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Persistent currents in the presence of nonclassical electromagnetic fields
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Persistent currents in mesoscopic rings and cylinders threaded by a magnetostatic flux and also by mono-
chromatic nonclassical electromagnetic fields are considered. The results depend on the quantum state of the
nonclassical electromagnetic fields. It is shown that quantum and thermal noise in the field reduces the current
and can change its character from diamagnetic to paramegnetic, and vice versa. Four different examples of
nonclassical electromagnetic fields are considénednhber eigenstates, coherent states with randomized phase,
coherent states, and thermal statsd the corresponding currents are calculated. Two-mode entangled elec-
tromagnetic fields are also considered, and the effect of entanglement on the currents is studied.
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. INTRODUCTION been produced at both microwdvend optical frequenciés
in the last 15 years. The latest effort in this area is to consider
It is already well established, both theoretichllgnd  two-mode fields and produce entangled states.
experimentally that in mesososcopic multiply connected  The interaction of mesoscopic devices with nonclassical
nonsuperconductive samples, such as cylinders or fcays  electromagnetic fields is an interdisciplinary area that studies
bon nanotubes are also an examplereaded by static mag- how the quantum phenomena in these carefully prepared
netic flux, persistent currents are developed. They are dire&lectromagnetic fields will affect the currents in the device.
currents in the equilibrium statéin a normal metal or semi- More specifically, what is the effect of the quantum naife
conducting sample with a size-induced energy gap at thandAB, of the photon statistics, or of the entanglemént
Fermi surface. For a recent review, see Ref. 4. There is stithe case of two-mode fielgl®n the currents?
disagreement between the theory and experiment concerning In our paper we discuss persistent currents in mesoscopic
the actual amplitude of the persistent currefitee experi- thin rings threaded by both classical and nonclassical elec-
mentally observed currents are much larger than the theoretiromagnetic fields. However, we want to stress that the con-
cally predicted ones siderations presented are also valid for a set of rings stacked
In this paper we explore a different regime, namely, per-along a certain axis and for a thin cylinder made of a material
sistent currents in the case where in addition to the magnewith a flat Fermi surface.
tostatic flux we also have electromagnetic fields. Related ex- We limit our discussion to microwave radiation since its
perimental work has been reported in Ref. 5. However, irenergy can be smaller than the energy gap at the Fermi sur-
this paper we go much further by considering nonclassicalace in the typical ring. In that sense the presence of quantum
electromagnetic field$. light does not move the system far from the equilibrium and
Nonclassical electromagnetic fields are carefully preparedt can be treated as a perturbation of our system. In this way
in a particular quantum state described mathematically by aonsiderations concerning various nonequilibrium effects
density matrixp. In this case we know not only the average can be omitted. The resulting system remains in equilibrium,
values(E) and(B) of the electric and magnetic fields, but and the application of equilibrium formulas for the current is
also the standard deviationSE and AB, which describe justified. We first consider monochromatic fields produced in
both the quantum the classical noise. Classical noise can ecavity and discuss the influence of the quantum noise on
eliminated at least in principle, but the quantum noise will bethe amplitude of the currents. We also consider two-mode
present. Nonclassical electromagnetic fields have been uséglds with frequenciesy; and w,. Here we consider both
to manipulate and control the quantum nofsabject to the separablgclassically correlatgdfields described with den-
uncertainty principle constraint For example, squeezed Sity matrices of the type
electromagnetic fields have very smaAlE at the expense of
large AB so that the producAEAB obeys the uncertainty
relation. P:Z PiP1i® P2, 1)
An alternative way of describing nonclassical electromag-
netic fields is by knowing the statistics of photops,  wherep; are probabilities ang,;, p,; density matrices de-
=(N|p|N) threading the ring. The distributiopy is also a  scribing the two modes; and also entanglgdantum me-
way to describe the noise. In nonclassical electromagnetichanically correlatedfields. We study their effect on the
fields it can be narrower than a Poisson distribution, in conelectric currents in the rings and compare and contrast the
trast to classical ones, where it is a Poisson or a wider tharesults.
Poisson distribution. Preparation of these fields in the labo- The work belongs in the general context of studying fully
ratory is certainly nontrivial, but several statesqueezed quantum mechanical devices comprised of mesoscopic de-
states, number eigenstates, Sclimger catstates, ejchave  vices interacting with nonclassical electromagnetic fields.
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Such devices operate with few electrons and few photons lll. MONOCHROMATIC MICROWAVES
deeply into the quantum regime and are potentially useful for . .
guantum technologies. Related work in the context of Jo- It is well known that the vector potentidl and the elec-

sephson devices has been presented in Ref. 9 and in tIIIréC field E are dual canonical variables of the quantized elec-

: : tromagnetic field. Since both the magnetic flgx $ A dl
ntext of Aharonov-Bohm electron interference in Ref. 10. . c
context of Aharonov-=ohm €lectro erierence ef. 10 and the electromotive forcégy=¢cE dl are related to the

canonical variables via an integration performed over the cir-
[l. PERSISTENT CURRENTS cumference of the ring, the fluy and the electromotive
force Vgy=—iwd, form an equivalent pair of dual

We consider a thin metallic or semiconducting ring variabled19 satisfying

threaded by the classical magnetic flisx We limit our dis-
cussion to thin rings since it allows us to neglect the self- [0 Veyl=i. (5)
inductance effects in the system. ) o

For our model calculations let us consider first a ring of e introduce the annihilation operator
circumferencd, with an even numbeM, of electrons. The

persistent current running at temperatdren the ring is _ i Fip-1
given b)} a \/§(¢ lw VEM)' (6)

o The Hamiltonian of the monochromatic electromagnetic field

/ S . [2mné reads
le(@l o, T) =102, An(T)sin )
n=1 ¢0
H=o| a'at 7

with —wlaat ). (7)

. Assuming that the back reaction is negligiltie., the elec-
AT exp(—nT/T*) tromagnetic field created by the electrons in the ring is neg-

An(T)= T 1—exp(—2nT/T*)CoSnkFlX)’ ©® ligible), we find!? that the flux operator evolves in time as

where the flux quantumpg:=2m/e (in units #=c=Kkg
=1). The amplitudd y of the current depends crucially on
the material and the band filling and is given by

1
= —[expliwt)a’™+H.c]. (8)
¢ ﬁ[ i wt) ]
Renormalization of the fluxp will be required for various

ring sizes. The ring size should be such that the energy gap at
the Fermi surface is much greater than the energy of the

wherem, is the electron mass. The characteristic tem eramicrowaves.
e ' X In the following we introduce the dimensionless variable

ture is given by the relatioRg T* = A/27? wherekg is the __ '_ :

Boltzmann constantAg is the energy gap at the Fermi sur- i(h_ ¢l do agd ﬂj[e_cijrren.?(;(l’TZ'I_IE(i’I/)Z/#O'“If MT?]'S Odd’t

face, andkg is the Fermi wave vector. The current Eg) is e currentl (x,t) =1(x, T)/1o=1¢(x T)/lo. The mos

a e,riodichunction o with period ' general total current is(x,T)=ple+ (1—p)l,, wherep is
P b P Po. the probability of occurrence of evev .

The characteristic of a current flowing in a ring with an We assume that the magnetic flux threading the ring has a

odd numbeM of electrons can be obtained by the sha#ft ; .
. .. classical componert (magnetostatic flux or low frequenc
— ¢+ ¢ol2 in EQ.(2). The slope of the current characteristic electromagnegc fieDdf(mdga quantum componest ?high Y

(2) at =0 (i.e., the sign of the derivative with respect¢d o o i
allows one to distinguish the parity & .. A current that at frequency electromagnetic field witho>KkgT):

lo:=heM/(212m,), (4)

¢=0 has a positive slope weall aparamagnetic current X=A+Xq. (9)
whereas a current with a negative slopegat0 we call a

diamagnetic currentRings with an everiodd) number of We define the complex current operator as
electronsM , exhibit a paramagneti@iamagnetit persistent

current.

The formulas(2) and(3) are valid not only for quasi-one-  'c(X.T):= ngl An(T)exp(i2mnx)

dimensional rings but also, if the amplitutigis replaced by

Ml,, whereM is the number of current channels in the ”

systemt! for a set of rings stacked along a certain axis or a = E An(T)exp(i2mnh)expi2mnxy). (10
mesoscopic cylinder made of a material with a flat Fermi n=1

surface. Currents that are similar to £8) and(3) have also  The expectation value is calculated by taking the trdge
been found for carbon nanotubgsn the particular case of =Tr(pl.) with respect to the density operatorof the non-
zigzag nanotubefof rolling vector (my,0)] with a lowered  classical electromagnetic field. The imaginary part of this

Fermi surface, the currents obtained are paramagnetic f@&fxpectation value is equal to the observed current, i.e.,
evenm; and diamagnetic for odah;. The following analysis

can therefore be extended to them. [(x,T)=T(l). (11
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Changing the time origin—t— m/2w and introducingé 109
:==\27/ ¢, allows us to rewrite the current operator in the |

form ;
0.5

only classical flux
------ N=0 =---=N=10

1(x,T):=>, Ay(T)exp(i2mnn)D(née'“), (12
n=1
0.0
where D(A):=exp(da’—A*a) is the displacement operator. 0
The calculation of the expectation value of the current re-
duces to the calculation of the so-called Weyl function 05

W(Z,) =Tr{pD[néexpiwt)]}, {n=néexpiwt).
(13

The current is given b
g y FIG. 1. The current Eq(11) in the presence of the number

» eigenstate vs applied classical flux calculated by use of Es).

<|C>=n§l An(T)exp(i2mnN)W(L,). (14)

o _ _ _ amplitude of the current but also leads to qualitatively differ-
The result is in general time dependent, but in special exent results. Let us consider the response of the system for an
amples it might be time independent. . externally applied infinitesimally small classical flux. The

In order to see the effect of the nonclassical nature of thgesponse can be either paramagnéfar the slopedl (A

electromagnetic field, we compare the various terms in the_ 0)/a\>0] or diamagnetic[for the slopedl(A=0)/a\
sum of Eq.(10) with the corresponding terms in the sum of _ 1 |, the following we consider first a paramagnetic cur-
Eq. (7) for the case Whef’*q IS a clas_S|caI number. It is seen rent flowing in a ring with an even numbé&f, of electrons.
that the phase factor exfigmx,), which has absolute value The current is a periodic function af with periodA =1 and

equal to 1, is replaced by the Weyl function, which haswhen it is driven by the classical flux only it is paramagnetic
Wi <1. We interpret thi r ion of th rren . .
|W(&n)| € interpret this as reduction of the curre tOIueat small\ since dl (A=0)/d\=+o. If we switch on the

to the noise(classical and quantunin the electromagnetic : ;
field nonclassical flux the paramagnetic current decreases, and

there exists some criticall??®~20 for which the current
IV EXAMPLES b_ecomes diamagnetic for small(Fig. 1). ‘_I’he behavior of a
ring with oddM can be deduced from Fig. 1 when we move
In this section we consider various types of nonclassicathe origin in Fig. 1 bya=1/2. The current when driven by
electromagnetic fields and calculate the corresponding cuthe classical flux only is then diamagnetic for small The
rents. We first work in the zero temperature limit where theappearance of the nonclassical flux decreases the current’s
currentl (x,0)=1(x) with A,(0)=2coskel,)/(7mn). This limit  amplitude, and foN%'3~ 45 the slope of the characteristic at
is convenient for our model calculations since both the phasg =0 changes sign. It follows from the considerations pre-
coherence of the electrons in the ring and the quantum progsented that foNPA A< N<NY? the system always has dia-
erties of the flux are most visible. In Sec. D) we also  magnetic reaction to small, no matter what is the parity of
consider thermal electromagnetic fields and calculate the COf,. We also notice the unexpected result that, although the
responding currents. The Weyl functions needed for thesg|ope of the current at—0 for the diamagnetic current is

calculations were given in Ref. 9. smaller than for the paramagnetic one, it requires biger
_ change the signN9"®>NPa'® This phenomenon can be
A. Number eigenstates understood from Eq€11) and(15), where the first two non-

Here the nonclassical Component of the e|ectr0magneti¥ani5hing terms of the series determine the qualitative char-
field is assumed to be in a number eigenstate. In this cagicter of the current. In the case of an initially paramagnetic
p=|N)(N|, and the total current is: current all harmonics singz\) are paramagnetic, whereas
in the case of a diamagnetic current the odd harmonics
si27n(\+1/2)] are diamagnetic while the even harmonics
(le)= Z An(0)exp(i2m,n\)Br(N), are paramagnetic. This together with a close inspection of the

=t magnitude and sign oB;(N) and B,(N) shows that it re-
_ 2.2 2.2 quires largeiN to change the sign of the slope of the current
Br(N)=exp(—n7¢*/2)Ln(n7¢), (19 at \=0 in the initially diamagnetic case since both the first
where Ly are Laguerre polynomials. In this particular ex- nonvanishing terms support a diamagnetic current Nor
ample the result is time independent. This is related to the< N‘C"a.
fact that the phase in number eigenstates is random. This mechanism explains all the differences appearing in

A plot of the current as a function of the classical flux  the paper in the critical behavior between para- and diamag-
for several values oN is given in Fig. 1. We see that the netic currents with respect to an externally applied small
presence of the number eigenstates not only modifies thigux.

[
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FIG. 3. The slopé’(0) in the presence of a coherent state with

FIG. 2. The current Eq(11) vs external classical flux in the randomized phase fonitially para- and diamagnetic currents.

presence of a coherent state with randomized phase for several val-
ues of|z| calculated by use of Eq18). rent amplitudgFig. 2). As a result, the paramagnetic current
changes into a diamagnetic one wheattains some critical

The current foN=0 (vacuum is different from the cur-  value |z|??"®*~5. With further increase dfz| we obtain the

rent in the absence of a quantum flux

©

(Iy= Zl An(0)exp(i2a,n\)BYEC,

paramagnetic current again. A shift of the origin in Fig. 2
(A—N\+1/2) gives information about a system with an ini-
tially diamagnetic currenti.e., with oddM.). We see that
the current changes to paramagnéfi. 3 for |z/9"~7.

Since the character of the current is fully characterized by
the slopel ' (0):=dl (A=0)/d\, we plot the slope as a func-
) o tion of |z| in Fig. 3. Again, one can recognize a range of the
It is a nontrivial example of the role played by the quantumparametetz|P22< |z|<|z|9" where the only reaction of the

vacuum fluctuations at the mesoscopic level. The vacuundysiem to a small classical flux is always diamagnetic, with
|0)(0| is a pure state, and thus the only noise present in thgo regard to the parity oM. This happens when both
system is quantum noise caused by the finite fluctuations of ;rves in Fig. 3 are below zero. It means that the quantum
the flux operator. The termB;*° in the series given in Ed. flux can change a qualitatively persistent current from para-
(16) are Wey! functions. We see that fluctuations of themagnetic to diamagnetic, and vice versa. The amplitude of
monochromatic vacuum modify the current characteristicsihe current flowing in the presence of a coherent state with
removing the nondifferentiabilityinfinite slopg of the cur-  randomized phase is sensitive to the valugzpf With in-

rent. creasing|z| the maximal value of the current for<O\
<1/2 is an oscillating function with decreasing amplitude.
First the current is damped and then changes its character

In this and the next section we consider electromagneti@©m para- to diamagnetic. Further, its amplitude increases,
fields in coherent states. We start with the more realigiic ~ P2SSes through a maximum, and later decreases, causing the
experimentally easigrcase where the phase of the coheren@PPearance of a paramagnetic current. This scenario is peri-
statd?|z):=D(2)|0) is unknown. We assumeherent states odic in |z|, but the next maximal value of the amplitude is

with fully randomized phaseescribed by the density matrix 2/Ways smaller than the previous one. o
The behavior of the current flowing in a mesoscopic ring
doe,
- |

threaded by a flux with a nonclassical component in a coher-
o ent state with randomized phase can by explained by similar
arguments as applied for the current flowing in the presence
of flux in the number eigenstatpwith the modification
Bn(N)_’Bn(|Z|)]-

The influence of the nonclassical flux on persistent cur-
rents in both the number eigenstate with smland the
coherent state with randomized phase with sndllis, to
some extent, similar to the influence of temperature or impu-
rities. They all result in decreasing the amplitude of the per-
whereJ, are Bessel function. In this particular example sistent current. This similarity goes even deeper if one real-
the result is time independent. This is related to the fact thaizes that the slope of an initially diamagnetic current flowing
the phase is random. in the ring with an odd numbeM, of electrons is more

A plot of the current vs the externally applied classical “stable” compared to a paramagnetic current, with respect to
flux in the ring with an everM, is given in Fig. 2. The the nonclassical flux, as can be seen from Figs. 1 and 3. If
presence of the quantum flux results in lowering of the cureither|z| or N is small, the slope is almost constant, as in the

BY2%:=B,(0) =exp —Nn2£%/2). (16)

B. Coherent states with randomized phase

l[zle'®2)(|z]e'®].

17

The current in the ring is in this case given by the formula
(Ie)= 2, An(0)exp(i2mnn)By(2)),

Bn(|z]) = exp(—n?¢%/2)3o(2¢|2|n), (18
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case of a current at finite temperature in the absence of
quantum flux. With increasingg| or N the similarity is no

longer present, since neither the temperature nor the impuri

ties can change the current Eg) from para- to diamagnetic.

C. Coherent states

In this section we study the properties of the current in a °'°0
mesoscopic ring in the presence of the standard coherer

statesp=|z)(z| where|z):=D(2)|0).** The current is in this
case given by the formula

©

(Ie)= 2, An(0)exp(i2mnn)By(|2],6,),

Bo(|2,02) =exp(—n’¢?12) X, J(2¢/zln)

X exik(wt—©,)], (19)
where®,:=Argz (Ref. 9 andJ, are Bessel function$. It is

seen that the current is time dependent. This is related to thﬁ

fact that coherent states have a ph@gkich we called®,)
that evolves in time intd®,— wt. In contrast, the previous

example where the phase of the coherent states is rando

ized gave a time-independent current.

We note that the current not only has frequenciut also
all the higher harmonicBlw. This is due to the highly non-
linear nature of the device.

It might be difficult to observe all these high frequencies
experimentally in a direct way. However, we can effectively
convert them into dc currents, if we add a time-dependeng
component to the classical part of the flux. This shifts the
frequency of a particular component to zero, and we carl

observe it as dc current. Lat=\y+ Ot where () is such
that
2mnQ =Ko, (20

wherek is an integer. In other words, the ratiart®/w=q

m-
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FIG. 4. The current Eq.11) in the presence of a coherent state
with |z|=1 for several values of the pha€®, vs external static
classical flux\y and Q<0 calculated by use of E¢21).

flux. The first is the phas®, and the second ig|. A plot of

the current Eq(21) for several values of the phase ajil

1 vs )\, is given in Fig. 4. The phas®, of the coherent

ate causes a horizontal shift of the current characteristics.
We see that fo®,# 0 we get a finite persistent current even
in the absence of static magnetic fluxyE0).

The influence of the amplitude/| (Fig. 5 modifies both

the amplitude and the character of the curréfig. 6) in a
periodic way. It is similar to the behavior observed in a sys-
tem subject to a coherent state with randomized phase. The
maximal value of the current is an oscillating function|zff

with decreasing amplitude. The main difference appears if
ne investigates a coherent state with sifzllIn the case of
coherent state with randomized phase, the current smoothly
approaches the vacuum characteristics. For standard coherent
tates, a small value df| results in a vanishingly small
amplitude of the current. In the limjiz| =0, the current for
Q#0 is no longer direct. If the quantum flux is in the
vacuum state the current is given by the formula Edf)

with BY*“=B,(]z|=0,0,=0)=B,(N=0). For very small
values of|z| the dc current flowing in the ring with evem

=k/n is a rational number. The current possesses two typeg) <0) is paramagnetic, which can be deduced from Fig. 5,

of direct component corresponding either b<0 (upper
signg or to >0 (lower signs and is given by

lge= n§=)l An(0)J. gn(2€|2|n)sin(A ), (22)
where A7 =n(2m\o+0®,). Such direct currents param-
etrized by the rational numbergare analogous to th8ha-
piro stepsin a current flowing in a superconducting ring with
a Josephson junctichbut in the case of the nonsupercon-

ducting rings they are more “dense,” since they are labeled .
by rational numbers and not by integers as in the case o

Shapiro steps. We limit our discussion to the casel since
the amplitude of the current fag>1 is small. The current
corresponding td2<<0 is obtained if the classical flux is
decreased from  through\ =0 and further to negative val-
ues of the flux. IfQ0>0 the flux is growing linearly.

where we show the current ws, for fixed ® ,=0 for differ-

0.3 |2=0.1 =oemenm |2}=2
I g /"'ﬂ.\\“ ------ |z|=8.7 = = = |z]=10
02] / R 215
|/ P
4 ’ Vi ~ .
’ “ N -~
‘ My et el =
0 — A - - bl
R remo” B LN = )
olo' T ~ - ;05 / }’0
E| . ~ -~ . \\ ¢
A ~ -~ ’ P / \\ . ,I'
" et Ny NI /
024 /
..."‘m......n d
-0.3-

FIG. 5. The current Eq.11) in the presence of a coherent state

In the presence of a coherent state one needs to take in{@ x, for ®,=0 and several values ¢#| calculated by use of Eq.
account two parameters describing the state of the quantumi).
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I'0) - “
(0) —T/T=0
6 errreree T/T'=0.5
] —M,even | 7 T T | T/T'=0.5 with
ol N s - M, odd thermal light
A

o

e ] 2|

2

FIG. 6. The slopd’(0) vs|z| in the presence of the coherent )
state||z|)(|z|| for a system exhibiting initially para- or diamagnetic ~ FIG. 8. The current v& for flux with and without thermal noise
reaction for infinitesimal flux. in a ring with Bw~0.05T*/T.

amplitude of the current is maximal. Inspection of the gradi-
ent of the slopd’(0) in Fig. 6 leads to the conclusion that
the diamagnetic current is more “stable” with respect to the
coherent state than the paramagnetic current. This “stability”
is not so strong as in the case of the flux in the number
eigenstate or in a coherent state with randomized phase.

ent values of|z|. Increasing|z| results in increase of the
amplitude of the current to some maximal value ngar
~10(Fig. 6). Further increasingg| leads to a decrease of the
amplitude and to a system with a diamagnetic curfaaga-
tive slope at\y=0). This behavior is periodic, but the maxi-
mal values of the current attainable in each “period” de-
crease with increasindz|. The range of|z| where both
curves in Fig. 6 are below the|- axis, indicating a negative D. Thermal fields
slope 1"(0), is again the union of intervals. If2>0 the Here we consider thermal fields described by the density
current behaves as if it were running in the ring with oddmatrix
M. . Both currents corresponding to positive and negaflve
are identical only for®,= #/2 and®,=3#/2. The depen-
dence of the current on the phase of the coherent state leads p=(1—e k)X e NFIN)(NI. (22
to a finite valud (Ay=0)+# 0 of the current in the absence of N
a static magnetic flux. The valuér,=0) vs O, is plotted in | this case the current is
Fig. 7. We see that for almost all values of the phase the
current I(Ag=0)#0 with no regard to other parameters. o
This means that under certain conditions it is possible to (Iy= >, An(T)exp(i27n\)BI(T),
obtain a persistent current driven bytime-dependent flux n=1

There is a range of parameters of the coherent state of the
flux driving a persistent current when, again to some extent, B"(T)=exq —n?&2coth Bw/2)/2], (23
the influence of the nonclassical light is similar to the influ-
ence of temperature or impurities, i.e., the amplitude of thevhere 5=1/kgT. The result in this case is time dependent.
current is slightly lowered. In contrast to the case of a coherAs one might expect, the equilibrium fluctuations whether
ent state with randomized phase, this range dmgsppear classical® or quantum(Fig. 8 do not destroy completely the

for small |z| but rather somewhere nef~3, where the persistent currents which survive in realistic experiments. As
an example, let us consider~1cm ! and a ring withT*

~100K; thenBw~0.05T*/T. Thus the effective decrease of
the amplitude is not destructive for current in the region
T<T*.

V. TWO-MODE MICROWAVES

We now consider two-mode microwaves. In this case Eg.
(8) becomes

03_ xq=¢01\/§[exr(iwlt)a1+exq—iwlt)a1]

0.4

+
FIG. 7. The current(Ay=0) vs O, for |z|=1. ¢0\/§

[exp(iwst)al+exp —iwst)a,],  (24)

045305-6



PERSISTENT CURRENTS IN THE PRESENCH-O. . PHYSICAL REVIEW B 69, 045305 (2004

where the indices 1, 2 refer to the two modes. Consequently n2g2e2
the expectation value of the current is given by Werosd {1n+82n) = = —— Cog (w1~ wp)t]
- 1
(le)= 21 An(T)exp(i 2NN )W(L1n,2n)s (29 Xexp( - §n2§2e2 . (34)
n=

where the two-mode Weyl function is These calculations have been presented and used in a differ-

. . ent context in Ref. 10. Inserting them in E&5) to find the
W({1n,¢2n) = Tr{pDa[néexpliw t) D[ néexpi wzt)]}z'ﬁ current, it is seen that, in the pe?rticular exa%’nple that we have
(26) considered, the current is time independent for classically
with Z;,=néexplwt). If the two microwave modes are un- correlated(separable microwaves and has an extra time-
correlated the density matrix is factorizablp=p,®p, dependent component in the case of entangled microwaves.

(wherep,,p, are the density matrices of the two mogesd The resu_lts are an examp!e of how_purely guantum phe-
the result for the corresponding Weyl function is nomena(which have no classical analog the electromag-
netic fields can affect mesoscopic devices.
W(L1n¢2n) = Wi(£1n)Wa(L2n), 27
where VI. SUMMARY
Wi(&in)=Tr piDi(&in) ], (29) Mesoscopic rings and cylinders are very sensitive devices
_ _ _ _ that can “feel” the quantum mechanical nature of the elec-
which we insert in Eq(25) to find the current. ~ tromagnetic field. In this paper we discussed mesoscopic
Separable systems are those that are correlated classicalligs or cylinders with quasi-one-dimensional conductance
and are described by density matrices of the form (flat Fermi surface However, that kind of analysis can also
be applied to cylinders with an arbitrary Fermi surface. In
_ , N=1...M, 29 such syste_zms the_ formul#8) and(3) for t_he persistent cur-
P % PNPING P2 M @9 entare slightly differert-*®and the amplitude of the current

) ) . is reduced, but the qualitative results to not change.
wherepyy andpy are two sets of density matrices describ-  \yg nvestigated persistent currents in mesoscopic rings
ing the first and second modes, respectively, @ydare  anq cylinders in the presence of both the classical and non-
probabilities. Enta}ngled systems are tho_se that_ are correlateghssical components of the electromagnetic flux. We showed
quantum mechanically and whose density matrices cannot gt the nonclassical light does not destroy persistent currents
written in the form of Eq(24). For separable systems, but decreases their amplitude and can lead to a change of
character from para- to diamagnetic, and vice versa. The cur-
W(L1nsLon) = 2 PNWaN(1n) Won(Ean), (300  rent flux _characteristics depen_d strongly on the state of the
N nonclassical electromagnetic field.
which we insert in Eq(25) to find the current. Persistt_—:-nt currents can flow for nonclassi_cal flux in_ a
gumber eigenstate and in a coherent state with randomized

We discuss the effect of entanglement between the tw : . .
microwave modes on the current \g/]vith an example. We Conphase in the presence sifatic classical flux. We showed that

sider the entangled statés)=2 Y7|01)+|10)] where for a certain range of parameters describing the state of the

|01),]10) are two mode number eigenstates. For comparisoﬁ]uantum light a mesosqopic ring reacts With a diamagnetic
we also consider the corresponding separable state current-for a small classical magnetic flux, with no regard to
the parity ofM,.
1 We also found that in the case of nonclassical flux in the
psep=§[|01><01| +[10)(10]. (3))  standard coherent state and in the presence dime-
dependentlassical flux satisfying the condition given by Eq.
Clearly, the density matrix of the entangled staig,, (20), we can also get persistent.currents. Such qurre_nts bear a
—|s)(s| can be written as resembla_nce to Shapiro steps in a current flowing in the Jo-
sephson junction.
1 We showed how the vacuum noise whose source is the
Pent=Psept §[|01><10| +[10)(01]]. (82)  uncertainties of the quantum operators modifies the current
characteristics. In the last section we discussed the influence
The corresponding Weyl function for the separable state is of the equilibrium(therma) noise on the properties of the
current. We showed that it does not qualitatively change the

n2&%e? b o behavior of the currents. This, together with our earlier
Wseg 1n:dan) =|1- — ex;{ —yniee ) (33 studies'? leads to the conclusion that persistent currents sur-
vive in the presence of equilibrium fluctuations provided that
and for the entangled state the parameters of the system are far from criti@d., the
energy of the thermal excitation is not comparable with the
Wend({1n82n) = Wsed {1n+{2n) + Werosd {1n 1 {2n) gap at the Fermi surfage

045305-7



DAJKA et al. PHYSICAL REVIEW B 69, 045305 (2004

The work presented in the paper shows the interplay beamplitude in mesoscopic devices by applying a suitably cho-
tween quantum phenomena in electromagnetic fields anslen nonclassical flux.
guantum phenomena in mesoscopic devices. It shows that
mesoscopic rings and cylinders can serve as detectors of
nonclassical light. It shows a possible application of, e.g., ACKNOWLEDGMENTS
carbon nanotubes, which are an example of mesoscopic cyl-
inders exhibiting coherent motion of electrons. On the other The work was supported by the KBN Grant No.
hand, there is the possibility @bntrolling persistent current 5P03B0320.
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