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Interaction-induced magnetoresistance in a two-dimensional electron gas
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We study the interaction-induced quantum correctiondsab to the conductivity tensor of electrons in two
dimensions for arbitraryTt ~whereT is the temperature andt the transport scattering time!, magnetic field,
and type of disorder. A general theory is developed, allowing us to expressdsab in terms of classical
propagators~‘‘ballistic diffusons’’!. The formalism is used to calculate the interaction contribution to the
longitudinal and the Hall resistivities in a transverse magnetic field in the whole range of temperature from the
diffusive (Tt!1) to the ballistic (Tt*1) regime, both in smooth disorder and in the presence of short-range
scatterers. Further, we apply the formalism to anisotropic systems and demonstrate that the interaction induces
quantum oscillations in the resistivity of lateral superlattices.
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I. INTRODUCTION

The magnetoresistance~MR! in a transverse fieldB is one
of the most frequently studied characteristics of the tw
dimensional ~2D! electron gas.1,2 Within the Drude–
Boltzmann theory, the longitudinal resistivity of an isotrop
degenerate system isB-independent,

rxx~B!5r05~e2nvF
2t!21, ~1.1!

where n is the density of states per spin direction,vF the
Fermi velocity, andt the transport scattering time. Devia
tions from the constantrxx(B) are customarily called a pos
tive or negative MR, depending on the sign of the deviati
There are several distinct sources of a non-trivial MR, wh
reflect the rich physics of the magnetotransport in 2D s
tems.

First of all, it has been recognized recently that ev
within the quasiclassical theory memory effects may lead
strong MR.3–9 The essence of such effects is that a parti
‘‘keeps memory’’ about the presence~or absence! of a scat-
terer in a spatial region which it has already visited. As
result, if the particle returns back, the new scattering even
correlated with the original one, yielding a correction to t
resistivity ~1.1!. Since the magnetic field enhances the ret
probability, the correction turns out to beB-dependent. As a
prominent example, memory effects in magnetotranspor
composite fermions subject to an effective smooth rand
magnetic field explain a positive MR around half-filling o
the lowest Landau level.7 Another type of memory effects
taking place in systems with rare strong scatterers is res
sible for a negative MR in disordered antidot arrays.3–5,8,9

However, such effects turn out to be of a relatively min
importance for the low–field quasiclassical magnetotrans
in semiconductor heterostructures with typical experimen
parameters, while at higherB they are obscured by the de
velopment of the Shubnikov-de Haas oscillation~SdHO!.

Second, the negative MR induced by the suppression
the quantum interference by the magnetic field is a fam
manifestation of weak localization.1 While the weak-
localization correction to conductivity is also related to t
0163-1829/2004/69~4!/045313~34!/$22.50 69 0453
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return probability, it has~contrary to the quasiclassica
memory effects! an intrinsically quantum character, since
is governed by quantum interference of time-reversed pa
As a result it is suppressed already by a classically neglig
magnetic field, which changes relative phases of the
paths. Consequently, the corresponding correction torxx in
high-mobility structures is very small and restricted to t
range of very weak magnetic fields.

Finally, another quantum correction to MR is induced
the electron–electron interaction. While this effect is simi
to those discussed above in its connection with the ret
probability ~see Sec. IV below!, it is distinctly different in
several crucial aspects. In contrast to the memory effe
this contribution is of quantum nature and is therefo
strongly T-dependent at low temperatures. On the oth
hand, contrary to the weak localization, the interaction c
rection to conductivity is not destroyed by a strong magne
field. As a result, it induces an appreciable MR in the ran
of classically strong magnetic fields. This effect will be th
subject of the present paper.

It was discovered by Altshuler and Aronov1 that the Cou-
lomb interaction enhanced by the diffusive motion of ele
trons gives rise to a quantum correction to conductiv
which has in 2D the form~we setkB5\51)

dsxx.
e2

2p2 S 12
3

2
FD ln Tt, Tt!1. ~1.2!

The first term in the factor (12 3
2 F) originates from the ex-

change contribution, and the second one from the Har
contribution. In the weak-interaction regime,k!kF , where
k54pe2n is the inverse screening length, the Hartree co
tribution is small,F;(k/kF)ln(kF /k)!1. The conductivity
correction~1.2! is then dominated by the exchange term a
is negative. The conditionTt!1 under which Eq.~1.2! is
derived1 implies that electrons move diffusively on the tim
scale 1/T and is termed the ‘‘diffusive regime.’’ Subseque
works10,11 showed that Eq.~1.2! remains valid in a strong
magnetic field, leading~in combination withdsxy50) to a
parabolic interaction-induced quantum MR,
©2004 The American Physical Society13-1
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drxx~B!

r0
.S 12

3

2
FD ~vct!221

pkFl
ln Tt, Tt!1, ~1.3!

wherevc5eB/mc is the cyclotron frequency andl 5vFt the
transport mean free path. Indeed, aT–dependent negativ
MR was observed in experiments12–16 and attributed to the
interaction effect. However, the majority of experiments12–14

cannot be directly compared with the theory1,10,11since they
were performed at higher temperatures,Tt*1. ~In high-
mobility GaAs heterostructures conventionally used in M
experiments, 1/t is typically ;100 mK and becomes eve
smaller with improving quality of samples.! In order to ex-
plain the experimentally observedT-dependent negative MR
in this temperature range the authors of Refs. 12 and
conjectured variousad hocextensions of Eq.~1.3! to higher
T. Specifically, Ref. 12 conjectures that the logarithmic b
havior ~1.3! with t replaced by the quantum timets is valid
up to T;1/ts , while Ref. 13 proposes to replace lnTt by
2p2/2Tt. These proposals, however, were not supported
theoretical calculations. There is thus a clear need fo
theory of the MR in the ballistic regime,T*1/t.

In fact, the effect of interaction on the conductivity atT
*1/t has been already considered in the literature.17–24Gold
and Dolgopolov18 analyzed the correction to conductivit
arising from theT-dependent screening17 of the impurity po-
tential. They obtained a linear-in-T correctionds;e2Tt. In
the last few years, this effect attracted a great deal of inte
in a context of low-density 2D systems showing a seemin
metallic behavior,25,26 dr/dT.0. Recently, Zala, Narozhny
and Aleiner19–21 developed a systematic theory of the inte
action corrections valid for arbitraryTt. They showed that
the temperature-dependent screening of Ref. 18 has in fa
common physical origin with the Altshuler-Aronov effect b
that the calculation of Ref. 18 took only the Hartree term in
account and missed the exchange contribution. In the ba
tic range of temperatures, the theory of Refs. 19–21 pred
in addition to the linear-in-T correction to conductivitysxx ,
a 1/T correction to the Hall coefficient20 rxy /B at B→0, and
describes the MR in aparallel field.21

The consideration of Refs. 19–21 is restricted, howev
to classically weaktransverse fields,vct!1, and to the
white-noisedisorder. The latter assumption is believed to
justified for Si-based and some~those with a very large
spacer! GaAs structures, and the results of Refs. 19–21 h
been by and large confirmed by most recent experiments27–33

on such systems. On the other hand, the random potenti
typical GaAs heterostructures is due to remote donors
has a long-range character. Thus, the impurity scatterin
predominantly of a small-angle nature and is characteri
by two relaxation times, the transport timet and the single-
particle ~quantum! time ts governing damping of SdHO
with t@ts . Therefore, a description of the MR in such sy
tems requires a more general theory valid also in the rang
strong magnetic fields and for smooth disorder.~A related
problem of the tunneling density of states in this situat
was studied in Ref. 34.!

In this paper, we develop a general theory of t
interaction–induced corrections to the conductivity tensor
2D electrons valid for arbitrary temperatures, transve
04531
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magnetic fields, and range of random potential. We furt
apply it to the problem of magnetotransport in a smoo
disorder atvct@1. In the ballistic limit,Tt@1 ~where the
character of disorder is crucially important!, we show that
while the correction torxx is exponentially suppressed fo
vc!T, a MR arises at strongerB where it scales asB2T21/2.
We also study the temperature-dependent correction to
Hall resistivity and show that it scales asBT1/2 in the ballis-
tic regime and for strongB. We further investigate a ‘‘mixed-
disorder’’ model, with both short-range and long-range i
purities present. We find that a sufficient concentration
short-range scatterers strongly enhances the MR in the
listic regime.

The outline of the paper is as follows. In Sec. II w
present our formalism and derive a general formula for
conductivity correction. We further demonstrate~Sec. II C!
that in the corresponding limiting cases our theory rep
duces all previously known results for the interaction corr
tion. In Sec. III we apply our formalism to the problem o
interaction-induced MR in strong magnetic fields and smo
disorder. Section IV is devoted to a physical interpretation
our results in terms of a classical return probability. In Se
tions V and VI we present several further applications of o
theory. Specifically, we analyze the interaction effects in s
tems with short-range scatterers and in magnetotranspo
modulated systems~lateral superlattices!. A summary of our
results, a comparison with experiment, and a discussion
possible further developments are presented in Sec.
Some of the results of the paper have been published
brief form in the Letter.35

II. GENERAL FORMALISM

A. Smooth disorder

We consider a 2D electron gas~charge2e, massm, den-
sity ne) subject to a transverse magnetic fieldB and to a
random potentialu(r ) characterized by a correlation functio

^u~r !u~r 8!&5w~ ur2r 8u! ~2.1!

with a spatial ranged. The total (ts
21) and the transport

(t21) scattering rates induced by the random potential
given by

1

ts
52pnE

0

2pdf

2p
W~f!, ~2.2!

1

t
52pnE

0

2pdf

2p
W~f!~12cosf!, ~2.3!

where W(f)5w̃@2kF sin(f/2)# is the scattering cross
section. We begin by considering the case of smooth di
der, kFd@1, when t/ts;(kFd)2@1; generalization onto
systems with arbitraryt/ts will be presented in Sec. II B. We
assume that the magnetic field is not too strong,vcts!1, so
that the Landau quantization is destroyed by disorder. N
that this assumption is not in conflict with a condition
classically strong magnetic fields (vct@1), which is a range
of our main interest in the present paper.
3-2
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INTERACTION-INDUCED MAGNETORESISTANCE IN A . . . PHYSICAL REVIEW B69, 045313 ~2004!
We consider two types of the electron-electron interact
potentialU0(r ): ~i! pointlike interaction,U0(r )5V0, and~ii !
Coulomb interaction,U0(r )5e2/r . In order to find the
interaction-induced correctiondsab to the conductivity ten-
sor, we make use of the ‘‘ballistic’’ generalization of th
diffuson diagram technique of Ref. 1. We consider the
change contribution first and will discuss the Hartree te
later on. Within the Matsubara formalism, the conductivity
expressed via the Kubo formula through the current-curr
correlation function,

sab~ iVk!5
nee

2

mVk
dab2

1

Vk
E

0

1/T

dt

3E d2r ^Tt ĵ a~r ,t! ĵ b~0,0!&eiVkt, ~2.4!

whereVk52pkT is the bosonic Matsubara frequency. Di
grams for the leading-order interaction correction are sho
in Fig. 1 and can be generated in the following way. Fir
there are two essentially different ways to insert an inter
tion line into the bubble formed by two electronic Green
function. Second, one puts signs of electronic Matsubara
quencies in all possible ways. On the third step, one conn
lines with opposite signs of frequenciesen.0, em,0 by
impurity–line ladders~which are not allowed to cross eac
other!. Finally, in the case of the diagrama, where four elec-
tronic lines form a ‘‘box,’’ one should include two additiona
diagrams,b and c, with an extra impurity line~‘‘Hikami
box’’ !.1,19,36,37

The impurity-line ladders are denoted by shaded block
Fig. 1; we term them ‘‘ballistic diffusons.’’ Formally, the
ballistic diffuson is defined as an impurity average~denoted
below as^•••& imp) of a product of a retarded and advanc
Green’s functions,

FIG. 1. Exchange diagrams for the interaction correction
sab . The wavy~dashed! lines denote the interaction~impurity scat-
tering!, the shaded blocks are impurity ladders, and the1/2 sym-
bols denote the signs of the Matsubara frequencies. The diag
obtained by a flip and/or by an exchange1↔2 should also be
included. ‘‘Inelastic’’ part of the diagramsf, g is canceled by a
contribution of the Coulomb-drag type, see Appendix A.
04531
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D~ i em ,i en ;r1 ,r2 ;r3 ,r4!

5u~2emen!^G~r1 ,r2 ; i em!G~r3 ,r4 ; i en!& imp . ~2.5!

Following the standard route of the quasiclassi
formalism,38–40 we perform the Wigner transformation,

D~ i em2 i en ;R1 ,p1 ;R2 ,p2!

5E dr dr 8e2 i [p12(e/c)A(R1)] re2 i [p22(e/c)A(R2)] r8

3D~ i em ,i en ;R1 ,r ;R2 ,r 8!, ~2.6!

where R15(r41r1)/2, R25(r21r3)/2, r5r42r1, and r 8
5r22r3. Note that the factors depending on the vector p
tential make the ballistic diffuson~2.6! gauge-invariant. Fi-
nally, we integrate out the absolute values of momentap1,2
and get the final form of the ballistic diffuson

D~ iv l ;R1 ,n1 ;R2 ,n2!

5
1

2pnE p1 dp1

2p E p2 dp2

2p
D~ iv l ;R1 ,p1 ;R2 ,p2!,

~2.7!

which describes the quasiclassical propagation of an elec
in the phase space from the pointR2 ,n2 to R1 ,n1. Heren is
the unit vector characterizing the direction of velocity on t
Fermi surface. The ballistic diffuson satisfies the quasicla
cal Liouville–Boltzmann equation

F uv l u1 ivFq cos~f2fq!1vc

]

]f
1ĈGD~ iv l ,q;f,f8!

52pd~f2f8!, ~2.8!

wheref(fq) is the polar angle ofn(q) andĈ is the collision
integral, determined by the scattering cross-sectionW(n,n8).
For the case of a smooth disorder, the collision integra
given by

Ĉ52
1

t

]2

]f2 . ~2.9!

In contrast to the diffusive regime, whereD has a universal
and simple structureD( iv l ,q)51/(Dq21uv l u) determined
by the diffusion constantD only, its form in the ballistic
regime is much more complicated. We are able, however
get a general expression fordsab in terms of the ballistic
propagatorD( iv l ,q;n,n8).

The temperature range of main interest in the present
per is restricted byTts!1, since at higherT the MR will be
small in the whole range of the quasiclassical transp
vcts!1 ~see below!. In this case the ladders are dominat
by contributions with many (@1) impurity lines. We will
assume this situation when evaluating diagrams in
present subsection. A general case of arbitraryTts andts /t
will be addressed in Sec. II B.

We start with the diagramsd and e that give rise to the
logarithmic correction in the diffusive regime.1 Let us fix the
sign of the external frequency,Vk.0. Each of the diagrams

o

ms
3-3



th
r
-
n

n

nd
o

ea

ne
c-

n

s
ll
w

n

y

ed

r
le,

n-

xi-

g

e
nic

I. V. GORNYI AND A. D. MIRLIN PHYSICAL REVIEW B 69, 045313 ~2004!
d ande generates four diagrams by a flip with respect to
horizontal line or by exchange1↔2, see Fig. 2. Conside
first the diagramd11 . There are two triangular boxes con
taining each a current vertex and three electron Green’s fu
tions ~Fig. 3!. In the quasiclassical regimevcts!1 one may
neglect the effect of magnetic field on the Green’s functio
~keepingvc in the ballistic propagators only!. Furthermore,
using Tts!1, we neglect the difference in momenta a
frequencies in the Green’s functions, since typical values
frequenciesiVk , iv l and momentaq carried by the ballistic
diffusons are set by the temperature. Each triangle then r

Ga~n!5
e

mE p dp

2p

pna

~2jp1 i /2ts!
2~2jp2 i /2ts!

,

. i2pnts
2evFna , ~2.10!

where jp5p2/2m2m. Combining the triangles with the
three ballistic propagators separated by the impurity li
~see Fig. 3!, we obtain the following expression for the ele
tronic part of the diagramd11 ,

~2pn!3E )
i 51

6
df i

2p
D~ iv l ,q;f,f1!W~f12f2!

3Ga~f2!W~f22f3!D~ iv l2 iVk ,q;f3 ,f4!

3W~f42f5!Gb~f5!W~f52f6!D~ iv l ,q;f6 ,f8!

[
4ps0

t
B ab

d ~ iv l ,2 iVk ,q;f,f8!. ~2.11!

In what follows we will use for brevity a short-hand notatio

~2pn!3DWGaWDWGbWD
for the left-hand side~lhs! of ~2.11! and analogous notation
for other structures of this type. Making use of the sma
angle nature of scattering in a smooth random potential,
can replace the W(f i2f j ) factors in ~2.11! by
(nts)

21d(f i2f j ), yielding

B ab
d ~ iv l ,iVk ,q;f,f8!

.2D~ iv l ,q!naD~ iv l1 iVk ,q!nbD~ iv l ,q!.

FIG. 2. Diagrams obtained by a flip and/or by an exchan
1↔2 from the diagramd.
04531
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In the exchange term~calculated in the present subsectio!
this structure is further integrated over the anglesf andf8,

Bab
d ~ iv l ,iVk ,q!5^B ab

d ~ iv l ,iVk ,q;f,f8!&. ~2.12!

The angular bracketŝ•••& denote averaging over velocit
directions, e.g.,

^nxDnx&[E df1

2p

df2

2p
cosf1D~v l ,q;f1 ,f2!cosf2 .

The fermionic frequencies obey the inequalitiesem.0, em
2v l,0, andem2Vk.0, which impliesv l.em.Vk , so
that the summation overem gives the factor (v l
2Vk)/2pT.

The diagramd22 has the same structure~both triangles
have opposite signs, thus the total sign remains unchang!,
but the frequency summation is restricted byem,0, em
2v l.0, andem2Vk,0, yielding the factor2v l /2pT in
the conductivity correction. The diagramsd118 andd228 ob-
tained from d11 and d22 by a flip ~or, equivalently, by
reversing all arrows! double the result. Combining the fou
contributions and changing sign of the summation variab
v l→2v l in d22 andd228 terms, we have

dsab
d ~ iVk!52

8ps0

t

T2

Vk
E d2q

~2p!2

3F (
v l.Vk

v l2Vk

2pT
U~ iv l ,q!Bab

d ~2 iv l ,iVk ,q!

1 (
v l.0

v l

2pT
U~ iv l ,q!Bab

d ~ iv l ,iVk ,q!G ,
~2.13!

whereU( iv,q) is the interaction potential equal to a co
stantV0 for pointlike interaction and to

U~ iv l ,q!5
1

2n

k

q1k@12uv l u^D~ iv l ,q!&#
~2.14!

for screened Coulomb interaction. In~2.13! we used the fact
that U(2 iv l ,q)5U( iv l ,q) and D(2 iv l ,q)5D( iv l ,q).
Equation~2.14! is a statement of the random-phase appro
mation ~RPA!, with the polarization operator given by

P~ iv l ,q!52n@12uv l u^D~ iv l ,q!&#. ~2.15!

e

FIG. 3. Diagramd drawn in a different way in order to visualiz
the structure of Eq.~2.11!. The dashed frame encloses the electro
part B ab

d .
3-4
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The first term~unity! in square brackets in~2.15! comes from
the 11 and 22 contributions to the polarization bubble
while the second term is generated by the12 contribution
~ballistic diffuson!.

The diagramse are evaluated in a similar way. In all fou
diagrams of this type one of the electron triangles is the sa
as in diagramsd while another one has an opposite sign. T
structures arising after integrating out fast momenta in e
tron bubbles coincide with those ofd-type (Bab

d ). Summa-
tion over the fermionic frequencyem is constrained by the
conditionv l.em.Vk for all the e-type diagrams. The cor
rection due to the diagramse therefore reads

dsab
e ~ iVk!5

8ps0

t

T2

Vk
E d2q

~2p!2 (
v l.Vk

v l2Vk

2pT
U~ iv l ,q!

3@Bab
d ~2 iv l ,iVk ,q!1Bab

d ~ iv l ,iVk ,q!#.

~2.16!

We see that the first term in square brackets in~2.16! cancels
the first term in~2.13!. Thus, the sum of the contributions o
diagramsd ande takes the form

dsab
d1e~ iVk!52

4s0

t

T

Vk
F (

v l50

Vk

v lFab
d ~ iv l ,iVk!

1 (
v l.Vk

VkFab
d ~ iv l ,iVk!G , ~2.17!

where we introduced a notation

Fab
m ~ iv l ,iVk!5E d2q

~2p!2 U~ iv l ,q!Bab
m ~ iv l ,iVk ,q!,

~2.18!

with the indexm labeling the diagram.
Similarly, we obtain for the diagramh

dsab
h ~ iVk!52

4s0

t

T

Vk
F (

v l50

Vk

v lFab
h ~ iv l ,iVk!

1 (
v l.Vk

VkFab
h ~ iv l ,iVk!G , ~2.19!

with

Bab
h ~ iv l ,iVk ,q!

522Tag^ngD~ iv l1 iVk ,q!nbD~ iv l ,q!&. ~2.20!

The tensorTag appearing in~2.20! describes the renorma
ization of a current vertex connecting two electronic lin
with opposite signs of frequencies,
04531
e
e
c-

Tab52^naDnb&uq50,v→0

5
sab

e2vF
2n

5
t

11vc
2t2S 1 2vct

vct 1 D . ~2.21!

We turn now to diagramsf and g. The expressions for the
corresponding contributions read

dsab
f ~ iVk!52

4s0

t

T

Vk
F (

v l>0
VkFab

f ~ iv l ,iVk!

1 (
2Vk,v l,0

~Vk1v l !Fab
f ~2 iv l ,iVk!G ,

~2.22!

dsab
g ~ iVk!5

4s0

t

T

Vk
F (

v l50

Vk

~Vk2v l !Fab
f ~ iv l ,iVk!

1 (
2Vk,v l,0

~Vk1v l !Fab
f ~2 iv l ,iVk!G ,

~2.23!

with

Bab
f ~ iv l ,iVk ,q!5Tag^ngD~ iv l1 iVk ,q!nd&Tdb .

~2.24!

The sum of the contributionsf andg is therefore given by

dsab
f 1g~ iVk!52

4s0

t

T

Vk
F (

v l50

Vk

v lFab
f ~ iv l ,iVk!

1 (
v l.Vk

VkFab
f ~ iv l ,iVk!G . ~2.25!

We see that when the diagramsf and g are combined, the
same Matsubara structure as for other diagrams@Eqs.~2.17!
and~2.19!# arises. In other words, the role of the diagramsg
is to cancel the extra contribution of diagramsf, which has a
different Matsubara structure.

A word of caution is in order here. In our calculation w
have set the value of velocity coming from current vertic
to be equalvF , thus neglecting a particle-hole asymmetry.
one goes beyond this approximation and takes into acco
the momentum-dependence of velocity~violating the
particle-hole symmetry!, the above cancellation ceases to
exact and an additional term with a different Matsuba
structure arises indsab

f 1g . After the analytical continuation is
performed, the corresponding correction to the conductiv
has a form
3-5
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I. V. GORNYI AND A. D. MIRLIN PHYSICAL REVIEW B 69, 045313 ~2004!
dsab
inel52

2s0

t E
2`

` dv

2p

v

2T sinh2~v/2T!

3E d2q

~2p!2 dBab
f ~v,q!Im U~v,q!, ~2.26!

characteristic for effects governed by inelastic scatteri
This contribution is determined by real inelastic scatter
processes with an energy transferv&T and behaves~in zero
magnetic field! ase2(Tt)2. This implies that the correspond
ing resistivity correction,dr;(T/eEF)2 is independent of
disorder. However, such a correction should not exist
cause of total momentum conservation. Indeed, an exp
calculation~see Appendix A! shows that this term is cancele
by the Aslamazov–Larkin-type diagrams analogous to th
describing the Coulomb drag.

Finally, we consider the diagramsa,b, and c. Already
taken separately, each of them has the expected Matsu
structure ~contrary to the diagramsd,e and f ,g, which
should be combined to get this structure!. However, another
peculiarity should be taken into account. The diagramsa,b,
and c form together the Hikami box, so that their sum
smaller by a factor;ts /t than separate terms. Therefor
some care is required: subleading terms of orderts /t should
be retained when contributions of individual diagrams
calculated. The result reads

dsab
a1b1c~ iVk!52

4s0

t

T

Vk
F (

v l50

Vk

v lFab
a1b1c~ iv l ,iVk!

1 (
v l.Vk

VkFab
a1b1c~ iv l ,iVk!G . ~2.27!

Here the contribution of the diagrama has the form

Bab
a ~ iv l ,iVk ,q!

5
1

2
TagF 1

ts
dgd1~ T̃21!gdGTdb^D~ iv l ,q!D~ iv l ,q!&

1
1

2
TagTgb^D~ iv l ,q!&, ~2.28!

where the matrixT̃ab has the same form asTab with a re-
placementt→ts ,

T̃215S 1/ts vc

2vc 1/ts
D ,

~ T̃21!ab5~T21!ab1S 1

ts
2

1

t D dab .

Further, the contributions of the diagramsb andc read

Bab
b ~ iv l ,iVk ,q!52

1

2ts
TagTgb^D~ iv l ,q!D~ iv l ,q!&

~2.29!

and
04531
.
g

-
it

e

ara

e

Bab
c ~ iv l ,iVk ,q!

52
1

2S 1

ts
2

1

t DTagTgb^D~ iv l ,q!D~ iv l ,q!&. ~2.30!

We see that although each of the expressions~2.28!, ~2.29!,
and~2.30! depends onts , the single-particle time disappea
from the total contribution of the Hikami-box,

Bab
a1b1c~ iv l ,iVk ,q!

5
1

2
Tab^D~ iv l ,q!D~ iv l ,q!&1

1

2
Tag^D~ iv l ,q!&Tgb .

~2.31!

The total correction to the conductivity tensor is obtained
collecting the contributions~2.17!, ~2.19!, ~2.25!, and~2.27!.
Carrying out the analytical continuation to real frequenci
we get

dsab~V!5
s0

iptVE
2`

`

dv v coth
v

2T

3@Fab~v1V,V!2Fab~v,V!#,

~2.32!

where

Fab~v,V!5Fab
a1b1c~v,V!1Fab

d ~v,V!

1Fab
f ~v,V!1Fab

h ~v,V!. ~2.33!

We are interested in the case of zero external frequencyV
→0, when Eq.~2.32! can be rewritten as

dsab52
s0

iptE2`

`

dvFab~v,0!
]

]vFv coth
v

2TG .
~2.34!

Recalling the definition~2.18! of Fm, we finally arrive at the
following result:

dsab522e2vF
2nE

2`

` dv

2p

]

]v Fv coth
v

2TG
3E d2q

~2p!2
Im@U~v,q!Bab~v,q!#, ~2.35!

where the tensorBab(v,q) is given by

Bab~v,q!5
Tab

2
^DD&1TagS dgd

2
^D&2^ngDnd& DTdb

22Tag^ngDnbD&2^DnaDnbD&. ~2.36!

The first term in~2.36! originates from the diagramsa, b, c,
the second term froma, f , g, the third term fromh, and the
last one fromd ande. We remind the reader that this resu
has been obtained under the assumptionts!t,T21; gener-
alization to arbitraryts /t andtsT will be considered in Sec
II B. It will be shown there that the conductivity correctio
3-6
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retains the form~2.35! in the general case but the expressi
~2.36! for Bab(v,q) is slightly modified.

B. General case

In the preceding section we have derived the formula
the correction to the conductivity tensor for the case o
smooth disorder~with ts!t) assumingts!T21. Since char-
acteristic momentaq and frequenciesv are set by the tem
perature, this assumption impliesqls!1 andvts!1. This
allowed us to simplify the calculation by neglecting theq
andv dependence of Green’s functions connecting ballis
diffusions and by considering only the ladders with ma
impurity lines. Furthermore, we have used the small-an
nature of scattering when calculating the Hikami box con
bution ~2.31!. We are now going to discuss the general ca
of arbitraryts /t andTts .

It turns out that the expressions~2.17!, ~2.19!, and~2.25!
for the contribution of the diagramsd–h derived in the case
of a smooth disorder remain valid in the general situati
The simplest way to show this is to use the following tec
nical trick ~cf. Refs. 41 and 42!. One can add to the system
an auxiliary weak smooth random potential with a lo
transport scattering timet̃@t but short single-particlet̃s

!ts , such thatTt̃s!1. This potential will not affect the
quasiclassical dynamics and thus should not change the
sult. On the other hand, it allows us~in view of the condition
Tt̃s!1) to perform the gradient and frequency expansion
Green’s functions as was done in Sec. II A. Adding such
auxiliary disorder amounts to a redistribution between qu
tum and quasiclassical degrees of freedom: all the infor
tion about the real disorder is now contained in the ballis
propagators. It can be verified by a direct calculation~with-
out using the additional disorder! that the above procedur
yields the correct result.

It remains to consider the Hikami-box contribution~2.27!.
When calculating it in Sec. II A, we used the small-ang
nature of scattering implying that a single scattering line
serted between two ballistic propagators approximately p
serves the direction of velocity, ^DWD&
→(2pn)21^DD&/ts and ^DnaWnbD&→(2pn)21^DD&
3(1/ts21/t)dab . In the more general situation, when th
scattering is at least partly of the large-angle character, th
no longer valid and Eq.~2.31! acquires a slightly more com
plicated form,

Bab
a1b1c~ iv l ,iVk,q!

5pnTag@^DSgdD&22^DngWndD&#Tdb

1 1
2 Tag^D&Tgb , ~2.37!

whereSxx5Syy5W(n,n8), Sxy52Syx5vc/2pn.
Summarizing the consideration in this section, in the g

eral situation the interaction correction retains the fo
~2.35! with the tensorBab(v,q) given by
04531
r
a

c

le
-
e

.
-

re-

n
n
-

a-
c

-
e-

is

-

Bab~v,q!5Tagpn@^DSgdD&22^DngWndD&#Tdb

1TagS dgd

2
^D&2^ngDnd& DTdb

22Tag^ngDnbD&2^DnaDnbD&. ~2.38!

The correctiondrab to the resistivity tensor is then immed
ately obtained by usingdr̂52 r̂dŝr̂. This yields

drab5
2

e2vF
2n
E

2`

` dv

2p

]

]v Fv coth
v

2TG
3E d2q

~2p!2
Im@U~v,q!Bab

(r)~v,q!#, ~2.39!

where the tensorBab
(r) is related toBab , Eq. ~2.38!, via

Bab
(r)5~T21!agBgd~T21!db . ~2.40!

Explicitly, corrections to the components of the resistiv
tensor are expressed throughdsxx5dsyy and dsxy
52dsyx as follows:

drxx5r0
2@~vc

2t221!dsxx12vctdsxy#, ~2.41!

drxy5r0
2@~vc

2t221!dsxy22vctdsxx#. ~2.42!

Note that the results~2.36! and ~2.38! for Bab(v,q) satisfy
the requirement

Bab~v,0!50, ~2.43!

as follows from

^naDnb&uq505sab~v!/2e2nvF
2

and

~2p!21E df D~f,f8!uq505 i /v.

The condition ~2.43! implies that spatially homogeneou
fluctuations in the potential do not change the conductiv
see Refs. 19 and 43 for discussion.

C. Limiting cases

Having obtained the general formula, we will now dem
onstrate that it reproduces, in the appropriate limits, the p
viously known results for the interaction correction. Spec
cally, in Sec. II C 1 we will consider the diffusive limitTt
!1 studied in Refs. 1, 10, and 11, while Sec. II C 2 is d
voted to theB→0 case with a white-noise disorder a
dressed in Refs. 19 and 20. In Sec. II C 3 we will analy
how the linear-in-T asymptotics ofds(B50) in the ballistic
regime obtained in Ref. 19 for a white-noise disorder d
pends on the character of the random potential.

1. Diffusive limit

We begin by considering the diffusive limitTt!1 in
which we reproduce~for arbitraryB and disorder range! the
logarithmic correction~1.2! and~1.3! determined by the dia-
3-7
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gramsa–e. Let us briefly outline the corresponding calcul
tion. The propagator forql, vt!1 can be decomposed a
D5D s1D reg, where D s is singular, whileD reg is finite
~regular! at q, v→0, see, e.g., Refs. 37 and 44. The singu
contribution is governed by the diffusion mode and has
form @see Eq.~D5!#

D s~v,q;f,f8!.
CR~f,q!CL~f8,q!

Dq22 iv
,

Cn~f,q!512 icn
(1) cos~f2fq!2 icn

(2) sin~f2fq!,
~2.44!

whereD5vF
2t/2(11vc

2t2) is the diffusion constant in the
presence of a magnetic field and

cR
(1)~q!5cL

(1)~q!5
qvFt

11vc
2t2 , ~2.45!

cR
(2)~q!52cL

(2)~q!5
qvFvct

2

11vc
2t2 . ~2.46!

The leading-order contribution of the diagramsa,b, andc
~that containing two singular diffusonsD s) is exactly can-
celed by the part of the diagramsd ande with the structure
^D snaD regnbD s&, i.e., with one regular part of the propag
tor inserted between two singular diffusons,^D s&5(Dq2

2 iv)21. Indeed, in view of̂ naD regnb&5 1
2 Tab , the latter

contribution reduces to2 1
2 ^D s&2Tab , while the diagrams

a,b, andc yield

1

2
^D s&2TagFdgd

t
1vcegdGTdb5

1

2
^D s&2Tab , ~2.47!

where eab is the antisymmetric tensor,exx5eyy50, exy
52eyx51.

It remains thus to calculate only the contribution of t
diagramsd1e with three singular diffusons,

dsab5
e2vF

2

2p E
2`

`

dv
]

]v Fv coth
v

2TG
3E d2q

~2p!2 Im
^D snaD snbD s&

11 iv^D s&

.
2e2vF

2

p~11vc
2t2!2E

T

1/t

dvE d2q

~2p!2 Im
~2 iqal !~2 iqbl !

Dq2~Dq22 iv!2

5
e2

2p2 ln~Tt!dab , ~2.48!

in agreement with Refs. 1, 10, and 11. The result for a po
like interaction differs only by a factornV0.

2. B\0, white-noise disorder

We allow now for arbitraryTt but consider the limit of
zero magnetic field assuming a white-noise disorder (t5ts
andW(n,n8)51/2pnt), which is the limit studied in Refs
04531
r
e

t-

19 and 20. The contribution~2.37! of the diagramsa,b,c
takes for the white-noise disorder the form

Bab
a1b1c5

1

2
TagF ^D&^D&

dgd

t
1vc^DD&egd

2
2

t
^Dng&^ndD&1dgd^D&GTdb . ~2.49!

Using now the explicit form of the ballistic propagator fo
the case of white-noise disorder andB→0 @Eqs.~B4!, ~B6!,
~B10!, ~B11!, and~B36!# we recover the results fordsxx and
drxy obtained in a different way in Refs. 19 and 20, s
Appendix B.

3. BÄ0, ballistic limit T tš1

In the ballistic limit Tt@1 and for white-noise disorde
the result of Ref. 19~recovered in Sec. II C 2 and Appendi
B! yields a linear-in-T conductivity correction, ds
5(2nV0e2/p)Tt for the pointlike interaction andds
5(e2/p)Tt for the Coulomb interaction. The question w
address in this section is how this behavior depends on
nature of disorder@i.e., on the scattering cross sectio
W(f)].

In order to get theTt ballistic asymptotics, it is sufficien
to keep contributions to~2.38! with a minimal number of
scattering processes. Specifically, the propagatorD in the
first and the third terms of~2.38! can be replaced by the fre
propagator

Df~v,q;f,f8!5
2pd~f2f8!

2 i ~v1 i0!1 iqvF cos~f2fq!
,

~2.50!

while in the second term it should be expanded up to
linear term in the scattering cross sectionW @the second term
produces then the same contribution as the first term
~2.38!#. The last~fourth! term in~2.38! does not contribute to
the Tt asymptotics. We get therefore

Bxx.2pnt2~^DfWDf&22^DfnxWnxDf&!22t^nxDfnxDf&.
~2.51!

Let us consider first the case of a short-range interact
U0(r )5V0. The structure of Eqs.~2.35! and ~2.51! implies
that the interaction correction is governed by the return o
particle to the original point in a timet&T21!t after a
single scattering event. It follows that the coefficient in fro
of the linear-in-T term is proportional to the backscatterin
probability W(p)5w̃(2kF),

dsxx5
2nV0e2

p
2pnW~p!Tt2. ~2.52!

As shown in Appendix C, this result remains valid in th
case of Coulomb interaction, with the factor 2nV0 replaced
by unity. This shows that in the ballistic limit the Coulom
interaction is effectively reduced to the statically screen
form, U(r )51/2n when the leading contribution todsxx is
calculated. According to~2.52!, in a smooth disorder with a
correlation lengthd@kF

21 the Tt contribution is suppresse
3-8
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by an exponentially small factor 2pntw̃(2kF)
;exp(2kFd). In fact, for a smooth disorder the linear ter
represents the leading contribution forTts@1 only. In the
intermediate ranget21!T!ts

21 the dominant return
processes are due to many small-angle scattering ev
However, the corresponding return probability is al
exponentially suppressed;exp(2constt/t) for relevant
~ballistic! times t!t, yielding a contribution dsxx

;exp@2const(Tt)1/2#. Thus, the interaction correction in th
ballistic regime is exponentially small atB50 for the case of
smooth disorder. Moreover, the same argument applies to
case of a nonzeroB, as long as45 vc!T.

In any realistic system there will be a finite concentrati
of residual impurities located close to the electron gas pl
and inducing large-angle scattering processes. In o
words, a realistic random potential can be thought as a
perposition of a smooth disorder with a transport timetsm

and a white-noise disorder characterized by a timetwn . Ne-
glecting the exponentially small contribution of the smoo
disorder to the linear term, we then find that the ballis
asymptotics~2.52! of the interaction correction takes th
form

ds5
e2

p

t

twn
Tt3H 2nV0 , pointlike,

1, Coulomb,
~2.53!

wheret215tsm
211twn

21 is the total transport scattering rate.
the transport is dominated by the smooth disorder,twn

@tsm, the coefficient of theTt term is thus strongly reduce
as compared to the white-noise result of Ref. 19.

Finally, it is worth mentioning that in addition to theTt
term corresponding to the lower limitv;T of the frequency
integral in ~2.35!, there is a much larger butT-independent
contributionds}EFt governed by the upper limitv;EF .
This contribution is just an interaction-induced Fermi-liqui
type renormalization of the bare~noninteracting! Drude con-
ductivity.

III. STRONG B, SMOOTH DISORDER

A. Quasiclassical dynamics

We have shown in Sec. II C that due to small-angle nat
of scattering in a smooth disorder the interaction correct
is suppressed in the ballistic regimeTt@1 in zero~or weak!
magnetic field. The situation changes qualitatively in
strong magnetic field,vct@1 andvc@T. The particle ex-
periences then within the timet;T21 multiple cyclotron
returns to the region close to the starting point. The co
sponding ballistic propagator satisfies the equation~2.8! with
the collision term~2.9!.

The solution of this equation in the limit of a strong ma
netic field,vct@1, is presented in Appendix D. For calcu
lation of the leading order contribution todsxx anddrxx , the
following approximate form is sufficient:
04531
ts.

he

e
er
u-

e
n

-

D~v,q;f,f8!5exp@2 iqRc~sinf2sinf8!#Fx~f!x~f8!

Dq22 iv

1 (
nÞ0

ein(f2f8)

Dq22 i ~v2nvc!1n2/t
G

[D s~v,q;f,f8!1D reg~v,q;f,f8!, ~3.1!

wherex(f)512 i (qRc/vct)cosf and D.Rc
2/2t, and the

polar angles of velocities are counted from the angle ofq.
Equation~3.1! is valid under the assumption (qRc)

2!vct.
We will see below that the characteristic momentaq are de-
termined by the conditionDq2;v;T, so that the above
assumption is justified in view ofvc@T. Furthermore, this
condition allows us to keep only the first~singular! termD s

in square brackets in~3.1! when calculatinĝ D&,

^D&5
J0

2~qRc!

Dq22 iv
, ~3.2!

whereJ0(z) is the Bessel function. Moreover, the formu
~2.36! for Bxx can be cast in a form linear inD by using

^DD&52 i
]

]v
^D&, ~3.3!

^naDnbD&5
i

vF

]

]qb
^naD&, ~3.4!

^DnxDnxD&52
1

2vF
2

]2

]qx
2 ^D&. ~3.5!

Therefore, it is again sufficient to take into account only t
first term in~3.1! for calculation ofBxx if the identities~3.3!,
~3.4!, and~3.5! are used.@Of course,Bxx can also be evalu-
ated directly from Eq.~2.36!, but then the second~regular!
term D reg in ~3.1! has to be included.# Combining all four
terms in~2.36!, we get

Bxx~v,q!5
J0

2~qRc!

~vct!2

Dtq2

~Dq22 iv!3
5

4t3

b2

J0
2~Q!Q2

~Q22 iV!3
.

~3.6!

In the second line we introduced dimensionless variableQ
5qRc , V52vt, b5vct.

Note that Eqs.~3.2! and ~3.6! differ from those obtained
in the diffusive regime by the factorJ0

2(qRc) only. This is
related to the fact that the motion of the guiding center
diffusive even on the ballistic time scalet!t ~provided t
@vc

21), while the additional factor corresponds to the av
aging over the cyclotron orbit~see Sec. IV below!.

We turn now to the calculation ofBxy . Substituting~3.1!
in ~2.36!, we classify the obtained contributions according
powers of the small parameter 1/b. The leading contribu-
tions are generated by the first and the last terms in~2.36!
and are of order 1/b, i.e., larger by factorb as compared to
Bxx , Eq. ~3.6!. ~This extra factor ofb is simply related to
usxyu/sxx5b.! However, these leading contributions canc
3-9
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FTxy

2
^DD&2^DnxDnyD&GU

order 1/b

5
t

2b
^D sD s&2^D snxD regnyD s&

52
2t3

b

J0
2~Q!

~Q22 iV!2
1

2t3

b

J0
2~Q!

~Q22 iV!2
50, ~3.7!

as in the diffusive limit, see the text above Eq.~2.47!.
To evaluate terms of higher order in 1/b, we need a more

accurate form of the propagator~3.1!. Since the contributions
of order 1/b2 to Bxy turn out to cancel as well, we have t
know the propagator with the accuracy allowing to evalu
the terms of order 1/b3. To simplify the calculation, we use
again the identities~3.3! and~3.4!. As to Eq.~3.5!, it cannot
be generalized onto thexy component of the tensor, and w
use instead

^DnxDnyD&5
i

vF
K ]D

]qx
nyDL . ~3.8!

It is then sufficient to calculate the propagatorD up to the
1/b2 order. This is done in Appendix D, see Eqs.~D14!–
~D17!. Substituting this result forD in Eq. ~3.6! and com-
bining all terms, we get after some algebra

Bxy~v,q!52
t3

b3 F7Q2J0
2~Q!14QJ0~Q!J1~Q!

~Q22 iV!2

1
4QJ0~Q!J1~Q!

Q22 iV
G . ~3.9!

We see that similarly to~3.6! the kernelBxy(v,q) has a
diffusive-type structure withQ22 iV in denominator reflect-
ing the diffusion of the guiding center, while the Bessel fun
tions describe the averaging over the cyclotron orbit. Clea
both kernels~3.6! and ~3.9! vanish atq50, as required by
~2.43!.

B. Pointlike interaction

To find the interaction correction to the conductivity, w
have to substitute Eqs.~3.6! and ~3.9! in the formula~2.35!.
We consider first the simplest situation, when the interact
U(v,q) in ~2.35! is of pointlike character,U(v,q)5V0. Us-
ing vF

2q dq5vc
2QdQ, we see that all theB-dependence

drops out fromdsxx , and the exchange contribution read

dsxx528e2nV0E
0

`dV

2p

]

]V FV coth
V

4TtG
3E

0

`QdQ

2p
Im

J0
2~Q!Q2

~Q22 iV!3
. ~3.10!

To simplify the result~3.10!, it is convenient to perform a
Fourier transformation with respect toV ~which corresponds
to switching to the time representation!
04531
e

-
y,

n

ImE
0

`dv

2p
F~v!

]

]v Fv coth
v

2TG5E
0

`

dt
pT2t

sinh2~pTt!
F̃~ t !.

~3.11!

The integral overQ is then easily evaluated, yielding

dsxx52
e2

2p2 nV0G0~Tt!, ~3.12!

G0~x!5p2x2E
0

` du exp~21/u!

sinh2~pxu!
@~u21!I 0~1/u!1I 1~1/u!#,

~3.13!

where I 0(z) and I 1(z) are modified Bessel functions. Th
Hartree term in this case is of the opposite sign and tw
larger due to the spin summation~we neglect here the Zee
man splitting and will return to it later!.

It follows from Eqs.~3.6! and ~3.9! that the correction to
the Hall conductivity is smaller by the factor (vct)21 as
compared to~3.12!. This implies, according to~2.41! that in
a strong magnetic field the correction to the longitudinal
sistivity is governed bydsxx ,

drxx

r0
5~vct!2

dsxx

s0
, ~3.14!

similarly to the diffusive limit~1.3!. In fact, it turns out that
the relation~3.14! holds in a strong magnetic field,vc@T,
for arbitrary disorder and interaction, see below. On the ot
hand, as is seen from~2.42!, contributions of bothdsxx and
dsxy to drxy are of the same order in (vct)21. We will
return to the calculation ofdrxy in Sec. III G.

The MR rxx(B) is thus quadratic inB, with the tempera-
ture dependence determined by the functionG0(Tt), which
is shown in Fig. 4~a!. In the diffusive (x!1) and ballistic
(x@1) limits the functionG0(x) has the following asymp-
totics:

G0~x!.H 2 ln x1const, x!1,

c0x21/2, x@1,
~3.15!

with

c05
3z~3/2!

16Ap
.0.276 ~3.16!

@herez(z) is the Riemann zeta-function#. Let us note that the
crossover between the two limits takes place at numeric
small valuesTt;0.1 ~a similar observation was made i
Refs. 19 and 20!. This can be traced back to the fact that t
natural dimensionless variable in~3.12! is 2pTt.

C. Coulomb interaction, exchange

For the case of the Coulomb interaction the result tu
out to be qualitatively similar. Substituting~3.2! in ~2.14!
and neglecting the first termq;(T/D)1/2!k in the denomi-
nator of ~2.14!, we obtain the effective interaction
3-10
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FIG. 4. FunctionsG0(Tt) ~a!
and GF(Tt) ~b! determining the
T-dependence of the exchang
term for pointlike, Eq.~3.12!, and
Coulomb, Eq.~3.19!, interaction,
respectively. Diffusive and ballis-
tic asymptotics, Eq.~3.15! and Eq.
~3.21!, are also shown.
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U~v,q!5
1

2n

Q22 iV

Q22 iV@12J0
2~Q!#

. ~3.17!

Inserting ~3.17! and ~3.6! into ~2.35!, we get the exchange
~Fock! contribution

dsxx
F 52

e2

p2E
0

`

dV
]

]V FV coth
V

4TtG
3ImE

0

`

Q dQ
Q2J0

2~Q!

$Q22 iV@12J0
2~Q!#%~Q22 iV!2

.

~3.18!

Using ~3.14! we find the MR,

drxx
F ~B!

r0
52

~vct!2

pkFl
GF~Tt!, ~3.19!

GF~x!532p2x2E
0

`

dQ Q3J0
2~Q!

3 (
n51

` n$12pxn@12J0
2~Q!#1@32J0

2~Q!#Q2%

~4pxn1Q2!3$4pxn@12J0
2~Q!#1Q2%2

.

~3.20!

FIG. 5. Hartree diagrams for the interaction correction tosab .
The diagrams are labeled in the way as their exchange counter
in Fig. 1. The diagrams obtained by a flip and/or by an excha
1↔2 should also be included.
04531
Note that in contrast to the case of a pointlike interaction
transformation to the time representation does not allow u
simplify ~3.18!, since the resultingQ-integral cannot be
evaluated analytically. We have chosen therefore to perfo
the V-integration, which results in an infinite sum~3.20!.
This amounts to returning to the Matsubara~imaginary fre-
quency! representation and is convenient for the purpose
numerical evaluation ofGF(x). In the diffusive (x!1) and
ballistic (x@1) limits this function has the asymptotics

GF~x!.H 2 ln x1const, x!1,

c0

2
x21/2, x@1,

~3.21!

and is shown in Fig. 4~b!.

D. Coulomb interaction, Hartree contribution

We turn now to the Hartree contribution. The correspon
ing diagrams can be generated in a way similar to excha
diagrams~Sec. II A! but in this case one should start fro
two electron bubbles connected by an interaction line. Th
are again two distinct ways to generate a skeleton diagr
two current vertices can be inserted either both in the sa
bubble or in two different bubbles. Then one puts signs
Matsubara frequencies in all possible ways and insert ba
tic diffusons correspondingly. The obtained set of diagra
is shown in Fig. 5. There is one-to-one correspondence
tween these Hartree diagrams and the exchange diagram
Fig. 1, which is reflected in the labeling of diagrams.

As seen from comparison of Figs. 1 and 5, the electro
partB ab

m (f,f8) of each Hartree diagram is identical to th
of its exchange counterpart. The only difference is in t
arguments of the interaction propagator,U(v,q)
→U@0,2kF sin(f2f8)/2#, wheref andf8 are polar angles
of the initial and final velocities@cf. Eqs.~2.11! and~2.12!#.
Therefore, in the first order in the interaction, the Hartr
correction to conductivity has a form very similar to th
exchange correction~2.35!,

dsab
H 54e2vF

2nE
2`

` dv

2p

]

]v Fv coth
v

2TG
3E d2q

~2p!2E df

2p

df8

2p

3Im@UH~f,f8!Bab~v,q;f,f8!#, ~3.22!

rts
e
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where

UH~f,f8!5US 0,2kF sin
f2f8

2 D ~3.23!

is the Hartree interaction andBab(v,q;f,f8) is given by
Eqs. ~2.36! and ~2.38! without angular brackets~denoting
integration overf and f8), see Eq.~2.12!. Clearly, for a
pointlike interactionU(v,q)5V0 this yields

dsab
H 522dsab

F , ~3.24!

as has already been mentioned in Sec. III B.
In the case of the Coulomb interaction the situation

however, more delicate.46 To analyze this case, it is conve
nient to split the interaction into the singlet and tripl
parts.1,19,46For the weak interaction,k!kF , the conductivity
correction in the triplet channel is then given by Eq.~3.22!
with an extra factor34 .

As to the singlet part, it is renormalized by mixing wit
the exchange term. The effective interactionUs in the singlet
channel is therefore determined by the equation

Us~f,f8!5U02
1

2
UH~f,f8!

2E df1

2p

df2

2p FU02
1

2
UH~f,f1!G

3P~f1 ,f2!Us~f2 ,f8!, ~3.25!

whereU052pe2/q is the bare Coulomb interaction, and

P~v,q;f1 ,f2!52n@2pd~f12f2!1 ivD~v,q;f1 ,f2!#
~3.26!

describes the electronic bubble. Solving~3.25! to the first
order inUH , we get

Us~v,q;f,f8!5U~v,q!2UH
s ~v,q;f,f8!, ~3.27!

where U(v,q) is the RPA-screened Coulomb interactio
~2.14! which has already been considered in Sec. III C, wh
the second term describes the renormalized Hartree inte
tion in the singlet channel,

UH
s ~f,f8!5

1

2
UH~f,f8!2

1

2P

3E df1

2p

df2

2p
@UH~f,f1!P~f1 ,f2!

1P~f1 ,f2!UH~f2 ,f8!#

1
1

2P2E df1

2p

df2

2p

df3

2p

df4

2p

3P~f1 ,f2!UH~f2 ,f3!P~f3 ,f4!.

~3.28!

Here P5^P& is the polarization operator~2.15!, and we
have used the singular nature of the bare Coulomb inte
tion implying uPuU0@1 for all relevant momenta.
04531
,

e
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Taking into account that the angular dependence of le
ing contributions toBxx(v,q;f,f8) andD(v,q;f,f8) is of
the form exp@2iQ(sinf2sinf8)#, we find that the singlet
Hartree correction tosxx is given by Eq.~3.22! with a re-
placement

UH~f,f8!→ UH~f,f8!2^UH~f,f8!&

4@11 iv^D~v,q!&#2
. ~3.29!

Note that in the diffusive limitBab is independent off,f8,
so that only the zero angular harmonic of the interact
contributes. On the other hand, the zero angular harmon
suppressed in the effective singlet-channel interaction~3.29!.
Therefore, the singlet channel does not contribute to the H
tree correction in the diffusive limit, in agreement with Re
1 and 46. The situation changes, however, in the balli
regime, whenBab becomes angle dependent.

After the angular integration, the triplet Hartree condu
tivity correction takes the form~3.10! with the replacement
V0→1/2n, and

J0
2~Q!→23yE

0

pdf

2p

J0~2Q sinf!

y12 sinf
, ~3.30!

wherey5k/kF . For the singlet part we have a result simil
to ~3.18! with a slightly differentQ-integral,

E
0

`

Q dQ
J~y,Q!Q2

$Q22 iV@12J0
2~Q!#%2~Q22 iV!

,

where

J~y,Q!52yE
0

pdf

2p

J0~2Q sinf!2J0
2~Q!

y12 sinf
. ~3.31!

This yields for the total Hartree contribution

drxx
H ~B!

r0
5

~vct!2

pkFl
@GH

s ~Tt,y!13GH
t ~Tt,y!#, ~3.32!

whereGH
s andGH

t governing the temperature dependence
the singlet and triplet contributions have the form

GH
s ~x,y!532p2x2E

0

`

dQ Q3J~y,Q!

3 (
n51

` n$12pxn@12J0
2~Q!#1@322J0

2~Q!#Q2%

~4pxn1Q2!2$4pxn@12J0
2~Q!#1Q2%3

,

~3.33!

GH
t ~x,y!5

px2y

4 E
0

` du

sinh2~pxu!

3E
0

p

df
exp@2~2/u! sin2 f#

y12 sinf
~u22 sin2 f!.

~3.34!
3-12
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FIG. 6. Hartree contribution,GH(Tt), for ~a!
weak interaction,k/kF50.1, 0.2, 0.3, 0.5, and~b!
strong interaction,F0520.3, 20.4, 20.5 ~from
bottom to top!. Dashed curves represent the e
change contribution.
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Figure 6~a! shows GH(x,y)5GH
s (x,y)13GH

t (x,y) as a
function of x[Tt for several values ofy[k/kF . The
asymptotic behavior ofdrxx

H is as follows:

drxx
H ~B!

r0
5

~vct!2

pkFl H y ln y@ 3
4 ln~Tt!1 ln y#, Tt!1,

y ln2@y~Tt!1/2#, 1!Tt!1/y2,

pc0~Tt!21/2, Tt@1/y2.
~3.35!

We see that at k/kF!1 a new energy scaleTH
;t21(kF /k)2 arises where the MR changes sign. Spec
cally, atT!TH the MR,drxx5drxx

F 1drxx
H , is dominated by

the exchange term and is therefore negative, while aT
@TH the interaction becomes effectively pointlike and t
Hartree term wins,drxx

H 522drxx
F , leading to a positive MR

with the same (Tt)21/2 temperature dependence, see F
6~a!.

E. Hartree contribution for a strong interaction

In Sec. III D we have assumed thatk/kF!1, or, in other
words, the interaction parameterr s5A2e2/«vF ~where« is
the static dielectric constant of the material! is small. This
condition is, however, typically not met in experiments
semiconductor structures. Ifk/kF is not small, the exchang
contribution ~3.19! remains unchanged, while the Hartre
term is subject to strong Fermi-liquid renormalization1,19 and
is determined by angular harmonicsFm

s,r of the Fermi-liquid
interactionFs,r(u) in the triplet (s) and singlet (r) chan-
nels.

The effective interactionUeff
s,r replacing UH(f,f8) in

~3.22! is then given by an equation of the type~3.25! but
with 2Fs,r(f2f8)/n substituted forUH(f,f8) ~and with-
out U0 in the triplet channel!,

Ueff
r ~f,f8!5U01

Fr~f2f8!

2n
2E df1

2p

df2

2p

3FU01
Fr~f2f1!

2n GP~f1 ,f2!Ueff
r ~f2 ,f8!,

~3.36!

Ueff
s ~f,f8!5

Fs~f2f8!

2n
2E df1

2p

df2

2p

Fs~f2f1!

2n

3P~f1 ,f2!Ueff
s ~f2 ,f8!. ~3.37!
04531
-

.

A general solution of these equations requires inversion
integral operators with the kernelsI 2FsP and I 2(U0
1Fr)P and is of little use for practical purposes. The situ
tion simplifies, however, in both diffusive and ballistic limits

In the diffusive regime,T!1/t, the second term in the
polarization bubble~3.26! andBab are independent of angle
f,f8. As discussed in Sec. III D, this leads to the suppr
sion of the Hartree contribution in the singlet channel, wh
in the triplet channel only the zero angular harmonic s
vives,

Ueff
s ~v,q!5

1

2n

F0
s~Dq22 iv!

~11F0
s!Dq22 iv

. ~3.38!

We then reproduce the known result1,19 GH(Tt)53GH
t (Tt)

with

GH
t ~Tt!5F12

ln~11F0
s!

F0
s G ln Tt. ~3.39!

In the ballistic limit, T@1/t, the first term is dominant in
~3.26!, since ^D& is suppressed by a factorJ0

2(Q)!1, ac-
cording to ~3.2!. The angular harmonics then simply d
couple in Eqs.~3.36! and ~3.37!, yielding effective Hartree
interaction constants U0,eff

r 50, Um,eff
r 5(2n)21Fm

r /(1
1Fm

r ), mÞ0, andUm,eff
s 5(2n)21Fm

s /(11Fm
s ). Therefore,

the Hartree contribution reads

GH~Tt!52
c0

2 F (
mÞ0

Fm
r

11Fm
r 13(

m

Fm
s

11Fm
s G 1

ATt
.

~3.40!

From a practical point of view, it is rather inconvenient
describe the interaction by an infinite set of unknown para
etersFm

s,r . For this reason, one often assumes that the in
action is isotropic and thus characterized by two coupl
constantsF0

s and F0
r only. Within this frequently used

~though parametrically uncontrolled! approximation, the sin-
glet part of the Hartree term is completely suppressed.
Hartree contribution is then determined solely by the trip
channel with the effective interaction

Ueff
s ~v,q!5

1

2n

F0
s

11F0
s

Q22 iV

Q22 iVF12
F0

s

11F0
s J0

2~Q!G .

~3.41!
3-13
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The Hartree correction to the resistivity takes the form of E
~3.19! with an additional overall factor of 3 and withJ0

2(Q)
multiplied by F0

s/(11F0
s),

J0
2~Q!→J0

2~Q!
F0

s

11F0
s [12J s~Q!, ~3.42!

everywhere in~3.20!; the result is shown in Fig. 6~b! for
several values ofF0

s .

F. Effect of Zeeman splitting

Until now we assumed that the temperature is much lar
than the Zeeman splittingEZ , T@EZ . In typical semicon-
ductor structures this condition is usually met in nonquan
ing magnetic fields in the ballistic range of temperatur
allowing one to neglect the Zeeman term. If, however, t
condition is violated,T&EZ , the Zeeman splitting sup
presses the triplet contributions with thez-projection of the
total spinSz561, while the triplet withSz50 and singlet
parts remain unchanged.

In the case of a weak interaction,k/kF!1, the triplet
contribution 3GH

t (Tt,k/kF) in Eq. ~3.32! is modified in the
following manner:

3GH
t ~x,y!→GH

t ~x,y!12 ReG̃H
t ~x,y;ez!, ~3.43!
at
an

w
rt

on

en

at
l
f

go
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where ez52tEZ , and the functionG̃H
t (x,y;ez) describing

the temperature dependence of the contribution with61 pro-
jection of the total spin is given by

G̃H
t ~x,y;ez!5

px2y

4 E
0

` du exp@ i ezu#

sinh2~pxu!

3E
0

p

df
exp@2~2/u! sin2 f#

y12 sinf
~u22 sin2 f!.

~3.44!

We see that atTt!ez , the contributions of61-components
of the triplet saturate at the value given by~3.34! with a
replacementTt→ez , i.e., at ;GH

t (ez ,y). In the opposite

limit, Tt@ez , we haveG̃H
t (x,y;ez).GH

t (x,y), and the re-
sult ~3.32! is restored.

The triplet contribution for strong isotropic interactio
~i.e., determined byF0

s only! in the presence of Zeema
splitting reads

drxx
H ~B!

r0
52

~vct!2

pkFl
@GH

s~Tt,0!12 ReGH
s~Tt,ez!#.

~3.45!

The functionGH
s(Tt,ez) is given by a formula similar to

~3.20!,
GH
s~x,ez!532p2x2E

0

`

dQ Q3@12J s~Q!# (
n51

`
n~12pxnJ s~Q!1@21J s~Q!#@Q21 i ez# !

$4pxn1@Q21 i ez#%
3$4pxnJ s~Q!1@Q21 i ez#%

2
, ~3.46!
n-
r

with J s(Q) as defined in~3.42!. Again, for high tempera-
turesTt@ez , all the triplet components contribute, so th
the overall factor of 3~as in the absence of the Zeem
splitting! restores. On the other hand, forTt!ez , the con-
tributions with 61 projection of the spin saturate at lo
temperatures, and therefore the triplet contribution is pa
suppressed, see Fig. 7.

G. Hall resistivity

As discussed in Sec. III B, calculation of the correcti
drxy to the Hall resistivity requires evaluation of bothdsxx
anddsxy . In fact, as we show below, the temperature dep
dence ofdrxy in a strong magnetic field is governed bydsxx
in the diffusive limit and bydsxy in the ballistic limit.

Sincedsxx has been studied above, it remains to calcul
dsxy . Using the result~3.9! for the corresponding kerne
Bxy , we get the exchange contribution for the case o
pointlike interaction

dsxy52
e2

2p2

nV0

vct
@G0

(xy)~Tt!1GUV
(xy)#, ~3.47!

where the temperature dependence of the correction is
erned by the function
ly

-

e

a

v-

G0
(xy)~x!52p2E

0

`du

u
exp~21/u!F x2

sinh2~pxu!
2

1

~pu!2G
3@~9u23!I 0~1/u!1~322u!I 1~1/u!#. ~3.48!

When writing ~3.48!, we subtracted a temperature indepe
dent but ultraviolet-divergent~i.e., determined by the uppe
limit in frequency integral! contributionGUV

(xy) ; we will re-
turn to it in the end of this subsection.

The functionG0
(xy)(x) has the following asymptotics:

G0
(xy)~x!.H 9px, x!1,

11c1x1/2, x@1,
~3.49!

with

c152
Ap

4
z~1/2!.0.647. ~3.50!

Combining ~3.12! and ~3.47! and using~2.42!, we find the
correction to the Hall resistivity,

drxy

rxy
5

nV0

pkFl
G0

rxy~Tt!, ~3.51!
3-14
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where

G0
rxy~x!52G0~x!2G0

(xy)~x!.H 22 lnx1const, x!1,

211c1x1/2, x@1.
~3.52!

The functionG0
rxy(x) is shown in Fig. 8. As usual, the Ha

tree term in the case of pointlike interaction has an oppo
sign and is twice larger in magnitude, if the Zeeman splitt
can be neglected.

An analogous consideration for the Coulomb interact
yields a similar result for the exchange correction

drxy
F

rxy
5

GF
rxy~Tt!

pkFl
, ~3.53!

GF
rxy~x!52GF~x!2GF

(xy)~x!.H 22 lnx1const, x!1,

2
11

2
c1x1/2, x@1.

~3.54!

The functionGF
(xy)(x) is obtained by substituting~3.17! and

~3.9! in ~2.35! @cf. similar calculation fordsxx
F leading to

FIG. 7. The functionGH
s(Tt,ez), Eq.~3.46!, describing the tem-

perature dependence of the triplet contribution is shown forF0
s

520.3 and different values of Zeeman splitting,ez50.1,0.3,0.5,
1.0 ~from top to bottom!. Dashed curve represents the caseez50.

FIG. 8. FunctionsG0
rxy(Tt) ~lower curve! andGF

rxy(Tt) ~upper
curve! describing the temperature dependence of the Hall resist
for pointlike and Coulomb interaction, respectively. Diffusivex
!1) and ballistic (x@1) asymptotics, Eqs.~3.52! and ~3.54!, are
also shown.
04531
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Eqs.~3.18! and~3.20!#. The functionGF
rxy(x) describing the

temperature dependence of the exchange correction to
Hall resistivity is shown in Fig. 8. In the ballistic regime
where GF

(xy)(x) dominates, the interaction becomes effe
tively pointlike with nV05 1

2 , so that one can simplify the
calculation usingGF

(xy)(x). 1
2 G0

(xy)(x).
To analyze the Hartree contribution, we restrict ourselv

to the isotropic-interaction approximation. Then, similarly
the consideration in the end of Sec. III E, only the triplet p
contributes, and, in order to calculateGH

(xy)(x), one should
use Eqs.~3.9! and ~3.41!. In the diffusive limit the Hartree
correction to the Hall resistivity is determined by~3.39!,
while in the ballistic limit we have again effectively pointlik
interaction with nV05 3

2 F0
s/(11F0

s), implying that
GH

(xy)(x).23G0
(xy)(x)F0

s/2(11F0
s). This yields

drxy
H

rxy
52

GH
rxy~Tt!

pkFl
, ~3.55!

GH
rxy~x!.335 2F12

ln~11F0
s!

F0
s G ln x, x!1,

11

2
c1

F0
s

11F0
s

x1/2, x@1.

~3.56!

We return now to theT-independent contributionGUV
(xy)

that was subtracted in Eq.~3.48!. In view of the divergency
of this term atu→0, it is determined by the short-time cuto
umin5tmin/2t,

GUV
(xy)}E

umin

du

u3/2
;umin

21/2. ~3.57!

Since the correction we are discussing is governed by cy
tron returns, the cutofftmin corresponds to a single cyclotro
revolution, umin;p/vct. @On a more formal level, this is
related to the assumptionv!vc used for derivation of
~3.48!; see the text below Eq.~3.1!.# We have, therefore
GUV

(xy)5c(xy)(vct)1/2, with a constantc(xy) of order unity.47

For the pointlike interaction, the considered term produce
temperature-independent correction to the Hall resistivity
the form

drxy

rxy
5

nV0c(xy)

pkFl
~vct!1/2. ~3.58!

In the case of Coulomb interaction, this correction~with
both, exchange and Hartree, terms included! has the same
form with nV0→ 1

2 @113F0
s/(11F0

s)#.
Finally, let us discuss the expected experimental mani

tation of the results of this section. Equations~3.53!, ~3.54!,
~3.55!, and ~3.56! predict that in the presence of interactio
the temperature-dependent part of the Hall resistivityrxy(B)
in a strong magnetic fieldvc@t21,T is linear inB at arbi-
trary T, with theT-dependence crossing over from lnT in the
diffusive regime toT1/2 in the ballistic regime. More specifi
cally, if the interaction is not too strong, the exchange co

ty
3-15
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tribution ~3.53! wins and the slope decreases with increas
temperature, while in the limit of strong interaction the slo
increases due to the Hartree term~3.55!. In an intermediate
range ofF0

s the slope is a nonmonotonous function of te
perature. Surprisingly, this behavior of the slope of the H
resistivity is similar to the behavior ofsxx obtained in Ref.
19 for B50 and white-noise disorder. This is a very no
trivial similarity, since the correction torxy at weak fields20

shows a completely different behavior, vanishing asT21 in
the ballistic regime. In addition to the temperature-depend
linear-in-B contribution, the interaction gives rise to
T-independent correction~3.58!, which scales asdrxy}B3/2

~assuming again thatvc@t21,T).
Let us recall that these results are governed by mult

cyclotron returns and thus are valid under the assump
vc@T. In the opposite case,vc!T, the correction is sup-
pressed in the ballistic regime~similarly to drxx , see Secs
II B 3 and III A!, and the Hall resistance takes its Dru
value.

IV. QUALITATIVE INTERPRETATION:
RELATION TO RETURN PROBABILITY

It was argued in Ref. 48 by using the Gutzwiller tra
formula and Hartree–Fock approximation that the interact
correction to conductivity is related to a classical retu
probability. The aim of this section is to demonstrate h
this relation follows from the explicit formulas forsxx .

We begin by considering the case of smooth disord
when the kernelBxx(v,q) is given by Eq.~2.36!. For sim-
plicity, we will further assume a pointlike interaction, whe
only the first two terms in~2.36! give nonzero contributions
In fact, we know that the result for the Coulomb interacti
is qualitatively the same@cf. Eqs.~3.15! and ~3.21!#.

We will concentrate on the first term in~2.36!; the second
one yields a contribution of the same order in the ballis
regime and is negligible in the diffusive limit. Therefore, f
the purpose of a qualitative discussion it is sufficient to c
sider the first term. Using~3.3!, the corresponding contribu
tion can be estimated as

dsxx

sxx
;V0E

2`

`

dv
]

]v Fv coth
v

2TG E ~dq!Re
]^D~v,q!&

]v

;V0E
0

`

dt
~pT!2t

sinh2~pTt!
t^D~r 50,t !&

;V0E
0

T21

dt^D~r 50,t !&, ~4.1!

wheresxx is the Drude conductivity in magnetic field and w
performed in the second line the Fourier transformation oD
to the coordinate-time representation~3.11!.

The return probability in a strong magnetic field,vct
@1,

R~ t ![^D~r 50,t !&, ~4.2!

is shown schematically in Fig. 9. In the diffusive time rang
t@t, it is given byR(t)51/4pDt ~whereD is the diffusion
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constant in the magnetic field,D.Rc
2/2t). Equation~4.1!

thus yields in the diffusive regime,Tt!1,

dsxx

sxx
;

V0

D
ln~Tt!, ~4.3!

in agreement with~1.2! and ~2.48!.
At short ~ballistic! time, t!t, the return probability is

governed by multiple cyclotron returns aftern51,2, . . .
revolutions,

R~ t !5(
n

vct

4A3p2nRc
2

expS 2
@ t22pn/vc#

2vc
3t

12pn D .

~4.4!

SinceT!vc , the conductivity correction~4.1! is in fact de-
termined by the smoothened return probability,

R̄~ t !5
1

~2p!3/2

1

Rc
2S t

t D
1/2

. ~4.5!

Substituting~4.5! in ~4.1! we find that in the ballistic limit,
Tt@1, the conductivity correction scales as

dsxx

sxx
;

V0

D
~Tt!21/2, ~4.6!

in agreement with the exact results~3.12!, ~3.15!. As to the
diffusive regime,Tt!1, the contribution of short timest
&t to the integrand in ~4.1! yields a subleading
T-independent correction;V0 /D to ~4.3!.

It is worth emphasizing that the ballistic behavior~4.5! of
the return probabilityR̄(t) corresponds to aone-dimensional
diffusion. Consequently theballistic result~4.6! has the same
form as thediffusive Altshuler–Aronov correction in the
quasi-one-dimensional geometry. To clarify the reason
emergence of the one-dimensional diffusion, we illustrate
dynamics of a particle subject to a strong magnetic field a
smooth disorder in Fig. 10.

Let us assume that the velocity is iny direction att50.
As is clear from Fig. 10, the return probabilityR1 after the
first cyclotron revolution~the integral of the first peak in Fig
9! is determined by the shiftdx of the guiding center in the
cyclotron periodt152p/vc . In view of the diffusive dy-
namics of the guiding center, this shift has a Gaussian dis
bution with

FIG. 9. Schematic plot of the return probabilityR(t) in a strong
magnetic field and smooth disorder. In the ballistic regime,
peaks are separated by the cyclotron period,t152p/vc . Dashed

curve represents the smoothened return probabilityR̄(t).
3-16
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d1
2[^dx

2&52Dt15
2pRc

2

vct
, ~4.7!

yielding

R15
~vct!1/2

2pvFRc
. ~4.8!

Furthermore, we havêdx
2&5nd1

2 after n revolutions, yield-
ing the return probability Rn5R1 /An. As to the
y-componentdy of the guiding center shift, it only govern
the width of the peaks in Eq.~4.4! and Fig. 9 without affect-
ing R̄(t). Therefore, the smoothened return probability is

R̄~ t !5
Rn

t1
U

n5t/t1

, ~4.9!

which reproduces Eq.~4.5!.
As mentioned in Sec. III A, the emergence of the on

dimensional diffusion in the ballistic regime is reflected
the factorJ0

2(Q);1/pQ in the formula~3.6! for the kernel
Bxx(v,q). This factor effectively reduces the dimensional
of the q-integral,*d2q→Rc

21*dq.
In the above we considered a system with smooth dis

der, for whichdsxx at B50 vanishes exponentially in th
ballistic limit. Now we turn to the opposite case of a whit
noise disorder. We will show that the linear-in-T
correction18,19 ~Sec. II C 3! is again related to the retur
probability but the relation is different from~4.1!. Indeed,
according to~2.49!, we have now the structurêD&^D& in-
stead of̂ DD& that was relevant for smooth disorder. On t
other hand, the return probability at ballistic timest!t is
clearly dominated by processes with a single back-scatte
event, implying

^D~r 50,t !&;
1

tE ~dq!dv^Df~v,q!&2eivt. ~4.10!

Therefore, the contribution of the first term in~2.49! can be
cast in the form

FIG. 10. Schematic illustration of the ballistic dynamics in
strong magnetic field. The thick line shows the particle traject
~two cyclotron revolutions disturbed by the smooth random pot
tial!. The thin line is the diffusive trajectory of the guiding cente
04531
-
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dsxx

sxx
;V0tE

EF
21

T21dt

t
^D~r 50,t !&,

;V0t@const2^D~0,t;T21!&#. ~4.11!

It is easy to see that the probability of a ballistic return af
a single scattering event is

^D~r 50,t !&;
1

tE d2r 1

d~ t22r 1 /vF!

~vFr 1!2 ;
1

vF
2tt

.

~4.12!

Substituting~4.12! in ~4.11!, we reproduce the linear-in-T
correction~2.52!,

dsxx~T!;e2nV0Tt. ~4.13!

The constant term in~4.11! comes from the lower limit of the
time integral, which is of the order ofEF

21 . This constant
merely renormalizes the bare value of the Drude conduc
ity.

On the diffusive time scalêD&^D&.^DD&, so that there
is no difference between white-noise and smooth disor
Therefore, in the diffusive limit the result~4.1! applies,
yielding the usual logarithmic correction~4.3!. In fact the
contribution of the type~4.1! arises also in the ballistic re
gime when all terms in~2.38! are taken into account. Ac
cording to~4.12!, it has the form

dsxx

sxx
;

V0

D
@ ln~Tt!2const#, ~4.14!

which is a subleading correction to the linear-in-T term
~2.52!, ~4.13!.

In the ballistic regime,Tt@1, the above qualitative argu
ments for a white-noise disorder can be reformulated
terms of the interaction-induced renormalization of the d
ferential scattering cross section on a single impurity. S
cifically, the renormalization occurs due to the interferen
of two waves, one scattered off the impurity and anoth
scattered off the Friedel oscillations created by t
impurity.19,49The interference contribution is proportional
the probabilityW(p) of backscattering off the impurity~see
Appendix C! and hence, to the return probability after
single-scattering event, as discussed above.

On the other hand, this implies that the scattering cr
section aroundf;p is itself modified by the Friedel oscil
lations ~in other words, the impurities are seen by electro
as composite scatterers with an anisotropic cross sect!.
The renormalization of the bare impurity depends on
energy of the scattered waves, which after the thermal a
aging translates into theT-dependence of the effective tran
port scattering time,19 t(T) @this corresponds to settingt
;T21 in the return probability, see Eq.~4.11!#. This mecha-
nism provides a systematic microscopic justification of t
concept of temperature-dependent screening.18

We recall that, in addition to the linear-in-T term, the
conductivity correction contains aT-independent contribu-
tion determined by the ultraviolet frequency cutoff;EF . In
the case of strong interaction this term can be of the sa
order as the bare~noninteracting! Drude conductivity. The

y
-
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coefficient in front of this term cannot be calculated with
the quasiclassical approach because it is governed by s
distance physics at scales of the order oflF . At the same
time, according to the above picture, thisT-independent cor-
rection also modifies the impurity scattering cross sect
around f5p. The corresponding correctiondW(f) may
thus be comparable to the bare isotropic scattering proba
ity W0. An interesting consequence of this fact is a possi
situation when the total relaxation ratets

21}*df@W0

1dW(f)# is smaller than the transport relaxation ratet21

}*df@W01dW(f)#(12cosf).
In smooth disorder~small-angle scattering!, the back-

scattering amplitude vanishes exponentially withkFd, and so
does the amplitude of Friedel oscillations. This leads to
suppression of theTt-contribution to the conductivity~see
Sec. II C 3; this fact was realized within theT-dependent
screening picture already in Ref. 18 for the case of scatte
on long-range interface roughness!. We note, however, tha
the understanding of the interaction effects in terms of s
tering of Friedel oscillations is only possible in the ballis
regime. Indeed, the diffusive correction in asmoothrandom
potential isnot exponentially small and is related to rando
~having no 2kF-oscillating structure! fluctuations of the elec-
tron density, as was pointed out in Refs. 1 and 48. The
relations of these fluctuations~which reduce to the Friede
oscillations on the ballistic scales! are described by the retur
probability at arbitrary scales.

Finally, we use the interpretation of the interaction corre
tion in terms of return probability to estimate the MR in th
white-noise random potential and at sufficiently weak m
netic fields,vc!T. Note that the zero-B ballistic correction
~4.13! does not imply any dependence of resistivity on ma
netic field. Indeed, as follows from~1.1!, a temperature de
pendence of the transport timet(T) is not sufficient to in-
duce any nontrivial MR,

Drxx~B,T![rxx~B,T!2rxx~0,T!50,

if t is B-independent.
In order to obtain theB-dependence of the resistivity, w

thus have to consider the influence of the magnetic field
the return probability determining the correction to the tra
port time. Since in the ballistic regime the characteris
length of relevant trajectories isL;vF /T! l , their bending
by the magnetic field modifies only slightly the return pro
ability for vc!T. The relative correction to the return prob
ability is thus of the order of (L/Rc)

2;vc
2/T2 independently

of the relation betweenvc and t21. Therefore, to estimate
the MR in the white-noise potential forvc ,t21!T, one can
simply multiply the result ~4.13! for B50 by a factor
(vc /T)2, yielding

Drxx

r0
;

~vct!2

kFl

1

Tt
, vc!T. ~4.15!

A formal derivation of this result is presented in Sec. V B.
a stronger magnetic field,vc@T, the situation changes dra
matically due to multiple cyclotron returns, see above. T
regime is considered in Sec. V A below.
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V. MIXED DISORDER MODEL

A. Strong B

In Sec. III we studied the interaction correction for a sy
tem with a small-angle scattering induced by smooth dis
der with correlation lengthd@kF

21 . This is a typical situa-
tion for high-mobility GaAs structures with sufficiently larg
spacerd. It is known, however, that with further increasin
width of the spacer the large-angle scattering on resid
impurities and interface roughness becomes important
limits the mobility. Furthermore, in Si-based structures t
transport relaxation rate is usually governed by scattering
short-range impurities.

This motivates us to analyze the situation when resistiv
is predominantly due to large-angle scattering. We thus c
sider the following two-component model of disord
~‘‘mixed disorder’’!: ~i! white-noise random potential with
mean free timetwn and~ii ! a smooth random potential with
transport relaxation timetsm and a single particle relaxatio
time tsm,s @tsm/tsm,s;(kFd)2@1#. We will further assume
that while the transport relaxation ratet215twn

211tsm
21 is

governed by short-range disorder,twn!tsm, the damping of
SdHO is dominated by smooth random potential,tsm,s
!twn . This allows us to consider the range of classica
strong magnetic fields,vctwn@1, neglecting at the sam
time Landau quantization~which is justified provided
vctsm,s /p!1).

To calculate the interaction corrections, we have to fi
the corresponding kernelBab(v,q) determined by the clas
sical dynamics. Naively, one could think that under the
sumed conditiontwn!tsm the smooth disorder can simply b
neglected in the expression for the classical propaga
While this is true in diffusive limit, the situation in the ba
listic regime is much more nontrivial. To demonstrate t
problem, let us consider the kernelBxx

(r) in the ballistic limit
Tt.Ttwn@1 and in a strong magnetic fieldvc@T@t21. If
the smooth random potential is completely neglected in c
sical propagators, we have@see Appendix B; the second term
in Eq. ~B39! can be neglected forvc@T]

Bxx
(r).

1

twn
F i

]g0

]v
1g0

22
1

4 S ]g0

]Q D 2G , ~5.1!

whereg0(v,q) is the angle-averaged propagator with on
out-scattering processes included,

g0~v,q!5
ip

vc

Jm~qRc!J2m~qRc!

sinpm
, ~5.2!

and m5(v1 i twn
21)/vc . If characteristic frequencies satisf

v!vc ~which is the case forT!vc), Eq. ~5.2! can be fur-
ther simplified,

g05
J0

2~Q!

2 iv1twn
21

. ~5.3!
3-18
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Substituting ~5.1! and ~5.3! in ~2.39!, we see that
momentum-and frequency-integrations decouple and tha
first term in ~5.1! generates a strongly ultraviolet-diverge
q-integral;*dQ.

The physical meaning of this divergency is quite transp
ent. The contribution of the first term in~5.1! to drxx is
proportional to the time-integrated return probabil
*dt g0(r 50,t), similarly to ~4.1!. For t!twn the propagator
g0(r ,t) describes the ballistic motion in the absence of sc
tering, which is merely the undisturbed cyclotron rotation
the case of a strong magnetic field. Since att52pn/vc the
particle returns exactly to the original point, the integ
*dt g0(r 50,t) diverges.

The encountered divergency signals that the neglec
smooth disorder is not justified, even thoughtwn!tsm. In-
deed, with smooth disorder taken into account, the part
does not return exactly to the original point after a cyclotr
revolution, see Sec. IV. The return probability is then d
scribed by Eqs.~4.4! and ~4.5! with t replaced bytsm,

R̄mix~ t !5
1

~2p!3/2Rc
2 S tsm

t D 1/2

. ~5.4!

Substituting~5.4! in ~4.1!, we get

dsxx

sxx
;

V0

D S tsm

t D 1/2

~Tt!21/2, ~5.5!

so that the ballistic correction is enhanced by a fac
;(tsm/t)1/2 compared to the smooth-disorder case. It
worth mentioning a similarity with the problem of memo
effects in a system with strong scatterers, where even a w
smooth disorder turns out to be crucially important.8,9

To demonstrate the role of the smooth disorder on a m
formal level, we write down the angle-averaged propaga
in the ballistic regime,Ttwn@1, for the mixed-disorder
model,

^D~v,q!&5
J0

2~Q!

Q2/2tsm2 iv1twn
21

. ~5.6!

Clearly, in both limitstsm5` and twn5` this formula re-
duces to~5.3! and~3.2!, respectively. In view ofvtwn@1 the
last term in the denominator of~5.6! can be neglected, an
we return to the expression for solely smooth disorder. T
presence of the termQ2/2tsm regularizes theQ-integrals,
thus solving the problem of ultraviolet-divergences discus
above. The characteristic momenta are thus determine
Q2;Ttsm. Therefore, despite the weakness of the smo
disorder,tsm@twn , it is the first (Q-dependent! rather than
the third term which has to be retained in the denominato
~5.6!. In other words, in the ballistic regime and in a stro
magnetic field the dynamics in the considered model is g
erned by smooth disorder.

The above discussion demonstrates that atvc@T@twn
21

the kernelBab(v,q) for the mixed-disorder model is give
by ~2.38! with propagatorsD calculated in smooth random
potential~i.e., with white-noise disorder neglected!. The time
twn enters the result only through the matricesTab ~deter-
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mined by the transport timet.twn) and Sab . Using
tsm/twn@1, we find then that the resulting expression,

Bxx.
1

2vc
2t F11

t

twn
G^DD&2

1

2vc
2twn

@^D&^D&22^Dny&

3^nyD&#2
1

2vc
2 @^D&22^nyDny&#1

2

vc
^nyDnxD&

2^DnxDnxD& ~5.7!

is dominated by the first term corresponding to the first te
in Eq. ~5.1!. This yields forQ[qRc@1

Bxx~v,q!.
1

vc
2t

^DD&.
4tsm

2

vc
2t

J0
2~Q!

~Q22 iV!2
, ~5.8!

whereV52vtsm.
As in preceding sections, we first calculate the conduc

ity correction for a pointlike interaction. Substituting~5.8! in
~2.35!, we get, in agreement with an estimate~5.5!,

dsxx52
e2

2p2 nV0S tsm

t D 1/2 4c0

~Tt!1/2
, T@1/twn , ~5.9!

with the constantc0 as defined in Eq.~3.16!. For an arbitrary
~not necessarily small! value of the ratiot/tsm the coefficient
4 in ~5.9! is replaced by 423t/tsm. Fort5tsm ~i.e., without
white-noise disorder! we then recover the ballistic asympto
ics of Eq.~3.15!.

As in the case of purely smooth disorder, the resistiv
correctiondrxx is related todsxx via Eq. ~3.14!. Comparing
~5.9! with ~3.15!, we see that the correctiondrxx is enhanced
in the mixed-disorder model by a factor;4(tsm/t)1/2@1 as
compared to the purely smooth-disorder case. On the o
hand, the scaling with temperature and magnetic field,drxx
}B2T21/2, remains the same.

Let us analyze now the crossover from the ballistic to
diffusive regime. SettingTt;1 in ~5.9!, we find that the
correction is parametrically large,dsxx;(tsm/twn)

1/2.
Clearly, this does not match the diffusive contribution~2.48!,
yielding dsxx;1 atTt;1. This indicates that returns with
out scattering on white-noise disorder continue to govern
correction in certain temperature window belowT;1/t,
which normally belongs to the diffusive regime.

To find the corresponding contribution, one should ta
into account the scattering-out termtwn

21 in the denominator
of ~5.6!, which yields

G1~x,g!5
2

p S g

2xD 1/2E
0

` dz z3/2exp@2z/px#

sinh2 z

5H ~2g!1/2, x!1,

4c0g1/2x21/2, x@1,
~5.10!

whereg5tsm/t@1 andx5Tt. To describe the temperatur
dependence of the interaction correction for allT, we have to
add here the diffusive contribution, which has the for
~2.48! for Tt!1 and vanishes forTt@1. This contribution
3-19



he

se
-

I. V. GORNYI AND A. D. MIRLIN PHYSICAL REVIEW B 69, 045313 ~2004!
FIG. 11. FunctionsG0
mix(Tt)

~a! and GF
mix(Tt) ~b! describing

the temperature dependence of t
resistivity correction due to point-
like and Coulomb~exchange! in-
teraction, respectively, in the
mixed-disorder model for differ-
ent values of parameterg[tsm/t
520, 10, 5~from top to bottom!.
Dashed curves represent the
functions for purely smooth disor
der (g51).
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corresponds to long timest@t and describes the trajectorie
multiply scattered off white-noise disorder. Since atTt;1
the sum of the ballistic and diffusive contributions will b
dominated byG1(1,g);g1/2@1, the precise way of vanish
ing of the diffusive contribution atTt;1 is inessential.
Therefore, we can describe it by the functionG0(x), Eq.
~3.12!. The resistivity correction for a system with mixe
disorder and pointlike interaction has thus the followi
form:

drxx~B!

r0
52

~vct!2

pkFl
nV0G0

mix~Tt,tsm/t!, ~5.11!

where

G0
mix~x,g!5G1~x,g!1G0~x!5H 2 ln x1~2g!1/2, x!1,

4c0g1/2x21/2, x@1.
~5.12!

This result is illustrated in Fig. 11~a!.
In the case of Coulomb interaction, we have as usua

similar result for the exchange contribution

drxx
F,mix~B!

r0
52

~vct!2

pkFl
GF

mix~Tt,tsm/t!, ~5.13!

with

GF
mix~x,g!5

1

2
G1~x,g!1GF~x!

5H 2 ln x1~g/2!1/2, x!1,

2c0g1/2x21/2, x@1.
~5.14!

This function is shown in Fig. 11~b!. In fact, here the diffu-
sive contribution can be described either by the funct
GF(x) or by G0(x) because in the diffusive limit they coin
cide up to a small constant. Since in the intermediate
ballistic regimes@whereGF(x) andG0(x) differ# the contri-
bution 1

2 G1(x,g) is dominant, the behavior of the diffusiv
contribution is of no importance, as in the case of pointl
interaction. Note that the ballistic contribution correspon
to the pointlike interaction withnV05 1

2 , yielding a factor1
2

in front of G1(x,g) as compared to~5.12!. This is because
the dynamical part of screening is suppressed for all relev
Q;Ttsm@1 in the whole range of temperatures, even
Tt,1, where this contribution is important.
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This also applies to the Hartree contribution to the res
tivity. Within the ‘‘F0

s-approximation’’ we have again an ef
fectively pointlike interaction withnV0. 3

2 F0
s/(11F0

s) in
the ballistic term. The result thus reads

drxx
H, mix~B!

r0
53

~vct!2

pkFl
GH

mix~Tt,tsm/t!, ~5.15!

where

GH
mix~x,g!5

1

2

F0
s

~11F0
s!

G1~x,g!1GH
t ~x!

55 F12
ln~11F0

s!

F0
s G ln x1

F0
s

11F0
s S g

2D 1/2

, x!1,

22c0

F0
s

~11F0
s!

g1/2x21/2, x@1.

~5.16!

Before closing this section, we briefly discuss the H
resistivity in the mixed disorder model. Repeating the ste
described above, we find that the ballistic contribution torxy
also contains an extra factor (tsm/t)1/2, similarly torxx . For
an arbitrary~not necessarily small! value of the ratiot/tsm
the coefficient 11 in Eqs.~3.52! and ~3.54! is replaced by
@615t/tsm#(tsm/t)1/2.

B. Weak B

In the case of a purely smooth disorder~Sec. III! the
resistivity correction in the ballistic regime is exponentia
suppressed forvc!T because the particle cannot return
the origin. When the short-range potential is present, the s
ation changes and the return probability is determined
Tt@1 by the single-backscattering processes. T
interaction-induced MR arises then due to the influence
the magnetic field on the probability of such return, as d
cussed in the end of Sec. IV. In this case, there is no nee
take the smooth potential into account and the MR is de
mined solely by the white-noise disorder. Let us calculate
corresponding correction using the ballistic form~B40! of
the kernelDBxx

(r) .
3-20
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For a pointlike interaction, substituting~B40! in ~2.39!,
we find the following ballistic (Tt@1) asymptotics of the
longitudinal MR:

Drxx

r0
52

~vct!2nV0

pkFl

p

72Tt
. ~5.17!

In the case of Coulomb interaction,DBxx
(r) is multiplied by

the ballistic asymptotics of the interaction, Eq.~C1!. Substi-
tuting this product in Eq.~2.39!, we get the Fock contribu
tion to the MR in the form

Drxx
F

r0
52

~vct!2

pkFl

17p

192Tt
, Tt@1. ~5.18!

The corresponding Hartree term also scales asB2/T. It is
worth noting that there is another contribution to the MR
this regime, which comes from the suppression of the trip
channel due to Zeeman splittingEZ rather than from the
orbital effects. This contribution is identical to that found
Ref. 21 for the ballistic magnetoresistance in a parallel m
netic field. It also scales asB2/T in a weak magnetic field
however, it contains an extra factor (EZ /vc)

2, as compared
to ~5.18!. This factor is small in typical experiments on sem
conductor heterostructures where the effective mass of
carriers is much smaller than the bare electron mass.

We now turn to the Hall resistivity. Using~B38! and
~B41!, we find forvc ,t21!T and for arbitrary relation be
tweenvc andt21,

drxy

rxy
5

nV0

pkFl

p

12Tt
~5.19!

for the pointlike interaction, and

drxy
F

rxy
5

1

pkFl F12
49~vct!2

330 G 11p

96Tt
~5.20!

for the Coulomb interaction. The result~5.20! reduces in the
limit B→0 to that obtained in Ref. 20 from the quantu
kinetic equation. We see that in view of a relatively sm
value of the numerical coefficient 49/330, the fir
(B-independent! term in square brackets in~5.20! dominates
for vct&1, so that the results of Ref. 20 are applicable
sufficiently broad range of magnetic fields. For the cor
sponding Hartree correction todrxy calculated within the
‘‘ F0

s-approximation,’’ we refer the reader to Ref. 20.

VI. ANISOTROPIC SYSTEMS

A. Qualitative discussion

In the preceding consideration, we assumed that the
system is isotropic. While this is true for the majority
magnetotransport experiments we have in mind, there ex
a number of important situations when the transport is an
tropic, sxxÞsyy . First, such an anisotropy can be induc
by the orientation of the 2D electron gas plane with resp
to the crystal axes, see, e.g., Ref. 50 for a measurement o
quantum correction for the~110! surface of the Si-MOSFET
Second, the electron-electron interaction may lead to spo
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neous formation of a charge-density wave. Finally, the
isotropy may be induced by a one-dimensional perio
modulation ~lateral superlattice!. The latter example is of
special interest in view of emergence of commensurabi
oscillations~known as Weiss oscillations!,51 and we will dis-
cuss it in more detail in Sec. VI C.

The interaction-induced correction to the conductiv
tensor of an anisotropic system was calculated for the di
sive regime andB50 by Bhatt, Wölfle, and Ramakrishnan.37

They showed, in particular, that the quantum correction p
serves the anisotropy of the quasiclassical~Boltzmann! con-
ductivity. Below we will generalize their result onto the ca
of a classically strong magnetic field, and, furthermore, w
extend the consideration to the ballistic regime.

We begin by presenting a simple argument allowing o
to estimate the conductivity correction in an anisotropic s
tem; we will confirm it by a formal calculation in Sec. VI B
According to Eq.~4.1!, the relative correction to a diagona
componentsmm(m5x,y) of the conductivity tensor is deter
mined by the return probability~and is, thus, the same fo
m5x andm5y). This implies, in the diffusive regime

dsmm

smm
;2Re

1

nE ~dq!
1

Dabqaqb2 iv U
v5T

v51/t

, ~6.1!

yielding

dsxx;e2S sxx

syy
D 1/2

ln Tt ~6.2!

and analogously fordsyy . In the ballistic regime the time-
integrated return probability *T21

dt^D(t)& scales as
(Tt)21/2 @see Eqs.~4.5! and~4.6!#, so that we have instead o
~6.2!,

dsxx;e2KS sxx

syy
D ~Tt!21/2. ~6.3!

The explicit form of the functionK(x) will be calculated
below. Since the conductivity corrections~6.2! and~6.3! are
only determined by the anisotropic diffusion, we expect th
they do not depend on the particular source of anisotropy
analogy with Ref. 37. An important feature of the resu
~6.2! and~6.3! is that they mix the componentssxx andsyy
of the conductivity tensor. This will play a central role in ou
analysis of the interaction effect on the magnetoresistivity
modulated systems in Sec. VI C.

It is worth mentioning that the validity of the formul
~6.3! for the ballistic regime is restricted on the high
temperature side by the conditionT&Tad, whereTad

21 is the
time scale on which the anisotropic diffusion of the guidi
center sets in. The value ofTad depends on the particula
microscopic mechanism of anisotropy. We will estimateTad
and the behavior of the conductivity correction atT@Tad for
a modulated system in Sec. VI C.
3-21
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B. Calculation of the interaction-induced correction
to resistivity

We proceed now with a formal calculation of the quantu
correction to the conductivity of an anisotropic system in
strong magnetic field. As a model of anisotropy, we w
assume anisotropic impurity scattering, with a cross sec
W(f,f8)ÞW(f2f8). Repeating the derivation performe
in Secs. II A and II B, we find that the result~2.35! and
~2.36! remains valid in the anisotropic case, with the mat
Tab proportional to the corresponding~anisotropic! diffusion
tensorDab ,

Tab5
2Dab

vF
2

5
1

11vc
2txty

S tx 2vctxty

vctxty ty
D ,

~6.4!

wheretx andty are the relaxation times for the correspon
ing components of the momentum. We begin by consider
the diffusive limit, when the leading contribution come
from three-diffusion diagrams, Fig. 1d and e ~see Sec.
II C1!, which are represented by the last term in Eq.~2.36!.
The singular contribution to the propagatorD, governed by
the diffusion mode, has a form analogous to~2.44!,

D s~v,q;f,f8!.
CR~f,q!CL~f8,q!

Dabqaqb2 iv
, ~6.5!

see Appendix E for the derivation of~6.5! and explicit ex-
pressions ofCR,L . Using ~6.5! and ~E3!, we get

^D&.^D s&5
1

Dabqaqb2 iv
~6.6!

and

Bxx~v,q!.2^D snaD snbD s&

5
4

vF
2

Dxx
2 qx

2

~Dxxqx
21Dyyqy

22 iv!3
. ~6.7!

The result~6.7! can also be obtained with making use of t
identity ~3.5!; then it is sufficient to keep only the leadin
term ~unity! in the expressions for functionsCR,L entering
~6.5!. Substituting~6.7!, ~6.6!, ~2.14! in ~2.35!, we obtain the
final result for the conductivity correction in the diffusiv
regime,

dsxx5
e2

2p2 S Dxx

Dyy
D 1/2

ln Tt, ~6.8!

dsyy5
e2

2p2 S Dyy

Dxx
D 1/2

ln Tt, ~6.9!

in full agreement with a qualitative consideration of Se
VI A @Eq. ~6.2!#. The correction to the Hall conductivity i
zero in the leading (lnTt) order, as in the isotropic case. F
the pointlike interaction, the result remains the same, up
factor nV0.

We now extend the consideration beyond the diffus
limit ~thus allowing forqRc*1), assuming first the smoot
04531
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disorder and concentrating on longitudinal components
the conductivity and resistivity tensors. In analogy wi
~3.1!, the singular contributionD s to the propagator acquire
then the form~see Appendix E!

D~v,q;f,f8!5exp$2 iqRc@sin~f2fq!2sin~f82fq!#%

3
x~f!x~f8!

Dabqaqb2 iv
, ~6.10!

where

x~f!512
iqvF

vc
2 S 1

tx
cosf cosfq1

1

ty
sinf sinfqD .

~6.11!

This yields

^D&5
J0

2~qRc!

Dxxqx
21Dyyqy

22 iv
~6.12!

and

Bxx~v,q!5
4

vF
2

J0
2~qRc!Dxx

2 qx
2

~Dxxqx
21Dyyqy

22 iv!3
, ~6.13!

which differs from~6.6!, ~6.7! by the factorJ0
2(qRc) only. In

the ballistic limitTtx ,Tty@1 the relevant values ofqRc are
large,qRc@1, so that the screening is effectively static a
the interaction is effectively pointlike withV051/2n. Sub-
stituting then~6.13! in ~2.35! and rescaling the integratio
variablesqx5Dxx

21/2q̃x ,qy5Dyy
21/2q̃y , we find

dsyy52
e2

4p2 c0~Tty!21/2
2

p
K ~A12Dxx /Dyy!,

~6.14!

dsxx5
Dyy

Dxx
dsyy , ~6.15!

whereK is the elliptic integral,

E
0

p/2 dx

Acos2 x1q2sin2 x
5K ~A12q2!, 0,q,1,

~6.16!

and we assumed thaty is the easy-diffusion axis,Dyy
.Dxx .

Let us analyze the obtained results in the limits of we
and strong anisotropy. It is convenient to setDxx5D0 , tx
5t0 , Dyy5D01DD, and to introduce a dimensionless a
isotropy parametera5DD/D0. Using the asymptotics of the
elliptic integral,

K ~s!.5
p

2 S 11
s2

4 D , s!1,

ln
4

A12s
, 12s!1,

~6.17!

we find
3-22
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dsxx.2
e2

4p2 c0~Tty!21/25 12
a

4
, a!1,

ln~16a!

pa1/2
, a@1,

~6.18!

anddsyy5(11a)dsxx. Equations~6.14!, ~6.15! and~6.18!
confirm the qualitative arguments in Sec. VI A~based on the
behavior of the return probability! which led to Eq.~6.3!.

C. Modulated systems

In this section, we apply the results of Sec. VI B to
particularly important class of anisotropic 2D system
namely, 2D electron gas subject to a periodic potential va
ing in one direction. Such systems~lateral superlattices! have
been intensively investigated experimentally during the
15 years. In a pioneering work,51 Weisset al.discovered that
even a weak one-dimensional periodic modulation with
wave vectorkiex may induce strong oscillations of the ma
netoresistivityrxx(B) @while showing almost no effect on
ryy(B) and rxy(B)], with the minima satisfying the condi
tion 2Rc /a5n21/4. Heren51,2, . . . anda52p/k is the
modulation period. The quasiclassical nature of these c
mensurability oscillations was demonstrated by Beenakke52

who showed that the interplay of the cyclotron motion a
the superlattice potential induces a drift of the guiding cen
along they axis, with an amplitude squared oscillating
cos2(kRc2p/4) ~this is also reproduced by a quantum
mechanical calculation, see Refs. 53–55!. While Ref. 52 as-
sumed isotropic impurity scattering~white-noise disorder!, it
was shown later that the character of impurity scattering
fects crucially the dependence of the oscillation amplitude
the magnetic field. The theory of commensurability oscil
tions in the situation of smooth disorder characteristic
high-mobility 2D electron gas was worked out in Ref. 5
~see also numerical solution of the Boltzmann equation
Ref. 57! and provided a quantitative description of the e
perimentally observed oscillatory magnetoresistiv
Drxx(B). The result has the form56

Drxx

r0
5

ph2k2lRc

4 sinh~pl!
Jil~kRc!J2 il~kRc!, ~6.19!

whereh is the dimensionless amplitude of the modulati
potential@V(x)5hEF cos(kx)#, and

l5
1

vcts
H 12F11

ts

t
~kRc!

2G21/2J . ~6.20!

In the range of sufficiently strong magnetic fields Eq.~6.19!
describes the commensurability oscillations with an am
tude proportional toB3,

Drxx

r0
.h2

~vct!2

pkRc
cos2~kRc2p/4!. ~6.21!

For precise conditions of validity of~6.21!, as well as for an
analysis of the result~6.19! in the whole range of magneti
fields, the reader is referred to Ref. 56.
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As to the modulation-induced correctionsDrxy ,Dryy to
the other components of the resistivity tensor, they are
actly zero within the quasiclassical~Boltzmann equation! ap-
proach, independently of the form of the impurity collisio
integral.52,56,57 Such corrections appear in the quantu
mechanical treatment of the problem58,59 and are related to
the de Haas–van Alphen oscillations of the density of sta
induced by the Landau quantization of spectrum. As a c
sequence, these oscillations are exponentially damped
disorder, with the damping factor;exp@22p/vcts#. The
phase of such quantum oscillationsDryy

(DOS) is opposite to
that of quasiclassical commensurability oscillations inDrxx ,
Eqs. ~6.19! and ~6.21!. Indeed, oscillations inDryy that are
much weaker than those inDrxx , have the opposite phase
and vanish much faster with decreasingB, were observed in
Ref. 51. We will neglect these oscillations, which are exp
nentially weak in the range of magnetic fields considered
the present paper,vcts /p!1. We are going to show that th
interaction-induced correction to resistivity also genera
oscillations in ryy , which are, however, unrelated to th
DOS oscillations of a non-interacting system and beco
dominant with lowering temperature.

To demonstrate this, we apply the result of Sec. VI B
the interaction-induced correction in an anisotropic syste
The anisotropy parameter is governed by the quasiclass
correction torxx due to modulation,

a5
syy

sxx
21.

rxx

ryy
215

Drxx

r0
~6.22!

and is given by Eq.~6.19!. For simplicity we will assume
that the effect of modulation is relatively weak,a!1. ~Gen-
eralization to the large-a case with making use of the corre
sponding formulas of Sec. VI B is completely straightfo
ward.! Using ~6.8! and ~6.15!, we find the oscillatory
correction toryy as a combined effect of the modulation an
the Coulomb interaction,

dryy

r0
5

~vct!2

2pkFl

Drxx

r0
H 2 ln Tt, Tt!1,

c0

4
~Tt!21/2, Tt@1.

~6.23!

In the presence of strong scatterers~mixed disorder model!,
the result for the ballistic regime is enhanced by the fac
4(tsm/t)1/2@1, as discussed in Sec. V.

Let us remind the reader that the result~6.23! is valid for
temperaturesT!Tad, where Tad

21!t is the characteristic
time on which the motion of the guiding center takes t
form of anisotropic diffusion~see Sec. VI A!. For the case of
a modulated system with a smooth random potential we
Tad

21;t(a/Rc)
2. This is because on a scale shorter thanTad

21

the modulation leads to a drift of the guiding center alongy
axis with the velocity depending on the coordinateX of the
guiding center,52

vd~X!52
hvF

2
kRcJ0~kRc!sin~kX!

.2
hvF

A2pkRc

cos~kRc2p/4!sin~kX!. ~6.24!
3-23
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FIG. 12. Magnetoresistivity in a lateral superlattice with modulation wave vectorkiex . ~a! Quasiclassical Weiss oscillations; dashed li
shows the resistivity in the absence of modulation.~b! Interaction-induced quantum oscillations inryy for three temperatures. The curve
correspond to the values of the parameter 2c0(tsm/Tt2)1/250.1,0.3,0.5~from top to bottom!, assuming mixed disorder. Dashed lin
represents the resistivity of the noninteracting system. Typical experimental parameters are used: effective massm50.06739.1310228 g,
electron densityne53.1631011 cm22, modulation strengthh50.05, modulation perioda5260 nm, momentum and single-particle rela
ation timest5100 ps andts55 ps, respectively.
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In a timea2/D[Tad
21 the positionX of the guiding center is

shifted by a distance of the order of the modulation perioa
due to the small-angle impurity scattering. Therefore,
drift velocity vd typically changes sign on this time scale,
that the drift is transformed to an additional diffusion pr
cess, withDDyy;^vd

2&Tad
21 , in agreement with~6.21!. To

estimate the resistivity correctiondryy in the ultra-ballistic
regimeT@Tad, we use the relation between the conductiv
correction and the return probability~Sec. IV!. The return
probability Rn after n revolutions~introduced in Sec. IV! is
modified by the modulation-induced drift in the followin
way:

Rn
mod5RnS 12nvct

p^vd
2&

2vF
2 D . ~6.25!

According to ~4.1!, this yields an oscillatory correction t
resistivity suppressed by a factor;Tad/T as compared to the
second line~ballistic regime! of Eq. ~6.23!.

Let us summarize the results obtained in this subsect
We have shown that in a periodically modulated system
interaction induces, in addition to the quadratic MR stud
in Secs. III and IV, an oscillatory contribution to the comp
nent ryy of the resistivity tensor, which is not affected b
modulation~and thus shows no oscillations! within the Bolt-
zmann theory. When the parabolic MR is negative~meaning
that the exchange contribution dominates!, which is the case
under typical experimental conditions and for not too hi
temperatures, these quantum interaction-induced oscillat
in ryy are in phasewith classical oscillations inrxx , as fol-
lows immediately from Eq.~6.23! ~see Fig. 12!. In other
words, their phase is opposite to that of the above-mentio
contributionDryy

(DOS) induced by the DOS oscillations.
We come therefore to the following conclusion conce

ing the phase of the total oscillatory contribution toryy .
While at sufficiently high temperatures theryy oscillations
have, due to the contributionDryy

(DOS) @and possible due to
the Hartree counterpart of Eq.~6.23!#, the phase opposite t
Drxx , with lowering temperature the exchange contributi
Eq. ~6.23! starts to dominate, implying thatryy oscillates in
04531
e

n.
e
d
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phase withrxx . Furthermore, the both contributions a
damped differently by disorder: the high-temperature out-
phase oscillationsDryy

(DOS) vanish with loweringB much
faster that the low-temperature in-phase interaction-indu
oscillationsdryy .

Our results are in qualitative agreement with a rec
experiment.60 It was observed there that at sufficiently hig
temperature,T*2.5 K, the oscillations inryy have the op-
posite phase with respect torxx , in accord with earlier ex-
perimental findings.51 However, when the temperature wa
lowered, the phase has changed andryy started to oscillate in
phase withrxx , with an amplitude increasing with decrea
ing T. In addition to these novel oscillations, a smooth ne
tive MR was seen to develop in the same temperature ra
The authors of Ref. 60 emphasized a puzzling characte
the temperature dependence of the observed oscillati
which cannot be explained by earlier theories52–56discarding
the interaction effects. Our theory leading to Eq.~6.23! pro-
vides a plausible explanation of these experimental findin
Quantitative comparison of the theory and experiment
quires, however, a more systematic experimental study of
temperature dependence of the amplitude ofryy oscillations
in a broader temperature range.

VII. CONCLUSIONS

A. Summary of main results

Let us summarize the key results of the present paper.
have derived a general formula~2.35! and ~2.38! for the
interaction-induced quantum correctiondsab to the conduc-
tivity tensor of 2D electrons valid for arbitrary temperatur
magnetic field and disorder range. It expressesdsab in terms
of classical propagators in random potential~‘‘ballistic diffu-
sons’’!. In the appropriate limiting cases, it reproduces
previously known results on the interaction correction~see
Sec. II C!.

Applying this formalism, we have calculated the intera
tion contribution to the MR in strongB in systems with
various types of disorder and for arbitraryTt. In the diffu-
3-24
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sive limit, Tt!1, the result does not depend on the type
disorder, as expected. Specifically, the MR scales with m
netic field and temperature as follows,drxx}B2 ln(Tt) and
drxy}B ln Tt, in agreement with Refs. 10 and 11.

In the ballistic limit,Tt@1, the result is strongly affecte
by the character of disorder. In Sec. III we have performe
detailed study of the case of smooth disorder character
for high-mobility GaAs heterostructures. We have found t
the temperature-dependent MR scales atvc@T as drxx
}B2(Tt)21/2 and drxy}B(Tt)1/2. In addition, there is a
temperature-independent~but larger! contribution }B3/2 to
the Hall resistivity. In the opposite limitvc!T the MR is
suppressed.

We have further considered a mixed disorder model, w
strong scatterers~modeled by white-noise disorder! superim-
posed on a smooth random potential~Sec. V!. A qualitatively
new situation arises when the momentum relaxation ratetsm

21

due to smooth disorder is much less than the total mom
tum relaxation ratet21. Such a model is believed to b
relevant to Si-based structures, as well as to GaAs struct
with very large spacer. We have shown that in the ballis
limit and at vc@T the corrections to both longitudinal an
Hall resistivities are enhanced~as compared to the case
smooth disorder! by a factor;(tsm/t)1/2@1. In the range of
weaker magnetic fields,vc!T, the interaction-induced MR
scales in the ballistic regime asDrxx}B2(Tt)21 and drxy
}B(Tt)21@12const(vct)2#.

For a weak interaction (k!kF) the correction is domi-
nated by the exchange contribution, implying thatDrxx is
negative and that the slope ofrxy decreases with increasin
temperature. This is true up to a temperatureTH@t21 ~de-
fined in Sec. III D! where the sign changes. In the case o
strong interaction the magnitude of the Hartree contribut
~and thus the sign of the total correction! depends on angula
harmonicsFn

r,s of the Fermi-liquid interaction~Sec. III E!. It
is worth emphasizing that in contrast to the diffusive lim
where only F0

s is relevant, in the ballistic regime all th
Fermi-liquid parameters are, strictly speaking, important,
Eq. ~3.40!. Therefore, predictions of the ‘‘F0

s-approxima-
tion’’ ~with only one Fermi-liquid parameter retained! should
be treated with caution.

We have further applied our formalism to anisotropic s
tems ~Sec. VI! and demonstrated that the correction mix
the componentsrxx and ryy of the resistivity tensor. This
result is of special interest in the case of systems subject
one-dimensional periodic modulation~lateral superlattice;
wave vectorkiex). Specifically, we have shown that the in
teraction induces oscillations inryy , which are in phase with
quasiclassical commensurability~Weiss! oscillations inrxx .

B. Comparison with experiment

Our results forrxx in the case of smooth disorder~pub-
lished in a brief form in the Letter35! have been confirmed b
a recent experiment onn-GaAs system,14 which was per-
formed in the broad temperature range, from the diffusive
the ballistic regime. Specifically, Liet al.14 found that the
MR scales asDrxx}B2 in strong magnetic fields. The ob
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tained temperature-dependence of the proportionality co
cient G(Tt) was in good agreement with our predictions.

Very recently, Olshanetskyet al.61 studied the MR in the
ballistic regime in a Si/SiGe structure ofn-type, where both
short-and long-range potential are expected to be pres
They found the interaction-induced correction torxx larger
by a factor;5 as compared to our prediction35 for the case
of smooth disorder. This conforms with the results of t
present paper for the mixed-disorder model, where we fi
an enhancement ofDrxx by a factor 4(tsm/t)1/2@1.

As has been mentioned in Introduction, the interactio
induced MR in the ballistic regime was measured for the fi
time as early as in 1983, by Paalanen, Tsui, and Hwan12

who studied GaAs structures. Again, a parabo
temperature-dependent MRDrxx was obtained, in agreemen
with our findings. However, its magnitude was considera
~roughly an order of magnitude! larger compared with our
theoretical result for the case of smooth disorder, as wel
with the recent experiment.14 We speculate that samples us
in Ref. 12 probably contained an appreciable concentra
of background impurities, which has led to an enhancem
of the interaction-induced contribution to resistivity, sim
larly to the recent work.61 ~Indeed, the results for the mixed
disorder model shown in Fig. 11 may create an impress
that the logT behavior extends up toTt;10, as was con-
cluded in Ref. 12.! Remarkably, the interaction-induce
quantum correction to conductivity may serve as an indica
of the dominant type of disorder.

To the best of our knowledge, no experimental study
the interaction effects on Hall resistivityrxy has been pub-
lished. This part of our predictions therefore awaits its e
perimental verification.

Finally, our results for systems with one-dimensional p
riodic modulation are in qualitative agreement with the
cent work by Mitzkuset al.,60 as we discussed in detail i
Sec. VI C. Quantitative comparison of the theory and exp
ment requires an experimental study of the temperatu
dependence of novel oscillations~found experimentally in
Ref. 60 and theoretically in the present paper! in a broader
temperature range.

C. Outlook

Before closing the paper, we list a few further applicatio
of our formalism and its possible generalizations. First, o
results can be generalized to frequency-dependent~rather
than temperature-dependent! MR. Second, the interaction ef
fects in systems of other dimensionality, as well as in m
roscopically inhomogeneous systems, can be investigate
our general method. Third, the formalism can be used
calculate the phonon-induced contribution to resistivi
which becomes larger than that due to Coulomb interac
at sufficiently high temperatures. Further, thermoelec
phenomena in the full range of magnetic fields and tempe
tures can be studied in a similar way. Finally, our approa
can be generalized to the regime of still stronger magn
fields, where the Landau quantization can not be neglec
anymore; the work in this direction is in progress.62
3-25
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APPENDIX A: CANCELLATION OF THE
INELASTIC TERM

As discussed in Sec. II A, diagramsf and g give rise, in
addition to the contribution~2.25!, to a term of the type
~2.26!, characteristic for inelastic effects. This yields atB
50 a disorder-independent correction to resistivitydr
;(T/eEF)2, see below. Note that such a contribution to
sistivity would be obtained if one substitutes the inelas
relaxation rate of a clean 2D electron gas,t inel

21;T2/EF in the
Drude formula ~1.1!. However, such a procedure clear
makes no sense. Indeed, in a translationally invariant sys
electron–electron collisions conserve the total momen
and thus give no contribution to resistivity. Therefore, t
correction~2.26! should be canceled by some other contrib
tion. Below we show explicitly that this is indeed the cas
and that this second contribution is of the Coulomb-d
type, described by the diagrams in Fig. 13.

For simplicity, we restrict our consideration here to t
case of zeroB and white-noise disorder, which allows us
use the results of Ref. 63 for the Coulomb drag. Note t
while Ref. 63 considered the drag between two layers,
refer to the ‘‘self-drag’’ within a single layer. As we will se
below, the characteristic momentaq determining the contri-
bution ~2.26! are large,q;kF . For this reason, there is n
need to take into account impurity-line ladders while eva
ating this term, similarly to the calculation of drag in Ref. 6
for a small interlayer distance. We thus have

dBxx
f ~v,q!5

1

2pnvF
2E d2p

~2p!2 Re@2px
2GR

2~e,p!

3GR~e2v,p2q!GA~e,p!

1px~px2qx!GR~e,p!

3GA~e,p!GR~e2v,p2q!GA~e2v,p2q!#,

~A1!

where GR,A(e,p)5(EF1e2p2/2m6 i /2t)21 are the
disorder-averaged retarded and advanced Green’s funct
Using the identity

FIG. 13. Aslamazov–Larkin-type diagrams describing t
Coulomb-drag contribution to the resistivity, which cancels the ‘‘
elastic’’ part of the diagramsf, g from Fig. 1.
04531
,

y

by

-
c

m
m

-
,
g

t
e

-

ns.

GR~e,p!GA~e,p!5 i t@GR~e,p!2GA~e,p!#,

we reduce~A1! to the form

dBxx
f ~v,q!52

t2

pvF
2n
E d2p

~2p!2 pxqx

3Re@GR~e,p!GA~e2v,p2q!#

52
t2qx

2

2vF
2nv

Im P~v,q!, ~A2!

whereP(v,q) is the polarization operator~2.15!,

Im P~v,q!5
v

pE d2p

~2p!2 GR~e,p!GA~e2v,p2q!

.2n
v

qvF
u~qvF2v!, ~A3!

whereu(x) is the step function. Furthermore, the imagina
part of the interaction propagator within the RPA is propo
tional to ImP(v,q)

Im U~v,q!52uU~v,q!u2 Im P~v,q!. ~A4!

Substituting~A2! and ~A4! in ~2.26!, we finally obtain

dsxx
inel52

e2t2

m2 E
2`

` dv

2p

1

2T sinh2~v/2T!

3E d2q

~2p!2 qx
2uU~v,q!u2@ Im P~v,q!#2.

~A5!

This expression is identical, up to a sign, to the result of R
63 for Coulomb drag. This demonstrates that two contrib
tions indeed cancel each other,

ds inel1dsdrag50. ~A6!

Using the explicit form of ImP(v,q), Eq. ~A3!, and of
U(v,q), Eq. ~2.14!, in the ballistic regime, it is easy to
estimateds inel ~we assume herek;kF for simplicity!,

ds inel;2e2t2TE
0

T

dvEkFq dq

kF
2 ;2e2~Tt!2. ~A7!

As has been stated above, theq-integral is determined by the
ultraviolet cutoff.

Finally, we note that in double-layer system the interlay
interaction does give rise to a correctionds inel to the driving-
layer conductivity, which is equal in magnitude and oppos
in sign to the transconductivity. This effect is, however, r
duced by a factor;(kFj)24 ~wherej is the interlayer dis-
tance!, as compared to~A7!, see Ref. 63.

APPENDIX B: PROPAGATOR AND KERNELS Bab

FOR WHITE-NOISE DISORDER

In this appendix we will derive the general expressio
~valid for arbitrary magnetic field! for the kernelsBxx

(r) and
Bxy

(r) in terms of the quasiclassical propagator for a whi
3-26
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noise random potential. This will allow us to reproduce t
results of Refs. 19 and 20, where the interaction-indu
corrections tosxx and rxy were studied for a white-nois
disorder in the limitB→0. We will further apply the formal-
ism to calculate the longitudinal MR and the Hall resistiv
in a finite magnetic field withvc!T. The resistivity tensor
in yet stronger magnetic field,vc@T, is studied, in the more
general framework of a mixed disorder model in Sec. V.

Using Eqs.~2.38! and ~2.40!, we get

Bxx
(r)5

1

2t
^D&22

1

t
^Dnx&^nxD&1

1

2
^D&2^nxDnx&

2
2

t
^nxDnxD&12vc^nxDnyD&

2
12vc

2t2

t2 ^DnxDnxD&1
2vc

t
^DnxDnyD&

~B1!

for the kernel describing the longitudinal resistivity, and

Bxy
(r)5

vc

2
^DD&2

1

t
^Dnx&^nyD&2^nxDny&2

2

t
^nxDnyD&

22vc^nxDnxD&2
12vc

2t2

t2 ^DnxDnyD&

2
2vc

t
^DnxDnxD& ~B2!

for the Hall resistivity.
The propagatorD(f,f8) in the case of white-noise dis

order can be expressed through the propagatorD0(f,f8),
obeying the Liouville–Boltzmann equation with on
scattering-out term present in the collision integral,

F2 iv1 iqvF cos~f2fq!1vc

]

]f
1

1

t GD0~f,f8!

52pd~f2f8!. ~B3!

As in a zero magnetic field, the total propagator is given
the sum of the ladder diagrams~thus including the
scattering-in processes!, yielding

D~f,f8!5D0~f,f8!

1E df1

2p

df2

2p

D0~f,f1!D0~f2 ,f8!

t2^D0&
,

~B4!

which we write symbolically as follows:

D5D01
D0&^D0

t2g0
. ~B5!

Here we introduced a short-hand notation

g0~v,q![^D0&5E df

2p

df8

2p
D0~v,q;f,f8! ~B6!
04531
d

y

for the angle-averaged scattering-out propagator. It turns
that for a white-noise disorder the kernelsBxx

(r) andBxy
(r) can

be expressed in terms ofg0 ~and its derivatives with respec
to q andv). The solution of~B3! is given by

D0~v,q;f,f8!5exp$ iqRc@sin~f82fq!2sin~f2fq!#%

3 (
n52`

`
exp@ in~f2f8!#

2 i ~v2nvc!11/t
. ~B7!

It is worth mentioning that in the mixed-disorder model i
troduced in Sec. V with both, white-noise and smooth dis
der present, the solution of the Liouville–Boltzmann equ
tion also has the form~B4!. In that case, the propagatorD0
satisfies the Liouville–Boltzmann equation for a pure
smooth disorder~considered in Appendix D! with the re-
placementv→v1 i /twn , wheretwn is relaxation time due
to white-noise potential.

Using ~B7! and a series representation for the Bes
functions, we find~see, e.g., Ref. 56!

g0~v,q!5
i

vc
(

n

Jn
2~qRc!

m2n
5

ip

vc

Jm~qRc!J2m~qRc!

sinpm
,

~B8!

whereJm(z) is the Bessel function and

m5
v

vc
1

i

vct
. ~B9!

In the absence of magnetic field (vc50,Rc5vF /vc5`) the
propagatorsD0(v,q;f,f8) and g0(v,q) acquire a simple
form

D0~v,q;f,f8!5
2pd~f2f8!

2 iv1qvF cos~f2fq!11/t
,

~B10!

g0~v,q!5
1

Aq2vF
21~2 iv11/t!2

[
1

S~v,q!
. ~B11!

To proceed further, we first reduce@using ~B5!# the ‘‘matrix
elements’’ appearing in~B1! and~B2! to the form containing
only the propagatorsD0,

^D&5
^D0&t

t2g0
, ~B12!

^DD&5
t2^D0D0&

~t2g0!2
, ~B13!

^Dnx&^nbD&5
t2^D0nx&^nbD0&

~t2g0!2
, ~B14!

^nxDnb&5^nxD0nb&1
^nxD0&^D0nb&

t2g0
, ~B15!
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^nxDnbD&5^nxD0nbD0&1
t^nxD0&^D0nbD0&

~t2g0!2
,

~B16!

^DnxDnbD&5
t2^D0nxD0nbD0&

~t2g0!2
1

t2^D0nxD0&^D0nbD0&

~t2g0!3
,

~B17!

where b5x,y. Next, using~B7! and ~B3! and performing
the averaging overfq , we can express the matrix elemen
involving D0 via the propagatorg0. Introducing the notation
W52 iv11/t, we get the followingfq-averaged matrix
elements:

^D0D0&52 i
]g0

]v
, ~B18!

^D0nx&^nxD0&52
1

2q2vF
2 @12Wg0#21

vc
2

8vF
2 S ]g0

]q D 2

,

~B19!

^nxD0nx&5
vc

2

4vF
2 S ]2g0

]q2 1
1

q

]g0

]q D1
g0

2
, ~B20!

^nxD0nxD0&52
W

2qvF
2

]g0

]q
, ~B21!

^nxD0&^D0nxD0&5
@12Wg0#

2qvF
2

]g0

]q
, ~B22!

^D0nxD0nxD0&52
1

4vF
2 S ]2g0

]q2 1
1

q

]g0

]q D , ~B23!

^D0nxD 0&
252

1

2vF
2 S ]g0

]q D 2

, ~B24!

for the ‘‘longitudinal correlators,’’ and

^D0nx&^nyD0&5
vc

2qvF
2 @12Wg0#

]g0

]q
, ~B25!

^nxD0ny&5vc

W
2qvF

2

]g0

]q
, ~B26!

^nxD0nyD0&5
vc

4vF
2 S ]2g0

]q2 1
1

q

]g0

]q D , ~B27!

^nxD0&^D0nyD0&5
vc

4vF
2 S ]g0

]q D 2

, ~B28!
04531
^D0nxD0nyD0&5
i

2vc
S ]g0

]v
1

iW
qvF

2

]g0

]q D , ~B29!

for the ‘‘Hall correlators.’’
Substituting Eqs.~B12!–~B29! in ~B1! and ~B2!, we ob-

tain the kernelsBxx
(r) andBxy

(r) averaged overfq ,

Bxx
(r)~v,q!5S t

t2g0
D 2H 2t2g0

2t2 Fg0
21

~12Wg0!2

q2vF
2 G

1
i

t

]g0

]v
2

1

qvF
2t2

]g0

]q
1

1

4vF
2t3 S ]g0

]q D 2

3F ~12vc
2t2!

2t

t2g0
1vc

2t2S 11
g0

2t D G
1

1

4vF
2t2 S ]2g0

]q2 1
1

q

]g0

]q D @12vc
2g0

2#J ,

~B30!

Bxy
(r)~v,q!5S t

t2g0
D 2H 2

i

4vct
2 S ]g0

]v
1

iW
qvF

2

]g0

]q D
1

vc

2qvF
2t F12Wg02

g0

2tG]g0

]q
1

vcg0

4vF
2t2

3S ]2g0

]q2 1
1

q

]g0

]q D1
vc

4vF
2t2

t1g0

t2g0
S ]g0

]q D 2J .

~B31!

In zero magnetic field, we setvc50 and substituteg0
51/S in ~B30!. After some algebra, we reduce the obtain
expression for the kernelBxx to the form

Bxx
(r)~v,q!5

~qvF!2

2t3S3~S21/t!3 1
3~qvF!2

4t2S3~S21/t!2

1
S2W

tS~S21/t!2
1

~2S21/t!@S2W#2

2t~qvF!2S~S21/t!2
,

~B32!

which agrees with Eq.~16b! of Ref. 20 up to an overall
factor 1/2t related to different normalization. In the ballisti
limit, Tt@1, expanding~B32! in t21, one finds the leading
contribution@O(1/t)# given by the last two terms in~B32!,

Bxx
(r)~v,q!.

S01 iv

tS0
3

1
@S01 iv#2

t~qvF!2S0
2

,

5
S01 iv

tS0
2 F 1

S0
1

1

S02 i ~v1 i0!G , ~B33!
3-28



e
c

in
n

io

st

-

y

-
o

o
al

n

at

e

e,
on-

or

c

en

INTERACTION-INDUCED MAGNETORESISTANCE IN A . . . PHYSICAL REVIEW B69, 045313 ~2004!
where S05@q2vF
22(v1 i0)2#1/2. Substituting ~B33! in

~2.39! and using~C1! for exchange interaction, we reproduc
the linear-in-T correction to the resistivity in the ballisti
regime,

drxx
F

r0
52

T

EF
. ~B34!

Within the approximation of isotropic interaction used
Ref. 19, the Hartree term is determined by the triplet chan
and is given by

drxx
H

r0
52

3F0
s

11F0
s

T

EF
. ~B35!

It is worth noting that one should exercise a certain caut
when comparing the experimental data with the results~B34!
and~B35!, even in systems with short-range impurities. Fir
the higher angular harmonicsFnÞ0

r,s of the interaction64 ~ne-
glected in the above approximation! may change the numeri
cal coefficient in front of the Hartree term~see discussion in
Sec. III E and in Ref. 19!. Second, anisotropy of the impurit
scattering introduces an extra factor 2pnW(p)tÞ1 @where
W(p) is the effective impurity-backscattering probability# in
both exchange and Hartree terms~see Sec. II C 3 and Appen
dix C!. The anisotropy may arise due to some amount
smooth disorder present in any realistic system, due t
finite range of scatterers, or due to the screening of origin
pointlike impurities~see Sec. IV!. Therefore, the interaction
parameterF0

s extracted from the measured linear-in-T resis-
tivity with the use of~B34!, ~B35! may differ considerably
from that found from a measurement of other quantities~e.g.,
the resistivity correction in the diffusive limit or the spi
susceptibility!.

To find the leading contribution toBxy
(r) in the limit of

vanishing magnetic field, we have to expand the propag
g0 up to the second order invc in the first term in curly
brackets in~B31!. This can be easily done by treating th
term vc]/]f in ~B3! as a perturbation, which yields

g0~B→0!5g0~v,q;B50!1vc
2h~v,q!

5
1

S
2vc

2
q2vF

2~S225W 2!

8S7
. ~B36!

After a simple algebra, we findBxy
(r) in the following form:

Bxy
(r)~v,q!

vc
5

~qvF!2

t2S3~S21/t!3 1
~qvF!2@2S25W#

4t2S5~S21/t!2

1
W@S2W#2

2t2S4~S21/t!2
, ~B37!

which agrees with Eq.~16a! of Ref. 20. In the ballistic limit,
Tt@1, the leading contribution@O(1/t2)# to Bxy

(r) has the
form
04531
el

n

,

f
a

ly

or

Bxy
(r)~v,q!.

vc~S01 iv!

4t2S0
7 @6S0

223iS0v15v2#.

~B38!

In arbitrary magnetic field, Eq.~B30! can be also signifi-
cantly simplified when the condition of the ballistic regim
Tt@1, is assumed. Then the leading contribution to the l
gitudinal MR, Drxx5rxx(B)2rxx(0), is determined by the
kernel

tBxx
(r)~v,q!.g0

21
~12Wg0!2

q2vF
2

1 i
]g0

]v
2

vc
2

4vF
2 S ]g0

]q D 2

.

~B39!

The remaining terms in~B30! yield the contributions to the
MR which are smaller at least by an additional fact
(Tt)21. Using ~B36! @which tells us that forvc!T the
magnetic-field-induced corrections to the propagatorg0 are
small by a factor (vc /T)2], we find that the MR for not very
strong magnetic fields,vc!T, is determined by a quadrati
in vc correction to the kernelBxx

(r) ,

DBxx
(r)~v,q!5

vc
2

t F2h~v,q!

S
2

2h~v,q!

q2vF
2

W~S2W!

S

1 i
]h~v,q!

]v
2

1

4vF
2S4 S ]S

]qD 2G
52vc

2 S2W
4tS6 FS225W 2

S

2
5W~S1W!~3S227W 2!

2S3
1S1WG

.2vc
2 S01 iv

8tS0
9 ~4S0

4113ivS0
3125v2S0

2

235iv3S0135v4!, ~B40!

independently of the relation betweenvc andt21. Similarly,
using ~B36!, one can find the correction to Eq.~B38! in a
finite magnetic fieldvc!T,

DBxy
(r)~v,q!52vc

3
iv~S0

21v2!

4S0
9 @3S0

217v2#. ~B41!

Again, this correction is independent of the relation betwe
vc andt21. The results~B40! and~B41! are used for calcu-
lation of the interaction-induced corrections torxx and rxy
for the white-noise disorder andvc!T in Sec. V B.
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APPENDIX C: LINEAR-IN- T TERM IN THE BALLISTIC
LIMIT AT BÄ0

In this appendix we calculate the leading ballistic corre
tion to the conductivity atB50 for a generic scattering cros
sectionW(f2f8) in the case of the Coulomb interactio
As explained in Sec. II C 3, this term~proportional toTt) is
obtained by substituting the ballistic asymptotics~2.51! of
o
in

e

te
-
,

n

04531
-

Bxx in the general formula~2.35!. Likewise, the interaction
propagatorU(v,q) entering~2.35! has to be replaced by

U~v,q!5
1

2n

1

11 iv^Df&
~C1!

with the free propagatorDf given by Eq.~2.50!. Performing
the angular integration̂•••&, we get
dsxx.2
e2

2p2 Tt ImE
0

`

dV
]

]V S V coth
V

2 D E
0

`

Q dQ
@Q22~V1 i0!2#1/2

@Q22~V1 i0!2#1/21 i ~V1 i0!

3F E df

2p

~2 iV!W̃~f!~12cosf!

FQ2 cos2
f

2
2~V1 i0!2G@Q22~V1 i0!2#1/2

2
2 iV

@Q22~V1 i0!2#3/2G , ~C2!
pic

at
on
e

,

where we introduced the dimensionless variablesV

5v/T, Q5qvF /T, and W̃(f)52pntW(f). It is conve-
nient to split the interaction propagator as follows:

2nU~V,Q!5
S0

S01 i ~V1 i0!
5S 12

iV

S01 i ~V1 i0! D ,

~C3!

whereS05@Q22(V1 i0)2#1/2. The first term corresponds t
a statically screened interaction and is equivalent to a po
like interaction withV051/2n, the second term results from
the dynamical weakening of screening. As discussed in S
II C 3, the contributiondsxx

(1) of the first ~constant! term is
proportional to the backscattering probabilityW(p), see Eq.
~2.52!. Let us show that this follows also from Eq.~C2!.
Performing the variable changeQ→S0 , we find

dsxx
(1).2

e2

2p2 Tt ImE
0

`

dV
]

]V S V coth
V

2 D F̃~V!

F̃~V!5E
C
dS0

~2 iV!~S0
21V2!

S0
2

3E df

2p

2 sin4~f/2!W̃~f!

S0
2 cos2

f

2
2~V1 i0!2 sin2

f

2

. ~C4!

The contourC of integration overS0 in Eq. ~C4! is shown in
Fig. 14. Interchanging the order of integration overf and
S0, we see that for anyfÞp ~i.e., cos(f/2)Þ0) the
S0-integral converges. Furthermore, transforming the in
gration contourC→C8 as shown in Fig. 14, it is straightfor
ward to reduceF̃(V) to an explicitly real form. Therefore
only the singular point f5p @where the result of
S0-integration diverges as 1/ucos(f/2)u, implying that the
imaginary part ofF̃(V) is determined by a delta-function i
f-integral# contributes to~C4!, so thatdsxx

(1)}W(p). To find
t-

c.

-

the corresponding coefficient, one can consider the isotro
scatteringW(f)5const and to integrate overf first, yield-
ing

dsxx
(1)5

e2

p
W̃~p!Tt, ~C5!

in agreement with~2.52!. Note that the integral overV is
formally divergent at the upper limit. It should be cut off
V;EF /T yielding a temperature independent contributi
;e2W̃(p)EFt which renormalizes the value of the Drud
conductivity.

We now turn to the contributiondsxx
(2) of the second~dy-

namical! term in the interaction propagator~C3!, which dif-
fers from Eq. ~C4! by an extra factor2 iV/@S01 i (V
1 i0)#. Rotating atfÞp the integration contour as before
we reduce theS0-integral to the form (S0→2 iY),

V2E
V

`dY

Y2

Y1V

S Y2 cos2
f

2
1V2 sin2

f

2 D , ~C6!

FIG. 14. The contoursC and C8 of integration overS0 in Eq.
~C4!.
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which is again real and thus yields no contribution todsxx
(2) .

Though the pointf5p is singular in this case as well, th
singularity is only logarithmic (; lnucos(f/2)u), so that no
contribution proportional toW(p) arises. This can be easil
checked by assumingW(f)5const and performing the
f-integration first. Therefore,

dsxx
(2)50,

and the linear-in-T term is given by Eq.~C5!.
In the above consideration we have expanded the ball

propagatorD up to terms with one scattering event. In th
case of small-angle scattering this is justified providedTts
@1, while in the intermediate temperature ranget21!T
!ts

21 processes with many scattering events domin
~though the particle motion is typically close to the straig
line!. The termdsxx

(1) which is governed by anomalous pro
cesses of returns in a timet&T21!t is exponentially small
in this case, see Sec. II C 3. As to thedsxx

(2) contribution to
the linear-in-T term, it remains zero in this case as well. T
demonstrate this, we use Eq.~2.36!. In the first and the third
terms we can replaceD by the free propagator~2.50!, the
fourth term gives noTt contribution, while in the second
term we should take into account the angular diffusion~2.9!
around the straight trajectory,

1

2
^D&2^nxDnx&→

2 iv

2t@q2vF
22~v1 i0!2#3/2

. ~C7!

Combining the contributions toBxx of all the three terms, we
get

Bxx~v,q!5
2 iv

@q2vF
22~v1 i0!2#3/2S 1

2
1

1

2
21D50,

~C8!

so that the coefficient of theTt-term indeed vanishes.

APPENDIX D: SOLUTION OF LIOUVILLE –BOLTZMANN
EQUATION FOR A SMOOTH DISORDER

In this appendix, we will solve the classical equation fo
propagator of a particle moving in a smooth random pot
tial in a magnetic field,

F2 iv1 iqvF cosf1vc

]

]f
2

1

t

]2

]f2GD~f,f8!

52pd~f2f8!. ~D1!

Here the polar angle of the velocity is counted from the an
of q, f2fq→f.

We first consider the diffusive limit,Dq2,v!1/t, and
solve this equation perturbatively inq for arbitrary magnetic
field. Settingq50, we obtain the solution in the form

D~f,f8!5(
n

ein(f2f8)

2 iv1 invc1n2/t
, ~D2!
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te
t

-

e

which is just a standard expansion in eigenfunctions of
Liouville–Boltzmann operator. We now treat the termdL
5 ivFq cosf as a perturbation. The first-order correction
the eigenvaluesln

(0)52 iv1 invc1n2/t vanishes, while
the second order correction is

ln
(2)5

q2vF
2

2

1

12~ ivct12n!2 ~D3!

and can be neglected along with2 iv in all terms except for
n50 in the diffusive limit. The first order correction to th
right eigenfunction forn50 reads

C0,R
(1)~f!52

iqvFt

11vc
2t2@cosf1vct sinf#, ~D4!

while the left eigenfunction differs from~D4! by a replace-
mentvc→2vc . Thus, in the diffusive limit the propagato
has the form

D~v,q;f,f8!>
1

Dq22 ivF12
iqvFt~cosf1vct sinf!

11vc
2t2 G

3F12
iqvFt~cosf82vct sinf8!

11vc
2t2 G

1 (
nÞ0

ein(f2f8)

invc1n2/t
. ~D5!

In a strong magnetic field (vct@1) one can go beyond
the diffusion approximation. In this case one can repres
the propagator in the form

D~v,q;f,f8!5d~v,q;f,f8!exp@2 iqRc~sinf2sinf8!#,
~D6!

and solve the equation ford(f,f8),

F2 iv2 i
qvF

vct
sinf1H vc12i

qvF

vct
cosfJ ]

]f

1
1

t S qvF

vc
D 2

cos2f2
1

t

]2

]f2Gd~f,f8!

52pd~f2f8! ~D7!

perturbatively inq. At q50 we have the same solution~D2!
as in the diffusive limit. The first order correction to th
eigenvalues is now produced by theq2-term in ~D7!, ln

(1)

5Dq2, with D5Rc
2/2t the diffusion constant in a stron

magnetic field. The second order correctionsln
(2) turn out to

be small compared toln
(1) for (qRc)

2!vct. As in the dif-
fusive limit, for calculation ofBxx the corrections to the
eigenfunctionsCn with nÞ0 can be neglected. The firs
order correction toC0 is found to be~we drop the term
}sin 2f, since it does not contribute toBxx in the leading
order!

C0
(1)~f!.2

iqvFt cosf

~vct!2 , ~D8!
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leading to Eq.~3.1!.
To calculate the kernelBxy , we need a more accurat

form of the propagator. Therefore, we should analyze
corrections to the eigenvalues and eigenfunctions of
Liouville–Boltzmann operator to the next order
(qRc)

2/vct. To do this, it is convenient to perform the tran
formation

D~v,q;f,f8!

5d̃~v,q;f,f8!expH 2 i
qRc

11b2 @b2~sinf2sinf8!

1b~cosf2cosf8!#J , ~D9!

and introduce the dimensionless variablesb5vct, Q̃
5qRcb/(11b2)1/2, V52vt. The equation for
d̃(v,q;f,f8) takes then the form

F2 i
V

2
1Q̃2 cos2 f̃1b

]

]f̃
12iQ̃ cosf̃

]

]f̃

2
]2

]f̃2G d̃~v,q;f̃,f̃8!52ptd~f2f8!, ~D10!

where we performed a rotationf̃5f1fb , fb5arccotb.
Treating for Q̃2!max@1,b# @i.e., (qRc)

2!vct in a strong
magnetic field,b@1] the term

dL̂5
Q̃2

2
cos 2f̃12iQ̃ cosf̃

]

]f̃
~D11!

as a perturbation to the operator

L̂052 i
V

2
1

Q̃2

2
1b

]

]f̃
2

]2

]f̃2
, ~D12!

we find the unperturbed solution

d̃0~f̃,f̃8!52t(
n

ein(f̃2f̃8)

2 iV1Q̃212inb12n2
, ~D13!

and the first-order correction to the eigenvaluesl̃n
(1)50. Cal-

culating then50 eigenfunctions and eigenvalue up to t
second order in the perturbation~D11! we finally obtain the
singular part of the propagator forb@1 with required accu-
racy,

D s~v,q;f,f8!52t exp@2 iQ~sinf2sinf8!#

3
xR~f,Q!xL~f8,Q!

Q2@12~12Q2/4!/b2#2 iV
,

~D14!

whereQ5qRc and the functionsxR,L(f,Q) are given by
04531
e
e

xR,L~f,Q!512
1

bF iQ cosf6
Q2

4
sin 2fG

1
1

b2 FQ2

4
6 iQS 11

5Q2

8 D sinf2
5Q2

4
cos 2f

6
7iQ3

24
sin 3f1

Q4

64
~12cos 4f!G . ~D15!

As to the regular part of the propagator, fornÞ0 it is suffi-
cient to calculate the eigenfunctions to the first order in
perturbation, which yields

D reg~v,q;f,f8!

52t exp@2 iQ~sinf2sinf8!#

3 (
nÞ0

CR~f8,Q;n!CL~f8,Q;n!

2 iV1Q212inb12n2
ein(f2f8),

~D16!

where

CR,L~f8,Q;n!512
iQ

b
cosf7

Q2

4b
sin 2f6

2nQ

b
sinf.

~D17!

The results~D14!–~D17! allow us to calculate the kerne
Bxy(v,q) in the first nonvanishing order inb21, see Sec.
III G.

APPENDIX E: PROPAGATOR FOR ANISOTROPIC
SYSTEMS

In this Appendix, we assume that the collision integralĈ
induces a transport anisotropy, i.e., that the scattering c
sectionW(f,f8) is not a function off2f8. The propaga-
tor D(v,q;f,f8) satisfies the equation

F2 iv1 iqvF cos~f2fq!1vc

]

]f
1ĈGD~v,q;f,f8!

52pd~f2f8!, ~E1!

where

@ĈC#~f!5nE df8

2p
@C~f!2C~f8!#W~f,f8!. ~E2!

We first consider the diffusive limit and concentrate on t
leading contributionD s governed by the diffusion mode.

This requires finding a lowest eigenvalueL0 of the op-
erator in the lhs of~E1! and the corresponding left and righ
eigenfunctions. Treating the termiqvF cos(f2f8) perturba-
tively as in Appendix E, we find

CR,L~f!512 iqvFS 6vc

]

]f
1ĈD 21

cos~f2fq!

~E3!

and
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L05Dabqaqb2 iv, ~E4!

with the diffusion tensor

Dab5vF
2 K naS 6vc

]

]f
1ĈD 21

nbL . ~E5!

We thus get the result~6.5! for the singular contributionD s,
with CR,L given by ~E3!.

In a strong magnetic field (vct@1), we can go beyond
the diffusive limit. Proceeding as for an isotropic system,
perform the transformation~D6!. Treating theq-dependent
terms in the obtained equation ford(v,q;f,f8) as a pertur-
bation and keeping the singular contribution only, we co
to the result~6.10!, wherex(f) can be represented symbo
cally as
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