe the dissi-
H(x) ::_f § de, pation of a classical harmonic oscillator. In close analogy, the

x3Jo ef—1 energy dissipation of a cantilever can be described by a com-
o Plex Young's moduluE=E(1+iQ " 1).

In the case of an ideal material, stressand straine are
related by Hooke’s law and are always in phase. No internal
friction occurs as long as the Young’s modulus is a real num-
ber. Zenel*~1° extends Hooke’s law with the time deriva-
tives of stress and strain:

R is the ideal gas constang is the Anderson-Grueneise
parameterB, is the bulk modulus, an¥, is the volume at 0
K. Note that the productys is assumed to be temperature
independent. Equatiof#) can be derived from the equation

Yo (T
Bs(T)=Bo— 1, f C,dT (5)
070 o+ 1e0=Mg(e+ 7,€),

by the use of the Debye approximation. EquatiBnshows
the close relationship between the mechanical propBgy where My is the relaxed modulus and, and 7, are the
and the specific hea®,, . In this approximation Eq(5) sat- relaxation times for the stress and strain.
isfies Nernst's theorem, where the temperature derivatives of The extension of Hooke’s law leads to inhomogeneities in
the elastic constants must vanish at 0 K. stress and strain, which can cause temperature gradients in
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the force sensor. The temperature gradients generate local
heat currents which increase the entropy of the cantilever and
lead to energy dissipation.
In the following calculation of the energy loss, thexis
is assumed to be perpendicular to the cross se@iddnly
the stressr,, due to the vibrations along the cantilever axis
is of importance. For small deformatiorg,, the increase of
the energy per volume is then given'By

dE=TdS+ oy, de,,,

whereo,,de, is the work performed by the vibrations.

To obtain the internal frictio® ~*, Zenef® calculates the
time average of stress,,, straine,, and temperaturd.
With the temperature distribution given by the law of diffu-
sion and the boundary condition that no heat flow perpen-
dicular to the surfaces of the cantilever, the internal friction
is

Q7l_a2TE T @
Cp 1+(a)T)2.

The temperature dependence of internal friction is given by
an explicit linear dependence and by a implicit dependence g, 1. SEM pictures of the cantilevers. Pictu@ shows the
of the linear thermal expansion coefficient the Young'’s ultrahigh-sensitive ~ cantilever LE454um,  w=4 um, t
modulusk, and the specific heat capaciBy,. =0.44 um, and spring constant 0<110~2 N/m) made by IBM-
The frequency dependence is characterized by the relaRueschlikon and picture (b) the commercially available
ation time 7= {/7,7.. For a rectangular cantilever with the NANOSENSORS cantileve(Ref. 18, (L=450 um, w=45 um,

thicknesst the relaxation time is t=2 pum, and spring consta = 0.176 N/m).
I1l. RESULTS AND DISCUSSIONS
2
r= t , A. Experimental setup
m°D

The microscope is cooled with a flow cryost@ANIS
) o N Research Company ST-40@nd can be operated under UHV
where D is the thermal diffusion coefficient. For low fre- conditions. The temperature of the cantilever can be varied in
quencieso< 71, the vibrations are isothermal and a small the range off = 15—300 K. The deflections of the force sen-
amount of energy is dissipated. In the high-frequency rangeor are measured with the beam deflection technique.
w>7"1, the cantilever behaves like an adiabatic system with The resonance frequendy= w/(2) of the cantilever is
low-energy dissipation similar to the low-frequency range.measured with a spectrum analyzetP 3589A. The canti-
At frequenciesn~ 7~ ! stress and strain are out of phase andever is excited with a periodic force at the resonance fre-

a maximum of internal friction occurs. quency. The amplitude of the cantilever is obtained by filter-
Another expression for the thermoelastic damping ising the signal with a lock-in amplifier(STANFORD
given by Lifshitz and Rouke¥" Research Systems SR83Uhe exponential decay of the sig-

nal is used to determine the decay titeThe internal fric-
. o?’TE( 6 6 sinhé+sing tion of the cantilever is then given b9 ~1=2/(wt).
TG, ?‘ E coshé+cosé |’ ®) Figure 1 shows scanning electron microsc¢pEM) pic-

tures of two cantilevers which were investigated. Pictiae
shows the cantilever fabricated by IBM-Rueschlikon with a
length L=454 um, a width w=4 um, a thicknesst
=0.44 um, and a spring constam=0.1x10 3 N/m, and

() picture (b) shows the commercially available NANOSEN-
¢=by\/5p- SOR cantileve® with dimensions L=450um, w
=45 um, t=2 um, and spring constai®=0.176 N/m.

where

The temperature dependences of E@s.and(8) are identi-

cal. The frequency dependences in the isothermal range are
also identical for both expressions and differ only slightly in ~ Figure 2 illustrates the temperature dependence of the
the adiabatical range. eigenfrequency of cantilever(b). The squares are the mea-

B. Frequency shift
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FIG. 2. Measu_req fre_quency shift of the cantile(y (Ref. 1. FIG. 3. Comparison of the specific heat capacty and the
The frequency shift is given ‘by the temperature dependgnce .Of thﬁegative temperature derivative of Young's modutudE/dT. As
Y_oung moldulutsh, a(s) tsk;/e r$rl1at|\f/_(tet_changes 0: thefgetohm(i;rlcal d'mzr}'equired by Nernst's theorem, the temperature deviation of the elas-
;slons_ are eDssb et D7 teﬁel ngaa:?me ers forthe Young Moty constants vanishes at 0 K. Both curves are identical if the prod-
us give a Debye temperatutep = ) uct of the Grueneisen parametgrand the Anderson-Grueneisen

L - . parametefs is temperature independent and the volume expansion
sured values. The line is the fitting curve for the eigenfre-.5, pe neglected.

quency using Eq(2). The Young’s modulus in Eqg(2) is

derived from expression3). The fitting parametersT, ,
—317 K, B=15.8 MPa/K, andE,=167.5 GPa are ob- Zener’s model. The temperature dependence of thermoelastic

tained. The value for the Young’s modulis at 0 K corre- internal friction in Zener's model is dominated by the ther-
sponds to the literature value for tHa10] direction of —Mal expansion coefficiert, asa® appears in Eqsl7) and
silicon® This is the direction parallel to the cantilever’s (8). The value ofa for silicon varies by two orders of mag-
length axis’ The measured value for the Debye temperaturgiitude fran 1 K to 300 K and iseven negative between 20
0p is 634 K. The deviation from the literature vafi®45 K and 125 K. This peculiar behavior of the thermal expansion
is less then 2%. The good agreement justifies the approximas experimentally verifie®® and theoretically explained:*®
tion ®~ 2T, to be valid in the low-temperature range also. The thermoelastic damping model predicts extrema of inter-
Subsequent experiments with other cantilevers of the typgal friction at 20 K and 125 K, which are related to the
(b) give consistent results with deviations of 10% comparedminima of &®. Our data(cf. Fig. 4 show the minimum at 20

to the above results. Cantilevém gives similar values for K. The second minimum at 125 K is not observed, which
the elastic modulus, but a reduced value for the Debye temmay be related to additional channels of dissipation. The
perature of 430 K. Since cantilevéa) is rather thin, the activation peak at 160 K is relatively strong and broad,
influence of the oxide film is a possible source for thesewhich may explain the nonobservation of the minimum at
deviations.

A comparison of the specific heat capaciy, and the T
negative temperature derivative of the Young’'s constant [
—dE/dT is shown in Fig. 3. As predicted by E@5) the
graphs should be identical if all simplifying assumptions are
legitimate. The good agreement of the curves demonstrate
the temperature independence of the produét although 1x10° |
the Gruenseisen parametgrand the Anderson-Grueneisen = [
parametets for silicon vary strongly in the low-temperature
range??2

C. Dissipation

Figure 4 shows the measured temperature dependence " .
the internal friction of cantilevetb).!® The first eigenmode 0 100
has a frequency in the isothermal region<¢ 1) of ther- T [K]
moelastic damping. Two extrema at 20 K and 160 K are
found. The maximum at 160 K is an activation peak and was F|G. 4. Measured internal friction of cantilevé) (Ref. 18.
observed in previous experime?ft%“ for silicon resonators  The minimum at 20 K is observed, as predicted by Zener’s theory
in the kHz and MHz range in the temperature range of thermoelastic damping. The peak Bt 160 K is an activation
=120-200 K. The minimum at 20 K is in agreement with peak and has been observed in other experim&efs. 23 and 24
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T " ] The understanding of the internal friction properties of

[ —2— NANOSENSOR cantilever . silicon is more complex. The observed internal friction is a
[=—Eklcantilever g — ] sum of several damping mechanisms, which are difficult to
1x10™ k g 4 separate. Generally, internal friction is described as phonon-

phonon interaction. Defects in the bulk or on the surface can
lead to dissipation. The acoustic wave leads to local changes
in the energy landscape of the defects, which may lead to
instabilities and energy losses. This part of the internal fric-
i ) i tion is characterized by activation energy of the defect and
% £ : leads to activation peaks in tf@ -vs-T plots. The maxi-
mum at 160 K is attributed to such an activation peak, which
is in agreement with previous experimefit$* Another
phonon-phonon interaction is the thermoelastic relaxation,
1x10® . R , . described by Zener’s model. The elastic phonons couple via
100 the linear thermal expansion coefficiemtto a bath of ther-
T K] mal phonons. The damping induced by thermoelastic damp-
ing of silicon is expected to show two minima at 20 K and
FIG. 5. Minimum detectable force of both cantilevers. The 125 K. At these values the linear thermal expansion coeffi-
squares and circles are the measured temperature dependence<ient « of silicon is zero and no thermoelastic relaxation
the sensitivity with variable® ! andE and the lines are the ex- occurs. The measured data reveal the minimum at 20 K. The
plicit temperature dependence with constant* andE. second minimum at 125 K appears to be hidden due to other
dissipation channels. It is possible that the rather strong and
125 K. Other possible explanations may be the dissipation ibroad activation peak at 160 K dominates, leading to the

[N/Hz"%

Fmin

the thin oxide layer or surface effects. nonobservation of the 125 K minimum.
The resulting minimum detectable force from the mea- Both cantilevers show the highest sensitivity &t
sured eigenfrequendyand the internal frictiorQ ~* of both =20 K, where a minimum of internal friction is predicted by

cantilevers is shown in Fig. 5. The squares and circles corZener’s theory of thermoelasticity. An increase in sensitivity
respond to the sensitivity with temperature-dependenpy a factor of 4 is expected from the expligi dependence
Young's modulus E=E(T) and internal friction Q"'  of the sensitivity when the temperature is reduced from 300
=Q~X(T), where the lines correspond to the explicit tem-K to 20 K. The measured data provide an increase of sensi-
perature dependen&d "o /T with constant Young’s modu- tivity by a factor of 8 for the rectangular cantilevé) (Ref.
lus and internal friction. The discontinuity of the measured18) and by a factor 11 for the custom paddle cantilefzr
sensitivity of the cantilever(@ at T=60—-70 K is unex- Below 10 K, interesting effects of the temperature depen-
plained. dence of the internal friction are expected, because transport
phenomena play an essential role in Zener’s theory of ther-
IV. CONCLUSIONS moelastic damping. For most materials the thermal conduc-

] tivity vanishes at 0 K and no thermoelastic damping is ex-
The temperature dependence of the eigenfrequency of thgacted.

cantilever is dominated by the variation of the Young's
modulus, whereas the temperature dependence of geometri-
cal dimensions due to thermal expansion, especially the
thickness, can be neglected. The temperature dependence of
the Young's modulus is described by Wachtman’s equation This work was supported by the Swiss National Founda-
(3). A close relationship between Young's modulus and thetion, the “Kommission zur Faderung von Technologie und
specific heat is found. The resulting value of the fitting pa-Innovation,” the national program TopNano 21, and the Na-
rameters of the Debye temperature is in good agreement wittional Center of Competence in Research on Nanoscale Sci-
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