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Spin orientation and spin precession in inversion-asymmetric
quasi-two-dimensional electron systems

R. Winkler
Institut für Technische Physik III, Universita¨t Erlangen-Nu¨rnberg, Staudtstrasse 7, D-91058 Erlangen, Germany

~Received 13 May 2003; published 28 January 2004; error corrected 11 February 2004!

Inversion-asymmetry-induced spin splitting of the electron states in quasi-two-dimensional~quasi-2D! sys-
tems can be attributed to an effective magnetic fieldB which varies in magnitude and orientation as a function
of the in-plane wave vectorki . Using a realistic 838 Kane model that fully takes into account spin splitting
because of both bulk inversion asymmetry and structure inversion asymmetry we investigate the spin orienta-
tion and the effective fieldB for different configurations of a quasi-2D electron system. It is shown that these
quantities depend sensitively on the crystallographic direction in which the quasi-2D system was grown as well
as on the magnitude and orientation of the in-plane wave vectorki . These results are used to discuss how
spin-polarized electrons can precess in the fieldB(ki). As a specific example we consider Ga0.47In0.53As-InP
quantum wells.

DOI: 10.1103/PhysRevB.69.045317 PACS number~s!: 73.21.Fg, 71.70.Ej, 72.25.Dc, 85.75.Hh
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I. INTRODUCTION

Spin degeneracy in a two-dimensional~2D! system is due
to the combined effect of spatial inversion symmetry a
time inversion symmetry.1 If the spatial inversion symmetry
is lifted, spin-orbit interaction gives rise to a spin splitting
the electron states even at a magnetic fieldB50. In
quasi-2D systems theB50 spin splitting can be caused b
the bulk inversion asymmetry~BIA ! of the underlying crys-
tal structure2 as well as by the structure inversion asymme
~SIA! due to, e.g., an electric fieldE perpendicular to the
plane of the 2D system.3 The B50 spin splitting is of con-
siderable interest both because of its importance for our
derstanding of the fundamental properties of quasi-
systems4–7 and because of possible applications in the fi
of spintronics.8

Common III-V and II-VI semiconductors such as GaA
InSb, and HgCdTe, have a zinc-blende structure. To low
order in the wave vectork BIA spin splitting in these sys-
tems is characterized by the so-called Dresselhaus te2

whereas spin splitting due to SIA is characterized by
Rashba term.3 Often the discussion of spin splitting is re
stricted to these lowest-order terms.9–12 Spin splitting of
higher orders ink can be fully taken into account by th
838 Kane model13 or the 14314 extended Kane model.14

The higher-order terms can be quite important for a qua
tative discussion ofB50 spin splitting.15,16

For a given in-plane wave vectorki we can always find a
spin axis^S(ki)& local in ki spacesuch that we have spin u
and spin down eigenstates with respect to the axis^S(ki)&.
Note that we cannot call the spin-split branchesE6(ki) of
the energy surface spin-up or spin-down because the d
tion of ^S& varies as a function ofki such that averaged ove
all occupied states the branches contain equal contribut
of up and down spinor components. This reflects the fact
in nonmagnetic materials we have atB50 a vanishing mag-
netic moment.

The spin orientation̂S(ki)& can be attributed to an effec
tive magnetic fieldB(ki) ~Refs. 9 and 17!. A discussion of
^S(ki)& based on the lowest-order terms in the effective sp
0163-1829/2004/69~4!/045317~9!/$22.50 69 0453
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orbit interaction has previously been given by several
thors; see, e.g., Refs. 18–22. In the present paper we c
pare these results with our calculations of^S(ki)& and the
field B(ki) using the more realistic 838 Kane model13 that
takes into account both SIA and BIA up to all orders inki . It
will be shown that for largerki the higher-order terms resu
in important modifications of̂S(ki)& andB(ki).

Datta and Das have proposed a novel spin transist18

where the current modulation arises from the precession
spin-polarized electrons in the effective fieldB(ki), while
ferromagnetic contacts are used to preferentially inject
detect specific spin orientations. Recently, extensive rese
aiming at the realization of such a device has been un
way.23 Here we will use our results for the fieldB(ki) in
order to discuss spin precession and its tunability for diff
ent device configurations. It will be shown that for certa
configurations the precession of spin-polarized electron
determined only by the tunable SIA spin splitting, but it
essentially independent of the magnitude of BIA spin sp
ting. For other configurations the tunability of spin prece
sion is significantly suppressed due to the interplay of S
and BIA.

We would like to emphasize that the present results ap
only to electrons with an~effective! spin j 51/2. Holes in the
topmost valence band, on the other hand, have an effec
spin j 53/2 ~Ref. 24!. Therefore, spin orientation and sp
precession in quasi-2D hole systems is qualitatively differ
from spin orientation and spin precession in quasi-2D el
tron systems. Hole systems will thus be covered in a fut
publication.

II. SPIN ORIENTATION OF 2D ELECTRON STATES

In the following we want to discuss the wave-vecto
dependent spin orientation̂S(ki)& for different models
of spin splitting. We will compare the analytical results f
the Rashba model and Dresselhaus model with our m
realistic calculations based on the 838 Kane Hamiltonian,
which takes into account SIA and BIA spin splitting up to a
orders inki .
©2004 The American Physical Society17-1
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A. General discussion

First we want to discuss the spin orientation in the pr
ence of SIA. Here to lowest order in the in-plane wave vec
ki5(kx ,ky,0) the spin splitting is characterized by th
Rashba Hamiltonian3

HSIA5a~sxky2sykx!, ~1!

wheresx andsy are Pauli spin matrices anda is a prefactor
that depends on the constituting materials and on the ge
etry of the quasi-2D system. If we use polar coordinates
the in-plane wave vector,ki5ki(cosw,sinw,0), the spin split-
ting is given by

E6
SIA~ki!56aki , ~2!

independent of the anglew, and the eigenstates are

uc6
SIA~ki!&5

eikir i

2p
jki

~z!
1

A2
U 1

7 ieiwL , ~3!

with r i5(x,y,0) and envelope functionsjki
(z). In Eq. ~3!

we have assumed that the Rashba coefficienta is positive.
The spin orientation of the eigenstates~3! is given by the
expectation value of the vectors of Pauli spin matrices:

^s~ki!&6[^c6~ki!usuc6~ki!& ~4a!

5S 6sinw

7cosw

0
D 56S cosS w2

p

2 D
sinS w2

p

2 D
0

D . ~4b!

Note that Eq.~4! is independent of the envelope functio
jki

(z) and the magnitudeki of the in-plane wave vector. Th
spin orientation~4! of the eigenfunctions~3! as a function of
the direction of the in-plane wave vector is indicated by
rows in Fig. 1~a!.

Next we want to discuss the spin orientation in the pr
ence of BIA spin splitting. For quasi-2D systems in a qua
tum well ~QW! grown in the crystallographic direction@001#
the Dresselhaus term becomes10,11

FIG. 1. Lowest-order spin orientation̂s& of the eigenstates
uc6(ki)& in the presence of~a! SIA and~b! BIA. The inner~outer!
circle shows^s& along contours of constant energy for the upp
~lower! branchE1 (E2) of the spin-split dispersion.
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HBIA5h@sxkx~ky
22^kz

2&!1syky~^kz
2&2kx

2!#, ~5!

with a material-specific coefficienth. This equation can eas
ily be diagonalized. We obtain a spin splitting

E6
BIA~ki!56h kiA^kz

2&21S 1

4
ki

22^kz
2& D ki

2sin~2w!2,

~6a!

'6h^kz
2&ki6O~ki

3!. ~6b!

We see here that in leading order ofki the Dresselhaus term
~5! gives rise to a spin splitting independent of the directi
of ki that is apparently very similar to the Rashba spin sp
ting ~2!. Nevertheless, the corresponding wave functions
qualitatively different due to the different symmetries of t
terms ~1! and ~5!. If we neglect the terms cubic inki , the
eigenfunctions in the presence of Dresselhaus spin split
are

uc6
BIA~ki!&5

eikir i

2p
jki

~z!
1

A2
U 1

7e2 iwL , ~7!

so that

^s~ki!&657S cos~2w!

sin~2w!

0
D . ~8!

The spin orientation~8! of the eigenfunctions~7! as a func-
tion of the direction of the in-plane wave vector is indicat
by arrows in Fig. 1~b!. For the Rashba spin splitting we se
in Fig. 1~a! that if we are moving clockwise on a contour o
constant energyE(ki) the spin vector is rotating in the sam
direction, consistent with the axial symmetry of the Rash
term. On the other hand, Eq.~8! and Fig. 1~b! show that in
the presence of BIA the spin vector is rotating counterclo
wise for a clockwise motion inki space.

In the above discussion we have assumed that the w
functions are two-component spinors. In general, the qu
2D eigenstates of a multiband Hamiltonian are of the form25

uc~ki!&5
eikir i

2p (
n

jnki
~z!un~r !, ~9!

with envelope functionsjnki
(z), andun(r ) denotes the band

edge Bloch function of thenth bulk band. Here we mus
evaluate the expectation value of

S5s^ 1orb, ~10!

where the identity operator1orb refers to the orbital part of
uc(ki)&. For the 838 Kane model13 containing the bands
G6

c , G8
v , andG7

v we obtain fori 5x,y,z

r

7-2
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SPIN ORIENTATION AND SPIN PRECESSION IN . . . PHYSICAL REVIEW B69, 045317 ~2004!
Si5S s i 0 0

0
2

3
Ji 22Ui

0 22Ui
†

2
1

3
s i

D , ~11!

where Ji denotes the matrices for angular momentumj
53/2, and the matricesUi are defined in Ref. 13. Once aga
the expectation valuêcuSuc& is a three-component vecto
that can be identified with the spin orientation of the mu
component wave functionuc&. We remark that while the
vector^s& of a spin-1/2 system is always strictly normalize
to unity, this condition is in general not fulfilled for the sp
expectation value^S& of multicomponent single-particle
states. This is due to the fact that in the presence of spin-o
interaction we cannot factorize the multicomponent wa
function ~9! into an orbital part and a spin part. However, f
electrons the deviation ofu^S&u from unity is rather small
~typically less than 1%! so that it is neglected here.

For free electrons in the presence of an external magn
field B the unit vector̂ s& is parallel to the vectorB. Fol-
lowing this picture we can attribute theB50 spin splitting in
quasi-2D systems to an effective magnetic fieldB(ki) par-
allel to ^S(ki)&. Obviously the magnitude of this effectiv
magnetic field should be related to the magnitude of theB
50 spin splitting. However, depending on the particu
problem of interest it can be convenient to define the m
nitude of spin splitting in two different ways: The energ
difference DE5E1(ki)2E2(ki) characterizes the magn
tude of spin splitting for a given wave vectorki whereas the
wave vector differenceDk characterizes the magnitude
spin splitting at a fixed energyE. While the former is rel-
evant, e.g., for Raman experiments,15 the latter quantity is an
important parameter, e.g., for spin relaxation6,17 and for the
spin transistor proposed by Datta and Das.18

In the following we want to explore the second definitio
where the effective magnetic field is given byB5^S&Dk.
Our precise definition ofDk is illustrated in Fig. 2: For the
given energyE and a fixed directionw of the in-plane wave
vectorki5ki(cosw,sinw,0) we determineki7Dk/2 such that

FIG. 2. For the given energyE and a fixed direction of the
in-plane wave vectorki we determineki7Dk/2 such thatE
5E1(ki2Dk/2)5E2(ki1Dk/2). HereE1 (E2) denotes the up-
per ~lower! branch of the spin-split dispersion.
04531
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E5E1(ki2Dk/2)5E2(ki1Dk/2). HereE1 (E2) denotes
the upper~lower! branch of the spin-split dispersion. The
we define

B5^S&1Dk52^S&2Dk, ~12!

with the sign convention that the fieldB is parallel to the
effective field felt by the electrons in the upper bran
E1(ki) and we have used the shorthand notation

^S&65^c6~ki7Dk/2!uSuc6~ki7Dk/2!&. ~13!

We remark that for a parabolic band with effective massm*
plus Rashba term~1! the wave vector differenceDk can be
evaluated analytically,18

DkRashba5
2m* a

\2
, ~14!

independent of the magnitude ofki . From an experimenta
point of view it should be kept in mind that spin splitting
often measured by analyzing Shubnikov–de Haas osc
tions; see, e.g., Refs. 26–29. Such experiments yield
subband densitiesN6 which are directly related toDk,

Dk5A4p ~AN22AN1!, ~15!

provided we can ignore anisotropic contributions toB50
spin splitting.~However, see also Refs. 30 and 31.!

The definition~12! presupposes that the spin expectati
values^S&1 and ^S&2 are strictly antiparallel to each othe
In Eq. ~4a! we saw that for the Rashba Hamiltonian th
condition is fulfilled exactly. This is closely related to th
fact that for the Rashba Hamiltonian the spin subband eig
states uc1

SIA(ki)& and uc2
SIA(ki8)& are orthogonal—

independent of the magnitude ofki and ki8 as long as the
wave vectorski andki8 are parallel to each other.32 In gen-
eral,uc1(ki2Dk/2)& anduc2(ki1Dk/2)& are only approxi-
mately orthogonal so that^S&1 and ^S&2 are only approxi-
mately antiparallel. However, we find that the angle betwe
the vectorŝ S&1 and^S&2 is always very close to 180° with
an error&1° so that we neglect this point in the remainin
discussion.

Even though we can evaluate the spin expectation va
^S& for each spin subband separately we do not attemp
define an effective magnetic fieldB for each spin subband
This is due to the fact thatB is commonly used to discus
phenomena like spin relaxation6,17 and spin precession18 ~see
below! which cannot be analyzed for each spin subband
dividually.

The allowed directions of the effective magnetic fieldB
can readily be deduced from the symmetry of the QW. T
spin-split states for a fixed wave vectorki are orthogonal to
each other; i.e., the spin vectors of these states are antip
lel. The spin orientation of eigenstates for different wa
vectors in the star ofki are connected by the symmetry o
erations of the system.33 Accordingly, only those spin orien
tations of the spin-split eigenstates are permissible for wh
every symmetry operation maps orthogonal states onto
thogonal states. In a QW grown in the crystallographic
7-3
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FIG. 3. Effective magnetic fieldB(ki) for ~a! a GaAs-Al0.3Ga0.7As QW and~b!–~e! a Ga0.47In0.53As-InP QW, both with a well width of
100 Å. In ~a!, ~b!, and~e! we assume that we have a symmetric well with BIA spin splitting only.~c! showsB(ki) due to an external field
of E520 kV/cm but neglecting BIA while~d! showsB(ki) when we have both BIA and SIA spin splitting~again forE520 kV/cm!. While
~a!–~d! refer to a QW grown in the crystallographic direction@001# we have assumed in~e! that the QW was grown in@110# direction. The
dimensions of the arrows are proportional touBu5Dk. For Ga0.47In0.53As, we have amplifiedB(ki) by a factor of 100; for GaAs, it has bee
scaled by a factor of 50. All calculations are based on an 838 Kane Hamiltonian (G6

c , G8
v , andG7

v) including off-diagonal remote band
contributions of second order ink ~Refs. 13 and 16!.
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rection @001# the effective fieldB is parallel to the plane o
the quasi-2D system. Indeed, the fieldB due to SIA is al-
ways in the plane of the well. For growth directions oth
than @001#, the effective field due to BIA has, however, als
an out-of-plane component. In particular, a symmetric Q
grown in the crystallographic direction@110# has point group
C2v .34 Here the BIA-induced fieldB(ki) must be perpen-
dicular to the plane of the QW~to all orders inki). This
situation is remarkable because D’yakonov-Perel’ spin re
ation is suppressed if the spins are oriented perpendicula
the 2D plane.35,36 Note also that in@110#-grown QW’sB
vanishes forki i @001# because here the group ofki is C2v
which has merely one irreducible double-group represe
tion G5, which is two dimensional.37

B. Numerical results

The analytically solvable models~1! and~5! allow one to
study the qualitative trends of BIA and SIA spin splitting
04531
r

-
to

a-

quasi-2D systems. The largest spin splitting can be achie
in narrow-gap semiconductors where the subband disper
is highly nonparabolic. Therefore, we present next num
cally calculated results forB(ki) obtained by means of an
accurate 838 Kane Hamiltonian (G6

c , G8
v , andG7

v) includ-
ing off-diagonal remote band contributions of second or
in k ~Refs. 13 and 16!. First we analyze BIA spin splitting
that is always present in zinc-blende QW’s. In Fig. 3~a! we
show the effective field~12! along contours of constant en
ergy for a symmetric GaAs QW grown in the crystall
graphic direction@001# with a well width of 100 Å. The
dimensions of the arrows in Fig. 3 are proportional touBu
5Dk. We remark that typical Fermi wave vectors
quasi-2D systems are of the order of the in-plane wave v
tors covered in Fig. 3.

For small in-plane wave vectorski the effective field in
Fig. 3~a! is well described by Eq.~8!. For larger wave vec-
tors the effective field becomes strongly dependent on
7-4
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SPIN ORIENTATION AND SPIN PRECESSION IN . . . PHYSICAL REVIEW B69, 045317 ~2004!
direction of ki . In particular, we see that forki i @110# the
effective field reverses its direction when we increaseki .
This reversal reflects the breakdown of the linear approxim
tion in Eq. ~6!. For wider wells this breakdown occurs
even smaller wave vectorski , consistent with Eq.~6!.

More specifically, Eq.~6! predicts forki i @110# a reversal
of the direction ofB(ki) when ki

252^kz
2&, independent of

the material-specific coefficienth. Note, however, that̂kz
2&

depends on the material-specific band offset at the interfa
For the system in Fig. 3~a! we find in good agreement with
Eq. ~6! that the reversal ofB(ki) occurs for ki'A2^kz

2&
'0.029 Å21. For comparison, we show in Fig. 3~b! the
effective fieldB(ki) for a symmetric Ga0.47In 0.53As QW
with the same well width 100 Å like in Fig. 3~a!. Even
though BIA spin splitting is smaller in Ga0.47In 0.53As than in
GaAs, higher-order corrections are more important
Ga0.47In 0.53As due to the smaller fundamental gap of th
material. Here we havê kz

2&'3.631024 Å 22 so that
A2^kz

2&'0.027 Å21. On the other hand, the reversal of th
direction ofB(ki) occurs forki'0.021 Å21. This illustrates
the effect of higher orders in BIA spin splitting that we
e

we

n

ti

n
g

04531
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neglected in Eq.~5! but fully taken into account in the nu
merical calculations in Fig. 3.@Note that in Fig. 3~a! the
effective field B has been amplified by a factor of 5
whereas in Fig. 3~b! it has been amplified by a factor of 100#

Ga0.47In 0.53As QW’s can have a significant Rashba sp
splitting38 so that these systems are of interest for realiz
the spin transistor proposed by Datta and Das.18 In Fig. 3~c!
we show the effective fieldB(ki) for the same well as in
Fig. 3~b! assuming that we have SIA spin splitting due to
electric fieldE520 kV/cm, but all tetrahedral terms that giv
rise to BIA spin splitting were neglected. The numerical r
sults are in good agreement with what one expects accor
to Eqs. ~4! and ~14!. Figure 3~d! shows the effective field
B(ki) for a Ga0.47In 0.53As QW when we have both BIA and
SIA spin splitting. Due to the vectorial character ofB, we
have regions inki space where the contributions of BIA an
SIA are additive whereas in other regions the spin splitt
decreases due to the interplay of BIA and SIA. This is co
sistent with the well-known fact that in the presence of bo
BIA and SIA the spin splitting is anisotropic even i
the lowest order ofki ~Ref. 9!. Using Eqs.~1! and ~5! we
obtain
E6
BIA1SIA56kiAa21ah~ki

222^kz
2&!sin~2w!1h2F ^kz

2&21S 1

4
ki

22^kz
2& D ki

2sin~2w!2G ~16a!

'6kiAa222ah^kz
2&sin~2w!1h2^kz

2&26O~ki
3!. ~16b!
as
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In Figs. 3~a!–3~d! we have considered QW’s grown in th
crystallographic direction@001# so that the effective field
B(ki) is always in the plane of the QW. For comparison,
show in Fig. 3~e! the effective fieldB(ki) for a symmetric
Ga0.47In 0.53As QW grown in the crystallographic directio
@110# with kx i @001# andky i @110#. HereB(ki) is perpen-
dicular to the plane of the QW.35 For asymmetric QW’s
grown in the crystallographic direction@110# the effective

FIG. 4. Qualitative sketch of a Datta spin transistor~Ref. 18!.
Black arrows indicate the spin polarization in the ferromagne
contacts~FM! and the semiconducting channel~white!. Gray ar-
rows indicate the effective magnetic fieldB(kx) in the semicon-
ducting channel. A top gate is used to tune the spin precessio
applying an electric fieldE perpendicular to the semiconductin
channel.
fieldB(ki) is given by a superposition of an in-plane field
in Fig. 3~c! and a perpendicular field as in Fig. 3~e!.

III. SPIN PRECESSION OF 2D ELECTRON STATES

A. Datta spin transistor

We want to briefly recapitulate the mode of operation
the spin transistor proposed by Datta and Das18 ~see Fig. 4!.
We assume that the semiconducting channel between the
romagnetic contacts is pointing in thex direction; i.e., elec-
trons travel with a wave vectorki5(kx,0,0) from source to
drain. A gate in thez direction gives rise to a tunable Rashb
coefficient a. In this subsection we want to ignore th
Dresselhaus spin splitting~5!. When the spin-polarized elec
trons in the ferromagnetic source contact are injected ax
50 into the semiconducting channel we must expand
wave function uc i& in terms of the spin-split eigenstate
uc6

SIA(kx)&. Here it is the basic idea of the spin transistor th
the polarization of the electrons in the source contact is c
sen perpendicular toB(kx)5(0,By,0). The statesuc i& thus
contain equal contributions of the spin-split eigensta
uc6

SIA(kx)&. Assuming that the electrons in the source cont
are polarized in the1z direction we get@neglecting the en-
velope functionsjki

(z) which are unimportant in the presen
discussion#,

c

by
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R. WINKLER PHYSICAL REVIEW B 69, 045317 ~2004!
uc i~x50!&5U1
0L 5

1

2 S U 1

2 i L 1U1
i L D . ~17a!

The basis states on the right-hand side of Eq.~17a! propagate
with wave vectorskx7Dk/2 as depicted in Fig. 2:

uc i~x!&5
1

2 S exp@ i ~kx2Dk/2!x#U 1

2 i L
1exp@ i ~kx1Dk/2!x#U1

i L D . ~17b!

Due to the different phase velocities of the basis states in
~17b!, we thus get

^S~x!&5S sin~2Dkx!

0

cos~Dkx!
D . ~18!

This equation can be visualized by saying that the spin v
tor ^S& of the stateuc i(x)& precesses around the effectiv
field B(kx)5(0,By,0) ~see Fig. 4!. Note, however, that con
ventional spin precession39 takes place as a function of tim
t whereas in Eq.~18! the spin precesses as a function
positionx.

If finally the drain contact atx5L is ferromagnetic, too,
the electrons can exit the semiconducting channel only if
spin orientation̂ S(x5L)& of the electrons matches the p
larizationPD of the drain contact,

cosx5PD•^S~x5L !&, ~19!

where x denotes the angle betweenPD and ^S(x5L)&. A
large positive value of cosx indicates that the electrons ca
easily exit the semiconducting channel whereas a large n
tive value indicates that the spin-polarized current is s
pressed. Assuming thatPS,Di @001# we obtain from Eq.~18!

cosx5cos~DkL!. ~20!

A tunable device is achieved if the wave vector differen
Dk is varied by changing the Rashba coefficienta; see Eq.
~14! and Fig. 4.

In the above qualitative discussion we have ignored
tails such as the resistance mismatch at the interfaces40–42

which are important for the practical realization of such
device. But these aspects do not affect the spin preces
inside the semiconducting channel which is the subject of
present investigation.

B. Precession in the presence of BIA and SIA

In the preceeding subsection we have assumed that
the Rashba term~1! contributes to spin splitting. Here th
effective magnetic fieldB(ki) that characterizes the spi
orientation of the eigenstates~3! is always perpendicular to
the directionki of propagation in the spin transistor. In ge
eral, we have both SIA and BIA spin splitting so that t
effective field B(ki) is a more complicated function o
ki ; see Fig. 3. An arbitrarily oriented effective fieldB(ki)
04531
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can be characterized by polar anglesu and f—i.e., B
5Dk @sinu cosf,sinu sinf,cosu#. The corresponding ortho
normal eigenstates are

u↑&5S e2 if/2cos~u/2!

eif/2sin~u/2!
D , ~21a!

u↓&5S 2e2 if/2sin~u/2!

eif/2cos~u/2!
D . ~21b!

For any values of the anglesu and f, the spin states~21!
represent a basis of the spin-1/2 space. Similar to Eq.~17a!
we can thus expand the wave functionuc i& of the spin-
polarized electrons in the ferromagnetic source contac
terms of the basis states~21!,

uc i~x50!&5cosuu↑&1sinueivu↓&, ~22a!

with anglesu andv. Thus we get for the precessing electro
inside the channel

uc i~x!&5exp@ i ~kx2Dk/2!x#cosuu↑&

1exp@ i ~kx1Dk/2!x#sinueiv u↓&. ~22b!

Then the overlap of the spin vector^S(x)& with the fieldB is
given by

B•^S~x!&5Dk cos~2u!, ~23!

independent of the positionx inside the channel and indepen
dent of the phaseeiv. This equation shows that in genera
zation of Eq.~18! the spin is precessing on a cone around
effective fieldB where the cone angle is 2u. The precession
amplitudeDk cos(2u) is the largest whenu5p/4 so that in
Eq. ~22! we have equal contributions of the spin-split sta
u↑& and u↓&. This corresponds to the situation that the sp
polarizationPS5^S(x50)& in the ferromagnetic source con
tact is perpendicular toB(ki). Spin precession is suppresse
for u50 andu5p/2 when the spin polarizationPS in the
ferromagnetic source contact is parallel toB(ki) so that only
one spin state~21! contributes in Eq.~22!.

We have seen in Fig. 3 that for a fixed wave vectorki the
orientation ofB(ki) can change when the Rashba spin-or
interaction is tuned by means of an external gate. It follo
that the basic operating principle of the Datta spin transis
remains valid for the more general eigenstates~21! provided
the polarizationPS of the ferromagnetic source contact
orthogonal toB(ki) for all values of the external ‘‘knob’’
that is used to tune the spin-orbit interaction. If the conditi
PS'B(ki) is not strictly fulfilled the tunability of the spin
transistor is reduced. We note that these conclusions are v
also for the more general eigenstates~9!.

C. Numerical results

We present next numerically calculated results for
spin precession in a spin transistor obtained by means o
838 Kane Hamiltonian13,16 that takes fully into accoun
both BIA and SIA. According to Fig. 3 the effective field
B(ki) due to BIA and SIA in a@001#-grown QW are always
7-6
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parallel to each other forki i @110# and ki i @110#. On the
other hand, forki i @100# the fields are perpendicular to eac
other so that we want to focus on these two extreme ca
We will again consider a 100-Å-wide Ga0.47In 0.53As-InP
QW, and we assume that the distance between source
drain contact isL55 mm. For ease of notation we will use
suitably rotated coordinate system~Fig. 4! such that the elec
trons always propagate in thex direction—i.e., ki
5(kx ,0,0). We assume that the Rashba spin-orbit coup
is tuned by applying an electric fieldE perpendicular to the
plane of the quasi 2D system~Fig. 4!.

FIG. 5. Overlap cosx between the spin vector^S(x5L)& and the
polarizationPD of the drain contact as a function of electric fieldE
in a 100-Å-wide Ga0.47In0.53As-InP QW with a channel length o
L55 mm. In ~a! we assumePS,D i ki whereas in~b! we assume
PS,D i @001#. Different line styles correspond to different crystall
graphic directions ofki as indicated. The calculations are based
an 838 Kane Hamiltonian (G6

c , G8
v , and G7

v) including off-
diagonal remote band contributions of second order ink ~Refs. 13
and 16!.
04531
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In Fig. 5 we show the overlap cosx between the spin
vector^S(x5L)& and the polarizationPD of the drain contact
as a function of electric fieldE. We consider different polar-
ization statesPS of the source contact and it is assumed th
PS i PD . The results in Fig. 5 can readily be understood
means of Fig. 3.~i!If ki i @110# or ki i @110#, BIA is of little
importance becauseBBIA i BSIA . Consistent with Eq.~20!
we thus get a sinusoidal dependence of cosx on E with the
same anglex for PS,Di ki and PS,Di @001#; see Figs. 5~a!
and 5~b!. We note that for fixed magnitudes ofki andE the
angle x can be adjusted by changing the lengthL of the
channel. In the present workL has not been optimized. Not
that the smaller the lengthL, the larger must be the modula
tion of E for switching the device.~ii ! For PS,Di ki i @100#
andE50 the spin precession is suppressed becausePS,Di B.
In this case we have cosx51, independent of the channe
lengthL. For E.0 the spin states start to precess. Here s
precession and cosx are more complicated functions ofE
becauseE changes both the magnitude and orientation ofB.
~iii ! For a QW grown in the high-symmetry crystallograph
direction@001# the overlap cosx is symmetric with respect to
E.0 andE,0. In the latter case the roles ofki i @110# and
ki i @110# are reversed.

It is interesting to compare Fig. 5 with the magnitude
spin splittingDk as a function of electric fieldE ~Fig. 6!. We
see thatDk depends rather sensitively on both the magnitu
and orientation of the wave vectorki . Nevertheless, we ob
tain in Fig. 5 the same modulation of the overlap cosx as a
function of E for ki i @110# and ki i @110#, independent of
the magnitude ofki @apart from a constant phase sh
x0(ki)]. This is due to the fact that the relevant quantity f
the spin transistor is not the absolute valueDk of the spin
splitting, but thevariation ](Dk)/]E. We see in Fig. 6 that
the latter quantity depends much more weakly on the m
nitude and orientation ofki . Furthermore, it is advantageou

FIG. 6. Spin splittingDk as a function of electric fieldE in a
100-Å-wide Ga0.47In0.53As-InP QW. We consider different magni
tudes and different crystallographic directions ofki as indicated in
the figure.
7-7
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R. WINKLER PHYSICAL REVIEW B 69, 045317 ~2004!
that the orientation ofB(ki) is independent of the magnitud
of the tunable part of the spin-orbit interaction. It can be se
in Fig. 3 that this condition is fulfilled forki i @110# and
ki i @110# but not forki i @100#. Therefore the modulation o
cosx as a function ofE is more pronounced in the forme
case than forki i @100#, even though in all cases the sp
splitting Dk shows roughly the same field dependen
](Dk)/]E.

D. Spin precession and spin relaxation

For the Datta spin transistor it is advantageous to hav
small spin relaxation in the semiconducting channel beca
spin relaxation is competing with the controlled spin prec
sion in the channel. Typically, the dominant mechanism
spin relaxation in 2D electron systems is the one propose
D’yakonov and Perel’~DP!.17,35 It can be viewed as a spi
precession in the effective fieldB that is randomized be
causeB changes when momentum scattering changes
wave vectorki of the electrons. DP spin relaxation can the
fore be suppressed if~apart from a sign ofB)the orientation
of B is independent of the wave vectorki and the spins of
the propagating electrons are oriented parallel toB. Such a
situation can be realized in a symmetric QW grown in t
crystallographic direction@110# whereB is perpendicular to
the plane of the QW~Refs. 35 and 36!; see Fig. 3~e!. Simi-
larly, in a QW grown in the crystallographic direction@001#
with uau5uhu we have in first order ofki thatB i @110# ~or
B i @110# depending on the sign ofa and h).20 In both
cases spin relaxation is suppressed only for a particular v
of the Rashba spin-orbit coupling~i.e., a particular value of
the fieldE). For the spin transistor it is preferable to have
regime of electric fieldsE with suppressed spin relaxation s
that we can switch between cosx51 and cosx521.

Recently, an alternative spin transistor has be
proposed20 that is less sensitive to spin relaxation. It uses
fact that not only DP spin relaxation can be suppresse
~apart from a sign ofB) the orientation of the effective field
B is the same for all wave vectorski , but obviously spin
precession is then suppressed, too. Therefore, ifB i PS,D,
electrons travel unperturbed through the device which co
sponds to the ‘‘on’’ state. In a detuned system, on the ot
hand,B varies as a function ofki which implies that, in
general,B i/ PS,D. Therefore, spin precession and/or DP sp
relaxation reorient the spins in the channel. The spin ve
^S(x5L)& thus no longer matches the polarizationPD of the
drain contact so that the current through the device dim
ishes.

Such a spin transistor can be built using a QW grown
the crystallographic direction@110#. Here it follows from
Fig. 3~e! that if the QW is symmetric, then DP spin rela
ation is suppressed becauseB is perpendicular to the plan
of the QW for all in-plane wave vectorski . If PS,Di B,
electrons thus travel unperturbed through the device. If
QW is made asymmetric by applying an electric fieldE per-
pendicular to the plane of the well, the current diminish
because of the onset of spin precession and/or DP spin re
ation.
04531
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Alternatively, we can use a QW grown in the crystall
graphic direction@001# ~Ref. 20!. Here we can achieve in
linear order ofki thatB is independent ofki if uau5uhu.
This situation is approximately shown by the innermost co
tour in Fig. 3~d!. Note, however, that higher orders in sp
splitting @in particular the cubic term in Eq.~16a!# do not
comply with the requirement that in the on state of the dev
the orientation ofB should be independent ofki . Further-
more, we see in Fig. 3~d! that only the orientation but not th
magnitude ofB is independent ofki . For electrons with
ki i @110# we have actuallyB50 whereasB is the largest for
ki i @110#. In the former case~i.e., for PS,Di ki i @110#)
changingE diminishes the current through the device b
cause we have thenPS,D'B so that injected electrons pre
cess aroundB. The electrons do not precess in the latter ca
because we havePS,Di B independent ofE. DP spin relax-
ation is highly anisotropic, too. Here the situation is actua
reversed: We have large spin relaxation rates for those di
tions of ^S& for which we have a largeB(ki) ~Refs. 43 and
44!. Therefore, spin relaxation supports the switching of
device most effectively ifki i @110#. We remark that an all-
inclusive investigation of this question should explicit
evaluate spin relaxation as a function ofki and ^S&.

IV. CONCLUSIONS

In general, the totalB50 spin splitting in inversion asym
metric 2D systems is determined by an interplay of s
splitting due to BIA, which is always present in systems w
a zinc-blende structure, and the tunable spin splitting due
SIA. These spin splittings can be characterized by effec
magnetic fieldsB(ki) that vary as a function of in-plane
wave vectorki . The functional form ofBSIA(ki) due to SIA
is independent of the crystallographic direction in which
QW has been grown. Due to the axial symmetry of t
Rashba term, the fieldBSIA(ki) is always perpendicular toki
in the plane of the QW. Furthermore, it is only weakly d
pendent on the magnitude ofki . On the other hand, the field
BBIA(ki) due to BIA depends sensitively both on the ma
nitude and orientation ofki as well as on the crystallographi
direction in which the QW was grown. For QW’s grown i
the direction@001# the fieldBBIA(ki) is always in the plane
of the QW whereas for QW’s grown in the direction@110# it
is pointing perpendicular to the plane of the QW. For oth
growth directions the fieldBBIA(ki) has both in-plane and
out-of-plane components.

Electrons injected into a 2D semiconducting chan
propagate with a certain in-plane wave vectorki . If these
electrons are spin-polarized such that the spinoruc i& of the
electrons is not a spin eigenstate of the system, the spi
the propagating electrons precesses in the effective fi
B(ki). The precession amplitude is the largest if the s
orientation^S& of the electrons is perpendicular to the effe
tive fieldB(ki). In a QW grown in the crystallographic di
rection @001# it is thus advantageous that the electrons
injected in the in-plane directions@110# or @110# because
here the fieldB(ki) is always perpendicular to the directio
7-8
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of propagation. For the direction@100#, on the other hand
the fields due to BIA and SIA are perpendicular to each ot
so that the orientation of the total fieldB(ki) depends on the
magnitude of BIA and SIA spin splitting.
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Lüth, J. Appl. Phys.83, 4324~1998!.
22P. R. Hammar and M. Johnson, Phys. Rev. B61, 7207~2000!.
.

.

23Proceedings of the First International Conference on the Phys
and Applications of Spin Related Phenomena in Semicond
tors, edited by H. Ohno@Physica E10 ~2001!#.

24J. M. Luttinger, Phys. Rev.102, 1030~1956!.
25M. Altarelli, J. Lumin. 30, 472 ~1985!.
26J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B38,

10142~1988!.
27B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P. Hong, P.

Bhattacharya, J. Singh, and M. Jaffe, Phys. Rev. B39, 1411
~1989!.

28G. Engels, J. Lange, T. Scha¨pers, and H. Lu¨th, Phys. Rev. B55,
R1958~1997!.

29D. Grundler, Phys. Rev. Lett.84, 6074~2000!.
30R. Winkler, S. J. Papadakis, E. P. De Poortere, and M. Shaye

Phys. Rev. Lett.84, 713 ~2000!.
31S. Keppeler and R. Winkler, Phys. Rev. Lett.88, 046401~2002!.
32From a group theoretical point of view this can be traced back

the fact thatuc1(ki)& and uc2(ki)& transform according to dif-
ferent irreducible representations of the group of the wave v
tor ki .

33G. L. Bir and G. E. Pikus,Symmetry and Strain-Induced Effec
in Semiconductors~Wiley, New York, 1974!.

34For a symmetric QW grown in the crystallographic directio
@110# the symmetry axis of the point groupC2v is parallel to the
axis @001# in the plane of the QW.

35M. I. D’yakonov and V. Y. Kachorovskiı˘, Sov. Phys. Semicond
20, 110 ~1986!.

36Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohn
Phys. Rev. Lett.83, 4196~1999!.

37R. H. Parmenter, Phys. Rev.100, 573 ~1955!.
38J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Le

78, 1335~1997!.
39J. J. Sakurai,Modern Quantum Mechanics, revised ed.~Addison-

Wesley, Redwood City, 1994!.
40G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B.

van Wees, Phys. Rev. B62, 4790~2000!.
41E. I. Rashba, Phys. Rev. B62, 16 267~2000!.
42A. Fert and H. Jaffres, Phys. Rev. B64, 184420~2001!.
43N. S. Averkiev and L. E. Golub, Phys. Rev. B60, 15 582~1999!.
44J. Kainz, U. Ro¨ssler, and R. Winkler, Phys. Rev. B68, 075322

~2003!.
7-9


