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Persistent currents in the presence of nonclassical electromagnetic fields
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Persistent currents in mesoscopic rings and cylinders threaded by a magnetostatic flux and also by mono-
chromatic nonclassical electromagnetic fields are considered. The results depend on the quantum state of the
nonclassical electromagnetic fields. It is shown that quantum and thermal noise in the field reduces the current
and can change its character from diamagnetic to paramegnetic, and vice versa. Four different examples of
nonclassical electromagnetic fields are considered~number eigenstates, coherent states with randomized phase,
coherent states, and thermal states! and the corresponding currents are calculated. Two-mode entangled elec-
tromagnetic fields are also considered, and the effect of entanglement on the currents is studied.
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I. INTRODUCTION

It is already well established, both theoretically1 and
experimentally,2 that in mesososcopic multiply connecte
nonsuperconductive samples, such as cylinders or rings~car-
bon nanotubes are also an example!, threaded by static mag
netic flux, persistent currents are developed. They are d
currents in the equilibrium state3,4 in a normal metal or semi
conducting sample with a size-induced energy gap at
Fermi surface. For a recent review, see Ref. 4. There is
disagreement between the theory and experiment concer
the actual amplitude of the persistent currents~the experi-
mentally observed currents are much larger than the theo
cally predicted ones!.

In this paper we explore a different regime, namely, p
sistent currents in the case where in addition to the mag
tostatic flux we also have electromagnetic fields. Related
perimental work has been reported in Ref. 5. However
this paper we go much further by considering nonclass
electromagnetic fields.6

Nonclassical electromagnetic fields are carefully prepa
in a particular quantum state described mathematically b
density matrixr. In this case we know not only the averag
values^E& and ^B& of the electric and magnetic fields, bu
also the standard deviationsDE and DB, which describe
both the quantum the classical noise. Classical noise ca
eliminated at least in principle, but the quantum noise will
present. Nonclassical electromagnetic fields have been
to manipulate and control the quantum noise~subject to the
uncertainty principle constraint!. For example, squeeze
electromagnetic fields have very smallDE at the expense o
large DB so that the productDEDB obeys the uncertainty
relation.

An alternative way of describing nonclassical electrom
netic fields is by knowing the statistics of photonspN
5^NuruN& threading the ring. The distributionpN is also a
way to describe the noise. In nonclassical electromagn
fields it can be narrower than a Poisson distribution, in c
trast to classical ones, where it is a Poisson or a wider t
Poisson distribution. Preparation of these fields in the la
ratory is certainly nontrivial, but several states~squeezed
states, number eigenstates, Schro¨dinger catstates, etc.! have
0163-1829/2004/69~4!/045305~8!/$22.50 69 0453
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been produced at both microwave7 and optical frequencies6

in the last 15 years. The latest effort in this area is to cons
two-mode fields and produce entangled states.

The interaction of mesoscopic devices with nonclass
electromagnetic fields is an interdisciplinary area that stud
how the quantum phenomena in these carefully prepa
electromagnetic fields will affect the currents in the devic
More specifically, what is the effect of the quantum noiseDE
andDB, of the photon statistics, or of the entanglement~in
the case of two-mode fields! on the currents?

In our paper we discuss persistent currents in mesosc
thin rings threaded by both classical and nonclassical e
tromagnetic fields. However, we want to stress that the c
siderations presented are also valid for a set of rings stac
along a certain axis and for a thin cylinder made of a mate
with a flat Fermi surface.

We limit our discussion to microwave radiation since
energy can be smaller than the energy gap at the Fermi
face in the typical ring. In that sense the presence of quan
light does not move the system far from the equilibrium a
it can be treated as a perturbation of our system. In this w
considerations concerning various nonequilibrium effec8

can be omitted. The resulting system remains in equilibriu
and the application of equilibrium formulas for the current
justified. We first consider monochromatic fields produced
a cavity and discuss the influence of the quantum noise
the amplitude of the currents. We also consider two-mo
fields with frequenciesv1 and v2. Here we consider both
separable~classically correlated! fields described with den
sity matrices of the type

r5(
i

pir1i ^ r2i , ~1!

wherepi are probabilities andr1i , r2i density matrices de-
scribing the two modes; and also entangled~quantum me-
chanically correlated! fields. We study their effect on the
electric currents in the rings and compare and contrast
results.

The work belongs in the general context of studying fu
quantum mechanical devices comprised of mesoscopic
vices interacting with nonclassical electromagnetic fiel
©2004 The American Physical Society05-1
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Such devices operate with few electrons and few phot
deeply into the quantum regime and are potentially useful
quantum technologies. Related work in the context of
sephson devices has been presented in Ref. 9 and in
context of Aharonov-Bohm electron interference in Ref. 1

II. PERSISTENT CURRENTS

We consider a thin metallic or semiconducting rin
threaded by the classical magnetic fluxf. We limit our dis-
cussion to thin rings since it allows us to neglect the s
inductance effects in the system.

For our model calculations let us consider first a ring
circumferencel x with an even numberMe of electrons. The
persistent current running at temperatureT in the ring is
given by3

I e~f/f0 ,T!5I 0(
n51

`

An~T!sinS 2pnf

f0
D ~2!

with

An~T!5
4T

pT*

exp~2nT/T* !

12exp~22nT/T* !
cos~nkFl x!, ~3!

where the flux quantumf0ª2p/e ~in units \5c5kB
51). The amplitudeI 0 of the current depends crucially o
the material and the band filling and is given by

I 0ªheMe /~2l x
2me!, ~4!

whereme is the electron mass. The characteristic tempe
ture is given by the relationkBT* 5DF/2p2 wherekB is the
Boltzmann constant,DF is the energy gap at the Fermi su
face, andkF is the Fermi wave vector. The current Eq.~2! is
a periodic function off with periodf0.

The characteristic of a current flowing in a ring with a
odd numberMe of electrons can be obtained by the shiftf
→f1f0/2 in Eq.~2!. The slope of the current characterist
~2! at f50 ~i.e., the sign of the derivative with respect tof)
allows one to distinguish the parity ofMe . A current that at
f50 has a positive slope wecall aparamagnetic current,
whereas a current with a negative slope atf50 we call a
diamagnetic current. Rings with an even~odd! number of
electronsMe exhibit a paramagnetic~diamagnetic! persistent
current.

The formulas~2! and~3! are valid not only for quasi-one
dimensional rings but also, if the amplitudeI 0 is replaced by
M̃ I 0, where M̃ is the number of current channels in th
system,11 for a set of rings stacked along a certain axis o
mesoscopic cylinder made of a material with a flat Fer
surface. Currents that are similar to Eq.~2! and~3! have also
been found for carbon nanotubes.12 In the particular case o
zigzag nanotubes@of rolling vector (m1,0)] with a lowered
Fermi surface, the currents obtained are paramagnetic
evenm1 and diamagnetic for oddm1. The following analysis
can therefore be extended to them.
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III. MONOCHROMATIC MICROWAVES

It is well known that the vector potentialA and the elec-
tric field E are dual canonical variables of the quantized el
tromagnetic field. Since both the magnetic fluxf5rCA dl
and the electromotive forceVEM5rCE dl are related to the
canonical variables via an integration performed over the
cumference of the ring, the fluxf and the electromotive
force VEM52 iv]f form an equivalent pair of dua
variables9,10 satisfying

@f,v21VEM#5 i . ~5!

We introduce the annihilation operator

a5
1

A2
~f1 iv21VEM!. ~6!

The Hamiltonian of the monochromatic electromagnetic fi
reads

H5vS a†a1
1

2D . ~7!

Assuming that the back reaction is negligible~i.e., the elec-
tromagnetic field created by the electrons in the ring is n
ligible!, we find9,10 that the flux operator evolves in time a

f5
1

A2
@exp~ ivt !a†1H.c.#. ~8!

Renormalization of the fluxf will be required for various
ring sizes. The ring size should be such that the energy ga
the Fermi surface is much greater than the energy of
microwaves.

In the following we introduce the dimensionless variab
xªf/f0 and the currentI (x,T)ªI e(x,T)/I 0. If Me is odd,
the currentI (x,t)5I o(x,T)/I 05I e(x11/2,T)/I 0. The most
general total current isI (x,T)5pIe1(12p)I o , wherep is
the probability of occurrence of evenMe .13

We assume that the magnetic flux threading the ring ha
classical componentl ~magnetostatic flux or low frequenc
electromagnetic field! and a quantum componentxq ~high
frequency electromagnetic field with\v@kBT):

x5l1xq . ~9!

We define the complex current operator as

I c~x,T!ª(
n51

`

An~T!exp~ i2pnx!

5 (
n51

`

An~T!exp~ i2pnl!exp~ i2pnxq!. ~10!

The expectation value is calculated by taking the trace^I c&
5Tr(rI c) with respect to the density operatorr of the non-
classical electromagnetic field. The imaginary part of t
expectation value is equal to the observed current, i.e.,

I ~x,T!5I^I c&. ~11!
5-2
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Changing the time origint→t2p/2v and introducingj
ªA2p/f0 allows us to rewrite the current operator in th
form

I c~x,T!ª(
n51

`

An~T!exp~ i2pnl!D~njeivt!, ~12!

where D(A)ªexp(Aa†2A*a) is the displacement operato
The calculation of the expectation value of the current
duces to the calculation of the so-called Weyl function

W~zn!5Tr$rD@njexp~ ivt !#%, zn5njexp~ ivt !.
~13!

The current is given by

^I c&5 (
n51

`

An~T!exp~ i2pnl!W~zn!. ~14!

The result is in general time dependent, but in special
amples it might be time independent.

In order to see the effect of the nonclassical nature of
electromagnetic field, we compare the various terms in
sum of Eq.~10! with the corresponding terms in the sum
Eq. ~7! for the case wherexq is a classical number. It is see
that the phase factor exp(i2pnxq), which has absolute valu
equal to 1, is replaced by the Weyl function, which h
uW(zn)u,1. We interpret this as reduction of the current d
to the noise~classical and quantum! in the electromagnetic
field.

IV. EXAMPLES

In this section we consider various types of nonclass
electromagnetic fields and calculate the corresponding
rents. We first work in the zero temperature limit where t
currentI (x,0)5I (x) with An(0)52cos(kFlx)/(pn). This limit
is convenient for our model calculations since both the ph
coherence of the electrons in the ring and the quantum p
erties of the flux are most visible. In Sec. IV~D! we also
consider thermal electromagnetic fields and calculate the
responding currents. The Weyl functions needed for th
calculations were given in Ref. 9.

A. Number eigenstates

Here the nonclassical component of the electromagn
field is assumed to be in a number eigenstate. In this c
r5uN&^Nu, and the total current is:

^I c&5 (
n51

`

An~0!exp~ i2p,nl!Bn~N!,

Bn~N!5exp~2n2j2/2!LN~n2j2!, ~15!

where LN are Laguerre polynomials. In this particular e
ample the result is time independent. This is related to
fact that the phase in number eigenstates is random.

A plot of the currentI as a function of the classical fluxl
for several values ofN is given in Fig. 1. We see that th
presence of the number eigenstates not only modifies
04530
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amplitude of the current but also leads to qualitatively diffe
ent results. Let us consider the response of the system fo
externally applied infinitesimally small classical flux. Th
response can be either paramagnetic@for the slope]I (l
50)/]l.0] or diamagnetic@for the slope]I (l50)/]l
,0]. In the following we consider first a paramagnetic cu
rent flowing in a ring with an even numberMe of electrons.
The current is a periodic function ofl with periodl51 and
when it is driven by the classical flux only it is paramagne
at small l since ]I (l50)/]l51`. If we switch on the
nonclassical flux the paramagnetic current decreases,
there exists some criticalNc

para'20 for which the current
becomes diamagnetic for smalll ~Fig. 1!. The behavior of a
ring with oddMe can be deduced from Fig. 1 when we mo
the origin in Fig. 1 byl51/2. The current when driven by
the classical flux only is then diamagnetic for smalll. The
appearance of the nonclassical flux decreases the curr
amplitude, and forNc

dia'45 the slope of the characteristic
l50 changes sign. It follows from the considerations p
sented that forNc

para,N,Nc
dia the system always has dia

magnetic reaction to smalll, no matter what is the parity o
Me . We also notice the unexpected result that, although
slope of the current atl→0 for the diamagnetic current i
smaller than for the paramagnetic one, it requires biggerN to
change the sign (Nc

dia.Nc
para). This phenomenon can b

understood from Eqs.~11! and~15!, where the first two non-
vanishing terms of the series determine the qualitative ch
acter of the current. In the case of an initially paramagne
current all harmonics sin(2pnl) are paramagnetic, wherea
in the case of a diamagnetic current the odd harmon
sin@2pn(l11/2)# are diamagnetic while the even harmoni
are paramagnetic. This together with a close inspection of
magnitude and sign ofB1(N) and B2(N) shows that it re-
quires largerN to change the sign of the slope of the curre
at l50 in the initially diamagnetic case since both the fi
nonvanishing terms support a diamagnetic current forN
,Nc

dia .
This mechanism explains all the differences appearing

the paper in the critical behavior between para- and diam
netic currents with respect to an externally applied sm
flux.

FIG. 1. The current Eq.~11! in the presence of the numbe
eigenstate vs applied classical flux calculated by use of Eq.~15!.
5-3
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The current forN50 ~vacuum! is different from the cur-
rent in the absence of a quantum flux

^I c&5 (
n51

`

An~0!exp~ i2p,nl!Bn
vac ,

Bn
vac

ªBn~0!5exp~2n2j2/2!. ~16!

It is a nontrivial example of the role played by the quantu
vacuum fluctuations at the mesoscopic level. The vacu
u0&^0u is a pure state, and thus the only noise present in
system is quantum noise caused by the finite fluctuation
the flux operator. The termsBn

vac in the series given in Eq
~16! are Weyl functions. We see that fluctuations of t
monochromatic vacuum modify the current characterist
removing the nondifferentiability~infinite slope! of the cur-
rent.

B. Coherent states with randomized phase

In this and the next section we consider electromagn
fields in coherent states. We start with the more realistic~and
experimentally easier! case where the phase of the coher
state14 uz&ªD(z)u0& is unknown. We assumecoherent states
with fully randomized phasedescribed by the density matri

r5E dQz

2p
zuzueiQz&^uzueiQzz. ~17!

The current in the ring is in this case given by the formu

^I c&5 (
n51

`

An~0!exp~ i2pnl!Bn~ uzu!,

Bn~ uzu!5exp~2n2j2/2!J0~2juzun!, ~18!

whereJ0 are Bessel functions.15 In this particular example
the result is time independent. This is related to the fact
the phase is random.

A plot of the current vs the externally applied classic
flux in the ring with an evenMe is given in Fig. 2. The
presence of the quantum flux results in lowering of the c

FIG. 2. The current Eq.~11! vs external classical flux in the
presence of a coherent state with randomized phase for severa
ues ofuzu calculated by use of Eq.~18!.
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rent amplitude~Fig. 2!. As a result, the paramagnetic curre
changes into a diamagnetic one whenuzu attains some critical
value uzuc

para'5. With further increase ofuzu we obtain the
paramagnetic current again. A shift of the origin in Fig.
(l→l11/2) gives information about a system with an in
tially diamagnetic current~i.e., with oddMe). We see that
the current changes to paramagnetic~Fig. 3! for uzuc

dia'7.
Since the character of the current is fully characterized

the slopeI 8(0)ª]I (l50)/]l, we plot the slope as a func
tion of uzu in Fig. 3. Again, one can recognize a range of t
parameteruzuc

para,uzu,uzuc
dia where the only reaction of the

system to a small classical flux is always diamagnetic, w
no regard to the parity ofMe . This happens when both
curves in Fig. 3 are below zero. It means that the quan
flux can change a qualitatively persistent current from pa
magnetic to diamagnetic, and vice versa. The amplitude
the current flowing in the presence of a coherent state w
randomized phase is sensitive to the value ofuzu. With in-
creasing uzu the maximal value of the current for 0,l
,1/2 is an oscillating function with decreasing amplitud
First the current is damped and then changes its chara
from para- to diamagnetic. Further, its amplitude increas
passes through a maximum, and later decreases, causin
appearance of a paramagnetic current. This scenario is
odic in uzu, but the next maximal value of the amplitude
always smaller than the previous one.

The behavior of the current flowing in a mesoscopic ri
threaded by a flux with a nonclassical component in a coh
ent state with randomized phase can by explained by sim
arguments as applied for the current flowing in the prese
of flux in the number eigenstate@with the modification
Bn(N)→Bn(uzu)].

The influence of the nonclassical flux on persistent c
rents in both the number eigenstate with smallN and the
coherent state with randomized phase with smalluzu is, to
some extent, similar to the influence of temperature or im
rities. They all result in decreasing the amplitude of the p
sistent current. This similarity goes even deeper if one re
izes that the slope of an initially diamagnetic current flowi
in the ring with an odd numberMe of electrons is more
‘‘stable’’ compared to a paramagnetic current, with respec
the nonclassical flux, as can be seen from Figs. 1 and 3
eitheruzu or N is small, the slope is almost constant, as in t

al-

FIG. 3. The slopeI 8(0) in the presence of a coherent state w
randomized phase forinitially para- and diamagnetic currents.
5-4
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PERSISTENT CURRENTS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 69, 045305 ~2004!
case of a current at finite temperature in the absence
quantum flux. With increasinguzu or N the similarity is no
longer present, since neither the temperature nor the imp
ties can change the current Eq.~2! from para- to diamagnetic

C. Coherent states

In this section we study the properties of the current i
mesoscopic ring in the presence of the standard cohe
statesr5uz&^zu whereuz&ªD(z)u0&.14 The current is in this
case given by the formula

^I c&5 (
n51

`

An~0!exp~ i2pnl!Bn~ uzu,Qz!,

Bn~ uzu,Qz!5exp~2n2j2/2! (
k52`

`

Jk~2juzun!

3exp@ ik~vt2Qz!#, ~19!

whereQzªArgz ~Ref. 9! andJk are Bessel functions.15 It is
seen that the current is time dependent. This is related to
fact that coherent states have a phase~which we calledQz)
that evolves in time intoQz2vt. In contrast, the previous
example where the phase of the coherent states is rand
ized gave a time-independent current.

We note that the current not only has frequencyv but also
all the higher harmonicsNv. This is due to the highly non
linear nature of the device.

It might be difficult to observe all these high frequenci
experimentally in a direct way. However, we can effective
convert them into dc currents, if we add a time-depend
component to the classical part of the flux. This shifts
frequency of a particular component to zero, and we
observe it as dc current. Letl5l01Vt where V is such
that

2pnV5kv, ~20!

wherek is an integer. In other words, the ratio 2pV/v5q
5k/n is a rational number. The current possesses two ty
of direct component corresponding either toV,0 ~upper
signs! or to V.0 ~lower signs! and is given by

I dc5 (
n51

`

An~0!J6qn~2juzun!sin~Ln
7!, ~21!

where Ln
75n(2pl07qQz). Such direct currents param

etrized by the rational numbersq are analogous to theSha-
piro stepsin a current flowing in a superconducting ring wi
a Josephson junction,9 but in the case of the nonsuperco
ducting rings they are more ‘‘dense,’’ since they are labe
by rational numbers and not by integers as in the case
Shapiro steps. We limit our discussion to the caseq51 since
the amplitude of the current forq.1 is small. The current
corresponding toV,0 is obtained if the classical flux i
decreased froml0 throughl50 and further to negative val
ues of the flux. IfV.0 the flux is growing linearly.

In the presence of a coherent state one needs to take
account two parameters describing the state of the quan
04530
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flux. The first is the phaseQz and the second isuzu. A plot of
the current Eq.~21! for several values of the phase anduzu
51 vs l0 is given in Fig. 4. The phaseQz of the coherent
state causes a horizontal shift of the current characteris
We see that forQzÞ0 we get a finite persistent current eve
in the absence of static magnetic flux (l050).

The influence of the amplitudeuzu ~Fig. 5! modifies both
the amplitude and the character of the current~Fig. 6! in a
periodic way. It is similar to the behavior observed in a sy
tem subject to a coherent state with randomized phase.
maximal value of the current is an oscillating function ofuzu
with decreasing amplitude. The main difference appear
one investigates a coherent state with smalluzu. In the case of
a coherent state with randomized phase, the current smoo
approaches the vacuum characteristics. For standard coh
states, a small value ofuzu results in a vanishingly smal
amplitude of the current. In the limituzu50, the current for
VÞ0 is no longer direct. If the quantum flux is in th
vacuum state the current is given by the formula Eq.~16!
with Bn

vac5Bn(uzu50,Qz50)5Bn(N50). For very small
values ofuzu the dc current flowing in the ring with evenMe
(V,0) is paramagnetic, which can be deduced from Fig
where we show the current vsl0 for fixed Qz50 for differ-

FIG. 4. The current Eq.~11! in the presence of a coherent sta
with uzu51 for several values of the phaseQz vs external static
classical fluxl0 andV,0 calculated by use of Eq.~21!.

FIG. 5. The current Eq.~11! in the presence of a coherent sta
vs l0 for Qz50 and several values ofuzu calculated by use of Eq
~21!.
5-5
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ent values ofuzu. Increasinguzu results in increase of the
amplitude of the current to some maximal value nearuzu
'10 ~Fig. 6!. Further increasinguzu leads to a decrease of th
amplitude and to a system with a diamagnetic current~nega-
tive slope atl050). This behavior is periodic, but the max
mal values of the current attainable in each ‘‘period’’ d
crease with increasinguzu. The range ofuzu where both
curves in Fig. 6 are below theuzu- axis, indicating a negative
slope I 8(0), is again the union of intervals. IfV.0 the
current behaves as if it were running in the ring with o
Me . Both currents corresponding to positive and negativeV
are identical only forQz5p/2 andQz53p/2. The depen-
dence of the current on the phase of the coherent state l
to a finite valueI (l050)Þ0 of the current in the absence o
a static magnetic flux. The valueI (l050) vsQz is plotted in
Fig. 7. We see that for almost all values of the phase
current I (l050)Þ0 with no regard to other parameter
This means that under certain conditions it is possible
obtain a persistent current driven bya time-dependent flux.

There is a range of parameters of the coherent state o
flux driving a persistent current when, again to some ext
the influence of the nonclassical light is similar to the infl
ence of temperature or impurities, i.e., the amplitude of
current is slightly lowered. In contrast to the case of a coh
ent state with randomized phase, this range doesnot appear
for small uzu but rather somewhere nearuzu'3, where the

FIG. 6. The slopeI 8(0) vs uzu in the presence of the cohere
statezuzu&^uzuz for a system exhibiting initially para- or diamagnet
reaction for infinitesimal flux.

FIG. 7. The currentI (l050) vs Qz for uzu51.
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amplitude of the current is maximal. Inspection of the gra
ent of the slopeI 8(0) in Fig. 6 leads to the conclusion tha
the diamagnetic current is more ‘‘stable’’ with respect to t
coherent state than the paramagnetic current. This ‘‘stabil
is not so strong as in the case of the flux in the num
eigenstate or in a coherent state with randomized phase

D. Thermal fields

Here we consider thermal fields described by the den
matrix

r5~12e2bv!(
N

e2NbvuN&^Nu. ~22!

In this case the current is

^I c&5 (
n51

`

An~T!exp~ i2pnl!Bn
th~T!,

Bn
th~T!5exp@2n2j2coth~bv/2!/2#, ~23!

whereb51/kBT. The result in this case is time depende
As one might expect, the equilibrium fluctuations wheth
classical13 or quantum~Fig. 8! do not destroy completely the
persistent currents which survive in realistic experiments.
an example, let us considerv;1cm21 and a ring withT*
;100K; thenbv;0.05T* /T. Thus the effective decrease o
the amplitude is not destructive for current in the regi
T<T* .

V. TWO-MODE MICROWAVES

We now consider two-mode microwaves. In this case
~8! becomes

xq5
1

f0A2
@exp~ iv1t !a1

†1exp~2 iv1t !a1#

1
1

f0A2
@exp~ iv2t !a2

†1exp~2 iv2t !a2#, ~24!

FIG. 8. The current vsl for flux with and without thermal noise
in a ring with bv;0.05T* /T.
5-6
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where the indices 1, 2 refer to the two modes. Conseque
the expectation value of the current is given by

^I c&5 (
n51

`

An~T!exp~ i2pnl!W~z1n ,z2n!, ~25!

where the two-mode Weyl function is

W~z1n ,z2n!5Tr$rD1@njexp~ iv1t !#D2@njexp~ iv2t !#%,
~26!

with z in5njexp(ivit). If the two microwave modes are un
correlated the density matrix is factorizable,r5r1^ r2
~wherer1 ,r2 are the density matrices of the two modes!, and
the result for the corresponding Weyl function is

W~z1n ,z2n!5W1~z1n!W2~z2n!, ~27!

where

Wi~z in!5Tr@r iDi~z in!#, ~28!

which we insert in Eq.~25! to find the current.
Separable systems are those that are correlated class

and are described by density matrices of the form

r5(
N

pNr1N^ r2N , N51, . . . ,M , ~29!

wherer1N andr2N are two sets of density matrices descr
ing the first and second modes, respectively, andpN are
probabilities. Entangled systems are those that are corre
quantum mechanically and whose density matrices canno
written in the form of Eq.~24!. For separable systems,

W~z1n ,z2n!5(
N

pNW1N~z1n!W2N~z2n!, ~30!

which we insert in Eq.~25! to find the current.
We discuss the effect of entanglement between the

microwave modes on the current, with an example. We c
sider the entangled stateus&5221/2@ u01&1u10&] where
u01&,u10& are two mode number eigenstates. For compari
we also consider the corresponding separable state

rsep5
1

2
@ u01&^01u1u10&^10u#. ~31!

Clearly, the density matrix of the entangled staterent
5us&^su can be written as

rent5rsep1
1

2
@ u01&^10u1u10&^01u#. ~32!

The corresponding Weyl function for the separable state

Wsep~z1n ,z2n!5F12
n2j2e2

2 GexpS 2
1

2
n2j2e2D ~33!

and for the entangled state

Went~z1n ,z2n!5Wsep~z1n ,z2n!1Wcross~z1n ,z2n!
04530
tly

ally

ted
be

o
-

n

Wcross~z1n ,z2n!52
n2j2e2

2
cos@~v12v2!t#

3expS 2
1

2
n2j2e2D . ~34!

These calculations have been presented and used in a d
ent context in Ref. 10. Inserting them in Eq.~25! to find the
current, it is seen that, in the particular example that we h
considered, the current is time independent for classic
correlated~separable! microwaves and has an extra tim
dependent component in the case of entangled microwa

The results are an example of how purely quantum p
nomena~which have no classical analog! in the electromag-
netic fields can affect mesoscopic devices.

VI. SUMMARY

Mesoscopic rings and cylinders are very sensitive devi
that can ‘‘feel’’ the quantum mechanical nature of the ele
tromagnetic field. In this paper we discussed mesosco
rings or cylinders with quasi-one-dimensional conductan
~flat Fermi surface!. However, that kind of analysis can als
be applied to cylinders with an arbitrary Fermi surface.
such systems the formulas~2! and~3! for the persistent cur-
rent are slightly different11,16and the amplitude of the curren
is reduced, but the qualitative results to not change.

We investigated persistent currents in mesoscopic ri
and cylinders in the presence of both the classical and n
classical components of the electromagnetic flux. We show
that the nonclassical light does not destroy persistent curr
but decreases their amplitude and can lead to a chang
character from para- to diamagnetic, and vice versa. The
rent flux characteristics depend strongly on the state of
nonclassical electromagnetic field.

Persistent currents can flow for nonclassical flux in
number eigenstate and in a coherent state with random
phase in the presence ofstaticclassical flux. We showed tha
for a certain range of parameters describing the state of
quantum light a mesoscopic ring reacts with a diamagn
current for a small classical magnetic flux, with no regard
the parity ofMe .

We also found that in the case of nonclassical flux in
standard coherent state and in the presence of atime-
dependentclassical flux satisfying the condition given by E
~20!, we can also get persistent currents. Such currents be
resemblance to Shapiro steps in a current flowing in the
sephson junction.

We showed how the vacuum noise whose source is
uncertainties of the quantum operators modifies the cur
characteristics. In the last section we discussed the influe
of the equilibrium~thermal! noise on the properties of th
current. We showed that it does not qualitatively change
behavior of the currents. This, together with our earl
studies,13 leads to the conclusion that persistent currents s
vive in the presence of equilibrium fluctuations provided th
the parameters of the system are far from critical~e.g., the
energy of the thermal excitation is not comparable with
gap at the Fermi surface!.
5-7
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The work presented in the paper shows the interplay
tween quantum phenomena in electromagnetic fields
quantum phenomena in mesoscopic devices. It shows
mesoscopic rings and cylinders can serve as detector
nonclassical light. It shows a possible application of, e
carbon nanotubes, which are an example of mesoscopic
inders exhibiting coherent motion of electrons. On the ot
hand, there is the possibility ofcontrolling persistent curren
ev

. B

s.

.

,
s.

04530
e-
d
at
of

.,
yl-
r

amplitude in mesoscopic devices by applying a suitably c
sen nonclassical flux.
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15F.W. Scha¨fke, Einführung in die Theorie der Spezielen Fun
tionen der Matematischen Physik~Springer, Berlin, 1963!.

16H.F. Cheung, Y. Gefen, and E.K. Riedel, IBM J. Res. Dev.32,
359 ~1988!.
5-8


