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Spin orientation and spin precession in inversion-asymmetric
guasi-two-dimensional electron systems
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Inversion-asymmetry-induced spin splitting of the electron states in quasi-two-dimen&aaal-2D sys-
tems can be attributed to an effective magnetic fi8ldhich varies in magnitude and orientation as a function
of the in-plane wave vectdy,. Using a realistic & 8 Kane model that fully takes into account spin splitting
because of both bulk inversion asymmetry and structure inversion asymmetry we investigate the spin orienta-
tion and the effective field for different configurations of a quasi-2D electron system. It is shown that these
guantities depend sensitively on the crystallographic direction in which the quasi-2D system was grown as well
as on the magnitude and orientation of the in-plane wave végtoiThese results are used to discuss how
spin-polarized electrons can precess in the fi8{k;). As a specific example we consider Gdn g sAAs-INP
quantum wells.
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[. INTRODUCTION orbit interaction has previously been given by several au-

Spin degeneracy in a two-dimensiofaD) system is due thors; see, e.g., Refs. 18—-22. In the present paper we com-
to the combined effect of spatial inversion symmetry andpare these results with our calculations(&k)) and the
time inversion symmetry.If the spatial inversion symmetry field B(k) using the more realistic 88 Kane modef that
is lifted, spin-orbit interaction gives rise to a spin splitting of takes into account both SIA and BIA up to all ordersin It
the electron states even at a magnetic fi@e-0. In  Will be shown that for largek; the higher-order terms result
quasi-2D systems thB=0 spin splitting can be caused by in important modifications ofS(k))) andB(k). -
the bulk inversion asymmetr§BIA) of the underlying crys- Datta and Das have proposed a novel spin tranéf‘stor
tal structurd as well as by the structure inversion asymmetryWhere the current modulation arises from the precession of
(SIA) due to, e.g., an electric field perpendicular to the SPin-polarized electrons in the effective fiefs(k)), while

plane of the 2D systefiThe B=0 spin splitting is of con- ferromagnetic contacts are used to preferentially inject and

siderable interest both because of its importance for our unq.eteCt specific spin orientations. Recently, extensive research

derstanding of the fundamental properties of quasi_2Da|ming at the realization of such a device has been under

system&~7 and because of possible applications in the fieldway'23 Here we will use our results for the fieB(k) in
o¥ spintronice P PP order to discuss spin precession and its tunability for differ-

. ent device configurations. It will be shown that for certain

Common I1I-V and 1I-VI semiconductors such as GaAs, oy rations the precession of spin-polarized electrons is
InSb, and HgCdTe, have a zinc-blende structure. To lowes{gtermined only by the tunable SIA spin splitting, but it is
order in the wave vectok BIA spin splitting in these sys- esgentially independent of the magnitude of BIA spin split-
tems is characterized by the so-called Dresselhaus®terming For other configurations the tunability of spin preces-
whereas spin splitting due to SIA is characterized by thesjgp s significantly suppressed due to the interplay of SIA
Rashba terml.Often the discussion of spin splitting is re- and BIA.
stricted to these lowest-order tefﬁﬂ‘éf Spin splitting of We would like to emphasize that the present results apply
higher orders ink can be fully taken into account by the only to electrons with afeffective spinj=1/2. Holes in the
8x 8 Kane modef or the 14<14 extended Kane mod®.  yopmost valence band, on the other hand, have an effective
The higher-order terms can be quite Important for a quantispin j=3/2 (Ref. 24. Therefore, spin orientation and spin
tative discussion 0B=0 spin splitting.™ _ precession in quasi-2D hole systems is qualitatively different

For a given in-plane wave vectéj we can always find @  from spin orientation and spin precession in quasi-2D elec-

spin axis(S(k)) local in k; spacesuch that we have spin up ron systems. Hole systems will thus be covered in a future
and spin down eigenstates with respect to the é8(%|)).  publication.

Note that we cannot call the spin-split branclies(k) of

the energy surface spin-up or spin-down because the direc-

tion of (S) varies as a function df; such that averaged over

all occupied states the branches contain equal contributions In the following we want to discuss the wave-vector-

of up and down spinor components. This reflects the fact thalependent spin orientatiogS(k;)) for different models

in nonmagnetic materials we haveBt 0 a vanishing mag- of spin splitting. We will compare the analytical results for

netic moment. the Rashba model and Dresselhaus model with our more
The spin orientatiofS(k))) can be attributed to an effec- realistic calculations based on the<8 Kane Hamiltonian,

tive magnetic fieldBB(k|) (Refs. 9 and 1) A discussion of  which takes into account SIA and BIA spin splitting up to all

(S(k|)) based on the lowest-order terms in the effective spinorders ink;.

II. SPIN ORIENTATION OF 2D ELECTRON STATES
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i} Hein= nlodka(k5— (kD) + ok (KD —KD1,  (5)
with a material-specific coefficienj. This equation can eas-
ot ily be diagonalized. We obtain a spin splitting
EB|A ki) = =+ ki \/ k2 2 1k2_ kZ k2 in(2 2
= (k=27 ky\[ (k) ™| 7K = (ko) [K]sin(2¢)*,
- - (6a)
@ R ok
FIG. 1. Lowest-order spin orientatiofw) of the eigenstates ~x 77<k§>k\|io(kf)- (6b)

|4+ (k))) in the presence ofa) SIA and(b) BIA. The inner(oute
circle shows(ea) along contours of constant energy for the upper We see here that in leading orderlgfthe Dresselhaus term
(lower) branchE, (E_) of the spin-split dispersion. (5) gives rise to a spin splitting independent of the direction
of k| that is apparently very similar to the Rashba spin split-
A. General discussion ting (2). Nevertheless, the corresponding wave functions are

First we want to discuss the spin orientation in the presdualitatively different due to the different symmetries of the

ence of SIA. Here to lowest order in the in-plane wave vectof€ms (1) and (5). If we neglect the terms cubic ik, the
kj=(k,k,,0) the spin splitting is characterized by the eigenfunctions in the presence of Dresselhaus spin splitting

Rashba Hamiltoniah are

Hsia= a(O'Xky— Uykx)v (2) gk 1 1
Ceni ; - [p2A k) =& (D= | )
whereo, ando, are Pauli spin matrices andis a prefactor = 27 5N J2|Fe ')’
that depends on the constituting materials and on the geom-
etry of the quasi-2D system. If we use polar coordinates fogg 4t
the in-plane wave vectok; = k|(cosp,sing,0), the spin split-
ting is given b
ing is giv y cog— o)
SIA _ .

ES"(k)) == aky, 2 (o(kp)).=%| sin(—e) (8)

independent of the angle, and the eigenstates are 0
SiA akin 1 1 The spin orientatior{8) of the eigenfunction§7) as a func-
W= (k) =—5— & (2) NAEILLA (3 tion of the direction of the in-plane wave vector is indicated

with r;=(x,y,0) and envelope functionsK”(z). In Eq. (3)
we have assumed that the Rashba coefficieiig positive.
The spin orientation of the eigenstat€® is given by the
expectation value of the vectar of Pauli spin matrices:

(o(kp)+= (= (kp|ofp(k)) (4a)
% T
*sing o 732
=| +COSp | == . (4b)
0 Sln(go 2)
0

Note that Eq.(4) is independent of the envelope function _
e €dge Bloch function of theath bulk band. Here we must

gku(z) and the magnitudk of the in-plane wave vector. Th
spin orientation(4) of the eigenfunction$3) as a function of

by arrows in Fig. 1b). For the Rashba spin splitting we see
in Fig. 1(a) that if we are moving clockwise on a contour of
constant energf (k) the spin vector is rotating in the same
direction, consistent with the axial symmetry of the Rashba
term. On the other hand, E) and Fig. 1b) show that in
the presence of BIA the spin vector is rotating counterclock-
wise for a clockwise motion itk space.

In the above discussion we have assumed that the wave
functions are two-component spinors. In general, the quasi
2D eigenstates of a multiband Hamiltonian are of the f8rm

gkin

(k)= 2 by (2)un(r), €]

with envelope functiongnku(z), andu,(r) denotes the band-

evaluate the expectation value of

the direction of the in-plane wave vector is indicated by ar-
rows in Fig. 1a).

Next we want to discuss the spin orientation in the pres-
ence of BIA spin splitting. For quasi-2D systems in a quan-where the identity operatal,, refers to the orbital part of

S=0® 1y, (10)

tum well (QW) grown in the crystallographic directid@01]
the Dresselhaus term beco

|4(k))). For the 8<8 Kane modéf containing the bands
¢, T'y, andT' we obtain fori=x,y,z
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\j

k|

ki—Ak/2 ki+Ak/2

FIG. 2. For the given energf and a fixed direction of the
in-plane wave vectork; we determinek =Ak/2 such thatE
=E.(kj—Ak/2)=E_(k +Ak/2). HereE, (E_) denotes the up-
per (lower) branch of the spin-split dispersion.

T 0 0
0 EJ- —2U;
S= 3" ", (11)
0 -—2uf —Eai
3

where J; denotes the matrices for angular momentgim
=3/2, and the matriced; are defined in Ref. 13. Once again
the expectation valuéy|S| ) is a three-component vector
that can be identified with the spin orientation of the multi-
component wave functiofy). We remark that while the
vector( o) of a spin-1/2 system is always strictly normalized
to unity, this condition is in general not fulfilled for the spin
expectation value(S) of multicomponent single-particle

PHYSICAL REVIEW &9, 045317 (2004

E=E,(kj—Ak/2)=E_(k +Ak/2). HereE, (E_) denotes
the upper(lower) branch of the spin-split dispersion. Then
we define

B=(S).Ak=—(S)_Ak, (12)

with the sign convention that the fiel is parallel to the
effective field felt by the electrons in the upper branch
E . (k)) and we have used the shorthand notation

()= = (Yo (kT AKIR)| Sy (k7 AKD).  (13)

We remark that for a parabolic band with effective mags
plus Rashba ternil) the wave vector differencAk can be
evaluated analyticall}?

2m*
p2

a

AKRashba (14

independent of the magnitude kf. From an experimental
point of view it should be kept in mind that spin splitting is
often measured by analyzing Shubnikov—de Haas oscilla-
tions; see, e.g., Refs. 26—-29. Such experiments yield spin
subband densitieN .. which are directly related tak,

Ak=+4m (YN_—N,),

provided we can ignore anisotropic contributionsBe-0
spin splitting.(However, see also Refs. 30 and)31.

The definition(12) presupposes that the spin expectation
values(S), and(S)_ are strictly antiparallel to each other.
In Eqg. (48 we saw that for the Rashba Hamiltonian this
condition is fulfilled exactly. This is closely related to the
fact that for the Rashba Hamiltonian the spin subband eigen-

(15

states. This is due to the fact that in the presence of spin-orbgtates |¢//§'A(k”)> and |¢//§'A(k”’)> are orthogonal—
interaction we cannot factorize the multicomponent waveindependent of the magnitude &f and kﬁ as long as the
function (9) into an orbital part and a spin part. However, for wave vectork; and k( are parallel to each othé.In gen-

electrons the deviation dfS)| from unity is rather small
(typically less than 1%bso that it is neglected here.

eral, |y, (kj— Ak/2)) and|y_(kj+ Ak/2)) are only approxi-
mately orthogonal so thdtS), and(S)_ are only approxi-

For free electrons in the presence of an external magnetidately antiparallel. However, we find that the angle between

field B the unit vector( o) is parallel to the vectoB. Fol-
lowing this picture we can attribute thie=0 spin splitting in
quasi-2D systems to an effective magnetic fig8¢k ) par-
allel to (S(kj)). Obviously the magnitude of this effective
magnetic field should be related to the magnitude ofBhe

the vectorg'S), and(S)_ is always very close to 180° with
an error<1° so that we neglect this point in the remaining
discussion.

Even though we can evaluate the spin expectation value
(S) for each spin subband separately we do not attempt to

=0 spin splitting. However, depending on the particulardefine an effective magnetic fiel8 for each spin subband.
problem of interest it can be convenient to define the magThis is due to the fact thaB is commonly used to discuss

nitude of spin splitting in two different ways: The energy
difference AE=E (k) —E_(k|) characterizes the magni-
tude of spin splitting for a given wave vectly whereas the
wave vector difference\lk characterizes the magnitude of
spin splitting at a fixed energk. While the former is rel-
evant, e.g., for Raman experimentshe latter quantity is an
important parameter, e.g., for spin relaxafibhand for the
spin transistor proposed by Datta and Bfs.

phenomena like spin relaxatidt and spin precessidh(see
below) which cannot be analyzed for each spin subband in-
dividually.

The allowed directions of the effective magnetic figd
can readily be deduced from the symmetry of the QW. The
spin-split states for a fixed wave vector are orthogonal to
each other; i.e., the spin vectors of these states are antiparal-
lel. The spin orientation of eigenstates for different wave

In the following we want to explore the second definition vectors in the star ok are connected by the symmetry op-

where the effective magnetic field is given = (S)Ak.

erations of the systerit.Accordingly, only those spin orien-

Our precise definition ofAk is illustrated in Fig. 2: For the tations of the spin-split eigenstates are permissible for which
given energ)E and a fixed directiorp of the in-plane wave every symmetry operation maps orthogonal states onto or-
vectork =k(cosp,sing,0) we determind+Ak/2 such that thogonal states. In a QW grown in the crystallographic di-
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GaAs [001], BIA, £=0kV/cm Ga 47In53As [001], BIA, €=0kV/cm Ga 47lns3As [001], no BIA, €=20 kV/cm
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FIG. 3. Effective magnetic fiel@(k) for (a) a GaAs-Al :Gay As QW and(b)—(e) a Ga 44N g sAs-INP QW, both with a well width of
100 A. In(a), (b), and(e) we assume that we have a symmetric well with BIA spin splitting ofdyshowsB(k) due to an external field
of £=20 kV/cm but neglecting BIA whiléd) showsB(k) when we have both BIA and SIA spin splittifggain for€=20 kV/cm). While
()—(d) refer to a QW grown in the crystallographic directi@01] we have assumed i@®) that the QW was grown ifiL10] direction. The
dimensions of the arrows are proportiona| B8 = Ak. For Ga, 44N 54AS, we have amplified(k) by a factor of 100; for GaAs, it has been
scaled by a factor of 50. All calculations are based on ar8&ane Hamiltonian g, 'y, andT'%) including off-diagonal remote band
contributions of second order ik (Refs. 13 and 16

rection[001] the effective fieldB is parallel to the plane of quasi-2D systems. The largest spin splitting can be achieved
the quasi-2D system. Indeed, the figBldue to SIA is al- in narrow-gap semiconductors where the subband dispersion
ways in the plane of the well. For growth directions otheris highly nonparabolic. Therefore, we present next numeri-
than[001], the effective field due to BIA has, however, also cally calculated results foBB(k;) obtained by means of an
an out-of-plane component. In particular, a symmetric QWaccurate & 8 Kane Hamiltonian (g, I'g, andI'y) includ-
grown in the crystallographic directiq10] has point group ing off-diagonal remote band contributions of second order
C,,.”" Here the BlA-induced field3(k;) must be perpen- in k (Refs. 13 and 16 First we analyze BIA spin splitting
dicular to the plane of the QWto all orders inkj). This  that is always present in zinc-blende QW’s. In Figa)awe
situation is remarkable because D’yakonov-Perel’ spin relaxsphow the effective field12) along contours of constant en-
ation is supprgssged if the spins are oriented perpendicular @rgy for a symmetric GaAs QW grown in the crystallo-
the 2D plan€>* Note also that i110-grown QW's B graphic direction[001] with a well width of 100 A. The
vanishes fork; || [001] because here the group lf is Ca,  gimensions of the arrows in Fig. 3 are proportional 18
which has merely one '”edl%c'b'% double-group representaz yi \we remark that typical Fermi wave vectors of
tion T's, which is two dimensional quasi-2D systems are of the order of the in-plane wave vec-
tors covered in Fig. 3.

For small in-plane wave vectolg the effective field in

The analytically solvable modeld) and(5) allow one to  Fig. 3@ is well described by Eq8). For larger wave vec-
study the qualitative trends of BIA and SIA spin splitting in tors the effective field becomes strongly dependent on the

B. Numerical results
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direction ofk. In particular, we see that fdg [ [110] the — neglected in Eq(5) but fully taken into account in the nu-
effective field reverses its direction when we increage ~ Mmerical calculations in Fig. 3Note that in Fig. &) the
This reversal reflects the breakdown of the linear approximagffective field 8 has been amplified by a factor of 50
tion in Eq. (6). For wider wells this breakdown occurs at Whereas in Fig. @) it has been amplified by a factor of 100.
even smaller wave vectokg, consistent with Eq(6). Gay 4nosfrs QW's can have a significant Rashba spin
More specifically, Eq(6) predicts fork; || [110] a reversal splitting™ so that these systems are of mtgbg;st for realizing
of the direction ofBB(k;) when kﬁ=2<kz>, independent of the sEm tr&nss?r ;erop?si%bky Dfatte}[r?nd B F|gIi 3(c)_
the material-specific coefficieni. Note, however, thatk?) \II:VE sg(g;/v assirﬁinzctalgt Vlvee h;v‘g S(I);\ speinssgﬂtetir;,g\;eduaestcl)nan
gi[r)?r?gss?snt(t:r]r? ir:alitgl%svp\)/icfl;lc dbi?n;o?)fésgg?etgr]r?ewtn\a/\siﬁceélecmc field€=20 kV/cm, but all tetrahedral terms that give

rise to BIA spin splitting were neglected. The numerical re-
Eq. (6) that the reversal of3(k) occurs forkj~y2(k;)  gyts are in good agreement with what one expects according

~0.029 A~*. For comparison, we show in Fig(9 the {5 Eqs.(4) and (14). Figure 3d) shows the effective field
effective field (k) for a symmetric GaAnosAs QW B(k)) for a Gay 44N sAs QW when we have both BIA and
with the same well width 100 A like in Fig. (@. Even  gia spin splitting. Due to the vectorial character Bf we
though BIA spin splitting is smaller in GaidnosAs thanin - have regions ik, space where the contributions of BIA and
GaAs, higher-order corrections are more important ing|a are additive whereas in other regions the spin splitting
Gag 4AngsAs due to the smaller fundamental gap of this gecreases due to the interplay of BIA and SIA. This is con-
material. Here we havegk)~3.6x10°* A~2 so that sjstent with the well-known fact that in the presence of both

2(k5)~0.027 A~1. On the other hand, the reversal of the BIA and SIA the spin splitting is anisotropic even in
direction of B(k;) occurs fork;~0.021 A™*. This illustrates  the lowest order ok; (Ref. 9. Using Egs.(1) and (5) we
the effect of higher orders in BIA spin splitting that were obtain

EXATSA= +k \/a2+ an(kf—2(k2))sin(2¢) + n?| (k2)?+

%k2—<k§>) kzsin<2<p>2} (163

~ =k a?—2an(kZ)sin(2¢) + nX(k2)?= O(k}). (16b)

In Figs. 3a)—-3(d) we have considered QW's grown in the field 1B(k) is given by a superposition of an in-plane field as
crystallographic directior]001] so that the effective field in Fig. 3(c) and a perpendicular field as in FigeR
B(k|) is always in the plane of the QW. For comparison, we

show in Fig. 3e) the effective field3(k) for a symmetric

Gay4AnosAs QW grown in the crystallographic direction ;. spiN PRECESSION OF 2D ELECTRON STATES

[110] with k, || [001] andk, || [110]. HereB(k)) is perpen- _ _

dicular to the plane of the QW. For asymmetric QW's A. Datta spin transistor

grown in the crystallographic directiofl10] the effective We want to briefly recapitulate the mode of operation of

the spin transistor proposed by Datta and Désee Fig. 4
I We assume that the semiconducting channel between the fer-
L romagnetic contacts is pointing in thxedirection; i.e., elec-
gate trons travel with a wave vectdq = (k,,0,0) from source to
s drain. A gate in thez direction gives rise to a tunable Rashba
*f coefficient . In this subsection we want to ignore the
o (nAYee A U ALEE Dresselhaus spin splitting). When the spin-polarized elec-
FM | = trons in the ferromagnetic source contact are injected at
y \ § | V— =0 into the semiconducting channel we must expand its
I 1 wave function|y;) in terms of the spin-split eigenstates
0 L X |43(ky)). Here it is the basic idea of the spin transistor that
the polarization of the electrons in the source contact is cho-
sen perpendicular t#(k,) =(0,5,,0). The statesy;) thus

O O

‘7’%
—

g
S
9

FIG. 4. Qualitative sketch of a Datta spin transistBef. 18.

Black arrows indicate the spin polarization in the ferromagnetic . o YRS
contacts(FM) and the semiconducting chanrithite). Gray ar- contain equal contributions of the spin-split eigenstates

SIA i i
rows indicate the effective magnetic fiel(k,) in the semicon- |4="(ky)). Assuming that the electrons in the source contact

ducting channel. A top gate is used to tune the spin precession b@,re polarize(;l in ther z dir.ection We.ge[negle(-:ting the en-
applying an electric fieldE perpendicular to the semiconducting VEIOPe functionsty (z) which are unimportant in the present
channel. discussiof,
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1 1/ 1 1
|'//i(X:0)>:’0>=§( _i>+ i>

The basis states on the right-hand side of @3 propagate

can be characterized by polar angl@sand ¢—i.e., B

(173 = Ak [sinfcosp,sindsing,cod]. The corresponding ortho-
normal eigenstates are

with wave vectorsk, + Ak/2 as depicted in Fig. 2: - e '?2cog 6/2) 1
1 1 1= e ?2sin(612) |’ (213
|¢i(x)>:E(equ(kX_Ak/Z)x] _|> _efiqS/ZSin(e/z)
. (21b

+exi (k + Ak/2)x]

1 1) :< €'%2c0q 6/2)
. A7 .
i For any values of the angle® and ¢, the spin state$21)

. " ) __represent a basis of the spin-1/2 space. Similar to(Edg
Due to the different phase velocities of the basis states in Eqye can thus expand the wave functio) of the spin-
I

(17b), we thus get polarized electrons in the ferromagnetic source contact in
terms of the basis stat¢21),

sin(— AkXx)
(S(x))= 0 : (18) |i(x=0))=cosu| 1) +sinue”|]), (223
cog Akx) with anglesu andv. Thus we get for the precessing electrons

This equation can be visualized by saying that the spin vec'-nSIde the channel

tor (S) of the state|;(x)) precesses around the effective (X)) = exdli (ky— Ak/2)x]cosu| T)

field B(k,)=(0,8,,0) (see Fig. 4 Note, however, that con- ' X _

ventional spin precessidhtakes place as a function of time +exdi(k,+Ak/2)x]sinue? [|). (22b

tp(\)/\gi]t(iaorﬁis n Eq(18) the spin precesses as a function OfThen the overlap of the spin vect®(x)) with the fieldB is

If finally the drain contact ak=L is ferromagnetic, too, given by

the electrons can exit the semiconducting channel only if the B.(S(x))= Ak cog 2u 23

spin orientation{ S(x=L)) of the electrons matches the po- (S60) L2u), @3

larization Py of the drain contact, independent of the positioninside the channel and indepen-
dent of the phase'”. This equation shows that in generali-

cosy=Pp-(S(x=L)), (19)  zation of Eq.(18) the spin is precessing on a cone around the

effective fieldB where the cone angle isu2 The precession
amplitudeAk cos(2) is the largest whem= 7/4 so that in
Eqg. (22) we have equal contributions of the spin-split states
?f} and|]). This corresponds to the situation that the spin
polarizationPs=(S(x=0)) in the ferromagnetic source con-
tact is perpendicular t#(k;). Spin precession is suppressed
_ for u=0 andu=w/2 when the spin polarizatioRs in the
COS¢=COS AKL). 20 ferromagnetic source contact is parallel3gk,) so that only
A tunable device is achieved if the wave vector differenceone spin staté21) contributes in Eq(22).
Ak is varied by changing the Rashba coefficientsee Eq. We have seen in Fig. 3 that for a fixed wave vedtpthe
(14) and Fig. 4. orientation of3(k|) can change when the Rashba spin-orbit
In the above qualitative discussion we have ignored deinteraction is tuned by means of an external gate. It follows
tails such as the resistance mismatch at the inte%c®s that the basic operating principle of the Datta spin transistor
which are important for the practical realization of such aremains valid for the more general eigensta®s provided
device. But these aspects do not affect the spin precessidghe polarizationPg of the ferromagnetic source contact is
inside the semiconducting channel which is the subject of therthogonal toB(k|) for all values of the external “knob”

where y denotes the angle betweé® and (S(x=L)). A
large positive value of cgsindicates that the electrons can
easily exit the semiconducting channel whereas a large neg
tive value indicates that the spin-polarized current is sup
pressed. Assuming th& p| [001] we obtain from Eq(18)

present investigation. that is used to tune the spin-orbit interaction. If the condition
PsL B(k) is not strictly fulfilled the tunability of the spin
B. Precession in the presence of BIA and SIA transistor is reduced. We note that these conclusions are valid

. . Iso for the more general eigensta(@
In the preceeding subsection we have assumed that onﬁl g g (5

the Rashba ternfl) contributes to spin splitting. Here the
effective magnetic field3(k) that characterizes the spin
orientation of the eigenstaté8) is always perpendicular to We present next numerically calculated results for the
the directionk| of propagation in the spin transistor. In gen- spin precession in a spin transistor obtained by means of an
eral, we have both SIA and BIA spin splitting so that the8x8 Kane Hamiltoniai*® that takes fully into account
effective field B(k|) is a more complicated function of both BIA and SIA. According to Fig. 3 the effective fields
k;; see Fig. 3. An arbitrarily oriented effective fiel(k) B(k|) due to BIA and SIA in §001]-grown QW are always

C. Numerical results
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Pso Il Ky kj: - == [170] 4— kj: - - - [170] .

. 1 — T | - — [100] .
kp=00287" [ [110]

Ak (107*R71)

cosy

Ak (107*R7)

cosy

FIG. 6. Spin splittingAk as a function of electric field in a
100-A-wide Gg 44N ssAs-INP QW. We consider different magni-
tudes and different crystallographic directionskgfas indicated in
the figure.

In Fig. 5 we show the overlap cgsbetween the spin
vector(S(x=L)) and the polarizatiof, of the drain contact
as a function of electric field. We consider different polar-
ization state$’s of the source contact and it is assumed that
Ps| Pp. The results in Fig. 5 can readily be understood by
means of Fig. 3()If k|| [110] ork;[|[110], BIA s of little
importance becausBg, || Bgia. Consistent with Eq(20)
we thus get a sinusoidal dependence ofycos £ with the
same angley for Psp| k| and Psp| [001]; see Figs. &)
and gb). We note that for fixed magnitudes kf and £ the
angle y can be adjusted by changing the lendthof the
channel. In the present wotkhas not been optimized. Note
that the smaller the length, the larger must be the modula-
tion of £ for switching the device(ii) For Pgp| k; [ [100]

FIG. 5. Overlap cog between the spin vect¢§(x=L)) and the ~and&=0 the spin precession is suppressed becRysgl 1B.
polarizationP,, of the drain contact as a function of electric figld I this case we have cgs1, independent of the channel
in a 100-A-wide Ga ,4ngsAs-INP QW with a channel length of lengthL. For £>0 the spin states start to precess. Here spin
L=5 um. In (a) we assumePsp| k| whereas in(b) we assume precession and cgsare more complicated functions &f
Ps | [001]. Different line styles correspond to different crystallo- because changes both the magnitude and orientatiodBof
graphic directions ok as indicated. The calculations are based on(jii) For a QW grown in the high-symmetry crystallographic
an 8x8 Kane Hamiltonian I, I'y, and I'Y) including off-  direction[001] the overlap cogis symmetric with respect to
diagonal remote band contributions of second ordek {iRefs. 13 ¢~ and&£<0. In the latter case the roles blﬂ‘ [110] and
and 18. ki |I[110] are reversed.

It is interesting to compare Fig. 5 with the magnitude of
spin splittingAk as a function of electric field (Fig. 6). We

cos ¥

cosy

(b) £ (kV/cm)

parallel to each other fok|| [110] and k;[[110]. On the - i
other hand, ok I[100] the fields are perpendicular to each see thatAk depends rather sensitively on both the magnitude

other so that we want to focus on these two extreme case@nd orientation of the wave vectiy. Nevertheless, we ob-
We will again consider a 100-A-wide GaJnossAs-InP tain in Fig. 5 the same modulation of the overlap xas a
QW, and we assume that the distance between source afignction of £ for k;[|[110] andk;[[[110], independent of
drain contact it =5 um. For ease of notation we will use a the magnitude ofk; [apart from a constant phase shift
suitably rotated coordinate systéfig. 4) such that the elec- xo(K)]. This is due to the fact that the relevant quantity for
trons always propagate in thex direction—i.e., K the spin transistor is not the absolute valike of the spin
=(k,,0,0). We assume that the Rashba spin-orbit couplingplitting, but thevariation 9(Ak)/9&. We see in Fig. 6 that

is tuned by applying an electric fielfl perpendicular to the the latter quantity depends much more weakly on the mag-
plane of the quasi 2D syste(Fig. 4). nitude and orientation d,. Furthermore, it is advantageous
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that the orientation oB(k)) is independent of the magnitude  Alternatively, we can use a QW grown in the crystallo-
of the tunable part of the spin-orbit interaction. It can be seegraphic direction[001] (Ref. 20. Here we can achieve in
in Fig. 3 that this condition is fulfilled fok,|[[110] and linear order ofk; that 18 is independent ok if |a|=|7].
k;I[110] but not fork, || [100]. Therefore the modulation of ~This situation is approximately shown by the innermost con-
cosy as a function of€ is more pronounced in the former tour in Fig. 3d). Note, however, that higher orders in spin
case than fok; | [100], even though in all cases the spin splitting [in particular the cubic term in Eq163] do not
splitting Ak shows roughly the same field dependencecomply with the requirement that in the on state of the device
I(AK)/dE. the orientation of3 should be independent &f. Further-
more, we see in Fig.(8) that only the orientation but not the
magnitude ofB3 is independent ok;. For electrons with
D. Spin precession and spin relaxation k;[I[110] we have actually3=0 whereag3 is the largest for

For the Datta spin transistor it is advantageous to have k[ [110]. In the former caseli.e., for Pspl k;||[110])
small spin relaxation in the semiconducting channel becausehanging€ diminishes the current through the device be-
spin relaxation is competing with the controlled spin precescause we have theRs pL B so that injected electrons pre-
sion in the channel. Typically, the dominant mechanism forcess aroun@. The electrons do not precess in the latter case
spin relaxation in 2D electron systems is the one proposed byecause we haves p| B independent of. DP spin relax-
Dyakonov and Perel{DP).*"** It can be viewed as a spin ation is highly anisotropic, too. Here the situation is actually
precession in the effective fiel# that is randomized be- reversed: We have large spin relaxation rates for those direc-
causeB changes when momentum scattering changes thgons of (S) for which we have a larg@(k) (Refs. 43 and
wave vectok of the electrons. DP spin relaxation can there-44) Therefore, spin relaxation supports the switching of the
fore b_e _suppressed (epart from a sign of8)the orientation - jeice most effectively ik || [110]. We remark that an all-
of B is independent of the wave vectly and the spins of . sjve investigation of this question should explicitly

the propagating elect_rons are oriented _paraIIeBtoSuch_ a  evaluate spin relaxation as a functionkpfand(s).
situation can be realized in a symmetric QW grown in the

crystallographic directiof110] whereB is perpendicular to
the plane of the QWRefs. 35 and 36 see Fig. 8). Simi-
larly, in a QW grown in the crystallographic directipA01]
with |a| =[7| we have in first order ok thatB| [110] (or In general, the totaB=0 spin splitting in inversion asym-
B|[110] depending on the sign ok and 7).?° In both  metric 2D systems is determined by an interplay of spin
cases spin relaxation is suppressed only for a particular valusplitting due to BIA, which is always present in systems with
of the Rashba spin-orbit couplinge., a particular value of a zinc-blende structure, and the tunable spin splitting due to
the field€). For the spin transistor it is preferable to have aSIA. These spin splittings can be characterized by effective
regime of electric field€” with suppressed spin relaxation so magnetic fieldsB3(k|) that vary as a function of in-plane
that we can switch between gps1 and cog=—1. wave vectok . The functional form ofBg(k|) due to SIA
Recently, an alternative spin transistor has beers independent of the crystallographic direction in which a
propose® that is less sensitive to spin relaxation. It uses theQW has been grown. Due to the axial symmetry of the
fact that not only DP spin relaxation can be suppressed iRashba term, the fieltBgz(k)) is always perpendicular tio,
(apart from a sign of3) the orientation of the effective field in the plane of the QW. Furthermore, it is only weakly de-
B is the same for all wave vectokg, but obviously spin pendent on the magnitude kf. On the other hand, the field
precession is then suppressed, too. Thereford |ifPs p, Bgia(k)) due to BIA depends sensitively both on the mag-
electrons travel unperturbed through the device which correnitude and orientation d€; as well as on the crystallographic
sponds to the “on” state. In a detuned system, on the othedirection in which the QW was grown. For QW’s grown in
hand, B varies as a function ok; which implies that, in  the direction[001] the field Bga(k|) is always in the plane
general B)| Ps p. Therefore, spin precession and/or DP spinof the QW whereas for QW’s grown in the directiphl 0] it
relaxation reorient the spins in the channel. The spin vectois pointing perpendicular to the plane of the QW. For other
(S(x=L)) thus no longer matches the polarizatieg of the ~ growth directions the field3ga(k;) has both in-plane and
drain contact so that the current through the device diminout-of-plane components.
ishes. Electrons injected into a 2D semiconducting channel
Such a spin transistor can be built using a QW grown inpropagate with a certain in-plane wave veckgr If these
the crystallographic directiofil10]. Here it follows from  electrons are spin-polarized such that the spiggy of the
Fig. 3(e) that if the QW is symmetric, then DP spin relax- €lectrons is not a spin eigenstate of the system, the spin of
ation is suppressed becauseis perpendicular to the plane the propagating electrons precesses in the effective field
of the QW for all in-plane wave vectork . If Ps ol B, B(kj). The precession amplitude is the largest if the spin
electrons thus travel unperturbed through the device. If th@rientation(S) of the electrons is perpendicular to the effec-
QW is made asymmetric by applying an electric fi€lger-  tive field B(k). In a QW grown in the crystallographic di-
pendicular to the plane of the well, the current diminishegrection[001] it is thus advantageous that the electrons are
because of the onset of spin precession and/or DP spin relaigjected in the in-plane directiorist10] or [110] because
ation. here the field3(k) is always perpendicular to the direction

IV. CONCLUSIONS
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of propagation. For the directiofil00], on the other hand,
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