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Phase-coherent quantum mechanical spin transport in a weakly disordered
guasi-one-dimensional channel
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A transfer matrix technique is used to model phase-coherent spin transport in the weakly disordered quasi-
one-dimensional channel of a gate-controlled electron spin interferof®t@atta and B. Das, Appl. Phys.
Lett. 56, 665(1990]. The model includes the effects of an axial magnetic field in the channel of the interfer-
ometer (caused by the ferromagnetic contacts Rashba spin-orbit interaction, and elagtionmagnetic
impurity scattering. We show that in the presence of an axial magnetic field, nonmagnetic impurities can cause
spin relaxation in a manner similar to the Elliott-Yafet mechanism. The amplitudes and phases of the conduc-
tance oscillations of the interferometer and the degree of spin-conductance polarization are found to be quite
sensitive to the height of the interface barrier at the contact, as well as the strength, locations, and nature
(attractive or repulsiveof just a few elastic nonmagnetic impurities in the channel. This can seriously hinder
practical applications of spin interferometers.
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[. INTRODUCTION This paper is organized as follows. In the next section, we
describe the Hamiltonian to model the gate-controlled elec-
In a seminal paper published in 1990, Datta and 'Dastron spin interferometer depicted in Fig. 1. The Hamiltonian
proposed a gate-controlled electron spin interferometeincludes potential barriers at the contact/channel interface
which is an analog of the standard electro-optic light modu+that are inevitably present, the axial magnetic field, and lo-
lator. Their device consists of a one-dimensional semiconealized impurities in the channel. It does not include pertur-
ductor channel with ferromagnetic source and drain contacts
(Fig. 1. Electrons are injected into the channel from the Z
ferromagnetic source with a definite spin, which is then con- T‘ X
trollably precessed in the channel with a gate-controlled
Rashba interactidnand finally sensed at the drain. At the
drain end, the electron’s transmission probability depends on Source
the relative alignment of its spin with the drain(fixed)
magnetization. By controlling the angle of spin precession in
the channel with a gate voltage, one can modulate the rela-
tive spin alignment at the drain end and, hence, control the
source-to-drain currer(or conductance In this device, the
ferromagnetic source and drain contacts act as “spin polar-
izer” and “spin analyzer,” respectively.
There have been some studies of ballistic spin transport in
such a devicé;® but they ignored two features that are al-
ways present in a real device structure. First, there is an axial Ef
magnetic field along the channel caused by the ferromagnetic
contacts. This field dramatically alters the dispersion rela-
tions of the subbands in the channel, causes spin mixing, and
has a serious effect on spin transport. Second, even though k
there have been reports of several microns long nearly X
defe_ct-free one_—dlmensmnal quantum wires formed 'n_h'gh' FIG. 1. A schematic of the electron spin interferometer from
quality modulation doped GaAs/AlGaAs heterostructﬂr&s., Ref. 1. The horizontal dashed line represents the quasi-one-
is likely that in circuits involving a large number of Spin gimensional electron gas formed at the semiconductor interface be-
interferometers, some of them will have a few impurities inyyeen materials | and II. The magnetization of the ferromagnetic
the channel. We show that these impurities, even if they argontacts is assumed to be along the direction which results in a
nonmagnetic, can cause spin relaxation in the presence of thgagnetic field along the direction. Also shown is a qualitative
axial magnetic field. Thus, they can affect the conductanceepresentation of the energy dispersion of the two pertutbetit
modulation of the interferometer and the degree of spin poline) and unperturbedbroken ling bands under the gate—the per-
larization of the current. turbation is due to the axial magnetic field along the channel.

Drain
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bations due to phonons and other time-dependent scatteriragnd z directions are denoted by,(y) andV,(z), with the
potentials(we assume that the channel is shorter than thdatter being parabolic in space and the former will be ap-
phase breaking length so that transport is phase coherenproximately triangular. We assume th&t(y) is strong
Using a truncated form of this Hamiltonian, we derive theenough that only one subband along theirection is occu-
dispersion relations of the subbands in the channel. Becaugged by electrons.
of the presence of the axial magnetic field, the subbands are Since the potentiaV/,(z) is parabolic, it results in a spa-
not eigenstates of the spin operator. Therefore, no subbarnilly varying electric field along the direction. This electric
has a definite spin quantization axis. Furthermore, eigendield might have contributed additional Rashba spin-orbit
pinors in two subband&t the same energyarenotorthogo-  coupling terms in Eq(1). However, since the potentisl(z)
nal. As a result, elastithonmagnetic and spin-independent is symmetricabout the origin of the parabola, for every elec-
impurity scattering can couple two subband states with nontric field at a coordinate poire, there is an equal and oppo-
orthogonal eigenspinors, causing elastic intersubband transsite electric field at coordinate-z. The Rashba coupling
tions thatrelax spin One should compare this mechanism of constantuy, is the product of a material-specific constang
spin relaxation with the Elliott-Yafet spin relaxation (Ref. 11 and theexpectation valuef the electric field in the
mechanisriiin a bulk semiconductor. The Elliott-Yafet relax- z direction (Ref. 12. This expectation value is zero because
ation comes about because in a real crystal, the Bloch stat@ise spatial average of the electric field along #hairection
are not eigenstates of spin so that an “upspin” state has somganishes. Hence, there is no overall Rashba effect associated
“downspin” component and vice versa. As a result, nonmag-with V,(z). Therefore, we have considered only the contri-
netic impurity scattering can conne@nostly) up-spin and  bution of the gate electric fielthpplied in they direction to
(mostly) down-spin electrons, leading to a spin relaxation.the Rashba effect in the channel.
Our mechanism is very similar. In Eq. (1), V,(x) represents an interfacial potential barrier
Section Ill contains numerical examples of the conduchetween the metallic ferromagnetic contacts and the semi-
tance modulation of a spin interferometer as a function oonducting channel. This potential could come about from
applied gate potential, spin polarization of the currentseveral sources. For example, Suoéws etall® used a
through the channel, and effects of the interface barriers ang-function potential at the interface to represent a tunnel bar-
elastic (nonmagnetig impurity scattering. Finally, Sec. IV rier that can facilitate coherent spin injection across a metal-

contains our conclusions. lic ferromagnet and a semiconducting paramagnet
interfacel* Alternately, this potential could also represent a
Il. THEORETICAL MODEL very narrow contact potential associated with Ohmic con-

tacts. An Ohmic contact forms when the semiconductor ma-
We first consider the quasi-one-dimensional semiconducterial in the neighborhood of the metal contact has a large
tor channel of a spin interferometer in the absence of angarrier concentration so that the Schottky barrier at the metal/
impurities. The channel is along theaxis (Fig. 1) and the  semiconductor interface becomes very narrow and electrons
gate electric field is applied along tlyedirection to induce a  from the contact tunnel easily through this into the semicon-
Rashba spin-orbit coupling in the channel. This system igjucting channel, resulting in a very small contact resistance
described by the single-particle  effective-massor an Ohmic contact. Following Scherset al,*® we model

Hamiltoniar?*° these interface barriers @sbarriers given by
He(F el 1 (B eR) Vi ()4 Va(y) +Vo(2) Vi(X)=VL6(X) +VrS(X—L), 2
= eA) ——(p+e X z
P 2m*(x) P ' )T whereV, andVg are assumed equal.
1[ ag(x) In Eqg. (1), we have neglected a few effects for the sake of
—(G*12) B o = aRr y-{ox(p+eAl+H.c., simplicity. We have neglected the normal Elliott-Yafet
2 h interactio because it is weak in quasi-one-dimensional

(1) structureswhere elastic scattering is strongly suppresded
We have also neglected the Dresselhaus interd€tnce it
where H.c. denotes Hermitian conjugate. This form of thedoes not relax spin when the initial spin polarization is along

. . .. ~ . H 1720 [P :
Hamiltonian guarantees Hermiticfy-ere,J is the unit vec-  the axis of the wirg’™ (this is the case with the gate-
tor along they direction in Fig. 1 and is the vector poten- controlled spin interferometerThe Dresselhaus interaction

. . = can, however, be easily included in the Hamiltonian and is
tial due to the axial magnetic fielB along the channelx

left for future work. Finally, we model localized nonmag-

direction caused by the ferromagn_etic contacts. For quasinatic impurities (i.e., which do not flip the spinusing a
one-dimensional channels of submicron length,

i It I réasoNsiandard model of scatterers. The scattering potential is
able to assume th& is homogeneous and directed along thegiven by

channel’s length(in other words fringing fields are not an

issug. In Eq.(1), ug is the Bohr magnetorefi/2m,) andg* N

is the effective Landeg factor of the electron in the channel. Vimp:Zl I 6(x—=x;) (©)
The quantityay is the Rashba spin-orbit coupling strength a

which depends on the gate electric field and can be varietb represent N impurities in the channel at locatignand
with the gate potential. The confining potentials alongyhe with strengthl’; (assumed to be spin independerh our
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numerical examples, we consider the case of both attractive h2Kk2  f2Kgk,
(T; negative and repulsive [; positive impurities. While Eni=(n+12ho+AB+ 5 o+ —5—,
o ; : m m
Eq. (1) represents a ballistic channel with no scattering, ad-
dition of the scattering potential in E@3) to Eq. (1) will B2 K2Kok
result in a Hamiltonian describing a weakly disordered chan- En =(n+1/2)fiw+AE.+ _*x — f ay (5)
nel in which impurity scattering takes place. The eigenstates ’ 2m m

of this (spin-dependentHamiltonian can then be found us- wherew=\/m. In Eq. (5), the and| arrows indicate

ing a transfer matrix technique to extract the electron wave, _ and — z-polarized spingeigenstates of the:, operatoy
z

function in_the presence of impurity_ scatterers. From thigNhich are split by the Rashba effdéifth term of the Hamil-
wave function, we can calculate tiigpin-dependeptrans- tonian in Eq.(4)]. These are subbands with definite spin

mission probability through the channel and ultimately thequantization axes along thez and — z directions since they

(spin-dependepichannel conductance. . are eigenstates of the, operator. Their dispersion relations
Let us now concgntrate on the.channel region between are shown as dashed lines in Fig. 1.
=0 andx=L (see Fig. 1. The choice of the Landau gauge g gixth and seventh terms in E¢) induce a perturba-
A=(0,-Bz0) allows us to decouple thecomponent of the  tion and mixing between the unperturbed subbanlz-(@and
Hamiltonian in Eq.(1) from thex-z component in the chan-  — z_polarized spins The sixth term originates from the mag-
nel. Furthermore, if we ignor&iy, for the moment, the netic field due to the ferromagnetic contacts and the seventh
solution of the Schrdinger equation in the channel can be griginates from the Rashba effect itself. The ratio of these
written as a linear superposition of left and right travelingtwwo terms can be shown to be of the order of 20 for
plane waves i, Will couple various wave vector states typical values of the relevant parameters. Therefore, we can
which is handled by the transfer matrix technique describe eglect the seventh term in comparison with the sixth term
|ate|’). The two-dimensional Hamiltonian in the plane of such (for a very strong Rashba effect, much stronger than what

a ballistic channelX-z plang is then given by has been experimentally observed in semiconductor struc-
02 L VA B2k ';yresl, thg seyenth tf(;:rmt%l(;an also matter and introduce addi-
z X RKx ional spin mixing effects).
HXZ:zm* TAEF Em*(waL wg) 22+ 2m* + m* 7z To ogtain an zgnalytical expression for the dispersion rela-
tion corresponding to the first six terms in the Hamiltonian in
—(G*12) jupBory— ﬁkszU @ Eq. (4), we derive the two-band dispersion relation in a trun-
MBEIX™ T T cated Hilbert space considering mixing between the two low-

est unperturbed subband stageamely, thet+z and —z spin

wherew, is the curvature of the confining potential in the state$. Straightforward diagonalization of the Hamiltonian
direction, w.=eB/m*, kg=m* ag/f?, and AE, is the po- in Eq.(4) (minus the seventh temin the basis of these two
tential barrier between the ferromagnet and semiconductounperturbed states gives the following dispersion relations:
We assume thafE. includes the effects of the quantum
confinement in the direction. 1 h2k; \/ n7Kke|* (9% ugB

A few words are in order regarding E¢4). First, the El(kx):zﬁerAEch om* ( m* ) + 2
effective mass is spatially invariant within the channel which
is why the effective mass is treated as a constant in(4q.
Of course, there is a discontinuity in the effective mass at the 1 h2K2 h2kgky\? [ g* ugB\?
interface with the ferromagnetic contacts set0 andx  E2(kJ)=5ho+AE+ 5 o+ \/( m ) +( > ) ,
=L. This has been taken into account in the boundary con- )

ditions[see Eqs(17) and(18)]. Secondag is also spatially .
invariant in the homogeneous channel because the materijfi€re the indices 1 and 2 refer to the lower and upper sub-
constantyg is invariant. Thereforey ag termsarising from bands. Their dispersion relations are plotted schematically as

the Hermitian conjugate terms in E@.,)] vanish in the chan- solid lines in Fig. 1. ) L
nel and do not appear in E4)). However, the discontinui- One can see from Fig. 1 that the magnetic field caused by
the ferromagnetic contacts couples the two unperturbed sub-

ties in ag at the interfaces between the semiconductor chanb ds (th iinal d larized subb d
nel and the ferromagnetic contacts will lead to two ands (the original +2z- and —z-polarized su anglsan
changes their dispersion relation, lifting the degeneracy at

S-function spin-orbit coupling terms at=0 and x=L. _ :
These are like the interface potenté and have been ac- k><_:0', Wh|le. the unperturbedl bands are shifted .parabolas
with single minima ak,= * kg, the perturbed band# the

counted for via the boundary conditiopsee Eqs(17) and
(18) later]. y see Eqs(17) presence of a magnetic figldre not parabolic and are sym-

metric about the energy axis. One of them has a single mini-
_ _ ) mum atk,=0, and the other has double minima lgt=
A. Energy dispersion relations lLkR\/l_,_(g* MBB/‘SR)Z! where 6R=ﬁ2kr§/2m*. The mag-

We now derive the energy dispersion relations in thenetic field not only has this profound influence on the disper-
channel of a ballistic interferometer using Ed). The first  sion relations, but it also causepin mixing meaning that
five terms of the Hamiltonian in Ed4) yield shifted para- the perturbed subbands no longer have definite spin quanti-
bolic subbands with dispersion relations zation axegthey are no longert+z- and — z-polarized sub-

2
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band$ because they are no longer eigenstates of the spin 712Kk, 7 2kgk, | 2
operator. Spin quantization becomes wave vector dependent.  a(ky)=——5—+ (—* +B2, y(ky)

*
Furthermore, energy-degenerate states in the two perturbed m m

subbands no longer have orthogonal spins. Therefore, elastic = Ja?(ky+ 8% 6, =arctafia(k)/B]. (11)
scattering between them is possible without a complete spin X
flip.

The energy dispersion relations also show that the differ- Note that the eigenspinors given by E4O) are not a
enceAk, between the wave vectors in the two subbands at-z-polarized statd1 0]" or — z-polarized statd0 17" if
any given energy isiot independent of that energy. Since the magnetic fieldB+#0 (i.e., 8#0). Thus, the magnetic
Ak, is proportional to the angle by which the spin precessesield mixes spins and the z- or —z-polarized states are no
in the channet,the angle of spin precession in the channel oflonger eigenstates in the chanrfal other words, the sub-
a spin interferometer iso longerindependent of electron bands in Eqs(6) and(7) are not eigenstates of the opera-
energy. Thus different electrons that are injected from theor unlike the subbands in E¢p) and hence they are netz-
contact with different energiegat finite temperature and and — z-polarized subbandsEquations(10) also show that
biag will undergo different degrees of spin precession, anthe spin quantizatioreigenspinor in any subband is not
the conductance modulation will not survive ensemble averfixed and strongly depends on the wave vestor Thus, an
aging over a broad spectrum of electron energy at elevategiectron entering the semiconductor channel from the left
temperatures and bias. In Ref. 1, which did not consider th@srromagnetic contact with+ x-polarized spin will not
effect of the axial magnetic field, a point was made that th%oup|eequa”yto 4+ 7 and — z states. The relative Coup“ng
angle of spin precession is independent of electron energy sgill depend on the electron’s wave vect@r energy.
that every electron undergoes the same degree of spin pre- Most importantly, the two eigenspinors given by E#0)
cession in the channel irrespective of its energy. As a resulrenot orthogonal. Thus, a spin-independent elastic scatterer
the conductance modulation of the spin interferometer is notnonmagnetic impurity can couple these two subbands in
diluted by ensemble averaging over electron energy at ethe channel and cause elastic intersubband transitions. An-
evated temperature and bias. Indeed this is true in the alyther way of stating this is that the actual subband states are
sence of an axial magnetic field, but when a magnetic field isiot eigenstates of the spin operator; hence, scattering be-
considered, this advantage is lost. tween them is possible via a spin-independent scatterer. This
From Egs.(6) and (7), we find that an electron incident s exactly similar to the Elliott-Yafet mechanism in a bulk
with total energyE has wave vectors in the two channel crystal. Such a scattering is of course harmful for the gate-
subbands given by controlled spin interferometer since it introduces a random
component to the spin precession in the channel. In our
1 B+ B2-4C transfer matrix modeldescribed latgrthis mechanism of
Kys = \/2 *(f) (8)  scattering is automatically included since we use the actual
eigenspinors in the channel given by E0) to construct the
wave function(see Sec. I B later
We model the ferromagnetic contacts by the Stoner-
" 2 Wohlfarth model. The+ x-polarized spin(majority carriej
+45g, C:(E— —w—AEC) and —x-polarized spin(minority carriey band bottoms are
offset by an exchange splitting energy(Fig. 2). Since the
interface barriers for the two types of spin are different by
the amountA, the transmission amplitudes for the two types
will be different, leading to some degree of spin-polarized
injection and detectioff

f

where

hw
7_
_BZ’ (9)

with B=g* ugB/2.
In Eqg. (8), the upper and lower signs correspond to the

lower and upper subbands in Fig. 1 and are referred to here-

after ask, ; andk, ,, respectively. The corresponding eigen- B. Transmission through the interferometer

spinors in the two subbandat energyE) are, respectively,

B:2<E— AE,

In this subsection, we calculate the total transmission co-
efficient through the spin interferometer for an electron of

Ca(ky1) [_a’(kx,l)/')’(kx,l)_ [ —sin(y ) energyE entering the semiconductor channel from the left
C!(k = /(K =| coq6 , ferromagnetic contactregion I, x<0) and exiting at the
1K) Alvlo) i 1 k“) right ferromagnetic contacfregion Ill, x=L). A rigorous
treatment of this problem would require an accurate model-
1 Tcog6, ) ing of the three-to one-dimensional transition between the
Ca(ky2) Bl y(ky2) Ke2 bulk ferromagnetic contactsegions | and I} and the quan-
Ch(ky2) | | alky 2/ ¥(ke2) | | sin(b ) | (100 tum wire semiconductor channgkgion 1.2 However, a
I one-dimensional transport model to calculate the transmis-

sion coefficient through the structure is known to be a very
where the quantitiesr and y are functions ofk, and are good approximation when the Fermi wave number in the
given by ferromagnetic contacts is much greater than the inverse of
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the transverse dimensions of the quantum Wire. This is
always the case with metallic contacts.

In the semiconductor channgkgion I, 0<x<L), thex
component of the wave function at a positigralong the
channel is given by

Ci(ko |
I (xX)=A(E) Ci(ky1) e+ A (E)

Cl(_kx,l) ) Cz(kx,z) .
X| Cl(—kyep) [€FHANB)] Cy(ky ) | €

CZ( - kx,z)
FAVE) Ci(—ky o) €

- ikxvzx_

12

For a +x-polarized spinimajority carriej in the left fer-
romagnetic contadtregion I,x<0), the electron is spin po-
larized in the[11]" subband and th& component of the
wave function is given by

1 1
1 U R.(E) u
X)= — eIkXX+ eflkxx
1
R2(E) . d
+ 2 _1 e—lkxX, (13)
V2
1 VL 1 VR I
Ef “________________f‘
R B T TET T rry .
v
A Impurity | AE¢
potential
0
Contact Channel Contact

R
]

PHYSICAL REVIEW B9, 045303 (2004

where R;(E) is the reflection amplitude into the
+x-polarized band an&,(E) is the reflection amplitude in
the —x-polarized band for an electron incident with energy
E.

In the right ferromagnetic contag@tegion Ill, x>L), thex
component of the wave function is given by

Ty(E)

1
U To(E)
i (X)= 2 |1 gt 2

1
1 eik;’(x—L)

(14)

whereT,(E) andT,(E) are the transmission amplitudes into
the +x- and — x-polarized bands in the right contact. In Egs.
(13) and(14), the wave vectors

k§=%\/2m0E, kf=%x/2mO(E—A) (15)

are thex components of the wave vectors corresponding to
energy E in the majority (+x-polarized and minority
(—x-polarized spin bands, respectively.

If there are impurities in the channel, we must write a
solution to the Schdinger equation in each “ballistic” seg-
ment of the channel between neighboring impurities in the
form given by Eq.(12) with different values for the coeffi-
cients A;(E)(i=1,4). In addition to the continuity of the
wave function across each impurity in the channel, the fol-
lowing condition must be satisfied, which is obtained
through an integration of the Schiinger equation across the
impurity:

d dy 2m*T,
xKite=gxime+ P h(X).

(16)

Furthermore, because of the interfacial barrier at the two
ferromagnet/semiconductor contacts, the integration of the
Schralinger equation across the left and right interface re-
gions leads to the following two boundary conditions:

At x=0,

FIG. 2. Energy band diagram across the electron spin interfer-

ometer. We use a Stoner-Wohlfarth model for the ferromagnetic

contactsA is the exchange splitting energy in the contadtk, is

the height of the potential barrier between the energy band bottoms

of the semiconductor and the ferromagnetic electrodés, takes
into account the effects of the quantum confinement inythad z

directions. Also shown as dashed lines are the resonant energy
states above\E.. Peaks in the conductance of the electron spin
interferometer are expected when the Fermi level in the contact
lines up with the resonant states. The barriers at the ferromagnets

diy 2m*V, diys )
X (Ot g HO)= G (O tike(+ o+ e),
(17)
and, atx=L,
d 2m*V d
ud—f<L+e)—7°¢<L>=d—"X”<L—e>

+ikp(L— €)o(L),
(18

whereV, is determined by, and AE,, w=mg/mf, and

*

andmf are the effective masses in the semiconductor

semiconductor interface are modeled as simple one-dimensional @nd ferromagnetic materials, respectively. Here, we have

potentials. The impurity potentials are also modeled a®tentials

made use of the fact thatz (and thereforékg) is zero in the

at random locationghere we show attractive impurities because theferromagnetic contacts so that terms contairkp— €) and

S potentials are negatiye

kr(L + €) do not appear in Eq$17) and(18). Equationg17)
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and (18) ensure continuity of the current density at the fer-based on an estimate given by delet al.?” This leads to a
romagnetic contact/semiconductor interface. Zeeman splitting energy* ugB of 0.34 meV in the channel.
For the case oN impurities in the channel, the equations The Fermi levelE; and the exchange splitting enerdyin
above lead to a system of M@2) equations with 4¢  the ferroma%netic contacts are set equal to 4.2 and 3.46 eV,
+2) unknowns[Ry(E), R,(E), T{(E), To(E) andN+1  respectively: ) ) ) ) )
sets of Aj(E)(i=LILIILIV) for the N+1 regions in the The Rashba spin-orbit coupling strengif is typically
channel demarcated by th¢ impurities. This system of derived from low-temperature magnetoresistance measure-
equations must then be solved to find the transmission prog€nts(Shubnikov—de Haas oscillations two-dimensional
abilities T,(E) andT,(E). The problem is repeated for two electron gas{ZDEGe)%gcreated at the interface of semmondu;—
cases{(i) when the initial spin ist+x polarized(i.e., the in- tor hteTerolstructL;rth ';0 dhi;[e’ the Ia[)gtest relporte? exp(ra]n-
coming electron is a majority carrier in the left contaand ~ MENt&! values of the Rashba spin-orbit coupling stremgif
(il) when the incoming electron is x polarized(i.e., the have been found |n.InAs—based sen_u.conduct.or heterojunc-
S : S sE o tions. For a normal high electron mobility transistefEMT)
incident electron is a minority carrier in the left contact

. ) o Ing 75Al g 25AS/INg 7:G &y »5AS heterojunction, Satet al. have
Finally, the _I|r?ear_ response _conductance of the spln_lnterferr—eported a variation ofrg from 30 to 15< 10”12 eV m when
ometer (for injection from either thet+x- or —x-polarized

_ the external gate voltage is swept from 0-t® V (the total
bands in the left contacts found from the Landauer formula gjectron concentration in the 2DEG s found to be reduced
from 5 to 4.5< 10'Ycn? over the same range of bjagor a
E- EF) channel length of 0.2.m, this corresponds to a variation of
2kT )’ the spin precession angke=2kgL from aboutz to 0.57
(29 over the same range of gate bias.
In the numerical results below, we calculated the conduc-
tance of a spin interferometer with a QuZn-long channelég\s
2_ 2 djpu 2 a function of the gate voltage at a temperature of 2°K.
Tl B)F=IT2(B) "+ (k) [ T2 B)I% (20 Tuning the gate voltage varies both the potential energy bar-
Similarly, the conductance of the minority spin carrierser AEc and t?e Rashba spin-orbit coupling strengil
(G_ypolarized IS calculated after repeating the SCatteringS|multaneousI§ Both of these variations lead to distinct

problem for electrons incident from the minority spin band inYP€S Of conductance oscillations. The variation HE.
the contacts. Since thex- and —x-polarized spin states are CaUS€s the Fermi level in the channel to sweep through the

orthogonal in the contacts, the total conductance of the spifESonant energies in the chaniegsonant levels are caused

e (= 5
Ger—poIarized:m—JO dE|Ttot(E)| sech

where

interferometer is given by by the potential_steps at=0 andx=L), causing the con- _
ductance to oscillate. These are known as Ramsauer oscilla-
G =Gy polarized™ G—x-polarized: (21) tions (or Fabry-Perot-like resonangesnd have been exam-

ined in the past by Matsuyamet al® for two-dimensional
structures and by d% for one-dimensional structures. The
variation ofag, on the other hand, causes spin precession in
The interface potentialg, determineV, and the solutions the channel, leading to the type of conductance oscillation
of the Schrdinger equation and, therefore, the transmissiorwhich is the basis of the spin interferometer, as originally
probabilities and conductance. To elucidate the rol&/of  visualized by Datta and Ddsln Ref. 32 we found that the

C. Role of the interface potentials

we introduce the following parameter: Ramsauer oscillations are much stronger and can mask the
oscillations due to spin precession, unless the structure is
2m; V, designed with particular care to eliminater reduce the

. (22 Ramsauer oscillations. In the calculations reported here, we
vary AE over a range of 10 meV which allows us to display
several of the Ramsauer oscillations in the conductance. We
m* =m, andke=1.05< 10° cm %, we get a barrier strength are restricted to this range because we can incréfgeat
_ — ! . most by an amount equal to the Fermi energy in the channel.
Vy=16 eV A for Z=2. In the next section, we will show : : . .
how the conductance modulation of the spin inten‘eromete’rA‘t the e_nd of this range, the Fermi energy lines up with the
depends orZ conduction band ed_ge in thg channel which corr_esponds to
' onset of complete pinch-off; i.e., the channel carrier concen-
tration falls to zero. Therefore, the maximum rang@&: is
lll. NUMERICAL EXAMPLES the Fermi energy, as long as we are applying a negative gate
voltage to deplete the channel as opposed to applying a posi-
We consider a spin interferometer consisting of a quasitive gate voltage to accumulate the chanfvet do not want
one-dimensional InAs channel between two ferromagnetito accumulate the channel since a large carrier concentration
contacts. The electrostatic potential in thelirection is as- in the channel will lead to multiple subband occupation and
sumed to be harmoniwith Zw=10 meV in Eq.(4)]. We  will also ultimately shield the gate potential resulting in loss
assume @* factor of 3 and an electron effective mass of gate control. In one-dimensional semiconductor channels,
=0.036m, which is typical of InAs-based channéfsWe a realizable carrier concentration o6 x 10°/cm, will cor-
also assume that the magnetic field along the channel is 1 fespond to a Fermi energy of 10 meV which also happens to

h2

Typical values ofZ vary in the range of 0—% Using
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FIG. 3. Conductance modulation of a ballistic electron spin in- AEc (eV)

terferometerfor T=2 K) as the gate voltag@r the energy barrier
AE,) is varied. W_elzassume that the Rashba coupling streagth FIG. 4. Influence of a single impurity on the conductance modu-
varies from 30<10"*“ eV m to O for the range A E. showninthe  |5jon of an electron spin interferometer. All other parameters are

figure. This should correspond to one-half cycle of conductancgne same as in Fig. 3. The interface potential at the ferromagnet/

oscillation due to spin precession. The separation between the Q. miconductor interface is 2 eV A correspondingZte 0.25. The
ferromagnetic contacts is 02m. The confinement energyw oty is modeled as a repulsivé scatterer with strengtf;
along thez direction (direction transverse to both current flow and ,qicated next to each curve in unit eV A. The impurity is located

the gate electric fieldis 10 meV. The conductance oscillations in 309 A away from the left ferromagnetic contact/channel interface.
this figure are caused by Fermi level sweeping through the resonant

levels in the channel of the interferomettne so-called Ramsauer

effec) and arenot due to the spin precession in the channel as A value of 2= 1 corresponds o a value b andVg in
shown in Ref. 32. The different curves correspond to different vaI-Eq' (2) equal to 8 eV A Figure 3 shows that the location of

ues of the parametet characterizing the strength of the interfacial conductance minima and maxima are only slightly shifted

barrier between the ferromagnetic contact and semiconductin Ion?ttr:jeAchat);]ls Wlth.ltlh? varlatlon of thezpk%ratn:rel:@rT?e ¢
channel. The semiconducting channel is assumed to be impurit mplitudes ot he osciliations Increase WArbut then star

free and. hence. ballistic o0 decrease as the maxima of the conductance is reduced for
' ’ larger values oZ. This reduction in amplitude is expected

be th bband . . heref since the conductance of the spin interferometer eventually
e the subband separation enefgy in our case. Therefore, reduces to zero a8— o (no electron can enter or exit the

we restrict the Fermi energy to 10 .me\./ in order to PreSeV&hannel if there are infinite barriers at the contact intepface
single-subband occupancy, and this dictated our choice ofe mayimum in the conductance amplitude modulation oc-

the range .OfAEC' . curs forZ=0.25 in our numerical examples. In the subse-
Over this range oAE., we assume that the Rashba spin-

orbit coupling strengthag varies from 310 2 eVm 16

down to zero. This is consistent with experimentally ob-
served dependence af; on gate voltage. This variation of Ng 14
ag corresponds to a variation of the spin precession afigle 4 1.2
from abouts to O (i.e., half a cycle of the oscillation ex- 5 ]
pected from spin precessipn Y
e os
A. Influence of the interfacial barrier '§ 0.6
The results of the conductance modulation are shown in 'g 04
Fig. 3 for different values of the parametércharacterizing 8 0.2
the strength of the d barrier at the ferromagnet/
semiconductor interfacéassumed to be the same for both 0 —_— —
4.189 4191 4.193 4.195 4197 4199

contact$. Instead of plotting the conductance as a function
of gate voltage, we always plot it as a functionX . since AE,. (eV)

AE. directly enters the Hamiltonian in E¢4). The exact ¢

relationship betwee\E. and the gate voltage is compli-  £iG_ 5. Influence of a single impurity on the conductance modu-
cated by many factorsinterface states, channel geometry, jation of an electron spin interferometer. Again, all other parameters
etc), but for the sake of simplicity, we will assume th®E.  are the same as in Fig. 3, add-0.25. The impurity is modeled as
depends linearly on gate voltage. Therefore, the plots in Figs repulsives scatterer with strengti=0.5 eV A. Cases 1—4 cor-
3-9 can be effectively viewed as plots of conductance versugspond to an impurity located 300, 750, 1000, and 1500 A away
gate voltage. from the left ferromagnetic contact/channel interface.

045303-7



M. CAHAY AND S. BANDYOPADHYAY PHYSICAL REVIEW B 69, 045303 (2004

16 16 .
ATTRAGTIVE
4 - 147 IMPURITIES
9 £
o 127 Nq, 121 no impurity
L <
g o
2 o8¢ € 08
2 9 06
© 06 g 6 }
5 2 o4l
S o4t [ 5§ ° \
8 02 0.2 config.1 . N
0 . . . . . . . MR 0 . . . . . . . MR
4189 4491 4193 4195 4197  4.199 4189 4191 4193 4195 4197  4.199
AE¢ (eV) AE o (eV)

FIG. 6. Same as Fig. 5 for the case of an attractive impurity with  FIG. 8. Same as Fig. 5 for the case of two attractive impurities
strengthl’=—0.5 eV A. Cases 1-4 correspond to an impurity lo- with strengthI'=—0.5 eV A. The curves labeled 1 and 2 corre-
cated 300, 750, 1000, and 1500 A away from the left ferromagnetispond to the case of two impurities located(30, 1000 A and
contact/channel interface. (500, 1250 A, from the left ferromagnet/channel interface, respec-

tively.
guent numerical simulations which investigate the influence

of impurity scattering on the conductance modulation, Weyres clearly show that the conductance modulation of the
therefore use@=0.25 throughout. interferometer operating in a phase-coherent regime is af-

_ _ fected by the exact location and strength of a single scatterer.
B. Impurity scattering In fact, Fig. 6 clearly shows that, if we change the location of

First, we consider the case of a single repulsive impurityth€ impurity, then the value of the conductance at a fixed
at a fixed location within the channé300 A from the left ~value of AE; changes by~ e?/h which is reminiscent of the
ferromagnetic contagbut with varying strengt’;. Figure ~ Phenomenon of “universal conductance fluquat!oi%.“

4 shows that the size and location of the conductance peaks Next, we consider the case of two impurities in the chan-
and minima are affected by the strength of the impurity scatD€l at two different locationg300, 1000 A and (500, 1250
terer and more strongly affected at larger valuesA, . A)._'I_’he results for the cases of attra(_:nve_ and repulsive im-
This is expected since the transmission probability througtPurities (of equal strengthare shown in Figs. 7 and 8, re-
the impurity diminishes as the channel approaches pinch_ofﬁpectwely._ Th(_ase figures accentuate even more the features
Even though not shown here, the same trend was observépserved in Figs. 5 and 6—i.e., a strong dependence of the
when the impurity was assumed to be an attractive scatter&@scillation amplitude and phageven far from pinch offon
(negative value fol';). Figures 5 and 6 illustrate the depen-

dence of the conductance of the interferometer on the exact g 0.8
location of an impurity with a scattering strength bf = 06
=0.5 eVA. Figures 5 and 6 correspond to the case of a N " N
. . . . . . .
repulsive and attractive impurities, respectively. These fig- S 04 2a no /]
8— 02 | / \‘,-\;’ impurity /|
1.6 8 i D \\\
L . . REPULSIVE = 0 }
14 A ,\;°“f'9'1 IMPURITIES -g y
£ 12} : 3 0.2 £
NQ ° ,’ L
: 1 § 04 PYERN AN w® 1a \\///
g 08¢ £ .06
< o
L4
9 0.6 2] 4.189 4.191 4.193 4195 4197 4199
B o4y \ E c(eV)
o ‘L s 4 AE ¢(e
O 02| config.2 % no imp[xrity YT ¢
~ N /
0 N FIG. 9. Degree of spin-conductance polarizatims AE, . All
4189 4191 4193 4195 4197 4.199 other parameters are the same as listed in Fig. 3. The quéisty
plotted for the case of a ballistic channel with no impurity and also
AE . (eV) for the four two-impurity configurationgattractive and repulsiye

considered in Figs. 7 and 8. The curves labeled 1 and 2 correspond
FIG. 7. Same as Fig. 5 for the case of two repulsive impuritiesto the case of two impurities located @00, 1000 A and (500,
with strengthl’=0.5 eV A. The curves labeled 1 and 2 correspond1250 A), from the left ferromagnet/channel interface, respectively.
to the case of two impurities located €00, 1000 A and (500, The extra labels and a are to identify the case of repulsive and
1250 A), from the left ferromagnet/channel interface, respectively. attractive scatterers, respectively.
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the impurity type and configurations. This sensitivity is due From an experimental point of view, the sensitivity of the
to the quantum interference between electron waves reflectegpin-conductance polarization to the actual impurity configu-
multiple times between impurities and also between eachation could be tested with experiments based on the Hanle
impurity and the closest ferromagnetic contact. All these in-effect, pioneered by Johnson and SilsBemd later used by
terferences affect the overall transmission probability of arseveral group®>3® For spin interferometers with very long
electron through the interferometer and, hence, its conduchannels and containing many impurities, the Hanle effect,
tance. These simulations show that, even if goodwhich uses a small magnetic field perpendicular to the axis
ferromagnetic/semiconductor contacts with large degree odf magnetization of the ferromagnetic contacts, could be
spin polarization can be realized through the use of an apdsed to investigate the influence of the gate potefxialthe
propriate interfacial barrier, perfect control of the location of Rashba effe¢gton the spin relaxation tim&, of carriers in

the conductance minima and maxima could still be elusive irone-dimensional channels in the presence of an axial mag-
the presence of just a few impurities in the channel. Obvinetic field.

ously, this will have a deleterious effect on device reproduc-

ibility.
The strong sensitivity to the presence of impurities in the IV. CONCLUSIONS
channel also has a profound influence on the spin- _
conductance polarization which is defined as In this paper, we have developed a fully quantum me-

chanical approach to model-coherent electron spin transport
in a disordered semiconductor channel using a particular
model of impurity scattering. We have also shown how con-
ductance modulation of the gate-controlled spin interferom-
This quantity is plotted in Fig. 9 as a function AE;. The  eters proposed in Ref. 1 is affected by the presence of inter-
degree of spin polarizatioR is shown for the case of an facial barriers at the ferromagnetic contact/semiconductor
impurity free channel and also for the four different two- interfaces and by a few impurities in the semiconducting
impurity configurationgattractive and repulsiyeconsidered  channel. Quantum interference caused by multiple reflections
in Figs. 7 and 8. This quantity takes both positive and negaof electron waves between impurities and between the impu-
tive values as the gate voltage is swept and reaches a maxities and the interfacial barriers can strongly affect the over-
mum of 60% close to the threshold for channel pinch-off.5| degree of spin polarization of the interferometer. The ex-
However, near pinch-off, our model of impurity scattering treme sensitivity of the amplitude and phase of conductance
should be modified to take into account the absence Opscillations to impurity location is reminiscent of the phe-
screening at low carrier density. Even for a more refinethomenon of universal conductance fluctuations of mesos-

model of impurity scattering, we believe that Fig. 9 is indica- copic samples. This will hinder practical applications of elec-
tive of what is to be expected in realistic samples; i.e, tharon spin interferometers.

spin-conductance polarization is very sensitive to the nature
and location of the impurities in the channel. The spin polar-
ization therefore provides an actual fingerprint for each im-
purity configuration, a phenomenon similar to the universal
conductance fluctuations linked to the displacement of a The work of S.B. was supported by the National Science
single impurity in mesoscopic sampl&s. Foundation under Grant No. ECS-0089893.

_ G+x-p0|arized_ G—x-polarized

P

= (23)
G+><—po|arized+ G7><—polarized
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