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Interaction-induced magnetoresistance in a two-dimensional electron gas
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We study the interaction-induced quantum correctdor,; to the conductivity tensor of electrons in two
dimensions for arbitraryfl 7 (whereT is the temperature ang the transport scattering tifnemagnetic field,
and type of disorder. A general theory is developed, allowing us to expiegg in terms of classical
propagators(“ballistic diffusons”). The formalism is used to calculate the interaction contribution to the
longitudinal and the Hall resistivities in a transverse magnetic field in the whole range of temperature from the
diffusive (T7<1) to the ballistic T7=1) regime, both in smooth disorder and in the presence of short-range
scatterers. Further, we apply the formalism to anisotropic systems and demonstrate that the interaction induces
guantum oscillations in the resistivity of lateral superlattices.
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[. INTRODUCTION return probability, it has(contrary to the quasiclassical
memory effectsan intrinsically quantum character, since it
The magnetoresistan¢®IR) in a transverse fiel@ is one  is governed by quantum interference of time-reversed paths.
of the most frequently studied characteristics of the two-As a result it is suppressed already by a classically negligible
dimensional (2D) electron gas:? Within the Drude— magnetic field, which changes relative phases of the two
Boltzmann theory, the longitudinal resistivity of an isotropic paths. Consequently, the corresponding correctiop,foin

degenerate system Bindependent, high-mobility structures is very small and restricted to the
range of very weak magnetic fields.
Pxx(B):po:(ezvvéT)_l, (1.2 Finally, another quantum correction to MR is induced by

the electron—electron interaction. While this effect is similar
where v is the density of states per spin directiary the  to those discussed above in its connection with the return

Fermi velocity, andr the transport scattering time. Devia- Probability (see Sec. IV beloy it is distinctly different in
tions from the constant,,(B) are customarily called a posi- Several crucial aspects. In contrast to the memory effects,
tive or negative MR, depending on the sign of the deviationthis contribution is of quantum nature and is therefore
There are several distinct sources of a non-trivial MR, whichstrongly T-dependent at low temperatures. On the other
reflect the rich physics of the magnetotransport in 2D syshand, contrary to the weak localization, the interaction cor-
tems. rection to conductivity is not destroyed by a strong magnetic
First of all, it has been recognized recently that everfield. As a result, it induces an appreciable MR in the range
within the quasiclassical theory memory effects may lead tf classically strong magnetic fields. This effect will be the
strong MR3~° The essence of such effects is that a particlesubject of the present paper.
“keeps memory” about the presenCer absenc)eof a scat- It was discovered by Altshuler and Aronothat the Cou-
terer in a spatial region which it has already visited. As alomb interaction enhanced by the diffusive motion of elec-
result, if the particle returns back, the new scattering event i§ons gives rise to a gquantum correction to conductivity,
correlated with the original one, yielding a correction to thewhich has in 2D the fornfwe setkg=7%=1)
resistivity (1.1). Since the magnetic field enhances the return
probability, the correction turns out to Bdependent. As a e?
prominent example, memory effects in magnetotransport of S0 yy= 772
composite fermions subject to an effective smooth random ™
magnetic field explain a positive MR around half-filling of
the lowest Landau levél Another type of memory effects The first term in the factor (4 37) originates from the ex-
taking place in systems with rare strong scatterers is respoghange contribution, and the second one from the Hartree
sible for a negative MR in disordered antidot arrdys®°®  contribution. In the weak-interaction regimes<kg, where
However, such effects turn out to be of a relatively minor«=4me?v is the inverse screening length, the Hartree con-
importance for the low—field quasiclassical magnetotranspottribution is small, 7~ («/Kg)In(k/«x)<1. The conductivity
in semiconductor heterostructures with typical experimentatorrection(1.2) is then dominated by the exchange term and
parameters, while at highd they are obscured by the de- is negative. The conditioif <1 under which Eq(1.2) is
velopment of the Shubnikov-de Haas oscillati@dHO). derived implies that electrons move diffusively on the time
Second, the negative MR induced by the suppression afcale 1T and is termed the “diffusive regime.” Subsequent
the quantum interference by the magnetic field is a famouworks'®* showed that Eq(1.2) remains valid in a strong
manifestation of weak localization.While the weak- magnetic field, leadingin combination withéo,,=0) to a
localization correction to conductivity is also related to theparabolic interaction-induced quantum MR,

3
1—§F)In Tr, Tr<l. (1.2
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Spyx(B) ( 3 )(wCT)Z_l magnetic fields, and range of random potential. We further
T 5

Tﬂln Tr, Tr<1, (1.3  apply it to the problem of magnetotransport in a smooth
disorder atw.>1. In the ballistic limit,T7>1 (where the
wherew.=eB/mcis the cyclotron frequency arlé=vg7the  character of disorder is crucially importantve show that
transport mean free path. Indeed,Tadependent negative while the correction tg,, is exponentially suppressed for
MR was observed in experimeftsi®and attributed to the . <T, a MR arises at strong& where it scales aB’T 12,
interaction effect. However, the majority of experiméfAtd*  We also study the temperature-dependent correction to the
cannot be directly compared with the thebt§'*'since they  Hall resistivity and show that it scales BIY? in the balllis-
were performed at higher temperaturds;=1. (In high-  tic regime and for strong. We further investigate a “mixed-
mobility GaAs heterostructures conventionally used in MRdisorder” model, with both short-range and long-range im-
experiments, X is typically ~100 mK and becomes even purities present. We find that a sufficient concentration of
smaller with improving quality of samplesin order to ex-  short-range scatterers strongly enhances the MR in the bal-
plain the experimentally observdddependent negative MR listic regime.
in this temperature range the authors of Refs. 12 and 13 The outline of the paper is as follows. In Sec. Il we
conjectured variouad hocextensions of Eq(1.3) to higher  present our formalism and derive a general formula for the
T. Specifically, Ref. 12 conjectures that the logarithmic be-conductivity correction. We further demonstrateec. 11 Q
havior (1.3) with 7 replaced by the quantum timg is valid  that in the corresponding limiting cases our theory repro-
up to T~1/7,, while Ref. 13 proposes to replaceTn by  duces all previously known results for the interaction correc-
— /2T . These proposals, however, were not supported byion. In Sec. Il we apply our formalism to the problem of
theoretical calculations. There is thus a clear need for #&nteraction-induced MR in strong magnetic fields and smooth
theory of the MR in the ballistic regim&,=1/r. disorder. Section IV is devoted to a physical interpretation of
In fact, the effect of interaction on the conductivity Bt ~ our results in terms of a classical return probability. In Sec-
=1/r has been already considered in the literatifé*Gold ~ tions V and VI we present several further applications of our
and Dolgopolo¥® analyzed the correction to conductivity theory. Specifically, we analyze the interaction effects in sys-
arising from theT-dependent screenihgof the impurity po-  tems with short-range scatterers and in magnetotransport in
tential. They obtained a linear-ifi-correctionso~e®Tr. In  modulated system@ateral superlatticesA summary of our
the last few years, this effect attracted a great deal of interegsults, a comparison with experiment, and a discussion of
in a context of low-density 2D systems showing a seeminglyossible further developments are presented in Sec. VII.
metallic behaviof®>?® dp/dT>0. Recently, Zala, Narozhny, Some of the results of the paper have been published in a
and Aleinet®-2! developed a systematic theory of the inter- brief form in the Lettef®
action corrections valid for arbitrary . They showed that
the temperature-dependent screening of Ref. 18 has in fact a Il. GENERAL FORMALISM
common physical origin with the Altshuler-Aronov effect but
that the calculation of Ref. 18 took only the Hartree term into
account and missed the exchange contribution. In the ballis- We consider a 2D electron gésharge—e, massm, den-
tic range of temperatures, the theory of Refs. 19-21 predictsity ne) subject to a transverse magnetic fi@dand to a

Po

A. Smooth disorder

in addition to the linear-irF correction to conductivityr,,, random potentiali(r) characterized by a correlation function
a 1/T correction to the Hall coefficie?ﬁpxy/B atB—0, and ,
describes the MR in parallel field.* (u(rju(r)=w(lr=r’)) 29

The consideration of Refs. 19-21 is restricted, however, . . -1
to classically weaktransverse fieldsw.7<1, and to the with a spatial rangel. The total ¢ ) and the transport

white-noisedisorder. The latter assumption is believed to be(;'ver)1 Scatterlng rates induced by the random potential are
justified for Si-based and somghose with a very large 9 y

spacey GaAs structures, and the results of Refs. 19-21 have 1 2nd

been by and large confirmed by most recent experimi&rits — =27wf ——W(¢), (2.2
on such systems. On the other hand, the random potential in Ts 0o 2m

typical GaAs heterostructures is due to remote donors and 1 2dg

has a long-range character. Thus, the impurity scattering is L J Tde _

predominantly of a small-angle nature and is characterized 2my 2WW(¢)(1 cosé), 23

by two relaxation times, the transport timeand the single- _
particle (quantum time 7, governing damping of SdHO, where W(¢)=w[2kgsin(¢/2)] is the scattering cross-
with 7> 7. Therefore, a description of the MR in such sys- section. We begin by considering the case of smooth disor-
tems requires a more general theory valid also in the range afer, ked>1, when 7/7,~(ked)?>1; generalization onto
strong magnetic fields and for smooth disordéy.related  systems with arbitrary/ 75 will be presented in Sec. Il B. We
problem of the tunneling density of states in this situationassume that the magnetic field is not too strangss<1, so
was studied in Ref. 34. that the Landau quantization is destroyed by disorder. Note
In this paper, we develop a general theory of thethat this assumption is not in conflict with a condition of
interaction—induced corrections to the conductivity tensor oftlassically strong magnetic fielde§{7>1), which is a range
2D electrons valid for arbitrary temperatures, transversef our main interest in the present paper.
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n ‘ D(i€n,i€n;r1,2:r3,r4)
ng ‘“’ = 0(= emen) (G(r1. 21 en) GlF Faiien)himp- (25
- b_ = C_ Following the standard route of the quasiclassical

formalism3~4°we perform the Wigner transformation,

D(ien—i€n;R1,p1:R2,p2)

::f dr dr’ e~ ilP1— (S/OARDIT g~ [P~ (/AR

XD(i€n,i€,;R1, IRy, 1), (2.6

where Ry=(r +r1)/2, Ry=(r,+r3)/2, r=r,—rq, andr’

=r,—r3. Note that the factors depending on the vector po-

tential make the ballistic diffusof2.6) gauge-invariant. Fi-

nally, we integrate out the absolute values of momenta
FIG. 1. Exchange diagrams for the interaction correction toand get the final form of the ballistic diffuson

0,5 . The wavy(dashedllines denote the interactigimpurity scat- .

tering), the shaded blocks are impurity ladders, and-thfe- sym- D(iwy;R1,ng;Rz,n0)

bols denote the signs of the Matsubara frequencies. The diagrams

obtained by a flip and/or by an exchange— — should also be = ! pldplf pzdpzp(iwl :R1,P1:R2,P2),
included. “Inelastic” part of the diagram$ g is canceled by a 2wy 2m 2m
contribution of the Coulomb-drag type, see Appendix A. 2.7)

We consider two types of the electron-electron interactiofVhich describes the quasiclassical propagation of an electron

potentialU,(r): (i) pointlike interactionlJo(r) =V,, and(ii) N the phase space from the pol§,n; to Ry,n;. Heren is
Coulomb interaction,Uo(r)=e?/r. In order to find the the unit vector characterizing the direction of velocity on the

interaction-induced correctiodior, ; to the conductivity ten- Fermi surface. The ballistic diffuson satisfies the quasiclassi-
(23

sor, we make use of the “ballistic” generalization of the €&l Liouville—Boltzmann equation

diffuson diagram technique of Ref. 1. We consider the ex- P

change contribution first and will discuss the Hartree term ||, |+ — — 1 CID(i - '
ntr _ e ter | +iveacod ¢— o)+ we-—+C|Dliwy,q;b,¢')

later on. Within the Matsubara formalism, the conductivity is F a cad '

expressed via the Kubo formula through the current-current

correlation function,

=2mw(p— '), (2.8

whereg(¢,) is the polar angle ofi(q) andC is the collision

(iQ) = ne_e25 — iflnd integral, determined by the scattering cross-sedfign,n’).
7Btk QP O do T For the case of a smooth disorder, the collision integral is
given by

Xf*“%hmﬂmwammm (2.4) L A

é:—;ﬁ¢. (2.9

whereQ,=27kT is the bosonic Matsubara frequency. Dia-
grams for the leading-order interaction correction are showrn contrast to the diffusive regime, whefe has a universal
in Fig. 1 and can be generated in the following way. First,and simple structur®(i w;,q)=1/(Dg®+|w||) determined
there are two essentially different ways to insert an interacby the diffusion constanD only, its form in the ballistic
tion line into the bubble formed by two electronic Green’s regime is much more complicated. We are able, however, to
function. Second, one puts signs of electronic Matsubara freget a general expression félr,z in terms of the ballistic
quencies in all possible ways. On the third step, one connecgropagatorD(i w;,g;n,n").
lines with opposite signs of frequencieg>0, €,<0 by The temperature range of main interest in the present pa-
impurity—line laddergwhich are not allowed to cross each per is restricted by <1, since at highef the MR will be
othep. Finally, in the case of the diagram where four elec- small in the whole range of the quasiclassical transport
tronic lines form a “box,” one should include two additional w.7s<1 (see below. In this case the ladders are dominated
diagrams,b and c, with an extra impurity line(*Hikami by contributions with many % 1) impurity lines. We will
box”).1:19:36.37 assume this situation when evaluating diagrams in the

The impurity-line ladders are denoted by shaded blocks irpresent subsection. A general case of arbitiary and 75/ 7
Fig. 1, we term them *“ballistic diffusons.” Formally, the will be addressed in Sec. Il B.

ballistic diffuson is defined as an impurity averagkenoted We start with the diagramd and e that give rise to the
below as(- - - )imp) Of @ product of a retarded and advancedlogarithmic correction in the diffusive reginteLet us fix the
Green'’s functions, sign of the external frequencé),>0. Each of the diagrams
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| |
|
|
d++ - d__ : :
|
- ! |
|
|
R :
* _ * - + - FIG. 3. Diagrand drawn in a different way in order to visualize
d/ d/__ the structure of Eq.2.11). The dashed frame encloses the electronic
A partBS,.
FIG. 2. Diagrams obtained by a flip and/or by an exchange ) )
+ > — from the diagran. In the exchange ternfcalculated in the present subsecjion

this structure is further integrated over the angleand ¢’,
d ande generates four diagrams by a flip with respect to the P d .. _ ,
horizontal line or by exchangé < —, see Fig. 2. Consider Bap(ioniQ,a)=(BoplioiQ.a:¢,¢"). (2.12
first the diagramd., . . There are two triangular boxes con- The angular bracketé. - -) denote averaging over velocity
taining each a current vertex and three electron Green’s fungtirections, e.g.,
tions (Fig. 3). In the quasiclassical regime.7,<1 one may
neglect the effect of magnetic field on the Green’s functions d¢, do,
(keepingw, in the ballistic propagators onlyFurthermore, (nXDnX)EJ S 2 C0SP1D(@),0; b1, $2)COSP;.
using Trs<1, we neglect the difference in momenta and o ) ] .
frequencies in the Green’s functions, since typical values of N€ fermionic frequencies obey the inequalitigs>0, en,
frequenciesQ,, iw, and momenta carried by the ballistic —@1<0, anden—,>0, which impliesw > en>Q,, so

diffusons are set by the temperature. Each triangle then rea@%?; )}geTsummation overen, gives the factor ¢
- k Tl

e (pdp pn, The diagramd_ _ has the same structufboth triangles
Fy(n)=— : 7 : ) have opposite signs, thus the total sign remains unchanged
— &+ —&— ’ S :
mJ 2m (=gp+if2r)™(=&p=ilf2ry) but the frequency summation is restricted by<O0, e,
:i277v7-§ev,:na, (2.10 —w>0, ande,,— O, <0, yielding the factor— w,/2#T in
) o _ _ the conductivity correction. The diagrard$ , andd’ _ ob-
where §,=p/2m—u. Combining the triangles with the tained fromd,, andd__ by a flip (or, equivalently, by
three ballistic propagators separated by the impurity lineeversing all arrowsdouble the result. Combining the four
(see Fig. 3 we obtain the following expression for the elec- contributions and changing sign of the summation variable,

tronic part of the diagrand, . , w——w, ind__ andd’ _ terms, we have
6
d¢ 87TO' T2 d2q
3 TP . _ d (0 )= — o | 21
(2mv) j 11 5 Dlio.6;¢, 60 W1~ ¢2) 60 4p(1 ) T 0, 2n)?

XTI ((P2)W( o= b3) D(i 0 — i€y ,q; p3, ba) o=
XW(ds— ¢s) 5(hs)W(hps— ) D(i w) ,Q; g, P")

4o @I ; d i
2B (o, i, b, ). (2.12 + 2 2,9 0BLei00) |,

X “U(io,@)B5(—iw),iQ,q)

o=0, 27T

(2.13

whereU(iw,q) is the interaction potential equal to a con-
(27v)3DWT ,WDWT gWD stantV, for pointlike interaction and to

In what follows we will use for brevity a short-hand notation

for the left-hand sidélhs) of (2.11) and analogous notations _ 1 K
for other structures of this type. Making use of the small- Ulio,q)=5 qr Lo [(Dliwy,q)] (2.14
angle nature of scattering in a smooth random potential, we ! b

can replace the W(¢;—¢;) factors in (2.1) by for screened Coulomb interaction. (B.13 we used the fact

(v ~*8(¢i— ¢)), yielding that U(—iw;,q)=U(iw;,q) and D(—iw;,q)=D(iw,q).
Equation(2.14) is a statement of the random-phase approxi-
Biﬁ(i(m A0, 0,0 mation (RPA), with the polarization operator given by
=—D(iw;,q)n,D(iw+iQ,q)ngD(iw;,q). M(iw,q)=2v[1-]w|(D(iw,q))]. (2.19
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The first term(unity) in square brackets i(2.15 comes from
the ++ and — — contributions to the polarization bubble,
while the second term is generated by the- contribution
(ballistic diffuson.

The diagrame are evaluated in a similar way. In all four
diagrams of this type one of the electron triangles is the same I ( I (,,CT)
as in diagramsl while another one has an opposite sign. The =

i ; ; . 1+ wit?\ w7 1
structures arising after integrating out fast momenta in elec- ¢ ¢
tron bubbles coincide with those dftype (BY «p): SUMMa-
tion over the fermionic frequency,, is constrained by the
condition w;> €,,>Q, for all the e-type diagrams. The cor-

Ta,B: 2<naDnﬁ>|q:0,wH0

O-CV,B

e?viv
(2.29

We turn now to diagram$ and g. The expressions for the
corresponding contributions read

rection due to the diagranestherefore reads

8mo, T2 [ d?q W —
O, (2m)? o=y 27T T

80 5(10)= U(iw,q)

X[Baﬁ(_iwl !ikaq)+Baﬁ(iwl iiQk!Q)]'
(2.16

We see that the first term in square bracket®ii6 cancels

the first term in(2.13. Thus, the sum of the contributions of

diagramsd and e takes the form

Q
4oy T K
d+e _*%0 ©

(IQk)— 0,

o @ (i), i)
0

w|=

(2.17

+ > QD0

>0y
where we introduced a notation

. dg .
DL (i, iQy)= J WU(IM ,Q)BL gl oy ,iQy,0),
(2.18

with the indexu labeling the diagram.
Similarly, we obtain for the diagrarh

- boy T [ & L
50'{13('9'():_79_'( wl:o a)|(I)a’3(Iw| ,IQk)
+ 2 Q@N(wi|, (219
>0y
with
Bhs(i®),i,q)
=—=2T,,(n,D(iw+iQy,q)ngD(iw,q)). (2.20

The tensorT

appearing in(2.20 describes the renormal- structure arises ido 4

4
80 (10, = —%Q—kLZOqu)aB(w.,.Qk)
+ > <Qk+w.><1>23(—iw|,mk>},
—Q<w<0
(2.22
509 (10 = 270 2 Q- ) 0
Top(1 Q)= Qk (Qy— o)) a,g(lwlyl k)
+ > <Qk+w|>¢gﬁ(—iw..ink>},
—Q<w<0
(2.23
with

Blalio,iQ,a)=T,(n,Dio+iQq)nsTsp.
(2.24

The sum of the contributionsandg is therefore given by

40'0 T

Sol (i) =~ w @) i) ,iQ)

(2.2

+ > QD! w0

>0y

We see that when the diagrarh&nd g are combined, the
same Matsubara structure as for other diagrpus. (2.17)
and(2.19] arises. In other words, the role of the diagragns
is to cancel the extra contribution of diagrafnsvhich has a
different Matsubara structure.

A word of caution is in order here. In our calculation we
have set the value of velocity coming from current vertices
to be equab g, thus neglecting a particle-hole asymmetry. If
one goes beyond this approximation and takes into account
the momentum-dependence of velocitfviolating the
particle-hole symmetpy the above cancellation ceases to be
exact and an additional term with a different Matsubara

f+9 After the analytical continuation is

ization of a current vertex connecting two electronic linesperformed, the corresponding correction to the conductivity

with opposite signs of frequencies,

has a form
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s _200(*do o Baglleonifnd
p T J =2 2T sink(w/2T) 11 1 . ,
R Ty Ty(Dliw,q)D(iw;,q)). (2.30
S

dg
Xf (2m)° B g0, q)IMU(w.q),  (2.26 We see that although each of the expressi@28, (2.29),

- . . . and(2.30 depends orrg, the single-particle time disappears
characteristic for effects governed by inelastic scatteringg. 1 the total contribution of the Hikami-box

This contribution is determined by real inelastic scattering
processes with an energy transéec T and behaveén zero
magnetic fieldlase?(T7)2. This implies that the correspond-
ing resistivity correction,dp~(T/eEg)? is independent of 1 _ ) 1 )

disorder. However, such a correction should not exist be- = 7 Tap{P(i@), ) D(iw,0)+ 5 Tap(Dliwy, )Ty
cause of total momentum conservation. Indeed, an explicit

calculation(see Appendix Ashows that this term is canceled (23D

by the Aslamazov—Larkin-type diagrams analogous to thosehe total correction to the conductivity tensor is obtained by
describing the Coulomb drag. collecting the contribution2.17), (2.19), (2.25), and(2.27).

Finally, we consider the diagramesb, andc. Already  Carrying out the analytical continuation to real frequencies,
taken separately, each of them has the expected Matsubajg get

B25" " (iw),iQ,0)

structure (contrary to the diagramsl,e and f,g, which
should be combined to get this structurelowever, another
peculiarity should be taken into account. The diagranis

and ¢ form together the Hikami box, so that their sum is
smaller by a factor- r;/7 than separate terms. Therefore,

some care is required: subleading terms of ordér should

be retained when contributions of individual diagrams are

calculated. The result reads
Q
4oy T K
8o o1y = — 0 Q—k{ . W D2 (w10
W)=

. (2.27

+ X Q@3 (w10

w|>ﬂk

Here the contribution of the diagraehas the form

Bis(io,iQy,q)

1 1 ~
= ETay[E5y6+(Tl) yS}TJﬂ<D(I ] vq)D(I o) 1q)>

1
+ 5 Tay Typ(Dliw1,0)), (2.29

where the matriﬂ'aﬁ has the same form ak,; with a re-
placementr— 7,

71 lry o
N Uz’
T Ys=(T Y gt ——=| 6as-
B Yas= T D0t | 7 =7 50

Further, the contributions of the diagramsndc read

1
BYs(iw),iQy,q)=— Z—TSTayTw<D(iw,,q)D(i ®,9))
(2.29

and

50, 5(0)= i::Qfldw w cothy-
X[® 50+ Q,0)— 4 45(0,Q)],
(2.32
where
D o5(0,0)= D2 " (0,0) + DY 4(0,Q)
+O! 4(0,0)+ DN (0,9). (233

We are interested in the case of zero external frequefcy,
—0, when Eq.(2.32 can be rewritten as

h w
w Ccot ﬁ .
(2.39

Recalling the definitior{2.18 of ®#, we finally arrive at the
following result:

50 5= ‘Tofmdcp 0
Tap= " i gr) 0 “ﬁ(w’)aw

dow 9

w
0} coth—}

w22, |
60 5= —2€ v,;in o7

wz Jw
d2
x|
(2m)?

where the tensoB,,z(,q) is given by

IMm[U(w,0)Bqg(w,q)], (2.39

Tozﬁ 575
Baﬁ(w!q)=T<DD>+Tay 7<D>_<nyDnﬁ> TSB

—2T,,n,DngD)—(Dn,DngD). (2.3

The first term in(2.36) originates from the diagrans b, c,
the second term frora, f, g, the third term fromh, and the
last one fromd ande. We remind the reader that this result
has been obtained under the assumptiga 7,7~ 1; gener-
alization to arbitraryrs/ T and 75T will be considered in Sec.
II B. It will be shown there that the conductivity correction
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retains the form(2.35 in the general case but the expression Baﬁ(w,q)=Tay7rv[(DSy§D>—2<Dn7Wn5D>]T5ﬁ
(2.39 for B,4(w,q) is slightly modified.

+ Ty

520y~ (n, 0y T

B. General case
) ] ) —2T,/n,DngD)—(Dn,DngD). (2.39
In the preceding section we have derived the formula for ) S ] ) _
the correction to the conductivity tensor for the case of al € COrTectionsp, to the resistivity tensor is then immedi-
smooth disordefwith < 7) assumingrs<T *. Since char- ately obtained by usingp=—pdaop. This yields
acteristic momentg and frequencies are set by the tem-

perature, this assumption implieg;<1 and wr¢<1. This 5paﬁ=gisz do 7 wCOthi}

allowed us to simplify the calculation by neglecting the evgv) =27 do 2T

and o dependence of Green’s functions connecting ballistic

diffusi db ideri ly the ladd ith d’q

diffusions and by considering only the ladders with many XJ Im[U(w,q)BEfB)(w,q)], (2.39
impurity lines. Furthermore, we have used the small-angle 2

nature of scattering when calculating the Hikami box contri- . :
bution (2.31). We are now going to discuss the general case\zNhere the tensoB(a”g is related t0B,, Eq.(2.38, via
of arbitrary 75/ and T 7. (P (11 -1

It turns out that the expressioli.17), (2.19, and(2.25 Bap= (T DarBys(T g (249
for the contribution of the diagrants—h derived in the case EXxplicitly, corrections to the components of the resistivity
of a smooth disorder remain valid in the general situationtensor are expressed throughoy,=doy, and doy,
The simplest way to show this is to use the following tech-= — doyy as follows:
nical trick (cf. Refs. 41 and 42 One can add to the system o 2.2
an auxiliary weak smooth random potential with a long Spxo=pol (07" = 1) 60+ 270y ], (24D

transport scattering time> r but short single-particler,

<1, such thatT7,<1. This potential will not affect the
quasiclassical dynamics and thus should not change the rdlote that the resulté2.36 and(2.38 for B,4(w,q) satisfy
sult. On the other hand, it allows (s view of the condition the requirement
T~75< 1) to pe_rform the gradient _and frequency e.xpansion in B,s(0,0)=0, (2.43
Green's functions as was done in Sec. Il A. Adding such an
auxiliary disorder amounts to a redistribution between quanas follows from
tum and quasiclassical degrees of freedom: all the informa-
tion about the real disorder is now contained in the ballistic
propagators. It can be verified by a direct calculatioith-  gnd
out using the additional disordethat the above procedure
yields the correct result. 1 , .
It remains to consider the Hikami-box contributi¢h?27). (27) f d¢D(¢,¢')|g-0=i/w.
When calculating it in Sec. Il A, we used the small-angle . o _
nature of scattering implying that a single scattering line in-1 h€ condition (2.43 implies that spatially homogeneous
serted between two ballistic propagators approximately pref_Iuctuatlons in the potent@l do not change the conductivity,
serves  the  direction  of  velocity, (Pwp)  Se€e Refs. 19 and 43 for discussion.
—(2mv) " YDD)/ 7, and (Dn,WngD)—(27v) (DD) o
X(l/rs—1/7)8,5. In the more general situation, when the C. Limiting cases
scattering is at least partly of the large-angle character, this is Having obtained the general formula, we will now dem-
no longer valid and Eq(2.31) acquires a slightly more com-  onstrate that it reproduces, in the appropriate limits, the pre-
plicated form, viously known results for the interaction correction. Specifi-
cally, in Sec. Il C 1 we will consider the diffusive limif
<1 studied in Refs. 1, 10, and 11, while Sec. I C 2 is de-
B25 " (iw),i0,0q) voted to theB—0 case with a white-noise disorder ad-
_ dressed in Refs. 19 and 20. In Sec. Il C 3 we will analyze
= T4 [{DSy5D) = 2(Dn,WnsD) ] T 55 how the linear-int asymptotics ofa(B=0) in the ballistic
1 regime obtained in Ref. 19 for a white-noise disorder de-
T2 Tay(D) Ty, 237 pends on the character of the random potential.

Spyy=pA(WETP—1)80yy— 20,780y, ].  (2.42)

(NgDN Y| q=0= T op(w)I26° 0 E

Where Sy, =Sy =W(N,n'), Syy=—Syx=we/2mv. 1. Diffusive limit

Summarizing the consideration in this section, in the gen- We begin by considering the diffusive limifr<1 in
eral situation the interaction correction retains the formwhich we reproducéfor arbitraryB and disorder rangehe
(2.39 with the tensoB ,4(w,q) given by logarithmic correctior(1.2) and(1.3) determined by the dia-
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gramsa—e. Let us briefly outline the corresponding calcula-
tion. The propagator fogl, w7<1 can be decomposed as
D=D®%+ D" where D*® is singular, whileD"? is finite

(regulay atgq, w—0, see, e.g., Refs. 37 and 44. The singular
contribution is governed by the diffusion mode and has the

form [see Eq(D5)]

Yr(o, )V (¢",0)
Dg’—iw 1

DY w,q;¢,¢")=

V,(¢,a)=1-ic{V cos p— ) —ict? sin(¢— ¢y,
(2.49
where D =vE7/2(1+ w27?) is the diffusion constant in the
presence of a magnetic field and

qUFT

M) = D)) —

cri(Q)=c’(Q)= 7773, (2.49
R L l+wc7'2

c@(q)= —c®( ):C'”F_“’CTZ (2.46
r (] L(q 1+w(2:7'2' .

The leading-order contribution of the diagram®, andc
(that containing two singular diffusor®®) is exactly can-
celed by the part of the diagrandsand e with the structure
(D*n,D"™N,D%), i.e., with one regular part of the propaga-
tor inserted between two singular diffuson€) )= (Dg?
—iw)~ 1. Indeed, in view ofn,D™%hg)=3T,,, the latter
contribution reduces te- 3(D%?T,z, while the diagrams
a,b, andc yield

1
Top=5(D)’Tap, (2.47)

1 5.5
E<DS>2T‘Y7|:TY + wCE‘y§

where €,5 is the antisymmetric tensore,,= €,,=0, €,
=—ey=1.
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19 and 20. The contributio(2.37) of the diagramsa,b,c
takes for the white-noise disorder the form

Ba+b+c_

1 5,5
afB Tay <D><D> T + wC<DD> €ys

T2
2
_;<Dny><”5D>+5y5<D> Tss. (2,49

Using now the explicit form of the ballistic propagator for
the case of white-noise disorder aBe~0 [Eqgs.(B4), (B6),
(B10), (B11), and(B36)] we recover the results fato,, and
dpxy Obtained in a different way in Refs. 19 and 20, see
Appendix B.

3. B=0, ballistic limit T=>1

In the ballistic limit T7>1 and for white-noise disorder
the result of Ref. 19recovered in Sec. Il C 2 and Appendix
B) vyields a linear-inf conductivity correction, do
=(2vVoe?/m)Tr for the pointlike interaction anddo
=(e?/ )T for the Coulomb interaction. The question we
address in this section is how this behavior depends on the
nature of disorderfi.e., on the scattering cross section
W(e)].

In order to get thel 7 ballistic asymptotics, it is sufficient
to keep contributions t@2.38 with a minimal number of
scattering processes. Specifically, the propagdtoin the
first and the third terms d2.38 can be replaced by the free
propagator

2wS(p—¢')
—i(0+i0)+ique cogdp—pg) '
(2.50
while in the second term it should be expanded up to the

linear term in the scattering cross sectidithe second term
produces then the same contribution as the first term in

Di(w,q;,¢")=

It remains thus to calculate only the contribution of the (2-38]. The last(fourth) term in(2.38 does not contribute to

diagramsd + e with three singular diffusons,

I

2
e’vg

2
f d’q  (DM,DNgD%)
X zIm :
(2m) 1+iw(D%
2?2 Ur d%q
—W(H—wgfz)zﬁ ‘

eZ

= ﬁln(TT) 5015!

h(()
wCOtﬁ

Jd
do—

S0 =
Tap Jw

(—ig.)(—iggl)
DgADg*—iw)?

(2.48

the T asymptotics. We get therefore

BXX:ZWVTZ«DfWDf)_2<Dfnanxpf>)_27<nfonfo>-
(2.51
Let us consider first the case of a short-range interaction,
Uo(r)=V,. The structure of Eq92.35 and (2.51) implies
that the interaction correction is governed by the return of a
particle to the original point in a timé<T '<r after a
single scattering event. It follows that the coefficient in front
of the linear-inT term is proportional to the backscattering

probability W( ) = w(2ke),

2vVe?

2mvW( ) T72. (2.52

00y =
XX T

in agreement with Refs. 1, 10, and 11. The result for a pointAS shown in Appendix C, this result remains valid in the

like interaction differs only by a factorV.

2. B—0, white-noise disorder

We allow now for arbitraryT = but consider the limit of
zero magnetic field assuming a white-noise disorder £,
andW(n,n")=1/27rv7), which is the limit studied in Refs.

case of Coulomb interaction, with the factor\2, replaced

by unity. This shows that in the ballistic limit the Coulomb
interaction is effectively reduced to the statically screened
form, U(r)=1/2v when the leading contribution téo, is
calculated. According t62.52, in a smooth disorder with a
correlation lengttd>kg* the T+ contribution is suppressed
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by an exponentially small factor 2v7w(2kg) , . ) A x(d)x(e")
~exp(—ked). In fact, for a smooth disorder the linear term P(@,0; ¢, ") =exg —iqR(sing—sin¢’)] DY —iw
represents the leading contribution fdrs>1 only. In the
intermediate ranger 1<T< 7-;1 the dominant return 2 eln(é—¢")

- i +
processes are due to many small-angle scattering events. 0 DP—i(w—nwg) +nlr

However, the corresponding return probability is also
exponentially suppressed-exp(—const/t) for relevant =DYw,q,¢,¢')+D"*Yw,q;d,¢'), (3.1

(ballistic) times t<r, yielding a contribution Soyy . o2
~ exg] —const{T7)2]. Thus, the interaction correction in the WHerex(#) =1-i(aRc/wc7)cosp and D=R;/27, and the
polar angles of velocities are counted from the anglej.of

ballistic regime is exponentially small Bt=0 for the case of : . . X 2
smooth disorder. Moreover, the same argument applies to tq%quatlon(s.l) is valid under the assumptionR,)” < wcr.

case of a nonzerd. as lona & w.<T e will see below that the characteristic momegtare de-
12€ro, 9 Wes1. ___termined by the conditioDg?~w~T, so that the above
In any realistic system there will be a finite concentration

: . » assumption is justified in view ab.>T. Furthermore, this
of residual impurities located close to the electron gas plan'éondition allows us to keep only the firtingulaj term D*

and inducing large-angle scattering processes. In othgf, square brackets if8.1) when calculating D),
words, a realistic random potential can be thought as a su-

perposition of a smooth disorder with a transport timg, J5(qRy)

and a white-noise disorder characterized by a tifpe. Ne- (D)= DY iw’ (3.2
glecting the exponentially small contribution of the smooth

disorder to the linear term, we then find that the ballisticwhere Jo(z) is the Bessel function. Moreover, the formula
asymptotics(2.52 of the interaction correction takes the (2.36 for B,, can be cast in a form linear if» by using

form

9
(DD)=~i-—(D), 3.3
e r 2vV,, pointlike,
So=——T7X (2.53 i d
T Tun 1, Coulomb, (n,DngD)=— —(n,D), (3.4
(= aQﬁ
wherer = r7_1+ 7. 1is the total transport scattering rate. If 1 5
the transport is dominated by the smooth disordey, (DnDnD)=— 2U§3q2<D>' (3.9
X

> 74, the coefficient of thd r term is thus strongly reduced

as compared to the white-noise result of Ref. 19. Therefore, it is again sufficient to take into account only the
Finally, it is worth mentioning that in addition to tier first term in(3.1) for calculation ofB,, if the identities(3.3),

term corresponding to the lower limit~T of the frequency (3.4), and(3.5) are used[Of course By, can also be evalu-

integral in (2.39), there is a much larger b(tindependent ated directly from Eq(2.36), but then the secon@tegulay

contribution S0 Eg 7 governed by the upper limib~E-.  term D™ in (3.1) has to be included.Combining all four

This contribution is just an interaction-induced Fermi-liquid- terms in(2.36, we get

type renormalization of the bafaeoninteracting Drude con-

ductivity. B (0.) J(qR) Drg? 47 J(QQ?
w,()= =—0 .
x (0 (DPP—iw)® B2 (Q2—iQ)3
(3.6
lIl. STRONG B, SMOOTH DISORDER _ _ _ _ _
In the second line we introduced dimensionless variaQles
A. Quasiclassical dynamics =qR., O=2w7, B=w.T.

We have shown in Sec. Il C that due to small-angle nature Note that Eqs(3.2) and (3.6) differ from those obtained
of scattering in a smooth disorder the interaction correctiorin the diffusive regime by the factalj(qR;) only. This is
is suppressed in the ballistic regiffies1 in zero(or weak related to the fact that the motion of the guiding center is
magnetic field. The situation changes qualitatively in adiffusive even on the ballistic time scate<r (providedt
strong magnetic fieldp.7>1 andw:>T. The particle ex- >wc_1), while the additional factor corresponds to the aver-
periences then within the time~T~! multiple cyclotron aging over the cyclotron orbisee Sec. IV below
returns to the region close to the starting point. The corre- We turn now to the calculation d@,, . Substituting(3.1)
sponding ballistic propagator satisfies the equafi8) with in (2.36), we classify the obtained contributions according to
the collision term(2.9). powers of the small parametergl/ The leading contribu-

The solution of this equation in the limit of a strong mag- tions are generated by the first and the last term&i86
netic field, w.7>1, is presented in Appendix D. For calcu- and are of order M, i.e., larger by factop as compared to
lation of the leading order contribution #ir,, andSp,,, the  B,,, EQ. (3.6). (This extra factor ofg is simply related to
following approximate form is sufficient: | oyl oxx=B.) However, these leading contributions cancel,
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Y(DD)—(Dn,Dn,D
2 < > < Ny ny >
order 18

.
=350~ (DND"h,D?)

__27 W@ 2P %Q o

B (Q*-i)® B (Q-in)?
as in the diffusive limit, see the text above EQ.47).
To evaluate terms of higher order ingl/we need a more
accurate form of the propagat@.1). Since the contributions

3.7

of order 132 to By turn out to cancel as well, we have to
know the propagator with the accuracy allowing to evaluathh erel
the terms of order B%. To simplify the calculation, we use Hartree

again the identitie$3.3) and(3.4). As to Eq.(3.5), it cannot

be generalized onto they component of the tensor, and we

use instead

i | dD
(DnyDnyD)=— < —nyD> : (3.9

VR | d0x
It is then sufficient to calculate the propagafrup to the
1/8? order. This is done in Appendix D, see EqB14)—
(D17). Substituting this result foD in Eq. (3.6) and com-
bining all terms, we get after some algebra

B (o) = - | 79I+ 40 N(Q)
xyl@,q :83 (Qz—iﬂ)z
QKL 3.9
Q%-iQ

We see that similarly tq3.6) the kernelB,,(w,q) has a
diffusive-type structure witt?— i€ in denominator reflect-

PHYSICAL REVIEW B 69, 045313 (2004

jwdtifz(t)
o sinkf(xTt)

(3.1)

The integral ove is then easily evaluated, yielding

[’

J
Im o ZF((U)%

)
wCOtﬁ—

2

e
S0 yy=— -2 vVoGo(TT1), (3.12

fw duexp —1/u)

_ 2,2
Golx)=mx sinF?(rxu)

[(u=D)lo(2lu)+14(1/u)],
(3.13

o(2) and14(z) are modified Bessel functions. The
term in this case is of the opposite sign and twice
larger due to the spin summatidwe neglect here the Zee-
man splitting and will return to it later

It follows from Egs.(3.6) and (3.9 that the correction to
the Hall conductivity is smaller by the factow(r) ! as
compared td3.12. This implies, according t¢2.41) that in
a strong magnetic field the correction to the longitudinal re-
sistivity is governed byso,,

(3.19

similarly to the diffusive limit(1.3). In fact, it turns out that
the relation(3.14 holds in a strong magnetic field).>T,
for arbitrary disorder and interaction, see below. On the other
hand, as is seen froii2.42, contributions of bothSa,, and
doyy 10 Spy, are of the same order inwg7) L. We will
return to the calculation ofp,, in Sec. Il G.

The MR p,,(B) is thus quadratic ifB, with the tempera-
ture dependence determined by the func@y{T ), which
is shown in Fig. 4a). In the diffusive k<1) and ballistic

ing the diffusion of the guiding center, while the Bessel func-(x>1) limits the functionGy(x) has the following asymp-
tions describe the averaging over the cyclotron orbit. Clearlytotics:

both kernels(3.6) and (3.9) vanish atq=0, as required by
(2.43.

B. Pointlike interaction

To find the interaction correction to the conductivity, we

have to substitute Eq$3.6) and(3.9) in the formula(2.35.

We consider first the simplest situation, when the interaction

U(w,q) in (2.39 is of pointlike charactet) (w,q) =Vq. Us-
ing v2q dg=w?QdQ, we see that all theB-dependence

drops out froméoy,, and the exchange contribution reads

=d()

__gn?
80y 8e“ vV, o 27 90

Q coth o
T

- 72 2
Xf Qdle o(Q)Q (3.10

(Q%-i0)®

027T

To simplify the result(3.10, it is convenient to perform a

Fourier transformation with respect £ (which corresponds
to switching to the time representatjon

—Inx+const, x<1,
GO(X)_ COX_1/2, X>1, (313
with
3372 0.276 (3.16
C = =UU. .
" 167

[here{(z) is the Riemann zeta-functidri_et us note that the
crossover between the two limits takes place at numerically
small valuesT7~0.1 (a similar observation was made in
Refs. 19 and 20 This can be traced back to the fact that the
natural dimensionless variable (8.12) is 27T 7.

C. Coulomb interaction, exchange

For the case of the Coulomb interaction the result turns
out to be qualitatively similar. Substituting8.2) in (2.14
and neglecting the first termp~ (T/D)Y?< « in the denomi-
nator of (2.14), we obtain the effective interaction
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3 . . 3
A
\\ — G¥)
N —1.6-In x FIG. 4. FunctionsGy(T7) (a)
27 21 3 e and G((T7) (b) determining the
. . \\ """" 0.138 T-dependence of the exchange
(0] (O] N term for pointlike, Eq.(3.12, and
. . \\ | Coulomb, Eq.(3.19, interaction,
\ respectively. Diffusive and ballis-
o\ tic asymptotics, Eq3.15 and Eq.
b \\\»\\ (3.21), are also shown.
0 N : 0 — -
0.01 ) 10 0.01 0.1 T 1 10
T
1 Q%-i0 Note that in contrast to the case of a_pointlike interaction, a
U(w,0)=5- —— 5 : (3.17  transformation to the time representation does not allow us to
2v Q2-iQ[1-J5(Q)] simplify (3.18, since the resultingQ-integral cannot be

Inserting (3.17) and (3.6) into (2.39, we get the exchange evaluated analytically. We have chosen therefore to perform
(Fock) contribution ’ the Q-integration, which results in an infinite suf8.20).

This amounts to returning to the Matsubdimaginary fre-

o e? wdQ d O coth Q quency representation and is convenient for the purpose of
80 = "~ 72), 2Q cot AT+ numerical evaluation o6g(x). In the diffusive k<1) and
ballistic (x>1) limits this function has the asymptotics
lef Qdo Q°Je(Q) _ —Inx+const, x<1,
o 7 QM-I JQIHQ-i0)? GeX)=1 o, (3.21
(3.189 X x>1,
Using (3.14 we find the MR, and is shown in Fig. @).

Spiy(B) w,T)? - ~ ibuti
P>;)x0 __ (WEJ GHT), (3.19 D. Coulomb interaction, Hartree contribution

We turn now to the Hartree contribution. The correspond-
o ing diagrams can be generated in a way similar to exchange
GF(x)=32w2x2f dQ Q°J3(Q) diagrams(Sec. Il A) but in this case one should start from
0 two electron bubbles connected by an interaction line. There
2 2 2 are again two distinct ways to generate a skeleton diagram:
n{12mxn[1=J(Q)J+[3~H(Q)JQ} _ two current vertices can be inserted either both in the same
A=1 (4mxn+Q?)°3{4mxn[1—J3(Q)]+ Q3?2 bubble or in two different bubbles. Then one puts signs of
(3.20 Matsubara frequencies in all possible ways and insert ballis-
: tic diffusons correspondingly. The obtained set of diagrams
is shown in Fig. 5. There is one-to-one correspondence be-
tween these Hartree diagrams and the exchange diagrams of
Fig. 1, which is reflected in the labeling of diagrams.

As seen from comparison of Figs. 1 and 5, the electronic
part B4 4(¢,¢") of each Hartree diagram is identical to that
of its exchange counterpart. The only difference is in the
arguments of the interaction propagator(w,q)
—U[0,2g sin(p—¢')/2], where¢ and ¢’ are polar angles
of the initial and final velocitiegcf. Eqgs.(2.11) and(2.12)].
Therefore, in the first order in the interaction, the Hartree
correction to conductivity has a form very similar to the
exchange correctiofR.35),

5H—422Fdw& thas
Tap= VY | 5w 90| ON2T
2
FIG. 5. Hartree diagrams for the interaction correctiomr{g; . % d°q d_‘75 de’
The diagrams are labeled in the way as their exchange counterparts (277)2 2 27
in Fig. 1. The diagrams obtained by a flip and/or by an exchange
++ — should also be included. XIMUy(d,d")Byplow,q;0,¢")],  (3.22
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where

Un(¢,¢")=U (3.23

0,%&¢ sin_T)
is the Hartree interaction anl,z(w,q;¢,¢") is given by
Egs. (2.36 and (2.38 without angular bracket$denoting
integration over¢ and ¢'), see Eq.(2.12. Clearly, for a
pointlike interactionU (w,q) =V, this yields

Soty=—2807,, (3.24

as has already been mentioned in Sec. Il B.

PHYSICAL REVIEW B 69, 045313 (2004

Taking into account that the angular dependence of lead-
ing contributions taB3,,(w,q; ¢, ¢") andD(w,q; ¢, ¢") is of
the form exp—iQ(sinp—sing’)], we find that the singlet
Hartree correction tar,, is given by Eq.(3.22 with a re-
placement

Un(d, o) —(Un(d,¢"))
A 1+io(D(w,q)]?

Un(o,¢")— (3.29

Note that in the diffusive limit3,, is independent ob, ¢’,
so that only the zero angular harmonic of the interaction
contributes. On the other hand, the zero angular harmonic is

In the case of the Coulomb interaction the situation is,suppressed in the effective singlet-channel interac@o29).
however, more delicat€. To analyze this case, it is conve- Therefore, the singlet channel does not contribute to the Har-
nient to split the interaction into the singlet and triplet tree correction in the diffusive limit, in agreement with Refs.

parts1®46For the weak interaction¢<kg , the conductivity
correction in the triplet channel is then given by E§.22
with an extra factor.

1 and 46. The situation changes, however, in the ballistic
regime, when3,; becomes angle dependent.
After the angular integration, the triplet Hartree conduc-

As to the singlet part, it is renormalized by mixing with tjvity correction takes the forni3.10 with the replacement

the exchange term. The effective interactidpin the singlet
channel is therefore determined by the equation

1
U(,¢)=Uo~ 5Un($.6")

d¢, d 1
—f%%{uo—gumm}
XP(p1,¢2)U(¢2,0"), (3.29

whereU,=2me?/q is the bare Coulomb interaction, and
Plo,q; ¢1,¢2) =2v[2m( 1~ ¢o) TioD(w,q; d1,¢2)]
(3.2
describes the electronic bubble. Solvi(®25 to the first
order inUy, we get

U(®,0:¢,¢")=U(0,0)-Ui(w,q;¢,¢"), (3.27)

where U(w,q) is the RPA-screened Coulomb interaction
(2.14 which has already been considered in Sec. Il C, while Po

Vo—1/2v, and

5 md¢p Jo(2Q sin )
JO(Q)—>—3yf0§ y+2sing (3.30

wherey= «/kg . For the singlet part we have a result similar
to (3.18 with a slightly differentQ-integral,

= Jy,Q)Q?
d 1
Jo 0 Q{QZ—iQ[l—Jé(Q)]}Z(QZ—iQ)
where
md¢ Jo(2Q sing) —I5(Q)
.=y [ e TS 33

This yields for the total Hartree contribution

5p(B)  (@c7)?
- =(:k3 [GH(Try) +3G(Try)], (3.32

the second term describes the renormalized Hartree interac-

tion in the singlet channel,
US r — 1U ! 1
H(d),qb)—z H( o, ") ST

d¢, d
XJZ_;%[UH(¢!¢1)P(¢1=¢2)

+P(b1,02)Un(d2,0")]
ok [ 381 862805 80,
211°) 27 2w 2w 2w
XP(p1,h2)Un( b2, d3) Pz, da).
(3.28
Here I1=(P) is the polarization operatof2.15, and we

whereG}, and G}, governing the temperature dependence of
the singlet and triplet contributions have the form

G (x,y) = 327X f:dQ FAY.Q)

n{12mxn[1—J3(Q)]+[3—233(Q)]1Q?
A=1 (4mxn+Q?)4mxn[1-J3(Q)]+Q?%®’

have used the singular nature of the bare Coulomb interac-

tion implying |IT|Uy>1 for all relevant momenta.

(3.33
Glixy)= wxzme du
HUY 4 Jo sink?(mxu)
n exd —(2/u) si? ¢] ,
XJO d¢ T2 sing (u—2sirf ¢).
(3.39
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FIG. 6. Hartree contributiorGy(T7), for (a)
weak interactiong/kg=0.1, 0.2, 0.3, 0.5, antb)

0] strong interactionfy=—0.3, —0.4, — 0.5 (from
bottom to top. Dashed curves represent the ex-
change contribution.

0 N |
0.01 01 T¢ 1 10 0.01 01 17 1 10

Figure &a) shows Gy(x,y)=Gj(x,y)+3GL(x,y) as a A general solution of these equations requires inversion of
function of x=Tr for several values ofy=«/kg. The integral operators with the kernels—F“P and | —(U,
asymptotic behavior oﬁp)t'x is as follows: +FP)P and is of little use for practical purposes. The situa-
tion simplifies, however, in both diffusive and ballistic limits.
In the diffusive regime ,T<1/r, the second term in the

3 <
yInylzIn(Tr)+Iny],  Tr<1, polarization bubblé3.26) and 3,z are independent of angles

5p>t|x(B) . (wcT)z

—or ) Y ly(MTn¥2], 1<Tr<1p?, é,¢’. As discussed in Sec. Il D, this leads to the suppres-
Po R (Tr)~ Y2, Trs>1h2 sion of the Hartree contribution in the singlet channel, while
° ' ' (3.35  in the triplet channel only the zero angular harmonic sur-
vives,
We see that atx/kp<l a new energy scaleTy
~ 77 (ke /k)? arises where the MR changes sign. Specifi- . 1 FJ(Dg*—iw)
cally, atT<Ty the MR, 8py,= dp", + 6pt, . is dominated by Uer(w.0)= 5 (1+FDG— 0’ (338

the exchange term and is therefore negative, whileT at

>Ty the interaction becomes effectively pointlike and thewe then reproduce the known reg&ﬁGH(TT)zgeL(TT)
Hartree term winsgp!! = —28p~, , leading to a positive MR with

with the same T7) %2 temperature dependence, see Fig.

6(a). In(1+FQ)

= }In Tr. (3.39

Ghﬂﬁjz{l—
E. Hartree contribution for a strong interaction
In Sec. 11l D we have assumed thatke<1, or, in other In the ballistic limit, T>1/7, the first term is dominant in

words, the interaction parameter=\2e¥sv (wheres is (320, since(D) is suppressed by a f?‘Ctdé(Q)él’ ac-
the static dielectric constant of the materia small. This cording to (3.2. The angular harmonics then simply de-
condition is, however, typically not met in experiments onc0UPle in Eqs(3.36 and (3.37, yielding eﬁectlvelHartree
semiconductor structures. &f/ke is not small, the exchange interaction constants Ug =0, Uf o¢=(2v) "Ff/(1
contribution (3.19 remains unchanged, while the Hartree +Fh), m#0, andUp = (2v) " *F/(1+Fp). Therefore,
term is subject to strong Fermi-liquid renormalizafidhand  the Hartree contribution reads
is determined by angular harmonig§,” of the Fermi-liquid
interactionF“*( ) in the triplet (¢) and singlet p) chan- Co > Fr
els. . ST R R TR

The effective interactiorlJgy’ replacing Uy(¢,¢’) in (3.40
(3.22 is then given by an equation of the tyg®8.25 but
with —F7?(¢— ¢")/v substituted fold4(¢,¢") (and with-  From a practical point of view, it is rather inconvenient to

Fo 1

+3,
m

out Uy in the triplet channe) describe the interaction by an infinite set of unknown param-

etersF7”. For this reason, one often assumes that the inter-

) N FP(dp— ") d¢, do, action is isotropic and thus characterized by two coupling
Uer( b, ¢ )_UO’LT_IEE constantsF§ and F§ only. Within this frequently used

(though parametrically uncontrollgdpproximation, the sin-

Fr(dp— 1) ) , glet part of the Hartree term is completely suppressed. The
X Yot 2v Pl¢1,b2)Uen( $2.4"), Hartree contribution is then determined solely by the triplet
channel with the effective interaction
(3.36
. , o 1 Fj 2—iQ
o FU$=g") [ ddy dd, FO(d— ) % (0q)= o — O Qi
Ueﬁ(¢:¢ )= —— | € ! 2v 1+ E¢ =3
2v 27 2 2v OQZ_iQ 1— 0 JZ(Q)
Y , 1+F§™°
XP(p1,$2)Ugi( b2, "). (3.37) (3.4))
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The Hartree correction to the resistivity takes the form of Eqyyhere ¢,=27E,, and the functionGl(x,y;e,) describing
(3.19 with an additional overall factor of 3 and with(Q)  the temperature dependence of the contribution withpro-

multiplied by Fg/(1+Fg), jection of the total spin is given by
7 - wx?y (= duexdie,u]
J2 Jz 0 =1—7° ' 3.4 Gt X,y €,)= J' z
(OB =1-7"Q, G4 Blyie)=—7 | o
everywhere in(3.20; the result is shown in Fig. (B) for 7 exg —(2/u) sirf ¢] i
several values oF§ . Xfo d¢ y+2sing (u—2sirt ¢).
F. Effect of Zeeman splitting (3.49

Until now we assumed that the temperature is much large¥Ve Sée that al 7<e,, the contributions of-1-components
than the Zeeman splitting,, T>E,. In typical semicon- ©f the triplet saturate at the value given £§.34 with a
ductor structures this condition is usually met in nonquantiz'€Placementi7—e;, i.e., at~Gy(e;,y). In the opposite
ing magnetic fields in the ballistic range of temperatures)imit, Tr>¢,, we haveGy(x,y;e,) =G} (x,y), and the re-
allowing one to neglect the Zeeman term. If, however, thissult (3.32 is restored.
condition is violated, T<E,, the Zeeman splitting sup- The triplet contribution for strong isotropic interaction
presses the triplet contributions with tiagorojection of the  (i.e., determined byFj only) in the presence of Zeeman
total spinS,==*1, while the triplet withS,=0 and singlet splitting reads
parts remain unchanged.

H 2
In'the' casetof a weak.interactiowll'(F<1, .t'he t.riplet 9pxx(B) __ (@c7) [GY(Tr,0)+2 ReGY(Tre,)].
contribution 3G}(T,«/ke) in Eq. (3.32 is modified in the Po Kl
following manner: (3.49

. . ~ The functionG}(Tr,€,) is given by a formula similar to
3GH(X,Y)—Gh(Xy) +2 ReGy(Xyie), (343 (320,

o

o n(12mxnJ’(Q)+[2+ 7°(Q)][Q%+ie,])
o =32 2,2 _ 7q0 .
GPi(X, €,) = 321X JO dQQ1-J Q]2 (4t [Q2+i1 €, AmxnT*(Q) + [Q2+i €112 (3.46
|
with 77(Q) as defined in(3.42. Again, for high tempera- X2 1

>du
turesTr>¢,, all the triplet components contribute, so that ngy)(x)= - sz —exp(—1/u)
the overall factor of 3(as in the absence of the Zeeman o u

splitting) restores. On the other hand, fér<e,, the con- ST(9U= 3 o( 1) + (3= 2+ (1/u 34
tributions with =1 projection of the spin saturate at low A No(Li)+( (L] (348
temperatures, and therefore the triplet contribution is partlywhen writing (3.48, we subtracted a temperature indepen-

sink?(rxu) - (7u)?

suppressed, see Fig. 7. dent but ultraviolet-divergen(.e., determined by the upper
limit in frequency integral contribution GE}\)’); we will re-
G. Hall resistivity turn to it in the end of this subsection.

. . . . i (xy) i ics:
As discussed in Sec. Ill B, calculation of the correction 1N€ functionGy™(x) has the following asymptotics:

dpxy to the Hall resistivity requires evaluation of bodlar,, 9rx. x<l

anddoy, . In fact, as we show below, the temperature depen- G (x)= (3.49
dence ofdp,, in a strong magnetic field is governed by, 0 11c,x¥2,  x>1,
in the diffusive limit and bydo,, in the ballistic limit. .
Sincedoyy has been studied above, it remains to calculatd” ith

doyy. Using the result3.9) for the corresponding kernel J7
By, We get the exchange contribution for the case of a Clz__ﬂ-é’(llz)zo_647_ (3.50
pointlike interaction 4

VA Combining (3.12 and (3.47 and using(2.42), we find the

80xy=—5— E[ngy)(Tr) +GXY],  (3.4D  correction to the Hall resistivity,
Cc

where the temperature dependence of the correction is gov- 5ny: Vo GP(Tr) (3.50
erned by the function pxy  mKel 70 ™ ’
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FIG. 7. The functiorG}(Tr,€,), Eq.(3.46), describing the tem-
perature dependence of the triplet contribution is shownHpr
=—0.3 and different values of Zeeman splitting,=0.1,0.3,0.5,
1.0 (from top to botton. Dashed curve represents the case 0.

where

—2Inx+const, x<1,
—11c,x*? x>1.

(3.52

GPY(X)=2Go(x) — GEY (x) =

The functionngy(x) is shown in Fig. 8. As usual, the Har-
tree term in the case of pointlike interaction has an opposite 2
sign and is twice larger in magnitude, if the Zeeman splitting

can be neglected.

PHYSICAL REVIEW B59, 045313 (2004

Egs.(3.18 and(3.20]. The functionG¥(x) describing the
temperature dependence of the exchange correction to the
Hall resistivity is shown in Fig. 8. In the ballistic regime,
where G(FXV)(X) dominates, the interaction becomes effec-
tively pointlike with vVy=3%, so that one can simplify the
calculation usingc&Y(x)=1G{Y(x).

To analyze the Hartree contribution, we restrict ourselves
to the isotropic-interaction approximation. Then, similarly to
the consideration in the end of Sec. Il E, only the triplet part
contributes, and, in order to calculﬂi‘”(x), one should
use Egs(3.9 and(3.41. In the diffusive limit the Hartree
correction to the Hall resistivity is determined k$.39,
while in the ballistic limit we have again effectively pointlike

interaction with »V,=3FJ/(1+Fg), implying that
G (x)=—3G{M(x)Fg/2(1+F§). This yields
Sph G(T7)
al PRI (3.55
Pxy TKE
In(1+FY)
2[1——00}Inx, x<1,
FO
GPY(x)=3X
K0 1 Fg .,
—Cq X4, x>1.
1+Fg
(3.56

An analogous consideration for the Coulomb interaction We return now to theT-independent contributioG{}

yields a similar result for the exchange correction

dpsy _ GEU(TT)

7Tk|:|

, (3.53
Pxy

— 2 Inx+const,

GPY(x)=2G(X) — GV (x) = 11
= ( ) F( ) F ( ) _—Clxllz Xx>1.

5 )
(3.59

The functionG&¥(x) is obtained by substituting3.17 and
(3.9 in (2.39 [cf. similar calculation foréat, leading to

X<1,

5 F
0 [ \‘\‘\\\~
-5 [ .
ol A
10 | o
—————— -2Inx-3.2 A
45 [ -3.56 xl/2—0.9
------- -712x"-1.8
-20 : : :
0.01 0.1 1 10
Tt

FIG. 8. Functiong*(T7) (lower curveé andGP¥(T7) (upper

that was subtracted in E¢3.48. In view of the divergency
of this term atu—0, it is determined by the short-time cutoff

Umin= tmin/27,

du

o= [ 5

Umin U

u, 2z, (3.57

Since the correction we are discussing is governed by cyclo-
tron returns, the cutoft,,, corresponds to a single cyclotron
revolution, Uyi,~ 7/ w.7. [On a more formal level, this is
related to the assumptiom<w; used for derivation of
(3.48); see the text below Eq3.1).] We have, therefore,
G =ct (w72 with a constanc™ of order unity*’

For the pointlike interaction, the considered term produces a
temperature-independent correction to the Hall resistivity of
the form

Opxy VeV
Pxy

In the case of Coulomb interaction, this correctiomith
both, exchange and Hartree, terms includkds the same
form with ¥Vo— 3[1+3F5/(1+F§)].

Finally, let us discuss the expected experimental manifes-
tation of the results of this section. Equatiaids53), (3.54),
(3.55, and(3.56) predict that in the presence of interaction
the temperature-dependent part of the Hall resistiwityB)

(wcT) 12,

(3.58

7Tk|:|

curve describing the temperature dependence of the Hall resistivityn @ Strong magnetic field.> T is linear inB at arbi-
for pointlike and Coulomb interaction, respectively. Diffusive ( trary T, with the T-dependence crossing over fromTlin the

<1) and ballistic ¥>1) asymptotics, Eq93.52 and (3.54), are
also shown.

diffusive regime toT*? in the ballistic regime. More specifi-
cally, if the interaction is not too strong, the exchange con-
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tribution (3.53 wins and the slope decreases with increasing R
temperature, while in the limit of strong interaction the slope
increases due to the Hartree te(@55. In an intermediate \
range ofFg the slope is a nonmonotonous function of tem-
perature. Surprisingly, this behavior of the slope of the Hall
resistivity is similar to the behavior af,, obtained in Ref.
19 for B=0 and white-noise disorder. This is a very non- .
trivial similarity, since the correction tp,, at weak fields 0 t 2t
shows a completely different behavior, vanishingTas in
the ballistic regime. In addition to the temperature-dependent FIG. 9. Schematic plot of the return probabil®(t) in a strong
linear-inB contribution, the interaction gives rise to a magnetic field and smooth disorder. In the ballistic regime, the
T-independent correctiof8.58), which scales adp,y B3/2 peaks are separated by the cyclotron perige; 27/ w,. Dashed
(assuming again thab.> 7_71'1—). curve represents the smoothened return probati{ty.

Let us recall that these results are governed by multiple
cyclotron returns and thus are valid under the assumptiofonstant in the magnetic field)=R%/27). Equation (4.1)
0T, In the opposite casey.<T, the correction is sup- thus yields in the diffusive regimé&,7<1,
pressed in the ballistic regimsimilarly to p,,, see Secs.

Ballistic Diffusive
— -172
R(t) ~

I1B3 and Il A), and the Hall resistance takes its Drude &rxx,vﬁm(-“_) (4.3
value. oy D ' '
in agreement witi(1.2) and (2.48).
IV. QUALITATIVE INTERPRETATION: At short (ballistic) time, t<r, the return probability is
RELATION TO RETURN PROBABILITY governed by multiple cyclotron returns after=1,2,...
It was argued in Ref. 48 by using the Gutzwiller trace révelutions,

formula and Hartree—Fock approximation that the interaction 2 12w’
correction to conductivity is related to a classical retum gy DT o ,{_ [t—27n/w] “’CT)
probability. The aim of this section is to demonstrate how n 4\/§w2nR§ 12mn
this relation follows from the explicit formulas far,, . (4.9

We begin by considering the case of smooth disorder,. _ o : . i
when the kerneB,(w,q) is given by Eq.(2.36. For sim- SinceT<w,, the conductivity correctioid.l) is in fact de

plicity, we will further assume a pointlike interaction, when termined by the smoothened return probability,

only the first two terms if2.36) give nonzero contributions. 1 1 (7|22
In fact, we know that the result for the Coulomb interaction R(t)= —— _2<_ (4.5
is qualitatively the samfcf. Egs.(3.15 and(3.21)]. (2m)%2 RS\t

We will concentrate on the first term {@.36); the second g4t iting(4.5) in (4.1) we find that in the ballistic limit,
one yields a contr!bgtlor] of the.sa“.“e o_rdgr in the ballisti 1, the conductivity correction scales as
regime and is negligible in the diffusive limit. Therefore, for
the purpose of a qualitative discussion it is sufficient to con- Sov Vo
sider the first term. Using3.3), the corresponding contribu- ~ =
tion can be estimated as

(Tr)~ Y2 (4.6)

Oyx D

in agreement with the exact resu({.12, (3.15. As to the

oo ® J w HD(w, ; ; ; < it ;
XX“Vof do-"| o coth- f(dq)Re (D(w,q)) diffusive regime,Tr<1, the contribution of short times
Oy —w o 2T dw <7 to the integrand in (4.1) vyields a subleading
T-independent correctior V,/D to (4.3.
v Joc (7T)2t {D(r =0t It is worth emphasizing that the ballistic behavidr5) of
°Jy sinkA(7Tt) (D(r=01)) the return probabilityR(t) corresponds to ane-dimensional
diffusion. Consequently thieallistic result(4.6) has the same
7! _ form as thediffusive Altshuler—Aronov correction in the
~Vofo d(D(r=01)), (4.0 quasi-one-dimensional geometry. To clarify the reason for

emergence of the one-dimensional diffusion, we illustrate the

whereo,y is the Drude conductivity in magnetic field and we gynamics of a particle subject to a strong magnetic field and
performed in the second line the Fourier transformatio®of smooth disorder in Fig. 10.

to the coordinate-time representati@11). o Let us assume that the velocity is yndirection att=0.
The return probability in a strong magnetic field.7  As is clear from Fig. 10, the return probabili§; after the
>1, first cyclotron revolutior(the integral of the first peak in Fig.

_ _ 9) is determined by the shiff, of the guiding center in the
RIH=(D(r=01)), (4.2 cyclotron periodt;=2m/w.. In view of the diffusive dy-

is shown schematically in Fig. 9. In the diffusive time range,namics of the guiding center, this shift has a Gaussian distri-

t> 7, it is given byR(t) =1/47Dt (whereD is the diffusion  bution with
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5 1t
UXX~VOTJT71—<D(r=O,t)),
EF

Tyx t

5X ~Vor[ const-(D(0t~T 1))]. (4.1

y It is easy to see that the probability of a ballistic return after
a single scattering event is

1 5('[—2I’1/v|:) 1
= ~ — 2 ~
R, (D(r=0})) Tf dery (01 )2 o2t
(4.12
X Substituting(4.12) in (4.11), we reproduce the linear-in-

o . - _ . correction(2.52),
FIG. 10. Schematic illustration of the ballistic dynamics in a

strong magnetic field. The thick line shows the particle trajectory 50‘XX(T)~62VVOTT. (4.13

(two cyclotron revolutions disturbed by the smooth random poten- ) L

tial). The thin line is the diffusive trajectory of the guiding center. 1h€ constant term it4.11) comes from the lower limit of the
time integral, which is of the order d-*. This constant

2 merely renormalizes the bare value of the Drude conductiv-
’ ) 2mRg .
81=(5;)=2Dt = , 4.7 .
WeT On the diffusive time scaléD)(D)=(DD), so that there
is no difference between white-noise and smooth disorder.

yielding Therefore, in the diffusive limit the resuli.l) applies,
12 yielding the usual logarithmic correctio@.3). In fact the

Rlz(wcT) ) (4.8  contribution of the typg4.1) arises also in the ballistic re-

2mueRe gime when all terms if2.39 are taken into account. Ac-

. . cording to(4.12), it has the form
Furthermore, we havés2)=né3 after n revolutions, yield- gto(4.12

ing the return probability R,=R;/Jn. As to the o
y-components, of the guiding center shift, it only governs
the width of the peaks in Eq4.4) and Fig. 9 without affect-

ing ﬁ(t). Therefore, the smoothened return probability is

- ~ %[In(Tr)—consﬂ, (4.149
which is a subleading correction to the linearfinterm
(2.52, (4.13.
o R, In the ballistic regimeT >1, the above qualitative argu-
R(t)=— , (4.9 ments for a white-noise disorder can be reformulated in
t n=t/t, terms of the interaction-induced renormalization of the dif-
. ferential scattering cross section on a single impurity. Spe-
which reproduces Eq4.5). cifically, the renormalization occurs due to the interference
As mentioned in Sec. lll A, the emergence of the one-of two waves, one scattered off the impurity and another
dimensional diffusion in the ballistic regime is reflected by scattered off the Friedel oscillations created by the
the factorJ§(Q)~1/mQ in the formula(3.6) for the kernel  impurity.!>4°The interference contribution is proportional to
Bxx(®@,0). This factor effectively reduces the dimensionality the probabilityW( ) of backscattering off the impuritisee
of the q-integral,fdzq—>Rc’1qu. Appendix Q and hence, to the return probability after a
In the above we considered a system with smooth disorsingle-scattering event, as discussed above.
der, for which 8o, at B=0 vanishes exponentially in the On the other hand, this implies that the scattering cross
ballistic limit. Now we turn to the opposite case of a white- section aroundp~ 7 is itself modified by the Friedel oscil-
noise disorder. We will show that the linearn- lations(in other words, the impurities are seen by electrons
correctiot®!® (Sec. 11C3 is again related to the return as composite scatterers with an anisotropic cross section
probability but the relation is different fron4.1). Indeed, The renormalization of the bare impurity depends on the
according to(2.49, we have now the structukD)(D) in-  energy of the scattered waves, which after the thermal aver-
stead of( DD) that was relevant for smooth disorder. On theaging translates into th&-dependence of the effective trans-
other hand, the return probability at ballistic times7 is  port scattering timé? #(T) [this corresponds to setting
clearly dominated by processes with a single back-scattering T~ in the return probability, see E¢4.11)]. This mecha-
event, implying nism provides a systematic microscopic justification of the
concept of temperature-dependent screeffing.
1 5 ot We recall that, in addition to the linear-ih-term, the
<D(r:0’t)>~;f (da)da(Di(w,q))°€". (410  conductivity correction contains @-independent contribu-
tion determined by the ultraviolet frequency cutefEr . In
Therefore, the contribution of the first term (@.49 can be the case of strong interaction this term can be of the same
cast in the form order as the barénoninteractingg Drude conductivity. The
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coefficient in front of this term cannot be calculated within V. MIXED DISORDER MODEL
the quasiclassical approach because it is governed by short- A. Strong B
distance physics at scales of the ordenef. At the same '
time, according to the above picture, tAisndependent cor- In Sec. Il we studied the interaction correction for a sys-
rection also modifies the impurity scattering cross sectioriem with a small-angle scattering induced by smooth disor-
around ¢= . The corresponding correctioBW($) may  der with correlation lengtii>k:"*. This is a typical situa-
thus be comparable to the bare isotropic scattering probabition for high-mobility GaAs structures with sufficiently large
ity W,. An interesting consequence of this fact is a possiblespacerd. It is known, however, that with further increasing
situation when the total relaxation rates_loc fdg[W,  width of the spacer the large-angle scattering on residual
+ 5W(¢)] is smallerthan the transport relaxation rate* impurities and interface roughness becomes important and
= [dp[ Wo+ SW(¢p) (1 —cosd). limits the mobility. Furthermore, in Si-based structures the

In smooth disordersmall-angle scattering the back- transport relaxation rate is usually governed by scattering on
scattering amplitude vanishes exponentially g, and so ~ short-range impurities.
does the amplitude of Friedel oscillations. This leads to the This motivates us to analyze the situation when resistivity
suppression of thd r-contribution to the conductivitysee S Predominantly due to large-angle scattering. We thus con-
Sec. IIC3; this fact was realized within tHEdependent Sider the following two-component model of disorder
screening picture already in Ref. 18 for the case of scattering Mixed disorder”): (i) white-noise random potential with a
on long-range interface roughngseve note, however, that mean free timer,,, and(ii) a smooth random potential with a
the understanding of the interaction effects in terms of scatransport relaxation timesy, and a single particle relaxation
tering of Friedel oscillations is only possible in the ballistic ime Tsms [ Tsm/ Tsms™ (Ked)?>1]. We will further assume
regime. Indeed, the diffusive correction irsmoothrandom  that while the transport relaxation rate *= .+ 7o is
potential isnot exponentially small and is related to random governed by short-range disordey,,< 7, the damping of
(having no Xg-oscillating structurgfluctuations of the elec- SdHO is dominated by smooth random potentialy,s
tron density, as was pointed out in Refs. 1 and 48. The cor<r,,. This allows us to consider the range of classically
relations of these fluctuationsvhich reduce to the Friedel strong magnetic fieldsw.7,,=>1, neglecting at the same
oscillations on the ballistic scaleare described by the return time Landau quantization(which is justified provided
probability at arbitrary scales. W Tsms! T<1).

Finally, we use the interpretation of the interaction correc- To calculate the interaction corrections, we have to find
tion in terms of return probability to estimate the MR in the the corresponding kernd ,;(w,q) determined by the clas-
white-noise random potential and at sufficiently weak mag-sical dynamics. Naively, one could think that under the as-
netic fields,w.<T. Note that the zer® ballistic correction sumed conditiorr,,,< 74, the smooth disorder can simply be
(4.13 does not imply any dependence of resistivity on mag-neglected in the expression for the classical propagator.
netic field. Indeed, as follows fror(lL.1), a temperature de- While this is true in diffusive limit, the situation in the bal-
pendence of the transport timé€T) is not sufficient to in-  listic regime is much more nontrivial. To demonstrate the

duce any nontrivial MR, problem, let us consider the kerr{?) in the ballistic limit
Tr=Tr,,>1 and in a strong magnetic fietd,>T> 7" 1. If
Apy(B, T)=py( B, T)— pyx(0,T)=0, the smooth random potential is completely neglected in clas-
S sical propagators, we haysee Appendix B; the second term
if 7 is B-independent. in Eq. (B39) can be neglected fap,>T]

In order to obtain thd3-dependence of the resistivity, we
thus have to consider the influence of the magnetic field on
the return probability determining the correction to the trans- ) 1| 490 2_1 ddo)\?
port time. Since in the ballistic regime the characteristic Boc= |15, T90 7 Q) |’ 5.3
length of relevant trajectories Is~vg/T<I, their bending
by the magnetic field modifies only slightly the return prob-
ability for w.<T. The relative correction to the return prob-
ability is thus of the order ofl(/R.)?>~ »2/T? independently
of the relation betweew, and 7~ 1. Therefore, to estimate
the MR in the white-noise potential fas,, 7~ *<T, one can i J,(qR)JI- L(AR.)
simply multiply the result(4.13 for B=0 by a factor Jo(w,q)= P ST :
(wc/T)?, yielding

Twn

wherego(w,q) is the angle-averaged propagator with only
out-scattering processes included,

(5.2

Apxxw (0e7)? 1 and u=(w+it,,)/ wc. If characteristic frequencies satisfy

=, w.<T. (4.15 w<w; (which is the case foT<w.), EqQ. (5.2 can be fur-
Po kel T ther simplified,
A formal derivation of this result is presented in Sec. V B. In
a stronger magnetic fieldy.>T, the situation changes dra- J(Z,(Q)
matically due to multiple cyclotron returns, see above. This Jo=———3- (5.3
regime is considered in Sec. V A below. —lo+ 7y,
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Substituting (5.) and (5.3 in (2.39, we see that mined by the transport timer=r,;) and S,z. Using
momentum-and frequency-integrations decouple and that thg, /7, >1, we find then that the resulting expression,
first term in(5.1) generates a strongly ultraviolet-divergent
g-integral ~ [dQ.

The physical meaning of this divergency is quite transpar- Bxx=

> [(DYD)—2(Dny)

1+ H(Dm—

2
2wgT

ent. The contribution of the first term it6.1) to Spyy iS @cTwn

proportional to the time-integrated return probability 1 2
fdtgo(r=0t), similarly to (4.1). Fort<r,, the propagator X(n,D)]— ﬁ[<D>—2<nyDny)]+ w—(nyDnXD>
go(r,t) describes the ballistic motion in the absence of scat- ¢ ¢

tering, which is merely the undisturbed cyclotron rotation in —(Dn,Dn, D) (5.7)

the case of a strong magnetic field. Sincé-a7n/w, the . ) ) .
particle returns exactly to the original point, the integralis dominated by the first term corresponding to the first term

fdtgo(r=04) diverges. in Eqg. (5.1). This yields forQ=qR;>1

The encountered divergency signals that the neglect of ) )
smooth disorder is not justified, even thoughy< rem. In- B. (.q)~ 1 (D)= 47sm  Jo(Q) 59
deed, with smooth disorder taken into account, the particle xd @, wgq- ng (QZ—iQ)Z’ '

does not return exactly to the original point after a cyclotron
revolution, see Sec. IV. The return probability is then de-whereQ)=2w7gy,.

scribed by Eqs(4.4) and (4.5 with 7 replaced byrgn, As in preceding sections, we first calculate the conductiv-
ity correction for a pointlike interaction. Substitutif§.8) in
_ <m| 2 (2.35, we get, in agreement with an estimafeb),
Rimix(t) = W(_ (5.4)
(2m)¥RE\ 172

Tsm

2
Substituting(5.4) in (4.1), we get 00y y=— WVVO(T

Sovx Vol Tem\ M . with the constant, as defined in Eq3.16). For an arbitrary
- _( T) (Tr) ™% 5.9  (not necessarily smallzalue of the ratior/ 7, the coefficient
4in (5.9 is replaced by 4 37/ 7¢,,. For 7= 74, (i.€., without
so that the ballistic correction is enhanced by a factofwhite-noise disordemwe then recover the ballistic asymptot-
~(7sm/ T)2 compared to the smooth-disorder case. It isics of Eq.(3.15.
worth mentioning a similarity with the problem of memory  As in the case of purely smooth disorder, the resistivity
effects in a system with strong scatterers, where even a weaprrectiondp,, is related todo, via Eq.(3.14). Comparing
smooth disorder turns out to be crucially import&ft. (5.9 with (3.15, we see that the correctiaip,, is enhanced
To demonstrate the role of the smooth disorder on a morg the mixed-disorder model by a facterd (rs,/7)Y>>1 as
formal level, we write down the angle-averaged propagatotompared to the purely smooth-disorder case. On the other
in the ballistic regime, Tr,,>1, for the mixed-disorder hand, the scaling with temperature and magnetic fiéjg,
model, «B2T~ Y2 remains the same.
Let us analyze now the crossover from the ballistic to the
J5(Q) diffusive regime. Settingi=~1 in (5.9, we find that the
Q21w+t (58 correction is parametrically ~ large, 0o~ (Tsm/ Twn) 2,
Clearly, this does not match the diffusive contributi@%8),
Clearly, in both limitsrg,=% and r,,,=% this formula re- yielding §o,,~1 atTr~1. This indicates that returns with-
duces td5.3) and(3.2), respectively. In view ofv1,,,>1 the  out scattering on white-noise disorder continue to govern the
last term in the denominator @5.6) can be neglected, and correction in certain temperature window beldi- 1/7,
we return to the expression for solely smooth disorder. Thevhich normally belongs to the diffusive regime.
presence of the tern@?/2rq, regularizes theQ-integrals, To find the corresponding contribution, one should take
thus solving the problem of ultraviolet-divergences discussethto account the scattering-out ter/jj; in the denominator
above. The characteristic momenta are thus determined f (5.6), which yields
Q?~Trgy. Therefore, despite the weakness of the smooth

T>1Ur,,, (5.9

(TT)1/2’

Tyx D

(D(w,9))=

disorder, 74> 7n, it is the first (Q-dependentrather than 2 y\Y? (= dz Z?exd —z/ mx]

the third term which has to be retained in the denominator of Gax, 7=l fo Sni 2

(5.6). In other words, in the ballistic regime and in a strong

magnetic field the Qynamics in the considered model is gov- (2y)12 x<1,

erned by smooth disorder. =l acoyx12 x>1, (5.10

The above discussion demonstrates thabgtT> 7,1
the kernelB,,z(w,q) for the mixed-disorder model is given wherey= 75,,/7>1 andx=Tr. To describe the temperature
by (2.38 with propagatorsD calculated in smooth random dependence of the interaction correction forTalive have to
potential(i.e., with white-noise disorder neglecjed@he time  add here the diffusive contribution, which has the form
Twn €nters the result only through the matriceg; (deter-  (2.48 for Tr<1 and vanishes fof 7>1. This contribution
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6 ] FIG. 11. FunctionsGJ™(T7)

(@ and G™(T7) (b) describing
the temperature dependence of the
resistivity correction due to point-
like and Coulomb(exchangg in-
teraction, respectively, in the
mixed-disorder model for differ-
ent values of parameter=r,,/7
=20, 10, 5(from top to botton.
Dashed curves represent these
functions for purely smooth disor-
der (y=1).

corresponds to long times>r and describes the trajectories  This also applies to the Hartree contribution to the resis-
multiply scattered off white-noise disorder. SinceTat~1 tivity. Within the “ Fg-approximation” we have again an ef-
the sum of the ballistic and diffusive contributions will be fectively pointlike interaction withvVo=3F3/(1+Fg) in
dominated byG;(1,y)~y*%>1, the precise way of vanish- the ballistic term. The result thus reads

ing of the diffusive contribution aff7~1 is inessential.

Therefore, we can describe it by the functi@y(x), Eg. s H'”“X(B) 2
(3.12. The resistivity correction for a system with mixed Pxx _ (@t GMX(Tr, 7./ 7) (5.19
. . A . . . g H 1 fsm 1 .
disorder and pointlike interaction has thus the following Po K
form:
) 2 where
o, B T .
Pxol =— (o wWoGe™N(T 1, 7eml/7), (5.11)
po ﬂ-kFl mix Fg t
where Ch (x7v)=5 mGl(X, ¥)+Gp(x)
. —Inx+(2y)¥2,  x<1, In(1+FY) FO [y 12
GmIX , :G , +G — _ 0 0 . <
0 (X 7) 1(X 7) O(X) 4C071/2X71/2, 1. 1 Fg 1+Fg > , X<,
(512 = ,

This result is illustrated in Fig. 14). —ZCoﬁ yY2x712 x>1.

In the case of Coulomb interaction, we have as usual a 0
similar result for the exchange contribution (5.16

F,mix 2
Opxi (B) —-— (0c7) G™(T7,7gm/7),  (5.13 Before closing this section, we briefly discuss the Hall
Po 7Kl resistivity in the mixed disorder model. Repeating the steps

with described above, we find that the ballistic contributiom to

also contains an extra factord,/ )

mix 1 an arbitrary(not necessarily smallvalue of the ratior/ 7¢p,
F(X%7)=5G1(X )+ Ge(x) the coefficient 11 in Eqs(3.52 and (3.54 is replaced by
[6+57/ 7ol (Tsm! 7) Y2

, Similarly to p,,. For

—Inx+(y/2)Y?  x<1, )
| 2cytx T2 x>1. (619 B. Weak B

This function is shown in Fig. 1b). In fact, here the diffu- In the case of a purely smooth disordéec. Ill) the
sive contribution can be described either by the functiorresistivity correction in the ballistic regime is exponentially
Gr(X) or by Go(x) because in the diffusive limit they coin- suppressed fow.<T because the particle cannot return to
cide up to a small constant. Since in the intermediate anthe origin. When the short-range potential is present, the situ-
ballistic regimedwhereGg(x) andGy(x) differ] the contri-  ation changes and the return probability is determined for
bution $G,(x,7y) is dominant, the behavior of the diffusive Tr>1 by the single-backscattering processes. The
contribution is of no importance, as in the case of pointlikeinteraction-induced MR arises then due to the influence of
interaction. Note that the ballistic contribution correspondsthe magnetic field on the probability of such return, as dis-
to the pointlike interaction withVy= 3, yielding a factor; cussed in the end of Sec. IV. In this case, there is no need to
in front of G,(x,y) as compared t§5.12). This is because take the smooth potential into account and the MR is deter-
the dynamical part of screening is suppressed for all relevanmnined solely by the white-noise disorder. Let us calculate the
Q~Trs>1 in the whole range of temperatures, even forcorresponding correction using the ballistic fori®40) of
Tr<1, where this contribution is important. the kernelAB(?) .
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For a pointlike interaction, substitutindd40) in (2.39, neous formation of a charge-density wave. Finally, the an-
we find the following ballistic T7>1) asymptotics of the isotropy may be induced by a one-dimensional periodic
longitudinal MR: modulation (lateral superlattice The latter example is of
special interest in view of emergence of commensurability
oscillations(known as Weiss oscillations and we will dis-
cuss it in more detail in Sec. VI C.

) ) 0 : o The interaction-induced correction to the conductivity
In the case of Coulomb interactiod,By’ is multiplied by {ensor of an anisotropic system was calculated for the diffu-
thg ball|§t|c asympt_oﬂcs of the interaction, EG.1). Subs_tl- sive regime an@®=0 by Bhatt, Wefle, and Ramakrishna#.

tuting this product in Eq(2.39, we get the Fock contribu-  They showed, in particular, that the quantum correction pre-

APxx_ (wcT)ZVVO m
po wkel  T72T7

(5.17

tion to the MR in the form serves the anisotropy of the quasiclassi@ultzmann con-
AoF 9 ductivity. Below we will generalize their result onto the case
Pxx_ _ (wer)” 17w Tr>1 (5.1 of a classically strong magnetic field, and, furthermore, will
Po kel 1927 ' ' extend the consideration to the ballistic regime.

We begin by presenting a simple argument allowing one
to estimate the conductivity correction in an anisotropic sys-
fem; we will confirm it by a formal calculation in Sec. VI B.
According to Eq.(4.1), the relative correction to a diagonal
componentr, ,(«=X,y) of the conductivity tensor is deter-
mined by the return probabilityand is, thus, the same for
=x and u=Yy). This implies, in the diffusive regime

The corresponding Hartree term also scaleBa4T. It is
worth noting that there is another contribution to the MR in
this regime, which comes from the suppression of the triple
channel due to Zeeman splitting, rather than from the
orbital effects. This contribution is identical to that found in
Ref. 21 for the ballistic magnetoresistance in a parallel mag
netic field. It also scales a@?/T in a weak magnetic field; *
however, it contains an extra factdE£/w.)?, as compared
to (5.18. This factor is small in typical experiments on semi- 80,
conductor heterostructures where the effective mass of the = ~—Re; f (dqg)
carriers is much smaller than the bare electron mass. e

We now turn to the Hall resistivity. UsingB38) and
(B41), we find for w,, 7 1<T and for arbitrary relation be- yielding

tweenw, and 1,

w=17

. (6.1

Daﬁqaqﬂ_iw 0=T

oo 12
Spxy _Wo T (5.19 6axx~ez<ﬂ) In Tr (6.2
pxy kel 12T ' Oyy

for the pointlike interaction, and and analogously fobay, . In the ballistic regime the time-

117 integrated return  probability /T 'dt(D(t)) scales as
oG- (5.20 (Tr) Y?[see Eqs(4.5 and(4.6)], so that we have instead of
(6.2,

Spyy 1

Pxy - Kl

49( wcT)Z
330

for the Coulomb interaction. The resf.20 reduces in the

limit B—O0 to that obtained in Ref. 20 from the quantum

kinetic equation. We see that in view of a relatively small S0~ €K
value of the numerical coefficient 49/330, the first

(B-independentterm in square brackets .20 dominates

for w.7=1, so that the results of Ref. 20 are applicable inThe explicit form of the functionkC(x) will be calculated
sufficiently broad range of magnetic fields. For the corre-below. Since the conductivity correctiof®.2) and (6.3) are
sponding Hartree correction tép,, calculated within the only determined by the anisotropic diffusion, we expect that

ﬁ) (Tr) 12 6.3
Oyy

“ Fg-approximation,” we refer the reader to Ref. 20. they do not depend on the particular source of anisotropy, in
analogy with Ref. 37. An important feature of the results
VI. ANISOTROPIC SYSTEMS (6.2) and(6.3) is that they mix the components,, and o,

of the conductivity tensor. This will play a central role in our
analysis of the interaction effect on the magnetoresistivity of
In the preceding consideration, we assumed that the 2modulated systems in Sec. VI C.
system is isotropic. While this is true for the majority of It is worth mentioning that the validity of the formula
magnetotransport experiments we have in mind, there exist§.3 for the ballistic regime is restricted on the high-
a number of important situations when the transport is anisotemperature side by the conditidns T,g, whereT,{ is the
tropic, oy# oy . First, such an anisotropy can be inducedtime scale on which the anisotropic diffusion of the guiding
by the orientation of the 2D electron gas plane with respectenter sets in. The value df,q depends on the particular
to the crystal axes, see, e.g., Ref. 50 for a measurement of tmeicroscopic mechanism of anisotropy. We will estimditg
guantum correction for thel10) surface of the Si-MOSFET. and the behavior of the conductivity correctionTat T .4 for
Second, the electron-electron interaction may lead to sponta modulated system in Sec. VI C.

A. Qualitative discussion
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B. Calculation of the interaction-induced correction disorder and concentrating on longitudinal components of
to resistivity the conductivity and resistivity tensors. In analogy with

We proceed now with a formal calculation of the quantum(3-1), the singular contributio®* to the propagator acquires
then the form(see Appendix E

correction to the conductivity of an anisotropic system in a
strong magnetic field. As a model of anisotropy, we will . " s L i A
assume anisotropic impurity scattering, with a cross sectionD(w’q’¢’¢ )= XX ARSI ¢ bq) =S¢’ = bo) I}
W(p,d')#=W(dH— ¢'). Repeating the derivation performed x(P)x(d")
in Secs. Il A and Il B, we find that the resu(2.35 and me
(2.36 remains valid in the anisotropic case, with the matrix aftacip
T .z proportional to the correspondirignisotropi¢ diffusion where
tensorD .z,

(6.10

iql)F 1 1 ) .
X($)=1=—| —COSh COSpq+—sine singg |.
Cc

X

y
, (6.1
(6.4) This yields

2Daﬁ 1 Ty T WcTyTy

UF w(::X]y wC:X:y :y

where, and 7, are the relaxation times for the correspond- J2(gR.)

ing components of the momentum. We begin by considering (D)= 5 >
the diffusive limit, when the leading contribution comes Dyxdxt Dyyay—iw
from three-diffusion diagrams, Fig. @i and e (see Sec.
I C1), which are represented by the last term in Ej36).
The singular contribution to the propaga®r governed by 4 J3(qR.)D2,q2

the diffusion mode, has a form analogous(2044), By(w,0)=— > 7 3 (6.13
UF (Dy0x+ Dyyqy_|w)
Ye(d, )V (&',0)

(6.12

and

DY w,q;p,¢" )= d , (6.5  which differs from(6.6), (6.7) by the factorJ3(qR.) only. In
Doplalp—le the ballistic limitTr,,T7,>1 the relevant values @fR; are
see Appendix E for the derivation ©6.5 and explicit ex- large,qR:>1, so that the screening is effectively static and
pressions o', . Using (6.5 and(E3), we get the interaction is effectively pointlike witVy=1/2v. Sub-
’ stituting then(6.13 in (2.39 and rescaling the integration
(D)=(D)=——— (6.6 Vanablesq,=D0,,a,=Dy, "0y, we find
DanQQB_ lw e2 5
and d0yy=— 7—Co(Try) *—K(V1-Dy/Dyy),
Bxx(®,0)=—(D°n,D°nzD*%) (6.14
D
4 D)Z(Xq’z( S0y == 5a 6.1
(6.7) x—p_ %y (6.19

= . .
Uk (DXXQ>2<+Dny§_|w)3 o he ell |
. . . whereK is the elliptic integral,
The result(6.7) can also be obtained with making use of the P g

identity (3.5); then it is sufficient to keep only the leading
term (unity) in the expressions for function®g | entering

/2 dx
f ——=K(J1-¢%, 0<g<l,
(6.5). Substituting(6.7), (6.6), (2.14) in (2.35), we obtain the 0 \cos x+q’sir’ x

final result for the conductivity correction in the diffusive (6.16
regime, and we assumed that is the easy-diffusion axisD,,
o2 112 > Dyx. _ _ o
80 == ﬂ) InTr, (6.8) Let us analyze the obtained results in the limits of weak
277\ Dyy and strong anisotropy. It is convenient to &8t,=Dg, 7y
5 s =10, D,,=Dy+AD, and to intrqduce a dimensic_)nless an-
So :e_(% nTr 6.9 isotropy parametest= AD/D . Using the asymptotics of the
W22\ Dyy ’ ' elliptic integral,
in full agreement with a qualitative consideration of Sec. aT s?
VI A [Eg. (6.2)]. The correction to the Hall conductivity is §(1+ ik s<1,
zero in the leading (Ifi7) order, as in the isotropic case. For K(s)= (6.17)
the pointlike interaction, the result remains the same, up to a 4
factor vV,,. In s 1-s<1,

We now extend the consideration beyond the diffusive
limit (thus allowing forqR,=1), assuming first the smooth we find
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a As to the modulation-induced correctiodg,,,Ap,, to
o2 1- 2 a<l, the other components of the resistivity tensor, they are ex-
80 = — iz cO(Try)‘l’z actly zero within the quasmlassm(aBoltzman_n equ_atlo)nap-_
T In(16c) proach, independently of the form of the impurity collision
TR a>1, integral®>°%%’ Such corrections appear in the quantum-

6.18 mechanical treatment of the probl&m?® and are related to

- . the de Haas—van Alphen oscillations of the density of states
and 5oy, =(1+a) duy,. Equations(6.14, (6.15 and(6.18  jnqyced by the Landau quantization of spectrum. As a con-
confirm the qualitative arguments in Sec. ViBased on the

. - X sequence, these oscillations are exponentially damped by
behavior of the return probabilitywhich led to Eq.(6.3). disorder, with the damping factorexy —2m/w,7]. The
phase of such quantum oscillationp{>°% is opposite to
C. Modulated systems that of quasiclassical commensurability oscillationgim,, ,

In this section, we apply the results of Sec. VIB to aEgs.(6.19 and(6.2]). Indeed, oscillations i p, that are
particularly important class of anisotropic 2D systems,much weaker than those ihp,,, have the opposite phase,
namely, 2D electron gas subject to a periodic potential varyand vanish much faster with decreasibgwere observed in
ing in one direction. Such systerflateral superlatticeshave Ref. 51. We will neglect these oscillations, which are expo-
been intensively investigated experimentally during the lashentially weak in the range of magnetic fields considered in
15 years. In a pioneering work Weisset al. discovered that the present papes 7s/7<1. We are going to show that the
even a weak one-dimensional periodic modulation with anteraction-induced correction to resistivity also generates
wave vectork||e, may induce strong oscillations of the mag- oscillations inp,,, which are, however, unrelated to the
netoresistivity p,.(B) [while showing almost no effect on DOS oscillations of a non-interacting system and become
pyy(B) and py,(B)], with the minima satisfying the condi- dominant with lowering temperature.
tion 2R./a=n—1/4. Heren=1,2, ... anda=2mx/k is the To demonstrate this, we apply the result of Sec. VI B for
modulation period. The quasiclassical nature of these conthe interaction-induced correction in an anisotropic system.
mensurability oscillations was demonstrated by Beenakker, The anisotropy parameter is governed by the quasiclassical
who showed that the interplay of the cyclotron motion andcorrection top,, due to modulation,
the superlattice potential induces a drift of the guiding center

. . - o o Pxx Apyx
along they axis, with an amplitude squared oscillating as =2 _1="X_1= (6.22
cog(kR.—m/4) (this is also reproduced by a quantum- Oxx Pyy po
mechanical calculation, see Refs. 53)%5&hile Ref. 52 as- and is given by Eq(6.19. For simplicity we will assume
sumed isotropic impurity scatterifvhite-noise disorderit  that the effect of modulation is relatively weaks<1. (Gen-
was shown later that the character of impurity scattering aferalization to the larger case with making use of the corre-
fects crucially the dependence of the oscillation amplitude orsponding formulas of Sec. VIB is completely straightfor-
the magnetic field. The theory of commensurability oscilla-ward) Using (6.8) and (6.15, we find the oscillatory
tions in the situation of smooth disorder characteristic forcorrection top,, as a combined effect of the modulation and
high-mobility 2D electron gas was worked out in Ref. 56 the Coulomb interaction,
(see also numerical solution of the Boltzmann equation in

Ref. 57 and provided a quantitative description of the ex- Spey  (0g7)2 Ap —InT7, Tr<l,
perimentally observed oscillatory magnetoresistivity Y 5 ck I 2 ¢ s (6.23
Ap,(B). The result has the forth Po el po | (T Tr>1

Apyy m7?k?IR, In the presence of strong scatterémixed disorder mode|

po  4Asinh(m\) Jin(kRe)I-in(kRe), (6.19  the result for the ba_llistic regi_me is enhanced by the factor
4(7gm/ 7)Y?>1, as discussed in Sec. V.
where 7 is the dimensionless amplitude of the modulation |et us remind the reader that the red@23 is valid for

potential[ V(x) = #E coskX)], and temperaturesT<T,y, where T j'<7 is the characteristic
1 _12 time on which the motion of the guiding center takes the

A= (1_ 1+ E(ch)z} ] (6.20 form of anisotropic diffusior(see Sec. VI A For the case of
WcTs T a modulated system with a smooth random potential we find

T.i~ 7(a/R.)2. This is because on a scale shorter tfgg
the modulation leads to a drift of the guiding center algng
axis with the velocity depending on the coordinai®f the
guiding centeP?

In the range of sufficiently strong magnetic fields E8.19
describes the commensurability oscillations with an ampli
tude proportional td?,

Apyx .2 ("‘)CT)2

cog(kR.— 7/4). (6.21)

i NUE .
Po KR va(X) == =5~ kReJo(kRo)sin(kX)
For precise conditions of validity db.21), as well as for an -
analysis of the result6.19 in the whole range of magnetic =— —Fcos(ch— l4)sin(kX). (6.29
fields, the reader is referred to Ref. 56. 27k
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FIG. 12. Magnetoresistivity in a lateral superlattice with modulation wave védggr. (a) Quasiclassical Weiss oscillations; dashed line
shows the resistivity in the absence of modulatit. Interaction-induced quantum oscillations gg, for three temperatures. The curves
correspond to the values of the parametep(2,,/T72)Y?=0.1,0.3,0.5(from top to bottom, assuming mixed disorder. Dashed line
represents the resistivity of the noninteracting system. Typical experimental parameters are used: effective 0@88<9.1x 10 %8 g,
electron density,=3.16x 10'* cm 2, modulation strengthy=0.05, modulation period=260 nm, momentum and single-particle relax-
ation timesT=100 ps andrs=5 ps, respectively.

Ina timeaZ/DET;d1 the positionX of the guiding center is phase withp,,. Furthermore, the both contributions are
shifted by a distance of the order of the modulation pedod damped differently by disorder: the high-temperature out-of-
due to the small-angle impurity scattering. Therefore, thephase oscillationsdp{>°® vanish with loweringB much
drift velocity v 4 typically changes sign on this time scale, sofaster that the low-temperature in-phase interaction-induced
that the drift is transformed to an additional diffusion pro- oscillationsdp,, .
cess, WithADyy~<v§>Ta_dl, in agreement with(6.21). To Our results are in qualitative agreement with a recent
estimate the resistivity correctiofp,, in the ultra-ballistic experiment? It was observed there that at sufficiently high
regimeT>T,q, we use the relation between the conductivity temperatureT=2.5 K, the oscillations irp,, have the op-
correction and the return probabili@Bec. I\). The return  posite phase with respect fg,, in accord with earlier ex-
probability R, after n revolutions(introduced in Sec. Iyis  perimental findings' However, when the temperature was
modified by the modulation-induced drift in the following lowered, the phase has changed apgstarted to oscillate in
way: phase withp,,, with an amplitude increasing with decreas-

) ing T. In addition to these novel oscillations, a smooth nega-
7T<vd>) tive MR was seen to develop in the same temperature range.
vE |

The authors of Ref. 60 emphasized a puzzling character of
According to (4.1), this yields an oscillatory correction to

the temperature dependence of the observed oscillations,
- which cannot be explained by earlier theorfes®discarding
resistivity suppressed by a factorT,q/T as compared to the ¢ interaction effects. Our theory leading to E&.23 pro-
second Ime(balhstl_c regime of Eq. (6'2.3' R . vides a plausible explanation of these experimental findings.
Let us summarize the results obtained in this subsection,,aiitative comparison of the theory and experiment re-
We have shown that in a periodically modulated system th%uires, however, a more systematic experimental study of the

) ) ee dtemperature dependence of the amplitude gfoscillations
in Secs. lll and IV, an oscillatory contribution to the compo- ., 4 hroader temperature range.

nent p,, of the resistivity tensor, which is not affected by
modulation(and thus shows no oscillationwithin the Bolt-

RMod= Rn< 1-nwer (6.25

zmann theory. When the parabolic MR is negatfireaning VIl. CONCLUSIONS
that the exchange contribution dominagteshich is the case )
under typical experimental conditions and for not too high A. Summary of main results

temperatures, these quantum interaction-induced oscillations | et us summarize the key results of the present paper. We
in pyy arein phasewith classical oscillations ip,y, as fol-  have derived a general formul@.35 and (2.38 for the
lows immediately from Eq(6.23 (see Fig. 12 In other interaction-induced quantum correctidm,; to the conduc-
words, their phase is opposite to that of the above-mentioneglity tensor of 2D electrons valid for arbitrary temperature,
contributionA p{5°® induced by the DOS oscillations. magnetic field and disorder range. It expresseg, in terms
We come therefore to the following conclusion concern-of classical propagators in random potentitlallistic diffu-
ing the phase of the total oscillatory contribution 49,.  sons”). In the appropriate limiting cases, it reproduces all
While at sufficiently high temperatures thg, oscillations  previously known results on the interaction correctisee
have, due to the contribution p{°°S [and possible due to Sec. Il O.
the Hartree counterpart of E¢.23], the phase opposite to Applying this formalism, we have calculated the interac-
Apyy, With lowering temperature the exchange contributiontion contribution to the MR in strond in systems with
Eq. (6.23 starts to dominate, implying that,, oscillates in  various types of disorder and for arbitrafyr. In the diffu-
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sive limit, Tr<<1, the result does not depend on the type oftained temperature-dependence of the proportionality coeffi-
disorder, as expected. Specifically, the MR scales with mageient G(T7) was in good agreement with our predictions.
netic field and temperature as followdp,,>B? In(T7) and Very recently, Olshanetskgt al®! studied the MR in the
Opxy*BInTr, in agreement with Refs. 10 and 11. ballistic regime in a Si/SiGe structure oftype, where both

In the ballistic limit, T7>1, the result is strongly affected short-and long-range potential are expected to be present.
by the character of disorder. In Sec. Ill we have performed ahey found the interaction-induced correctiongdg, larger
detailed study of the case of smooth disorder characteristiby a factor~5 as compared to our predictirfor the case
for high-mobility GaAs heterostructures. We have found thatof smooth disorder. This conforms with the results of the
the temperature-dependent MR scalesagt>T as dpy,  present paper for the mixed-disorder model, where we find
«B(T7)~ 2 and &p,y*B(T7)¥2 In addition, there is a an enhancement afp,, by a factor 4, /7)"?>1.

temperature-independefibut largey contribution «B3/2 to As has been mentioned in Introduction, the interaction-
the Hall resistivity. In the opposite limib,<T the MR is  induced MR in the ballistic regime was measured for the first
suppressed. time as early as in 1983, by Paalanen, Tsui, and Hwang,

We have further considered a mixed disorder model, withyho studied GaAs structures. Again, a parabolic
strong scattererénodeled by white-noise disordex_upt_arim- temperature-dependent MRp,, was obtained, in agreement
posed on a smooth random potenti@éc. V). Aqualitatively  yith our findings. However, its magnitude was considerably
new situation arises whe_n the momentum reIaxatlom'g.ﬂe (roughly an order of magnitudidarger compared with our
due to smooth disorder is much less than the total momenyeoretical result for the case of smooth disorder, as well as
tum relaxation rater °. Such a model is believed to be i the recent experimeft.We speculate that samples used
relevant to Si-based structures, as well as to GaAs structures pos 1o probably contained an appreciable concentration

}’.V'th ve:jy Iarge>sTpar(]:er. We hgve shogvnhtr;at In tg_e bla”'sé'cof background impurities, which has led to an enhancement
Imit and atwe the corrections to both longitudinal and ¢ ¢ jnteraction-induced contribution to resistivity, simi-

Hall resistivities are enhance@s Cog‘ﬂzpared 0 the case of larly to the recent work" (Indeed, the results for the mixed-
smooth disorderby a factor—(7sy/7) > 1. Inthe range of  yigoder model shown in Fig. 11 may create an impression
weaker magnetic fieldsy,<T, the interaction-induced MR that the logl behavior extends up 67~ 10, as was con-

: i : 2T -1
scales in the ballistic regime a@8p,,<B*(T7) = anddpxy  ¢jyded in Ref. 12. Remarkably, the interaction-induced

—1rq _ 2 . .1 . .
*B(T7) "[1—const(.)”]. o _quantum correction to conductivity may serve as an indicator
For a weak interaction{<kg) the correction is domi- ¢ ihe dominant type of disorder.

nated_ by the exchange contribution, implyin_g t_hmxx is_ To the best of our knowledge, no experimental study of
negative and that the slope pf, decreases with INCreasing the interaction effects on Hall resistivigy,, has been pub-
temperature. This is true up to a temperatlife> 7~ (de-  |ished. This part of our predictions therefore awaits its ex-

fined in Sec. lll D where the sign changes. In the case of @erimental verification.

strong interactipn the magnitude of the Hartree contribution Finally, our results for systems with one-dimensional pe-
(and thus the sign of the total correctjafepends on angular jqgic modulation are in qualitative agreement with the re-
harmonics=1+” of the Fermi-liquid interactiotSec. 1 B). It cent work by Mitzkuset al.®° as we discussed in detail in
is worth emphaSiZing that in contrast to the diffusive limit Sec. VI C. Quantitative Comparison of the theory and experi_
where onlyFg is relevant, in the ballistic regime all the ment requires an experimental study of the temperature-
Fermi-liquid parameters are, strictly speaking, important, segiependence of novel oscillatiorigound experimentally in
Eq. (3.40. Therefore, predictions of theFg-approxima- Ref. 60 and theoretically in the present papera broader
tion” (with only one Fermi-liquid parameter retaineshould  temperature range.
be treated with caution.

We have further applied our formalism to anisotropic sys-
tems(Sec. V) and demonstrated that the correction mixes C. Outlook
the componentg,, and py, of the resistivity tensor. This
result is of special interest in the case of systems subject to
one-dimensional periodic modulatioflateral superlattice;
wave vectork|e,). Specifically, we have shown that the in-
teraction induces oscillations p,,, which are in phase with
quasiclassical commensurabilifyeisg oscillations inpy .

Before closing the paper, we list a few further applications
& our formalism and its possible generalizations. First, our
results can be generalized to frequency-dependexther
than temperature-dependeMR. Second, the interaction ef-
fects in systems of other dimensionality, as well as in mac-
roscopically inhomogeneous systems, can be investigated by
our general method. Third, the formalism can be used to
calculate the phonon-induced contribution to resistivity,
which becomes larger than that due to Coulomb interaction

Our results forp,, in the case of smooth disordgoub-  at sufficiently high temperatures. Further, thermoelectric
lished in a brief form in the Letté?) have been confirmed by phenomena in the full range of magnetic fields and tempera-
a recent experiment on-GaAs systemt? which was per- tures can be studied in a similar way. Finally, our approach
formed in the broad temperature range, from the diffusive taan be generalized to the regime of still stronger magnetic
the ballistic regime. Specifically, Let al}* found that the fields, where the Landau quantization can not be neglected
MR scales as\p,,B? in strong magnetic fields. The ob- anymore; the work in this direction is in progréés.

B. Comparison with experiment
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GRr(€,p)Gale,p) =17 Gr(€,p) —Gale€,p)],
we reduce(Al) to the form

. 72 d?p
0By(w,q)=— F'évj (2m)2 P

FIG. 13. Aslamazov-Larkin-type diagrams describing the
Coulomb-drag contribution to the resistivity, which cancels the “in- X Rd Gr(€,p)Gale—w,p—0)]
elastic” part of the diagram§ g from Fig. 1. ’ '

2.2
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wherell(w,q) is the polarization operatdf.15),

w
the RFBR. =2v—0(Qug— w), (A3)
que
APPENDIX A: CANCELLATION OF THE where 6(x) is the step function. Furthermore, the imaginary
INELASTIC TERM part of the interaction propagator within the RPA is propor-

) ) ) o tional to ImIl(w,q)
As discussed in Sec. Il A, diagranisind g give rise, in

addition to the contribution2.25, to a term of the type ImU(w,9)=—|U(w,q9)|?2ImI(w,q). (A4)
(2.26), characteristic for inelastic effects. This yields Bt P . . .

=0 a disorder-independent correction to resistivifp Substituting(A2) and(Ad) in (2.29, we finally obtain
~(T/eEg)?, see below. Note that such a contribution to re- ‘ €272 (> do 1
sistivity would be obtained if one substitutes the inelastic Sonel= — -

relaxation rate of a clean 2D electron gaga~ T%/Eg in the =27 2T sint?( w/2T)

Drude formula(1.1). However, such a procedure clearly d%q

makes no sense. Indeed, in a translationally invariant system X f @n? 02U (w,q) [ ImII(w,q)]>
electron—electron collisions conserve the total momentum

and thus give no contribution to resistivity. Therefore, the (AB)

correction(2.26) should be canceled by some other contribu-
tion. Below we show explicitly that this is indeed the case
and that this second contribution is of the Coulomb-dra
type, described by the diagrams in Fig. 13.
For simplicity, we restrict our consideration here to the SoiMelt sgdrag=(. (A6)
case of zerd and white-noise disorder, which allows us to o
use the results of Ref. 63 for the Coulomb drag. Note that/sing the explicit form of Inil(w,q), Eg. (A3), and of
while Ref. 63 considered the drag between two layers, wéJ(@,d), Eq. (2.14), in the ballistic regime, it is easy to
refer to the “self-drag” within a single layer. As we will see estimateso™' (we assume here~k for simplicity),
below, the characteristic momengedetermining the contri- T keq d
bution (2.26) are large,g~kg. For this reason, there is no 5Uinel~_62721-f d“’f Fq_2q~_e2(TT)2_ (A7)
need to take into account impurity-line ladders while evalu- 0 ke
ating this term, similarly to the calculation of drag in Ref. 63 g has been stated above, téntegral is determined by the
for a small interlayer distance. We thus have ultraviolet cutoft.
1 d?p Finally, we note that in double-layer system the interlayer
5B (w,q)= —2f ——— R 2p2G3(€,p) interaction does give rise to a correctiéa to the driving-
2mvvg) (2m) layer conductivity, which is equal in magnitude and opposite
in sign to the transconductivity. This effect is, however, re-
duced by a factor (kgé&) ~# (where¢ is the interlayer dis-

This expression is identical, up to a sign, to the result of Ref.
'63 for Coulomb drag. This demonstrates that two contribu-
%ions indeed cancel each other,

X Ggr(e—w,p—q)Ga(€,p)

+ Py(Px—Ax) Gr(€,P) tance, as compared t0A7), see Ref. 63.
X Ga(€,p)Gr(e—w,p—Qq)Gale—w,p—q)], APPENDIX B: PROPAGATOR AND KERNELS B,
(A1) FOR WHITE-NOISE DISORDER
where Gga(€,p)=(Eg+e—p?2m=i/2r)~t are the In this appendix we will derive the general expressions
disorder-averaged retarded and advanced Green’s functionsalid for arbitrary magnetic fieldfor the kerneIsBS(‘;) and
Using the identity B&@) in terms of the quasiclassical propagator for a white-
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noise random potential. This will allow us to reproduce thefor the angle-averaged scattering-out propagator. It turns out
results of Refs. 19 and 20, where the interaction-inducedhat for a white-noise disorder the kern@g) andB{) can

corrections tooy, and p,, were studied for a white-noise
disorder in the limitB— 0. We will further apply the formal-

ism to calculate the longitudinal MR and the Hall resistivity

in a finite magnetic field withw,<T. The resistivity tensor

in yet stronger magnetic fieldy.>T, is studied, in the more

general framework of a mixed disorder model in Sec. V.
Using Egs.(2.38 and(2.40, we get

(p) 1 2 1 1
Bxx :E.<D> _;<an><nxp>+ §<D>_<nanx>
2
— ;(nXDnXD)Jr 2w (nDnyD)

1— w?7? 2w
(Dn,Dn, D)+

T2 T

*(Dn,Dn, D)

(B1)

for the kernel describing the longitudinal resistivity, and

(n)_ @c 1 2
BX‘; =7(DD)— ;(an>(nyD)—<nXDny)— ;(nanyD)

2.2

l-weT
—2w(n,Dn,D)— —T2—<anDnyD>

2w,
. (Dn,Dn, D)

(B2)

for the Hall resistivity.

The propagato®(¢,¢’) in the case of white-noise dis-
order can be expressed through the propag@ip,¢'),
obeying the Liouville—Boltzmann equation with only
scattering-out term present in the collision integral,

g 1
—lotique 005(¢>—¢q)+wc@+ 7| Po(¢:9")

=2m6(p—¢'). (B3)

be expressed in terms gf, (and its derivatives with respect
to g and w). The solution of(B3) is given by

Do(w,0;¢,¢") =exRigR[SIN( ¢’ — pq) —SIN(d— ) I}
exdin(¢—¢')]

nsZe —i(w—nwe)+ 17"

(B7)

It is worth mentioning that in the mixed-disorder model in-
troduced in Sec. V with both, white-noise and smooth disor-
der present, the solution of the Liouville—Boltzmann equa-
tion also has the forniB4). In that case, the propagatdy
satisfies the Liouville—Boltzmann equation for a purely
smooth disorderconsidered in Appendix Pwith the re-
placementw— w+i/7,,, wherer,, is relaxation time due
to white-noise potential.

Using (B7) and a series representation for the Bessel
functions, we find(see, e.g., Ref. 56

| < Ja(GR) i J,(qR)I- (AR,

gO(qu):w_C; w—n we Sin7T,LL
(B8)
whereJ,(z) is the Bessel function and
_ oy B9
" w_c WcT (B9

In the absence of magnetic field{=0,R.=vg/w.=>) the
propagatorsDy(w,q; ¢, ¢') and go(w,q) acquire a simple
form

2mo(p— ')
—iw+quecogd— g +1/7’
(B10)

Do(w,0;¢,¢") =

1
QPol+(—iwt1mn? Swa)

Jo(w,q)= (B11)

As in a zero magnetic field, the total propagator is given by

the sum of the ladder diagram&hus including the
scattering-in processgyielding

D(¢,d")=Do(p,¢")
de¢y dpy Do( P, 1) Do( b2, ")

27 27 7—(Dy) ’
(B4)
which we write symbolically as follows:
Do){D
D="Dy+ o 2 (B5)
T—Jo
Here we introduced a short-hand notation
d¢ do’ ,
go(qu)Ea)o):fﬁﬁpo(wﬁﬁ(ﬁ,(ﬁ ) (B6)

To proceed further, we first redu¢asing (B5)] the “matrix
elements” appearing ifB1) and(B2) to the form containing
only the propagator®,

(py=207 (B12)
7=0o
2
(DD)= &OD(’?, (B13)
(7—0o)
72<D0nx><nﬂDO>
Dny{ng,Dy= —————————, B14
(Prg(ngD)= 7 ©14
<nanﬁ>:<nXD0nﬁ>+ w, (815)
T—Jo
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(NDo){DongDo)
(71— 90)2

1 [dgo  1W dgo
: <DonxDonyDo>—2—wc<%+qu 7

(B16)

(nyDngD)={n,DyNn Do)+ ) (B29)

for the “Hall correlators.”

Substituting Eqs(B12)—(B29) in (B1) and (B2), we ob-
(DN Doh Do) N 7(DonyDo){DoN s Do) 3

(DnDngD) = ( B ( 3 tain the kernel8{) and BS(’;,) averaged ovepy,
7=Jo 7=do
17 27—¢ (1-Wgo)?
T T— -
where B=x,y. Next, using(B7) and (B3) and performing Bffi)(w,Q):<r—g ) ( 22 2| g2+ > 20 1
the averaging ovep,, we can express the matrix elements 0 q've
involvipg D, via the propagatog,. I'ntroducing the notatiqn i 990 1 99, 1 [dge\?
W=—iw+1/r, we get the following¢,-averaged matrix -5t o3| =
elements: Tdw  QuETt 99 Avgrl dq
2
a9 X (1—w§7‘2)7_7 +w§7‘2 l+g—:
(DoDo)=—i-~, (B18) °
N 1 (5290+1590) 1
) o (o 4272\ 992 " q aq [ 9ol
We 0
(Dony){NyDo) = " 2q%2 2 [1-Wgol*+ ( aq> (B30)
(B19
T 2 i ago iw (?go
BY)(w,q)= ( )[— ( +—s
a2 19 _ 4o P 2 2aq
" We _ % @_}_ wcYo
2qv2,:r Yo 27| dq 402,:7'2
W dgq
(nyDony Do) = — 22 99" (B21) ((9290+ 1 @) _@c T+go (990)2
09> q dq]| 4vi T—go\ aq) |’
1-Wgo] @ (B31
(2o~ @22
qur In zero magnetic field, we seb.=0 and substituteg,
=1/Sin (B30). After some algebra, we reduce the obtained
1 azgo 1 99, expressi(()n fczr the kernd,, tg the form
(DonyDonyDy) = — Fra a a9 (B23)
(qQug)? 3(que)?
(p)
50, B (0.0 = 2 35— 1) T 42 (s 1n)?
(DonyDo)?=— 5 ) (B24)
99 . S—-w . (2S—1/7)[S—-W]?
for the “longitudinal correlators,” and 7S(S—1Ur)?  27(que)?S(S— 1/7)2’

5 (B32)
We o

Don){nyDy)=—=[1-WQgo]—, B25
{Poma{nyDo) qué[ Oo] Jq (B29 which agrees with Eq(16b of Ref. 20 up to an overall
factor 1/2r related to different normalization. In the ballistic
W ago limit, T7>1, expandingB32) in 1, one finds the leading

(nDony) = w¢ (B26)  contribution[ O(1/7)] given by the last two terms ifB32),

2qvf 79
d 19 So+i [Sotiw]?
(nDony Do) = ( &§°+aa%°) (B27) Bi(w,q)= ng“’ T(qu‘jSO
90 So+|w 1
(NDo){Don, Do) = ( aq) (B29) 3 So Y& iwrio)) (B39
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where SO:[q20|2:_(w+iO)2]l/2- Substituting (B33 in (») wc(so+iw) > . 2
(2.39 and using(C1) for exchange interaction, we reproduce By (@,q)= a7 [6S5—3iSpw+5w].
the linear-inT correction to the resistivity in the ballistic (B39)
regime,
5p§x_ T In arbitrary magnetic field, EB30) can be also signifi-

(B34) cantly simplified when the condition of the ballistic regime,

Tr>1, is assumed. Then the leading contribution to the lon-

Within the approximation of isotropic interaction used in 9itudinal MR, Ap,=p,(B) — pxx(0), is determined by the
Ref. 19, the Hartree term is determined by the triplet channef€rnel
and is given by

Po Ef’

H o
OPxx _ il (B35) B (0,q)=g5+
Po 1+ Fg E|:

(1-Wgo)? i 9o @ (390)2
q%v? Jo dvg\aq)

(B39
It is worth noting that one should exercise a certain caution
when comparing the experimental data with the reS&@8)
and(B35), even in systems with short-range impurities. First, The remaining terms iiB30) yield the contributions to the
the higher angular harmonidg.7, of the interactiof’ (ne- MR which are smaller at least by an additional factor
glected in the above approximatjomay change the numeri- (T7) 1. Using (B36) [which tells us that forw,<T the
cal coefficient in front of the Hartree terfsee discussion in magnetic-field-induced corrections to the propagajgare
Sec. lll E and in Ref. 1p Second, anisotropy of the impurity small by a factor ¢./T)?], we find that the MR for not very
scattering introduces an extra factorr 2W( ) 7# 1 [where  strong magnetic fieldsy,<T, is determined by a quadratic
W( 1) is the effective impurity-backscattering probability in w correction to the kerneﬂif&) ,
both exchange and Hartree terfsse Sec. Il C 3 and Appen-
dix C). The anisotropy may arise due to some amount of
smooth disorder present in any realistic system, due to a w§

2h(w,q) 2h(w,q) W(S—W)

finite range of scatterers, or due to the screening of originally ABii)(w,Q)I - S q%2 S
pointlike impurities(see Sec. Y. Therefore, the interaction qvr
parametelr] extracted from the measured linearirresis- _oh(w,q) 1 [4S\?
tivity with the use of(B34), (B35) may differ considerably +1 Jo 40234(5) }
from that found from a measurement of other quantitéeg., F
the resistivity correction in the diffusive limit or the spin s—w| 2—s12
susceptibility. =—w? —s
To find the leading contribution tB%) in the limit of 478°
vanishing magnetic field, we haye to expand the. propagator EW(S+W)(32— 7TW?2)
0o up to the second order im, in the first term in curly — +S+W
brackets in(B31). This can be easily done by treating the 2s*
term w.d/d¢ in (B3) as a perturbation, which yields )
2SO—I-Iw ) 2e2
=— 0w’ 5 (4S5+ 13 0SH+250°S)
9o(B—0)=0go(@,q;B=0)+ wZh(w,q) 875
— 35 w3Sy+ 35w?), (B40)

1 ,0E(SP—5W?)

=<—w; s’ (B36)

S
independently of the relation between and 7~ 1. Similarly,

After a simple algebra, we finB) in the following form:  using (B36), one can find the correction to E¢B38) in a
finite magnetic fieldw <T,

BY(0.0)  (qup)?  (qup)2[25-5W]
o TSAS-UDT T 4728%(S-1r)?

i (S2+ w?
ABE(’;,)(w,q)=—wS—(j0 5 )[3s§+7w2]. (B41)
WS- W2 37 So
27284 (S—1/n)?’

Again, this correction is independent of the relation between
which agrees with Eq16@ of Ref. 20. In the ballistic limit, . and7 1. The result§B40) and(B41) are used for calcu-
Tr>1, the leading contributioh®(1/7%)] to BS(@) has the lation of the interaction-induced corrections g, and py,

form for the white-noise disorder and.<T in Sec. V B.
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B,y in the general formuld2.35. Likewise, the interaction
propagatoilU (w,q) entering(2.35 has to be replaced by

In this appendix we calculate the leading ballistic correc- 1 1

tion to the conductivity aB=0 for a generic scattering cross
sectionW(¢— ¢') in the case of the Coulomb interaction.

As explained in Sec. Il C 3, this terfproportional toT 7) is
obtained by substituting the ballistic asymptoti@51) of

1] e2T|fmdQ&Q hgfwd
O'XX——W 7Ilm 20 COt2 OQ Q

0

(—iQ)W()(1—cose)

U(w,q)= (CY

2v 1+iw(Dy)

with the free propagataP; given by Eq.(2.50. Performing
the angular integratioq- - - ), we get

[Q%—(Q+i0)2]*2
[Q%—(Q+i0)2]Y2+i(Q+i0)

—iQ

I

where we introduced the dimensionless variabl8s

=wlT, Q=que/T, and W(¢p)=2mwr7W(4). It is conve-
nient to split the interaction propagator as follows:

So
So+i(Q+i0)

i0
s Fi@rio)
(C3

2vU(Q,Q)=

Q? cos’-g— (Q+i 0)2}[Q2— (Q+i0)?]*2 [Q°

—(Q+i0)2]%2|’ ©2

the corresponding coefficient, one can consider the isotropic
scatteringW(¢) = const and to integrate ovef first, yield-

ing

e2

50’%2=;\7V(77)T7', (C5)

in agreement with(2.52). Note that the integral ovef) is

whereSy=[Q*— (1 +i0)?]" The first term corresponds to  formally divergent at the upper limit. It should be cut off at
a Statlca”y screened interaction and is equvalent toa pOIntf)~EF IT y|e|d|ng a temperature independent contribution

like interaction withVy=1/2v, the second term results from
the dynamical weakening of screening. As discussed in Se

I C 3, the contributionsoY) of the first (constant term is
proportional to the backscattering probability( =), see Eq.
(2.52. Let us show that this follows also from E@C2).

Performing the variable changg— S,, we find

W) e? ® d ( Q).
50’XX——FTT|mf0 dQE QCOthE d(Q)
- (—iQ)(S5+Q?)
L
d 2 sirf( p12) W
iji j)l(¢>) (&) - (4
sgcosZE—(QHO)ZsinZE

The contourC of integration ovelS, in Eq. (C4) is shown in
Fig. 14. Interchanging the order of integration owgrand
Sy, we see that for anygp# 7w (i.e., cosg/2)#0) the

Sp-integral converges. Furthermore, transforming the inte-

gration contoulC— C’ as shown in Fig. 14, it is straightfor-
ward to reduceb(Q) to an explicitly real form. Therefore,
only the singular point == [where the result of
Sp-integration diverges as |tbs@/2)|, implying that the
imaginary part ofb(Q) is determined by a delta-function in
¢-integral contributes tqC4), so thatso{ Vs W( ). To find

~e®W(7)Egr7 which renormalizes the value of the Drude

%‘onductivity.

We now turn to the contributiodo2) of the seconddy-
namica) term in the interaction propagat¢€3), which dif-
fers from Eq. (C4) by an extra factor—iQ/[Sy+i(Q
+i0)]. Rotating at¢# 7 the integration contour as before,
we reduce th&y-integral to the form $,— —iY),

[0 e , (Co)
oY (\(’é‘coszf+92sin2f
2 2
ImS,
0 ReS,
e
_Qq
C'
\

FIG. 14. The contour€ andC’ of integration overs; in Eq.
(CA).
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which is again real and thus yields no contributiorﬂtnﬁ’. which is just a standard expansion in eigenfunctions of the
Though the pointp= 7 is singular in this case as well, the Liouville—Boltzmann operator. We now treat the tedf
singularity is only logarithmic €In|cos(/2)|), so that no =ivgQqCcos¢ as a perturbation. The first-order correction to
contribution proportional t&V(7r) arises. This can be easily the eigenvalueQ\E,O)z —iw+inw+n?/ 7 vanishes, while
checked by assumindV(¢)=const and performing the the second order correction is

¢-integration first. Therefore,

2.2
q°vg 1
(2)—
8oi3)=0, M T T (lwert 2n)? ©3
and the linear-irfF term is given by Eq(C5). and can be neglected along withi w in all terms except for

In the above consideration we have expanded the ballistis=0 in the diffusive limit. The first order correction to the
propagatorD up to terms with one scattering event. In the right eigenfunction fon=0 reads
case of small-angle scattering this is justified provided i
>1,_1vvh|le in the mt_ermedlate tempe_rature range1<T_ \If&&(qﬁ):— qusz[cos¢+wc7-sin¢], (D4)
<71, ~ processes with many scattering events dominate l+towcr
(though the particle motion is typically close to the straight
line). The terméo%} which is governed by anomalous pro-
cesses of returns in a tinies T~ 1< 7 is exponentially small
in this case, see Sec. Il C3. As to the'? contribution to

while the left eigenfunction differs froniD4) by a replace-
mentw.— — w. Thus, in the diffusive limit the propagator
has the form

the linear-inT term, it remains zero in this case as well. To , 1 [ iqQueT(COSP+ w TSiNP)
demonstrate this, we use E&.36). In the first and the third D(w.,q;¢,¢")= DQP—iw| 17022
terms we can replac® by the free propagato2.50, the ¢
fourth term gives nol = contribution, while in the second iqQueT(COSd’ — weTSing’)
term we should take into account the angular diffusipr®) - >
around the straight trajectory, 1+ wer?
. _ > gin(é=¢")
—lw + E—— (D5)
=(D)—{(n,Dn,)— . (CY i 2
2< > < X X> 2T[qzv'2:—((u+i0)2]3/2 n#0 |nwc+n /T

In a strong magnetic fieldef{.7>1) one can go beyond
the diffusion approximation. In this case one can represent
the propagator in the form

B —lw 11 3\ D(w,0;¢,¢")=d(w,q;¢,¢")exd —iqR(sing—sing’)],
Bxx(qu)_[qzvlzz_(w+i0)2]3/2(§+§ 1)_0’ (D6)

Combining the contributions tB,, of all the three terms, we
get

(C8  and solve the equation fat( ¢, '),

so that the coefficient of th€ 7-term indeed vanishes.

. Que Qug d
—lw—i o 7_smdﬂ— wc+2IECOS¢ %
APPENDIX D: SOLUTION OF LIOUVILLE —-BOLTZMANN ¢ ¢
EQUATION FOR A SMOOTH DISORDER 1/qug 2 1 92 ,
-l CO§¢—;W d(¢,¢")
C

In this appendix, we will solve the classical equation for a
propagator of a particle moving in a smooth random poten- —278(p— ") (D7)

tial in a magnetic field,
perturbatively ing. At q=0 we have the same solutigbB?2)

o 92 , as in the diffusive limit. The first order correction to the
—iw+iqug cosg+ V35T T 9g? D(¢,¢") eigenzvalu_es is now produced by té-term in (D7), NS
=Dg*, with D=RgZ/27 the diffusion constant in a strong
=2m(p—¢'). (D1)  magnetic field. The second order correctiar}®’ turn out to

be small compared ta') for (qR,)?<w,7. As in the dif-
%usive limit, for calculation ofB,, the corrections to the
eigenfunctions¥,, with n#0 can be neglected. The first-
order correction toW¥, is found to be(we drop the term
«sin 2¢, since it does not contribute tB,, in the leading
orden

Here the polar angle of the velocity is counted from the ang|
of d, p—pg— ¢.

We first consider the diffusive limitDg? w<1/r, and
solve this equation perturbatively @qfor arbitrary magnetic
field. Settingg=0, we obtain the solution in the form

en(¢=¢") iqueTCOS¢

(wcT)z '

D(g,d')= ; (D2) PO p)=— (D8)

—iw+inwc+n2/7’

045313-31



I. V. GORNYI AND A. D. MIRLIN
leading to Eq.(3.1).

To calculate the kerneB,,,

Liouville—Boltzmann operator to the next
formation

D(w,q;¢,¢")

=a(w,q;¢,¢’)exp{ —i %[ﬁz(sin d—sing’)

+ B(cos¢—cosg’ )]] , (D9)
and introduce the dimensionless variablgs=w.r, Q

=qR.B/(1+ %Y, Q=2wr. The equation for
d(w,q; ¢, ') takes then the form

—i 94—@2 cod o+ i+2i(~3 cos?isi

(92

— —5[d(0,q;¢,8")=2778(¢—¢'), (D10)

where we performed a rotatiopi= ¢+ ¢g, Pg=arccotB.
Treating for Q?<max 1,8] [i.e., (QR.)?< w7 in a strong
magnetic field,3>1] the term

raY4
SL= % cos 2+ 2i0Q cos¢—¢ (D11)
as a perturbation to the operator
L i—+ Q° + 7 (D12)
==l T 5 - =,
0 2 2 ) 5¢,2
we find the unperturbed solution
o s ein(6-9")
do(b, ' )=271 — , (D13
ol #") n —iQ+Q%+2inB+2n? (b13

and the first-order correction to the eigenvali€8=0. Cal-

culating then=0 eigenfunctions and eigenvalue up to the

second order in the perturbatigB11) we finally obtain the
singular part of the propagator f@=>1 with required accu-
racy,

D w,q;¢,¢')=27exd —iQ(singp—sing’)]

Xr(6,QxL(¢'.Q)
QY1-(1-Q%4)IB%]-iQ’
(D14)

whereQ=qR; and the functiongr | (¢,Q) are given by

we need a more accurate XrL(® Q)= 1_E
form of the propagator. Therefore, we should analyze the
corrections to the eigenvalues and eigenfunctions of the
order in
(qR.)* w,. To do this, it is convenient to perform the trans-

PHYSICAL REVIEW B 69, 045313 (2004

2
iQ cos¢+Q—sm 2¢

QZ) 5Q2

2
Al
3

71Q° Q*
Y sm3¢+a(1—cos4¢)}

+ +iQ[ 1+

sing— —0052¢

(D15

As to the regular part of the propagator, fo# 0 it is suffi-
cient to calculate the eigenfunctions to the first order in the
perturbation, which yields

DY w,q;¢,¢")
=27exd —iQ(sing—sing’)]
Pr(d',Q;m¥ (4',Q;n) ein(¢-4")

70 —iQ+Q%+2inB+2n?
(D16)
where
iQ Q? 2nQ
Yri(e',Q;n)= 1—Ecos¢>+ Bsm2¢_73m¢.
(D17)

The results(D14)—(D17) allow us to calculate the kernel
B.y(®,q) in the first nonvanishing order iB~*, see Sec.
1 G.

APPENDIX E: PROPAGATOR FOR ANISOTROPIC
SYSTEMS

In this Appendix, we assume that the collision integal
induces a transport anisotropy, i.e., that the scattering cross
sectionW(¢,¢") is not a function ofp— ¢’. The propaga-
tor D(w,q; ¢, ¢") satisfies the equation

D(w,0; ¢, ")

17
—iw+iqugcog dp— ¢q)+w°ﬁ¢

=2mwS(p— "), (ED

where

. do’
[CWI(6) = | S 1¥(9)—¥(8)W(S,6"). (ED

We first consider the diffusive limit and concentrate on the
leading contributioriD® governed by the diffusion mode.

This requires finding a lowest eigenvalig of the op-
erator in the Ihs ofE1) and the corresponding left and right
eigenfunctions. Treating the teriqug cos@—¢') perturba-
tively as in Appendix E, we find

-1

Jd .
qu,L((ﬁ):l_iQUF(iwcﬁ—i—C cos ¢ bg)
(E3)

and
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Ao=Dopdulp—iw, (E4)
with the diffusion tensor
J . -1
Daﬁ:u§< na( iwC%Jrc n3>. (E5)

We thus get the resu(6.5) for the singular contributiorD3,
with W | given by (E3).
In a strong magnetic fieldef.7>1), we can go beyond

the diffusive limit. Proceeding as for an isotropic system, we

perform the transformatioD6). Treating theg-dependent
terms in the obtained equation fd(w,q; ¢, ¢’) as a pertur-

bation and keeping the singular contribution only, we come
to the resuli(6.10, wherex(¢) can be represented symboli-

cally as

PHYSICAL REVIEW B59, 045313 (2004

- iql)': d _1,\ )
x(¢)=1+ 2\ 96 Csin(¢—dq). (E6)

c

According to(3.3—(3.5), we only need to calculate averages
of the type(D) and(n,D), so that it is sufficient to keep the
zero and first harmonics ig in Eq. (6.10. Using

-1
<"a@nﬁ>=( " 1), (E?)
Ty

we then reducéE6) to the form(6.11).
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