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Phase-coherent quantum mechanical spin transport in a weakly disordered
quasi-one-dimensional channel
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A transfer matrix technique is used to model phase-coherent spin transport in the weakly disordered quasi-
one-dimensional channel of a gate-controlled electron spin interferometer@S. Datta and B. Das, Appl. Phys.
Lett. 56, 665 ~1990!#. The model includes the effects of an axial magnetic field in the channel of the interfer-
ometer ~caused by the ferromagnetic contacts!, a Rashba spin-orbit interaction, and elastic~nonmagnetic!
impurity scattering. We show that in the presence of an axial magnetic field, nonmagnetic impurities can cause
spin relaxation in a manner similar to the Elliott-Yafet mechanism. The amplitudes and phases of the conduc-
tance oscillations of the interferometer and the degree of spin-conductance polarization are found to be quite
sensitive to the height of the interface barrier at the contact, as well as the strength, locations, and nature
~attractive or repulsive! of just a few elastic nonmagnetic impurities in the channel. This can seriously hinder
practical applications of spin interferometers.
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I. INTRODUCTION

In a seminal paper published in 1990, Datta and D1

proposed a gate-controlled electron spin interferome
which is an analog of the standard electro-optic light mo
lator. Their device consists of a one-dimensional semic
ductor channel with ferromagnetic source and drain cont
~Fig. 1!. Electrons are injected into the channel from t
ferromagnetic source with a definite spin, which is then c
trollably precessed in the channel with a gate-control
Rashba interaction2 and finally sensed at the drain. At th
drain end, the electron’s transmission probability depends
the relative alignment of its spin with the drain’s~fixed!
magnetization. By controlling the angle of spin precession
the channel with a gate voltage, one can modulate the r
tive spin alignment at the drain end and, hence, control
source-to-drain current~or conductance!. In this device, the
ferromagnetic source and drain contacts act as ‘‘spin po
izer’’ and ‘‘spin analyzer,’’ respectively.

There have been some studies of ballistic spin transpo
such a device,3–6 but they ignored two features that are a
ways present in a real device structure. First, there is an a
magnetic field along the channel caused by the ferromagn
contacts. This field dramatically alters the dispersion re
tions of the subbands in the channel, causes spin mixing,
has a serious effect on spin transport. Second, even tho
there have been reports of several microns long ne
defect-free one-dimensional quantum wires formed in hi
quality modulation doped GaAs/AlGaAs heterostructures7 it
is likely that in circuits involving a large number of spi
interferometers, some of them will have a few impurities
the channel. We show that these impurities, even if they
nonmagnetic, can cause spin relaxation in the presence o
axial magnetic field. Thus, they can affect the conducta
modulation of the interferometer and the degree of spin
larization of the current.
0163-1829/2004/69~4!/045303~10!/$22.50 69 0453
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This paper is organized as follows. In the next section,
describe the Hamiltonian to model the gate-controlled el
tron spin interferometer depicted in Fig. 1. The Hamiltoni
includes potential barriers at the contact/channel interf
that are inevitably present, the axial magnetic field, and
calized impurities in the channel. It does not include pert

FIG. 1. A schematic of the electron spin interferometer fro
Ref. 1. The horizontal dashed line represents the quasi-o
dimensional electron gas formed at the semiconductor interface
tween materials I and II. The magnetization of the ferromagne
contacts is assumed to be along the1x direction which results in a
magnetic field along thex direction. Also shown is a qualitative
representation of the energy dispersion of the two perturbed~solid
line! and unperturbed~broken line! bands under the gate—the pe
turbation is due to the axial magnetic field along the channel.
©2004 The American Physical Society03-1
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bations due to phonons and other time-dependent scatte
potentials~we assume that the channel is shorter than
phase breaking length so that transport is phase coher!.
Using a truncated form of this Hamiltonian, we derive t
dispersion relations of the subbands in the channel. Bec
of the presence of the axial magnetic field, the subbands
not eigenstates of the spin operator. Therefore, no subb
has a definite spin quantization axis. Furthermore, eige
pinors in two subbands~at the same energy! arenot orthogo-
nal. As a result, elastic~nonmagnetic and spin-independen!
impurity scattering can couple two subband states with n
orthogonal eigenspinors, causing elastic intersubband tra
tions thatrelax spin. One should compare this mechanism
spin relaxation with the Elliott-Yafet spin relaxatio
mechanism8 in a bulk semiconductor. The Elliott-Yafet relax
ation comes about because in a real crystal, the Bloch s
are not eigenstates of spin so that an ‘‘upspin’’ state has s
‘‘downspin’’ component and vice versa. As a result, nonma
netic impurity scattering can connect~mostly! up-spin and
~mostly! down-spin electrons, leading to a spin relaxatio
Our mechanism is very similar.

Section III contains numerical examples of the cond
tance modulation of a spin interferometer as a function
applied gate potential, spin polarization of the curre
through the channel, and effects of the interface barriers
elastic ~nonmagnetic! impurity scattering. Finally, Sec. IV
contains our conclusions.

II. THEORETICAL MODEL

We first consider the quasi-one-dimensional semicond
tor channel of a spin interferometer in the absence of
impurities. The channel is along thex axis ~Fig. 1! and the
gate electric field is applied along they direction to induce a
Rashba spin-orbit coupling in the channel. This system
described by the single-particle effective-ma
Hamiltonian9,10

H5~pW 1eAW !
1

2m* ~x!
~pW 1eAW !1VI~x!1V1~y!1V2~z!

2~g* /2!mBBW •sW 1
1

2 FaR~x!

\
ŷ•$sW 3~pW 1eAW !%1H.c.G ,

~1!

where H.c. denotes Hermitian conjugate. This form of
Hamiltonian guarantees Hermiticity.9 Here,ŷ is the unit vec-
tor along they direction in Fig. 1 andAW is the vector poten-
tial due to the axial magnetic fieldBW along the channel (x
direction! caused by the ferromagnetic contacts. For qua
one-dimensional channels of submicron length, it is reas
able to assume thatBW is homogeneous and directed along t
channel’s length~in other words fringing fields are not a
issue!. In Eq.~1!, mB is the Bohr magneton (e\/2m0) andg*
is the effective Lande´ g factor of the electron in the channe
The quantityaR is the Rashba spin-orbit coupling streng
which depends on the gate electric field and can be va
with the gate potential. The confining potentials along thy
04530
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and z directions are denoted byV1(y) and V2(z), with the
latter being parabolic in space and the former will be a
proximately triangular. We assume thatV1(y) is strong
enough that only one subband along they direction is occu-
pied by electrons.

Since the potentialV2(z) is parabolic, it results in a spa
tially varying electric field along thez direction. This electric
field might have contributed additional Rashba spin-or
coupling terms in Eq.~1!. However, since the potentialV2(z)
is symmetricabout the origin of the parabola, for every ele
tric field at a coordinate pointz, there is an equal and oppo
site electric field at coordinate2z. The Rashba coupling
constantaR is the product of a material-specific constanta46
~Ref. 11! and theexpectation valueof the electric field in the
z direction ~Ref. 12!. This expectation value is zero becau
the spatial average of the electric field along thez direction
vanishes. Hence, there is no overall Rashba effect assoc
with V2(z). Therefore, we have considered only the con
bution of the gate electric field~applied in they direction! to
the Rashba effect in the channel.

In Eq. ~1!, VI(x) represents an interfacial potential barri
between the metallic ferromagnetic contacts and the se
conducting channel. This potential could come about fr
several sources. For example, Scha¨pers et al.13 used a
d-function potential at the interface to represent a tunnel b
rier that can facilitate coherent spin injection across a me
lic ferromagnet and a semiconducting paramag
interface.14 Alternately, this potential could also represent
very narrow contact potential associated with Ohmic co
tacts. An Ohmic contact forms when the semiconductor m
terial in the neighborhood of the metal contact has a la
carrier concentration so that the Schottky barrier at the me
semiconductor interface becomes very narrow and elect
from the contact tunnel easily through this into the semic
ducting channel, resulting in a very small contact resista
or an Ohmic contact. Following Scha¨perset al.,13 we model
these interface barriers asd barriers given by

VI~x!5VLd~x!1VRd~x2L !, ~2!

whereVL andVR are assumed equal.
In Eq. ~1!, we have neglected a few effects for the sake

simplicity. We have neglected the normal Elliott-Yaf
interaction8 because it is weak in quasi-one-dimension
structures~where elastic scattering is strongly suppressed15!.
We have also neglected the Dresselhaus interaction16 since it
does not relax spin when the initial spin polarization is alo
the axis of the wire17–20 ~this is the case with the gate
controlled spin interferometer!. The Dresselhaus interactio
can, however, be easily included in the Hamiltonian and
left for future work. Finally, we model localized nonmag
netic impurities~i.e., which do not flip the spin! using a
standard model ofd scatterers. The scattering potential
given by

Vimp5(
i 51

N

G id~x2xi ! ~3!

to represent N impurities in the channel at locationxi and
with strengthG i ~assumed to be spin independent!. In our
3-2
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PHASE-COHERENT QUANTUM MECHANICAL SPIN . . . PHYSICAL REVIEW B69, 045303 ~2004!
numerical examples, we consider the case of both attrac
(G i negative! and repulsive (G i positive! impurities. While
Eq. ~1! represents a ballistic channel with no scattering,
dition of the scattering potential in Eq.~3! to Eq. ~1! will
result in a Hamiltonian describing a weakly disordered ch
nel in which impurity scattering takes place. The eigensta
of this ~spin-dependent! Hamiltonian can then be found us
ing a transfer matrix technique to extract the electron w
function in the presence of impurity scatterers. From t
wave function, we can calculate the~spin-dependent! trans-
mission probability through the channel and ultimately t
~spin-dependent! channel conductance.

Let us now concentrate on the channel region betweex
50 andx5L ~see Fig. 1!. The choice of the Landau gaug
AW 5(0,2Bz,0) allows us to decouple they component of the
Hamiltonian in Eq.~1! from thex-z component in the chan
nel. Furthermore, if we ignoreVimp for the moment, the
solution of the Schro¨dinger equation in the channel can b
written as a linear superposition of left and right traveli
plane waves (Vimp will couple various wave vector state
which is handled by the transfer matrix technique descri
later!. The two-dimensional Hamiltonian in the plane of su
a ballistic channel (x-z plane! is then given by

Hxz5
pz

2

2m*
1DEc1

1

2
m* ~v0

21vc
2!z21

\2kx
2

2m*
1

\2kRkx

m*
sz

2~g* /2!mBBsx2
\kRpz

m*
sx , ~4!

wherev0 is the curvature of the confining potential in thez
direction,vc5eB/m* , kR5m* aR /\2, andDEc is the po-
tential barrier between the ferromagnet and semiconduc
We assume thatDEc includes the effects of the quantu
confinement in they direction.

A few words are in order regarding Eq.~4!. First, the
effective mass is spatially invariant within the channel wh
is why the effective mass is treated as a constant in Eq.~4!.
Of course, there is a discontinuity in the effective mass at
interface with the ferromagnetic contacts atx50 and x
5L. This has been taken into account in the boundary c
ditions @see Eqs.~17! and~18!#. Second,aR is also spatially
invariant in the homogeneous channel because the mat
constanta46 is invariant. Therefore,¹aR terms@arising from
the Hermitian conjugate terms in Eq.~1!# vanish in the chan-
nel and do not appear in Eq.~4!!. However, the discontinui-
ties in aR at the interfaces between the semiconductor ch
nel and the ferromagnetic contacts will lead to tw
d-function spin-orbit coupling terms atx50 and x5L.
These are like the interface potentialVI and have been ac
counted for via the boundary conditions@see Eqs.~17! and
~18! later#.

A. Energy dispersion relations

We now derive the energy dispersion relations in
channel of a ballistic interferometer using Eq.~4!. The first
five terms of the Hamiltonian in Eq.~4! yield shifted para-
bolic subbands with dispersion relations
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En,↑5~n11/2!\v1DEc1
\2kx

2

2m*
1

\2kRkx

m*
,

En,↓5~n11/2!\v1DEc1
\2kx

2

2m*
2

\2kRkx

m*
, ~5!

wherev5Av0
21vc

2. In Eq. ~5!, the↑ and↓ arrows indicate
1z- and2z-polarized spins~eigenstates of thesz operator!
which are split by the Rashba effect@fifth term of the Hamil-
tonian in Eq. ~4!#. These are subbands with definite sp
quantization axes along the1z and2z directions since they
are eigenstates of thesz operator. Their dispersion relation
are shown as dashed lines in Fig. 1.

The sixth and seventh terms in Eq.~4! induce a perturba-
tion and mixing between the unperturbed subbands (1z- and
2z-polarized spins!. The sixth term originates from the mag
netic field due to the ferromagnetic contacts and the seve
originates from the Rashba effect itself. The ratio of the
two terms can be shown to be of the order of 104–106 for
typical values of the relevant parameters. Therefore, we
neglect the seventh term in comparison with the sixth te
~for a very strong Rashba effect, much stronger than w
has been experimentally observed in semiconductor st
tures, the seventh term can also matter and introduce a
tional spin mixing effects21!.

To obtain an analytical expression for the dispersion re
tion corresponding to the first six terms in the Hamiltonian
Eq. ~4!, we derive the two-band dispersion relation in a tru
cated Hilbert space considering mixing between the two lo
est unperturbed subband states~namely, the1z and2z spin
states!. Straightforward diagonalization of the Hamiltonia
in Eq. ~4! ~minus the seventh term! in the basis of these two
unperturbed states gives the following dispersion relation

E1~kx!5
1

2
\v1DEc1

\2kx
2

2m*
2AS \2kRkx

m* D 2

1S g* mBB

2 D 2

,

~6!

E2~kx!5
1

2
\v1DEc1

\2kx
2

2m*
1AS \2kRkx

m* D 2

1S g* mBB

2 D 2

,

~7!

where the indices 1 and 2 refer to the lower and upper s
bands. Their dispersion relations are plotted schematicall
solid lines in Fig. 1.

One can see from Fig. 1 that the magnetic field caused
the ferromagnetic contacts couples the two unperturbed
bands ~the original 1z- and 2z-polarized subbands! and
changes their dispersion relation, lifting the degeneracy
kx50. While the unperturbed bands are shifted parabo
with single minima atkx56kR ,1 the perturbed bands~in the
presence of a magnetic field! are not parabolic and are sym
metric about the energy axis. One of them has a single m
mum at kx50, and the other has double minima atkx5
6kRA11(g* mBB/dR)2, where dR5\2kR

2/2m* . The mag-
netic field not only has this profound influence on the disp
sion relations, but it also causesspin mixing, meaning that
the perturbed subbands no longer have definite spin qua
zation axes~they are no longer1z- and 2z-polarized sub-
3-3
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M. CAHAY AND S. BANDYOPADHYAY PHYSICAL REVIEW B 69, 045303 ~2004!
bands! because they are no longer eigenstates of the
operator. Spin quantization becomes wave vector depend
Furthermore, energy-degenerate states in the two pertu
subbands no longer have orthogonal spins. Therefore, el
scattering between them is possible without a complete
flip.

The energy dispersion relations also show that the dif
enceDkx between the wave vectors in the two subbands
any given energy isnot independent of that energy. Sinc
Dkx is proportional to the angle by which the spin preces
in the channel,1 the angle of spin precession in the channel
a spin interferometer isno longer independent of electron
energy. Thus different electrons that are injected from
contact with different energies~at finite temperature and
bias! will undergo different degrees of spin precession, a
the conductance modulation will not survive ensemble av
aging over a broad spectrum of electron energy at elev
temperatures and bias. In Ref. 1, which did not consider
effect of the axial magnetic field, a point was made that
angle of spin precession is independent of electron energ
that every electron undergoes the same degree of spin
cession in the channel irrespective of its energy. As a res
the conductance modulation of the spin interferometer is
diluted by ensemble averaging over electron energy at
evated temperature and bias. Indeed this is true in the
sence of an axial magnetic field, but when a magnetic fiel
considered, this advantage is lost.

From Eqs.~6! and ~7!, we find that an electron inciden
with total energyE has wave vectors in the two chann
subbands given by

kx65
1

\
A2m* S B6AB224C

2 D , ~8!

where

B52S E2
\v

2
2DEcD14dR , C5S E2

\v

2
2DEcD 2

2b2, ~9!

with b5g* mBB/2.
In Eq. ~8!, the upper and lower signs correspond to t

lower and upper subbands in Fig. 1 and are referred to h
after askx,1 andkx,2 , respectively. The corresponding eige
spinors in the two subbands~at energyE) are, respectively,

FC1~kx,1!

C18~kx,1!G5F2a~kx,1!/g~kx,1!

b/g~kx,1! G5F2sin~ukx,1
!

cos~ukx,1
! G ,

FC2~kx,2!

C28~kx,2!G5F b/g~kx,2!

a~kx,2!/g~kx,2!G5F cos~ukx,2
!

sin~ukx,2
! G , ~10!

where the quantitiesa and g are functions ofkx and are
given by
04530
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a~kx!5
\2kRkx

m*
1AS \2kRkx

m* D 2

1b2, g~kx!

5Aa2~kx!1b2, ukx
5arctan@a~kx!/b#. ~11!

Note that the eigenspinors given by Eq.~10! are not a
1z-polarized state@1 0 #† or 2z-polarized state@0 1 #† if
the magnetic fieldBÞ0 ~i.e., bÞ0). Thus, the magnetic
field mixes spins and the1z- or 2z-polarized states are n
longer eigenstates in the channel@in other words, the sub-
bands in Eqs.~6! and~7! are not eigenstates of thesz opera-
tor unlike the subbands in Eq.~5! and hence they are not1z-
and 2z-polarized subbands#. Equations~10! also show that
the spin quantization~eigenspinor! in any subband is no
fixed and strongly depends on the wave vectorkx . Thus, an
electron entering the semiconductor channel from the
ferromagnetic contact with1x-polarized spin will not
coupleequally to 1z and 2z states. The relative coupling
will depend on the electron’s wave vector~or energy!.

Most importantly, the two eigenspinors given by Eq.~10!
arenot orthogonal. Thus, a spin-independent elastic scatt
~nonmagnetic impurity! can couple these two subbands
the channel and cause elastic intersubband transitions.
other way of stating this is that the actual subband states
not eigenstates of the spin operator; hence, scattering
tween them is possible via a spin-independent scatterer.
is exactly similar to the Elliott-Yafet mechanism in a bu
crystal. Such a scattering is of course harmful for the ga
controlled spin interferometer since it introduces a rand
component to the spin precession in the channel. In
transfer matrix model~described later! this mechanism of
scattering is automatically included since we use the ac
eigenspinors in the channel given by Eq.~10! to construct the
wave function~see Sec. II B later!.

We model the ferromagnetic contacts by the Ston
Wohlfarth model. The1x-polarized spin~majority carrier!
and 2x-polarized spin~minority carrier! band bottoms are
offset by an exchange splitting energyD ~Fig. 2!. Since the
interface barriers for the two types of spin are different
the amountD, the transmission amplitudes for the two typ
will be different, leading to some degree of spin-polariz
injection and detection.22

B. Transmission through the interferometer

In this subsection, we calculate the total transmission
efficient through the spin interferometer for an electron
energyE entering the semiconductor channel from the l
ferromagnetic contact~region I, x<0) and exiting at the
right ferromagnetic contact~region III, x>L). A rigorous
treatment of this problem would require an accurate mod
ing of the three-to one-dimensional transition between
bulk ferromagnetic contacts~regions I and III! and the quan-
tum wire semiconductor channel~region II!.23,24 However, a
one-dimensional transport model to calculate the transm
sion coefficient through the structure is known to be a v
good approximation when the Fermi wave number in
ferromagnetic contacts is much greater than the inverse
3-4
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the transverse dimensions of the quantum wire.25,26 This is
always the case with metallic contacts.

In the semiconductor channel~region II, 0,x,L), thex
component of the wave function at a positionx along the
channel is given by

c II ~x!5AI~E!FC1~kx,1!

C18~kx,1!Geikx,1x1AII ~E!

3FC1~2kx,1!

C18~2kx,1!Ge2 ikx,1x1AIII ~E!FC2~kx,2!

C28~kx,2!Geikx,2x

1AIV~E!FC2~2kx,2!

C28~2kx,2!Ge2 ikx,2x. ~12!

For a1x-polarized spin~majority carrier! in the left fer-
romagnetic contact~region I,x,0), the electron is spin po
larized in the@11#† subband and thex component of the
wave function is given by

c I~x!5
1

A2
F 1

1Geikx
ux1

R1~E!

A2
F 1

1Ge2 ikx
ux

1
R2~E!

A2
F 1

21Ge2 ikx
dx, ~13!

FIG. 2. Energy band diagram across the electron spin inter
ometer. We use a Stoner-Wohlfarth model for the ferromagn
contacts.D is the exchange splitting energy in the contacts.DEc is
the height of the potential barrier between the energy band bott
of the semiconductor and the ferromagnetic electrodes.DEc takes
into account the effects of the quantum confinement in they andz
directions. Also shown as dashed lines are the resonant en
states aboveDEc . Peaks in the conductance of the electron s
interferometer are expected when the Fermi level in the cont
lines up with the resonant states. The barriers at the ferromag
semiconductor interface are modeled as simple one-dimensiond
potentials. The impurity potentials are also modeled asd potentials
at random locations~here we show attractive impurities because
d potentials are negative!.
04530
where R1(E) is the reflection amplitude into the
1x-polarized band andR2(E) is the reflection amplitude in
the 2x-polarized band for an electron incident with ener
E.

In the right ferromagnetic contact~region III, x.L), thex
component of the wave function is given by

c III ~x!5
T1~E!

A2
F 1

1Geikx
u(x2L)1

T2~E!

A2
F 1

21Geikx
d(x2L),

~14!

whereT1(E) andT2(E) are the transmission amplitudes in
the1x- and2x-polarized bands in the right contact. In Eq
~13! and ~14!, the wave vectors

kx
u5

1

\
A2m0E, kx

d5
1

\
A2m0~E2D! ~15!

are thex components of the wave vectors corresponding
energy E in the majority (1x-polarized! and minority
(2x-polarized! spin bands, respectively.

If there are impurities in the channel, we must write
solution to the Schro¨dinger equation in each ‘‘ballistic’’ seg
ment of the channel between neighboring impurities in
form given by Eq.~12! with different values for the coeffi-
cients Ai(E)( i 51,4). In addition to the continuity of the
wave function across each impurity in the channel, the f
lowing condition must be satisfied, which is obtaine
through an integration of the Schro¨dinger equation across th
impurity:

dc

dx
~xi1e!5

dc

dx
~xi2e!1

2m* G i

\2
c~xi !. ~16!

Furthermore, because of the interfacial barrier at the t
ferromagnet/semiconductor contacts, the integration of
Schrödinger equation across the left and right interface
gions leads to the following two boundary conditions:

At x50,

m
dc

dx
~2e!1

2m* V0

\2
c~0!5

dc

dx
~1e!1 ikR~1e!szc~1e!,

~17!

and, atx5L,

m
dc

dx
~L1e!2

2m* V0

\2
c~L !5

dc

dx
~L2e!

1 ikR~L2e!szc~L !,

~18!

whereV0 is determined byVI and DEc , m5ms* /mf* , and
ms* and mf* are the effective masses in the semiconduc
and ferromagnetic materials, respectively. Here, we h
made use of the fact thataR ~and thereforekR) is zero in the
ferromagnetic contacts so that terms containingkR(2e) and
kR(L1e) do not appear in Eqs.~17! and~18!. Equations~17!
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and ~18! ensure continuity of the current density at the fe
romagnetic contact/semiconductor interface.

For the case ofN impurities in the channel, the equation
above lead to a system of 4(N12) equations with 4(N
12) unknowns@R1(E), R2(E), T1(E), T2(E) and N11
sets of Ai(E)( i 5I,II,III,IV) for the N11 regions in the
channel demarcated by theN impurities#. This system of
equations must then be solved to find the transmission p
abilities T1(E) andT2(E). The problem is repeated for tw
cases:~i! when the initial spin is1x polarized~i.e., the in-
coming electron is a majority carrier in the left contact! and
~ii ! when the incoming electron is2x polarized ~i.e., the
incident electron is a minority carrier in the left contac!.
Finally, the linear response conductance of the spin inter
ometer~for injection from either the1x- or 2x-polarized
bands in the left contact! is found from the Landauer formul

G1x-polarized5
e2

4hkTE0

`

dEuTtot~E!u2sech2S E2EF

2kT D ,

~19!

where

uTtot~E!u25uT1~E!u21~kx
d/kx

u!uT2~E!u2. ~20!

Similarly, the conductance of the minority spin carrie
(G2x-polarized) is calculated after repeating the scatteri
problem for electrons incident from the minority spin band
the contacts. Since the1x- and2x-polarized spin states ar
orthogonal in the contacts, the total conductance of the s
interferometer is given by

G5G1x-polarized1G2x-polarized. ~21!

C. Role of the interface potentials

The interface potentialsVI determineV0 and the solutions
of the Schro¨dinger equation and, therefore, the transmiss
probabilities and conductance. To elucidate the role ofVI ,
we introduce the following parameter:

Z5
2mf* V0

\2
. ~22!

Typical values ofZ vary in the range of 0–2.13 Using
mf* 5m0 andkF51.053108 cm21, we get a barrier strength
V0516 eV Å for Z52. In the next section, we will show
how the conductance modulation of the spin interferome
depends onZ.

III. NUMERICAL EXAMPLES

We consider a spin interferometer consisting of a qua
one-dimensional InAs channel between two ferromagn
contacts. The electrostatic potential in thez direction is as-
sumed to be harmonic@with \v510 meV in Eq.~4!#. We
assume ag* factor of 3 and an electron effective massm*
50.036m0 which is typical of InAs-based channels.12 We
also assume that the magnetic field along the channel is
04530
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T

based on an estimate given by Wr´obelet al.27 This leads to a
Zeeman splitting energyg* mBB of 0.34 meV in the channel
The Fermi levelEf and the exchange splitting energyD in
the ferromagnetic contacts are set equal to 4.2 and 3.46
respectively.28

The Rashba spin-orbit coupling strengthaR is typically
derived from low-temperature magnetoresistance meas
ments~Shubnikov–de Haas oscillations! in two-dimensional
electron gas~2DEG! created at the interface of semicondu
tor heterostructures.29 To date, the largest reported expe
mental values of the Rashba spin-orbit coupling strengthaR
have been found in InAs-based semiconductor heteroju
tions. For a normal high electron mobility transistor~HEMT!
In0.75Al0.25As/In0.75Ga0.25As heterojunction, Satoet al. have
reported a variation ofaR from 30 to 15310212 eV m when
the external gate voltage is swept from 0 to26 V ~the total
electron concentration in the 2DEG is found to be reduc
from 5 to 4.531011/cm2 over the same range of bias!. For a
channel length of 0.2mm, this corresponds to a variation o
the spin precession angleu52kRL from aboutp to 0.5p
over the same range of gate bias.

In the numerical results below, we calculated the cond
tance of a spin interferometer with a 0.2-mm-long channel as
a function of the gate voltage at a temperature of 2 K30

Tuning the gate voltage varies both the potential energy b
rier DEc and the Rashba spin-orbit coupling strengthaR
simultaneously.31 Both of these variations lead to distinc
types of conductance oscillations. The variation ofDEc
causes the Fermi level in the channel to sweep through
resonant energies in the channel~resonant levels are cause
by the potential steps atx50 andx5L), causing the con-
ductance to oscillate. These are known as Ramsauer os
tions ~or Fabry-Perot-like resonances! and have been exam
ined in the past by Matsuyamaet al.5 for two-dimensional
structures and by us32 for one-dimensional structures. Th
variation ofaR , on the other hand, causes spin precessio
the channel, leading to the type of conductance oscillat
which is the basis of the spin interferometer, as origina
visualized by Datta and Das.1 In Ref. 32 we found that the
Ramsauer oscillations are much stronger and can mask
oscillations due to spin precession, unless the structur
designed with particular care to eliminate~or reduce! the
Ramsauer oscillations. In the calculations reported here,
vary DEc over a range of 10 meV which allows us to displa
several of the Ramsauer oscillations in the conductance.
are restricted to this range because we can increaseDEc at
most by an amount equal to the Fermi energy in the chan
At the end of this range, the Fermi energy lines up with t
conduction band edge in the channel which correspond
onset of complete pinch-off; i.e., the channel carrier conc
tration falls to zero. Therefore, the maximum range ofDEc is
the Fermi energy, as long as we are applying a negative
voltage to deplete the channel as opposed to applying a p
tive gate voltage to accumulate the channel~we do not want
to accumulate the channel since a large carrier concentra
in the channel will lead to multiple subband occupation a
will also ultimately shield the gate potential resulting in lo
of gate control!. In one-dimensional semiconductor channe
a realizable carrier concentration of;63105/cm, will cor-
respond to a Fermi energy of 10 meV which also happen
3-6
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be the subband separation energy\v in our case. Therefore
we restrict the Fermi energy to 10 meV in order to prese
single-subband occupancy, and this dictated our choice
the range ofDEc .

Over this range ofDEc , we assume that the Rashba sp
orbit coupling strengthaR varies from 30310212 eV m
down to zero. This is consistent with experimentally o
served dependence ofaR on gate voltage. This variation o
aR corresponds to a variation of the spin precession angu
from aboutp to 0 ~i.e., half a cycle of the oscillation ex
pected from spin precession!.

A. Influence of the interfacial barrier

The results of the conductance modulation are shown
Fig. 3 for different values of the parameterZ characterizing
the strength of the d barrier at the ferromagnet
semiconductor interface~assumed to be the same for bo
contacts!. Instead of plotting the conductance as a funct
of gate voltage, we always plot it as a function ofDEc since
DEc directly enters the Hamiltonian in Eq.~4!. The exact
relationship betweenDEc and the gate voltage is compl
cated by many factors~interface states, channel geomet
etc.!, but for the sake of simplicity, we will assume thatDEc
depends linearly on gate voltage. Therefore, the plots in F
3–9 can be effectively viewed as plots of conductance ve
gate voltage.

FIG. 3. Conductance modulation of a ballistic electron spin
terferometer~for T52 K) as the gate voltage~or the energy barrier
DEc) is varied. We assume that the Rashba coupling strengthaR

varies from 30310212 eV m to 0 for the range ofDEc shown in the
figure. This should correspond to one-half cycle of conducta
oscillation due to spin precession. The separation between the
ferromagnetic contacts is 0.2mm. The confinement energy\v
along thez direction ~direction transverse to both current flow an
the gate electric field! is 10 meV. The conductance oscillations
this figure are caused by Fermi level sweeping through the reso
levels in the channel of the interferometer~the so-called Ramsaue
effect! and arenot due to the spin precession in the channel
shown in Ref. 32. The different curves correspond to different v
ues of the parameterZ characterizing the strength of the interfaci
barrier between the ferromagnetic contact and semiconduc
channel. The semiconducting channel is assumed to be imp
free and, hence, ballistic.
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A value of Z51 corresponds to a value ofVL andVR in
Eq. ~2! equal to 8 eV Å. Figure 3 shows that the location
conductance minima and maxima are only slightly shift
along theDEc axis with the variation of the parameterZ. The
amplitudes of the oscillations increase withZ but then start
to decrease as the maxima of the conductance is reduce
larger values ofZ. This reduction in amplitude is expecte
since the conductance of the spin interferometer eventu
reduces to zero asZ→` ~no electron can enter or exit th
channel if there are infinite barriers at the contact interfac!.
The maximum in the conductance amplitude modulation
curs for Z50.25 in our numerical examples. In the subs
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FIG. 4. Influence of a single impurity on the conductance mo
lation of an electron spin interferometer. All other parameters
the same as in Fig. 3. The interface potential at the ferromag
semiconductor interface is 2 eV Å corresponding toZ50.25. The
impurity is modeled as a repulsived scatterer with strengthG i

indicated next to each curve in unit eV Å. The impurity is locat
300 Å away from the left ferromagnetic contact/channel interfa

FIG. 5. Influence of a single impurity on the conductance mo
lation of an electron spin interferometer. Again, all other parame
are the same as in Fig. 3, andZ50.25. The impurity is modeled as
a repulsived scatterer with strengthG50.5 eV Å. Cases 1–4 cor
respond to an impurity located 300, 750, 1000, and 1500 Å aw
from the left ferromagnetic contact/channel interface.
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quent numerical simulations which investigate the influen
of impurity scattering on the conductance modulation,
therefore usedZ50.25 throughout.

B. Impurity scattering

First, we consider the case of a single repulsive impu
at a fixed location within the channel~300 Å from the left
ferromagnetic contact! but with varying strengthG i . Figure
4 shows that the size and location of the conductance p
and minima are affected by the strength of the impurity sc
terer and more strongly affected at larger values ofDEc .
This is expected since the transmission probability throu
the impurity diminishes as the channel approaches pinch
Even though not shown here, the same trend was obse
when the impurity was assumed to be an attractive scatt
~negative value forG i). Figures 5 and 6 illustrate the depe
dence of the conductance of the interferometer on the e
location of an impurity with a scattering strength ofG i
50.5 eV Å. Figures 5 and 6 correspond to the case o
repulsive and attractive impurities, respectively. These

FIG. 6. Same as Fig. 5 for the case of an attractive impurity w
strengthG520.5 eV Å. Cases 1–4 correspond to an impurity
cated 300, 750, 1000, and 1500 Å away from the left ferromagn
contact/channel interface.

FIG. 7. Same as Fig. 5 for the case of two repulsive impurit
with strengthG50.5 eV Å. The curves labeled 1 and 2 correspo
to the case of two impurities located at~300, 1000 Å! and ~500,
1250 Å!, from the left ferromagnet/channel interface, respective
04530
e
e

y

ks
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h
ff.
ed
er

ct

a
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ures clearly show that the conductance modulation of
interferometer operating in a phase-coherent regime is
fected by the exact location and strength of a single scatte
In fact, Fig. 6 clearly shows that, if we change the location
the impurity, then the value of the conductance at a fix
value ofDEc changes by;e2/h which is reminiscent of the
phenomenon of ‘‘universal conductance fluctuations.’’33

Next, we consider the case of two impurities in the cha
nel at two different locations~300, 1000 Å! and ~500, 1250
Å!. The results for the cases of attractive and repulsive
purities ~of equal strength! are shown in Figs. 7 and 8, re
spectively. These figures accentuate even more the fea
observed in Figs. 5 and 6—i.e., a strong dependence of
oscillation amplitude and phase~even far from pinch off! on

h

ic

s

.

FIG. 8. Same as Fig. 5 for the case of two attractive impurit
with strengthG520.5 eV Å. The curves labeled 1 and 2 corr
spond to the case of two impurities located at~300, 1000 Å! and
~500, 1250 Å!, from the left ferromagnet/channel interface, respe
tively.

FIG. 9. Degree of spin-conductance polarizationP vs DEc . All
other parameters are the same as listed in Fig. 3. The quantityP is
plotted for the case of a ballistic channel with no impurity and a
for the four two-impurity configurations~attractive and repulsive!
considered in Figs. 7 and 8. The curves labeled 1 and 2 corres
to the case of two impurities located at~300, 1000 Å! and ~500,
1250 Å!, from the left ferromagnet/channel interface, respective
The extra labelsr and a are to identify the case of repulsive an
attractive scatterers, respectively.
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the impurity type and configurations. This sensitivity is d
to the quantum interference between electron waves refle
multiple times between impurities and also between e
impurity and the closest ferromagnetic contact. All these
terferences affect the overall transmission probability of
electron through the interferometer and, hence, its cond
tance. These simulations show that, even if go
ferromagnetic/semiconductor contacts with large degree
spin polarization can be realized through the use of an
propriate interfacial barrier, perfect control of the location
the conductance minima and maxima could still be elusive
the presence of just a few impurities in the channel. Ob
ously, this will have a deleterious effect on device reprod
ibility.

The strong sensitivity to the presence of impurities in
channel also has a profound influence on the sp
conductance polarization which is defined as4

P5
G1x-polarized2G2x-polarized

G1x-polarized1G2x-polarized
. ~23!

This quantity is plotted in Fig. 9 as a function ofDEc . The
degree of spin polarizationP is shown for the case of a
impurity free channel and also for the four different tw
impurity configurations~attractive and repulsive! considered
in Figs. 7 and 8. This quantity takes both positive and ne
tive values as the gate voltage is swept and reaches a m
mum of 60% close to the threshold for channel pinch-o
However, near pinch-off, our model of impurity scatterin
should be modified to take into account the absence
screening at low carrier density. Even for a more refin
model of impurity scattering, we believe that Fig. 9 is indic
tive of what is to be expected in realistic samples; i.e,
spin-conductance polarization is very sensitive to the na
and location of the impurities in the channel. The spin po
ization therefore provides an actual fingerprint for each
purity configuration, a phenomenon similar to the univer
conductance fluctuations linked to the displacement o
single impurity in mesoscopic samples.33
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IV. CONCLUSIONS
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